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Global mapping of potential coastal
compound flood risk at 0.1∘ resolution
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Compound floods resulting from the concurrence of river overflow and elevated sea levels are
becoming increasingly unpredictable as climate extremes intensify. However, most flood risk
assessments still fail to account for the uncertainty in their co-occurrence. Here, we quantify potential
coastal compound flood risk at 0.1∘ resolution by integrating flood hazard, population exposure, and
empirical vulnerability. Specifically, we introduce a compound floodmetric, which aggregates riverine
and oceanic flood volumes across multiple return periods under a physically plausible co-occurrence
assumption.We further derive an empirical vulnerability function based on the ratio between observed
andmaximumpotential flood hazard. The results show that Asia exhibites the highest 35.22% internal
high-risk grids, followed by Africa (20.21%), Europe (17.02%), South America (9.89%), and North
America (2.31%), with river deltas and low-lying coasts emerging as global riskhotspots. Our study
offers a conservative compound flood risk assessment under deep uncertainty, supporting more
robust investment decisions.

In the face of accelerating sea-level rise and intensifying extreme weather,
floods have become the most frequent and destructive natural hazard
worldwide1–3. Anthropogenic climate change, coupled with widespread
land-usemodifications, has amplified both themagnitude and recurrence of
extreme flood events, resulting in escalating losses of lives and assets4—
particularly across Southeast Asia5, where the greatest exposure is
observed6–9. This vulnerability is further exacerbated by rapid urban
expansion and unsustainable groundwater extraction in low-lying coastal
zones, which accelerate land subsidence and compound the impacts of sea-
level rise and storm surges5,10,11. Simultaneously, the degradation of coastal
wetlands, a critical buffer against storm impacts, has diminished the natural
capacity to trap sediments and dissipate wave energy12–14. Together, these
intertwined processes have substantially eroded flood resilience worldwide
and underscore the critical need for high-resolution risk assessments at a
global scale.

Global evidence indicates a high likelihood of concurrent riverine and
oceanic flooding in coastal regions, arising from anomalous river discharge
and elevated sea levels15–17. Such interdependent floodmechanisms give rise
to compoundflood events that can substantially intensify overall impacts by
deepening inundation, prolonging flood duration, and widening the spatial
extent of floods18–22. Joint-probability-based approaches have been widely
used to quantify the dependence between riverine and oceanic floods
globally15,17,18. However, these methods require event selection based on
specific flood sources (e.g., storm surges or river overflows), whereas

extreme water levels can result from events that are not extreme
themselves23,24, which may introduce bias in compound flood estimates.
Recent studies have incorporated conditional simulation frameworks into
compound flood modeling25,26, without requiring strict event pre-
classification. This methodological shift has facilitated the global-delta-
scale assessments of compound flood risk27, offering insights into the spatial
patterns of compound floods. However, these approaches may under-
estimate hazard levels in future-oriented decision-making, as emerging
extremes are unlikely to be captured by past statistics. From a mechanistic
perspective28–30, the riverine and oceanic floods undermultiple probabilities
can plausibly co-occur. This highlights the need for a combined metric that
captures the potential volume of compound flooding that coastal commu-
nities would need to manage.

In economic terms, flood risk is often expressed as expected annual
damage, defined as the integration of socio-economic losses over the full
spectrum of flood return periods31,32. As urbanization increasingly expands
into flood-prone regions5,33,34, population exposure rises, flood risk assess-
ments that focus solely on economic losses tend to bias estimates toward
high-income regions33. In contrast, low-income countries are dis-
proportionately exposed to floods and face greater vulnerability35,36.
Accordingly, the hazard-exposure-vulnerability (HEV) framework is
commonly employed to assess flood risk37–40. However, existing global flood
risk assessments based on the HEV framework that incorporate population
exposure often rely on a single return period, typically the 1-in-100-year
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event, and a narrow set of indicators (e.g., flood depth or inundation
extent)33,41. These approaches can introduce systematic biases in risk esti-
mation: focusing on a single return period neglects both low-frequency and
high-frequency catastrophic floods42, while considering inundation extent
or depth in isolation may misrepresent the flood volume relevant for flood
management43. These limitations underscore the need for amore integrated
metric that systematically characterizes the full spectrum of flood hazards.

Exposure and vulnerability are equally critical components of flood
risk, given the inherently impact-driven nature of risk assessments. Prior
studies have frequently used population as a proxy for flood exposure5,33,40,
and in the absence of high-resolution geospatial vulnerability data, Gross
Domestic Product (GDP) is often adopted as a surrogate for economic
vulnerability41,44. This assumption rests on the premise that flood-related
economic losses scale with the level of economic development. However,
this simplification tends to skew flood risk concentration toward econom-
ically developed regions, potentially obscuring vulnerabilities in lower-
income areas. Empirical evidence suggests that areas with higher GDP are
more likely to invest in flood protection, resulting in more advanced flood
defense systems and consequently lower flood-related mortality and eco-
nomic losses45–47. To account for the mitigating effects of economic devel-
opment on flood risk, some studies have used inverted GDP as a
vulnerability indicator41,45. Moreover, recent research also emphasizes that
income inequality within high-GDP areas can erode the benefits of eco-
nomic development, leading to disproportionately high flood impacts even
in wealthy nations48,49. These findings highlight the complex and multi-
dimensional nature of vulnerability andunderscore the need for data-driven
approaches that account for hazard-society interactions to improve the
robustness of vulnerability.

Here, we introduce a probability-adjusted compound flood volume
(Vpc) metric to represent potential coastal compound flood hazard, which
integrates riverine andoceanicflood volumes acrossmultiple return periods
under a physically plausible co-occurrence assumption. Secondly, we pro-
pose a data-driven vulnerability metric derived from the Vpc-GDP rela-
tionship, expressed as the ratio between observed and maximum potential
hazard for a givenGDP level. Finally, we integrate compound flood hazard,
population exposure, and empirical vulnerability to derive the global
Potential Coastal CompoundFloodRisk (PCCFR) at a 0.1 degree resolution
(~10 km at the equator) and then aggregated the results to the subnational
scale. To examine how different vulnerability assumptions influence risk
estimates, and to validate the performance of our empirical approach, we
compare three scenarios: (i) rawGDP (risk-taking), (ii) invertedGDP (risk-
averse), and (iii) empirical vulnerability (data-driven risk-neutral). The
global mapping of PCCFR serves as an initial screening tool to identify
potential compound flood risk hotspots, helping to prioritize regions where
more detailed local assessments and adaptive restoration efforts are most
urgently required.

Results and discussion
Global mapping of potential coastal compound flood hazard
Coastal regions are increasingly susceptible to the simultaneous occur-
rence of river overflows and storm surges15. Figure 1A–E illustrates the
spatial distribution of compound flood hazards across high-risk river
deltas, including the Ganges, Pearl, Niger, Mississippi, and Rhine. Fig-
ure 1b reveals pronounced spatial heterogeneity in Vpc within deltas. To
further disentangle the sources ofVpc, we analyze the probability-adjusted
riverine (Vpr) and oceanic (Vpo) flood volumes, alongside their relative
contributions (Vpo / Vpr) across these deltas (Fig. 1c–e). As shown in
Fig. 1b–d, compound flood exhibits spatial patterns that diverge from
those associated with riverine-only or oceanic-only flood events in deltaic
hotspots. These spatial discrepancies highlight a key limitation of asses-
sing riverine and oceanic hazards separately, whichmisrepresents the true
extent and dynamics of coastal flood hazards. Neglecting these interac-
tions can substantially underestimate compound flood hazard, especially
in low-lying coastal systems. A robust characterization of potential
compound flooding for future-oriented decision-making requires an

integrated framework that explicitly accounts for the co-occurrence of
riverine and oceanic floods.

As illustrated inFig. 1c,d, oceanicfloods attenuate gradually inlanddue
to progressive energy dissipation mechanisms compounded by increasing
topographic resistance with distance from the shoreline50. Conversely, riv-
erineflood intensity tends to diminish downstream toward the coast, driven
by a combination of reduced channel slope and expanding channel width,
which collectively lower peak flood magnitudes51. Figure 1e illustrates a
spatial gradient in Vpo / Vpr, with an increasing trend from inland to coast.
This gradient underscores a fundamental transition in the prevailing flood
hazard regime: riverine-driven flooding dominates inland regions, while
oceanic influences become increasingly significant closer to the coast. The
spatial gradient in flood dominance provides essential guidance for
designing targeted and adaptive compound flood management strategies,
enabling more effective risk mitigation in vulnerable coastal systems.

Socio-economic exposure to potential coastal compound
flood hazard
Globally, around 117.19 million people and USD 1.63 trillion in assets are
exposed to potential coastal compound flood hazards. To further compare
socio-economic exposure to compound and single-source floods, we ana-
lyze the conditional distributionof population andassets exposure givenfive
quantiles of riverine (Vpr), oceanic (Vpo), and compound floods (Vpc)
(Fig. 2a, b). The results reveal that considering exposure based solely on
oceanic floods distorts spatial patterns, overestimating exposure in low-
hazard areas (the first quintile, Q1) and underestimating it in high-hazard
zones (the fifth quintile, Q5) relative to compound flood scenarios. Simi-
larly, focusing only on riverine floods substantially underestimates socio-
economic exposure. These findings underscore the need to integrate mul-
tiple flood sources for more accurate, risk-informed decision-making.

Analysis of the continental distribution of grid cells within Q5-Vpc and
their socio-economic exposure reveals that Asia carries the heaviest burden,
comprising54.83%of grid cellswithinQ5-Vpc andaccounting for the largest
shares of population (87.29%) and GDP-based asset exposure (49.85%)
(Supplementary Fig. 1). At the national level, Fig. 2c–e illustrate that Ban-
gladesh accounts for the largest share of grid cells within Q5-Vpc (14.85%)
and the highest population exposure to Q5-Vpc (25.71%), while the Neth-
erlands exhibits the highest share of asset exposure to Q5-Vpc (37.40%).
Importantly, several countries exhibit disproportionate exposure relative to
their share of grid cells within Q5-Vpc. For example, while the Netherlands
holds only 7.31% of grid cells within Q5-Vpc, it accounts for 37.40% of asset
exposure. Similarly, Bangladesh hosts 14.85% of grid cells within Q5-Vpc,
but contributes 3.92% of asset exposure. These imbalances highlight a key
limitation of flood risk assessments based solely on the spatial extent of
hazard, which may obscure the underlying socio-economic asymmetries in
exposure. We further evaluate the distribution of Q5-hazard grids and
associated exposure derived from single-source floods (either riverine or
oceanic) at both continental and national levels, as shown in Supplementary
Figs. 1 and 2.

Linking Vpc and GDP: a data-driven vulnerability function
Understanding the relationship between Vpc and GDP is essential for
accurately quantifying the influenceof economicdevelopment onhazard, as
well as assessing the potential return of flood management. Figure 3 illus-
trates a scale-dependent relationship between Vpc and GDP: at the subna-
tional level, a power-law trend emerges,with exponents generally decreasing
for high- to lower-income regions. In contrast, the relationship exhibits an
inverted-Upattern at the grid scale. This divergence likely stems from intra-
regional income inequality, previously shown to amplify disaster
impacts48,49, which tends to be obscured in aggregated subnational analyses.
These differences in the Vpc-GDP relationship across spatial scales under-
score the importance of deriving vulnerability functions at the appropriate
resolution for engineering design and policy evaluation, ensuring that
investment returns are assessed with greater precision and contextual
relevance.
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The relationship between Vpc and GDP at the grid scale echoes the
Environmental Kuznets Curve (EKC), which posits a similar inverted-U
shaped relationship between economic growth and environmental
degradation52,53.While previous studies often attribute flood hazard initially
increases with GDP as exposure intensifies, then declines as flood defenses
and planning catch up with development46, it should be noted that the
hazardmapsused here donot account for existingprotection infrastructure.
Therefore, other factors, such as land-use patterns and socio-economic
distribution, may also contribute to the observed trend3. For example, in
practice, urban planning often prioritizes locating high-income production
and densely populated communities in relatively low-flood-risk zones.
Supplementary Fig. 3 illustrates that both the turning points and peak Vpc

values of the inverted-U pattern differ across countries, with low-income
regions tending toward lower peaks. These results potentially reflect

differences in climate, topography, economic capacity, and infrastructure
investment across countries53–55.

While GDP and its inverse are commonly employed as proxies
for economic or social vulnerability5,33,41,45, such approaches typically
assume a uniform relationship between wealth and flood resilience,
potentially masking spatial heterogeneity of vulnerability. Here, we
introduce a data-driven vulnerability grounded in the empirical Vpc-
GDP dynamics at the grid level. Specifically, we fit an upper-envelope
function to capture the maximum observed hazard at each GDP level
worldwide (Fig. 3f). This upper envelope serves as a benchmark for
potential hazard, against which actual hazard can be compared. We
define the systemic vulnerability as the ratio between observed Vpc

and its fitted upper bound, capturing how close a region comes to its
maximum expected hazard given its economic conditions. This

Fig. 1 | Spatial pattern of flood hazard in deltaic hotspots. aThe global locations of
major deltaic hotspots.A–EClose-up views offive key deltas: theGanges RiverDelta,
Pearl River Delta, Niger River Delta, Mississippi River Delta, and Rhine River Delta.

b–e The deltaic hotspots of probability-adjusted compound flood volume Vpc,
probability-adjusted oceanic flood volume (Vpo), probability-adjusted riverine flood
volume (Vpr), and their ratio (Vpo/Vpr).
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metric reflects how economic development modulates potential flood
hazard and provides a scalable, data-driven measure of flood
vulnerability.

Global mapping of potential coastal compound flood risk
Toevaluate howdifferent vulnerability functions influencePCCFRestimates,
we compare three scenarios: (i) raw GDP (risk-taking), (ii) inverted GDP

Fig. 2 | Population and assets exposed to flood hazards. aConditional distribution
of population exposure given different quintiles of compound (Vpc), riverine (Vpr),
and oceanic (Vpo) flood. b Conditional distribution of economic exposure given
different quintiles of compound (Vpc), riverine (Vpr), and oceanic (Vpo) floods.

cCountry rankings based on the share of high (Vpc) grids. dCountry rankings based
on the share of population exposed to high (Vpc). e Country rankings based on the
share of assets exposed to high (Vpc).

Fig. 3 | The relationship between compound flood hazard and economic level.
a The global subcountry-level relationship. b–e The subcountry-level relationship
stratified by income groups: high income (b), uppermiddle income (c), lowermiddle
income (d), and low income countries (e). f The global 0.1 degree grid-level rela-
tionship. g–j The grid-level relationship stratified by income groups: high income

(g), uppermiddle income (h), lowermiddle income (i), and low income countries (j).
Colors of the points represent elevation; the red lines in penal (a–e) is the powerlaw
fitting lines; the red line in panel (f) is upper envelope curve represented by 99.9%
quantile regression.

https://doi.org/10.1038/s43247-025-03155-7 Article

Communications Earth & Environment |            (2026) 7:83 4

www.nature.com/commsenv


(risk-averse), and (iii) empirical vulnerability (data-driven risk-neutral). The
GDP-based vulnerability function reflects a risk-taking scenario, assuming
that rapid economic growth proceeds with negative flood defenses invest-
ment. In contrast, the inverted GDP formulation embodies a risk-averse
perspective, assuming that economic development aligns with positive flood
defenses investment. Our empirical approach grounds vulnerability in the
observed relationship between Vpc and GDP, capturing actual trade-offs
between economic development and flood defense investment.

Under the empirical vulnerability scenario, Asia exhibites the highest
35.22% internal high-risk grid cells (the fifth quintile, Q5), followed by
Africa (20.21%), Europe (17.02%), South America (9.89%), and North
America (2.31%) (Table 1, Fig. 4a). Subnational analyses reveal that Viet-
nam contributes six of the top fifteen highest-risk administrative units—
namely Nam Dinh, Thai Binh, Hai Phong, Hung Yen, Binh Dinh, and
Quang Nam—while Bangladesh contributes four: Barisal, Chittagong,
Sylhet, andDhaka.Other high-risk units includeRayong (Thailand),Macao
(China), West Bengal (India), Gifu (Japan), and Pyongyang (North Korea)
(Fig. 5a). These areas are typically characterized by low-lying coastal geo-
graphy, high population density, and relatively limited flood resilience, as
indicated by the proximity of observed flood hazards to their maximum
potential intensity. Such conditions render these regions acutely vulnerable
to coastal compound flood.

Under the risk-taking scenario, the internal proportion of high-risk
grid cells is 36.96% in Asia, 28.76% in Europe, 7.55% in Africa, 5.26% in
South America, and 2.78% in North America (Table 1, Fig. 4b). At the
subnational level, high-income coastal regions dominate the top ranks in
flood risk, driven by their low-lying topograph and high asset exposure
(Fig. 5b). This scenario offers insights into flood risk under growth-oriented
pathways with minimal adaptation. Under the risk-averse scenario, the
internal proportion of high-risk grid cells is 35.22% in Asia, 20.21% in
Africa, 17.02% in Europe, 9.89% in South America, and 2.31% in North
America (Table 1, Fig. 4a). Subnationally, high-riskunits are concentrated in
low-income, high-hazard regions, particularly across South and Southeast
Asia (Fig. 5c). These areas combine high hazard exposure with limited
economic capacity, underscoring the urgent need to prioritize flood miti-
gation in lower-income regions.

Comparative results show that using GDP as a proxy for economic
vulnerability tends to concentrate high PCCFR estimates in high-income
regions. Conversely, using the inverse of GDP shifts perceived risk toward
low-income regions by presuming that poverty uniformly increases social
vulnerability. These two vulnerability functions rely on a priori assumptions
and fail to capture the non-linear, context-specific dynamics that shape
flood impacts. The contrasting results fromdifferent vulnerability functions
show that assumptions about vulnerability can strongly alter where flood
risk is perceived to be highest, with implications for transnational, national,
and regional policy decisions. By comparison, the empirical vulnerability
metric provides a data-driven, risk-neutral assessment that accounts for
integrating the ratio between observed and potential hazard, providing a
more balanced basis for identifying priority areas in coastal flood risk
management.

Conclusion
Our scenario-based PCCFR model combines compound flood hazard,
population exposure, and empirical vulnerability. Global maps show that
high-risk areas are largely concentrated in major low-lying, densely popu-
lated river deltas, including theGanges, Pearl, Niger,Mississippi, andRhine.
Asia accounts for the largest internal share of high-risk grid cells (35.22%),
followed byAfrica (20.21%), Europe (17.02%), SouthAmerica (9.89%), and
North America (2.31%) under the empirical vulnerability scenario. At the
subnational level, high-risk administrative units are clustered in Southeast
Asia, including Bangladesh, Vietnam, Thailand, China, India, Japan, and
North Korea. This global PCCFR mapping provides a screening tool for
identifying hotspots and prioritizing regions for detailed assessment and
targeted adaptation.

The potential coastal compound flood hazard metric, Vpc, linearly
sums riverine and oceanic flood volumes under a physically plausible co-
occurrence scenario rather than explicitly calculating joint probability.
Given that flood protection infrastructure is typically designed under con-
servative assumptions56,57, this approach provides an estimate of the con-
servative potential compound flood volume at each grid cell, supporting
design-oriented risk assessment under deep uncertainty in hazard co-
occurrence.Moreover,Vpc is derived frommultiple return periods based on
long-term flood simulations, providing a robust representation of flood
variability and large-scale hazard patterns beyond individual short-term
events. Therefore, incorporating this metric into planning efforts allows
decision-makers to enhance resilience. Although compound flooding may
amplify inundation depth and spatial extent beyond a simple linear sum of
riverine and oceanic floods21,22, such interactions are expected to have a
limited effect on total flood volume due to the conservation of flood
volume43,58,59. Nonetheless, we acknowledge that compound floods can
intensify impacts beyond the sum of their individual sources, and future
work should evaluate these nonlinear compounding mechanisms to
improve the precision of compound flood hazard estimates.

While GDP-based approaches have been widely used as simplified
proxies for vulnerability41,44,45, they often obscure the complex relationship
between economic development and adaptive capacity. Our approach
derives vulnerability fromthe empirically observed relationship betweenVpc

and GDP, thereby reflecting real-world adaptive responses and offering a
more robust basis for prioritizing flood resilience investments. This data-
driven framework is both flexible and context-sensitive, allowing for its
application across diverse socio-economic and geographic settings.

In all, the developed PCCFR model is flexible and context-sensitive,
enabling its application across diverse socio-economic settings. However,
the current results do not explicitly account for detailed local-scale analyses
that account for site-specific hydrology, ecology, and socio-economic con-
ditions; the PCCFR model should be regarded as a strategic tool for value-
based prioritization rather than precise prescriptions for adaptive restora-
tion. Building on our earlier work that established the ecohydrological fit-
ness of BlueCarbonEcotones (BCEs)worldwide60, the present study further
focuses on site-specific flood risk due to future compounding events.
Although methodologically independent, their integration bridges

Table 1 | Percentages of compound flood risk quintiles across continents under three vulnerability functions

Empirical (%) Risk-taking (%) Risk-averse (%)

Continent Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

Africa 19.15 17.55 16.49 26.60 20.21 25.94 34.43 16.51 15.57 7.55 13.21 11.79 14.62 27.36 33.02

Asia 5.66 11.57 23.65 23.91 35.22 5.31 7.25 21.98 28.50 36.96 4.59 10.87 14.25 23.43 46.86

Europe 25.27 23.94 14.63 19.15 17.02 15.03 16.06 18.91 21.24 28.76 30.57 27.46 30.05 10.88 1.04

North America 35.26 24.86 21.97 15.61 2.31 30.56 29.17 24.54 12.96 2.78 28.24 34.72 17.59 10.65 8.80

Oceania 51.85 29.63 14.81 3.70 0.00 70.73 10.98 13.41 4.88 0.00 35.37 8.54 25.61 28.05 2.44

South America 19.78 27.47 24.18 18.68 9.89 16.84 25.26 31.58 21.05 5.26 21.05 26.32 17.89 23.16 11.58

Five quintiles (Q1–Q5) to indicate relative risk, with Q5 representing the highest risk.
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ecosystem health with disaster risk information, enabling a cross-scale
framework that supports a value-based prioritization of adaptation actions.
Future development offlood risk assessments should incorporate additional
eco-environmental drivers (e.g., hydrological, ecological, and socio-
economic information) together with high-resolution representations of
gray infrastructure, to better capture the localized dynamics and to inform
adaptation planning.

Methods
Global flood hazard dataset
Flood inundation data at 30 arc-seconds (~1 km at the equator) were
obtained from the World Resources Institute’s Aqueduct Floods Hazard
Dataset (2020 version). The dataset provides riverine and oceanic flood
inundation (depth and extent) formultiple return periods (5, 10, 25, 50, 100,
250, 500, and 1000 years), separately. In this dataset, riverine and oceanic
flooding are treated independently, and interactions between the two flood
typesarenot accounted for.To illustrate thedata structureused in this study,
Supplementary Figs. 4, 5 present a regional example of flood inundation
depths across multiple return periods for each source. These return periods

represent the average interarrival time of flood events of varying magni-
tudes. A higher return period corresponds to a flood event of greater
magnitude. Specifically, Aqueduct Floods generated present-day (2010)
flood datasets for multiple return periods through the following steps61:
• Riverine flooding refers to inundation caused by river overflow, driven

by accumulated rainfall and surface runoff. The dataset covers river
basinswith anupstreamarea greater than 10,000 km2. The present-day
riverine flood hazard for multiple return periods was derived by fitting
extreme value distributions to inundation outputs simulated by the
PCR-GLOBWB hydrological model for the period 1960–199955.

• The oceanic flood represents flooding from storm surges and occurs
along coastlines around the world. The present-day oceanic flood
inundation for multiple return periods was derived by fitting Gumbel
distributions to annual maximum sea levels extracted from the Global
Tide and Surge Reanalysis (GTSR) dataset for the period 1979–201462.

To evaluate the potential misalignment between riverine and oceanic
flood datasets, we conducted a sensitivity analysis using time series daily
precipitation data, as consistent flood time series are not available and

Fig. 4 | Global distribution of Potential Coastal Compound Flood Risk (PCCFR) at 0.1 degree grid-scale. a Risk-neutral empirical vulnerability. b Risk-taking scenario.
c Risk-averse scenario.
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precipitation is the primary driver of flood simulation models61. Moreover,
precipitation also captures the decadal variability of large-scale climate
modes (e.g., North Atlantic Oscillation (NAO), El Niño-Southern Oscilla-
tion (ENSO))63,64, thereby serving as a suitable proxy for evaluating temporal
sensitivity between the two hazard sources. Specifically, we compared

extreme daily precipitation (95th and 99th percentiles, P95/P99) across
three time windows: 1960-1999 (riverine flood period), 1979–1999 (the
overlapping period), and 1979–2014 (oceanic flood period) for five repre-
sentative river deltas considering theirflooding criticality (theGanges, Pearl,
Niger, Mississippi, and Rhine river deltas). The results show that, although
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Fig. 5 | Global distribution of subnational Potential Coastal Compound Flood
Risk (PCCFR) under different scenarios. a Risk-neutral empirical vulnerability.
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categorized intofive quintiles (Q1–Q5) to indicate relative risk, withQ5 representing
the highest risk. Pie charts show the proportion of grid cells in each risk quintile
within each continent.
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different time windows are subject to decadal climate variability (e.g., NAO
and ENSO), the long-term (~40-year) datasets capture relatively stable
regional precipitation characteristics (Supplementary Table 2), indicating
that different time windows of riverine and oceanic floods have a limited
effect on our conclusions.

Potential coastal compound flood hazard
Wecalculate the Probability-adjustedCompoundFloodVolume (Vpc) at 30
arc-seconds to represent potential coastal compound flood hazard. Vpc

integrates riverine andoceanicflood volumes acrossmultiple return periods
under a physically plausible co-occurrence assumption (assuming a co-
occurrence probability of 1), without relying on explicit joint-probability
calculations (Eq. (4.1)). Specifically, Vpc comprises two components:
Probability-adjustedOceanic (Vpo) andRiverine (Vpr)flood volumes, which
were calculated as in Eqs. (4.3) and (4.4), respectively.Moreover, the hazard
layers used in this study do not account for existing flood protection mea-
sures (such as ecohydrological factors and anthropogenic infrastructures),
and thus, Vpc represents potential flood hazards under unmitigated condi-
tions.

Vpc ¼ Vpo þ Vpr ð4:1Þ

where, Vpc: Probability-adjusted Compounding Flood Volume. Vpo:
Probability-adjusted Oceanic Flood Volume; Vpr: Probability-adjusted
Riverine Flood Volume.

To compare our approach with the joint-probability based compound
flood, we computed the joint exceedance probability of riverine and coastal
floods (Pjoint) using the Gumbel Copula in a pixel-by-pixel manner. Due to
the lack of continuous historical observations of flood volume, synthetic
time series for both riverine and coastal flood volumes were generated from
their cumulative distribution functions (CDFs) to capture their statistical
dependence. In calculating Pjoint, flood occurrence for both sources was
defined using the moderate-event threshold corresponding to a 5-year
return period. We then derived a joint-probability-weighted compound
flood volume (Vpc_joint) as Eq. (4.2). Supplementary Fig. 6 compares the
spatial patterns of Vpc and Vpc_joint in the Ganges River Delta, a well-
recognized hotspot of compound flooding. While both metrics exhibit
broadly similar spatial distributions, Vpc_joint is consistently lower than Vpc,
reflecting the adjustment for the likelihood of simultaneous riverine and
coastal flooding. This result indicates that our Vpc provides a more con-
servative representation of grid-scale compound flood hazard.

Vpc joint ¼ ðVpr þ VpoÞ× Pjoint ð4:2Þ

Given the distinct spatial patterns of oceanic and riverine floods, we
introduce the Vpo/Vpr to distinguish their dominant contributions. A ratio
greater than 1 suggests that oceanic flooding dominates, whereas a ratio less
than 1 indicates that riverine flooding is the primary flood hazard.

Vpo ¼
X1000

j¼5

ðAoj ×Doj × PjÞ ð4:3Þ

where, j: return period of 5, 10, 25, 50, 100, 250, 500, 1000 years; Vpo:
Probability-adjusted Oceanic Flood Volume; Aoj: Oceanic Flood Area for
the j-th return period; Doj: Oceanic Flood Depth for the j-th return period;
and Pj: annual exceedance probability for j-th return period.

Vpr ¼
X1000

j¼5

ðArj ×Drj × PjÞ ð4:4Þ

where, Vpr: Probability-adjusted Riverine Flood Volume; Arj: Riverine
Flood Area for the j-th return period;Drj: Riverine Flood Depth for the j-th
return period.

Socio-economic exposure
We considered population and assets as indicators of socio-economic
exposure. Gridded population data at 30 arc-seconds were obtained from
WorldPop65, while GDP data at 1 km resolution were derived from cali-
brated nighttime light observations66. Both datasets, for the year 2010, were
resampled to the resolution of the compound flood hazard maps (30 arc-
seconds) for analysis.

To comparepopulationandasset exposure tocoastal compoundfloods
versus single-source floods, we divided affected areas into five quintiles
(Q1–Q5, from lowest to highest) based on the Vpc values of each grid cell.
Using these thresholds, we then quantified the exposure of population and
assets considering only oceanic flooding or only riverine flooding. To fur-
ther investigate the spatial patterns of socio-economic exposure in high-
hazard zones, we focused on high-Vpc grids (Q5) and calculated their dis-
tribution at both continental and national scales.

Empirical vulnerability
We introduce a data-driven vulnerability (Ne) grounded in the empirical
Vpc-GDP dynamics at the grid level. Specifically, we fit an upper-envelope
function to capture the maximum observed hazard at each GDP level
worldwide (Fig. 3f). This upper envelope serves as a benchmark for
potential hazard, against which actual hazard can be compared. We
define the systemic vulnerability as the ratio between observedVpc and its
fitted upper bound, capturing how close a region comes to its maximum
expected hazard given its economic conditions. For each grid i, Ne is
calculated as Eq. (4.5). Ne closer to 1 indicates regions approaching their
maximum potential hazard. When computing vulnerability at the 30 arc-
seconds resolution, we found that GDP exhibits limited spatial hetero-
geneity, resulting in histograms with GDP values concentrated within a
narrow range (Supplementary Fig. 7b, d). This lack of variability makes it
difficult to robustly capture the empirical relationship between GDP and
Vpc. To address this issue, we compute vulnerability on a coarser 0.1
degree grid, which more effectively captures the spatial variability of both
GDP and flood hazard (Supplementary Fig. 8b, d). All subsequent risk
calculations involving vulnerability are therefore conducted on the 0.1
degree resolution.

Ne ¼
Vpc

f envelopeðGDPÞ
ð4:5Þ

where, fenvolope(GDP) represents the quadratic quantile regression at the
99.9th percentile between Vpc and GDP.

Potential coastal compound flood risk for different risk-percep-
tion’s vulnerability
We calculate global coastal compound flood risk based on the HEV fra-
mework (Eq. (4.6)). The GDP-based vulnerability (Nt) reflects a risk-taking
scenario, assuming that rapid economic growth proceeds with negative
flood defenses investment. As evidence shows that regionswith higherGDP
are more likely to invest in flood protection45, and thus possess more
advanced flood defenses46, resulting in fewer flood-related fatalities and
economic losses47, In contrast, the invertedGDP formulation (Na) embodies
a risk-averse perspective, assuming that economic development aligns with
positive flood defenses investment. Our empirical approach grounds vul-
nerability (Ne) in the observed relationship between flood hazard andGDP,
capturing actual trade-offs between economic development and flood
defense investment.

PCCFR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vpc ×Ep ×

( Ne; risk � neutral empiricalVpc � GDP vulnerability

Na ¼ 1=GDP; risk � averse vulnerability

Nt ¼ GDP; risk � taking vulnerability

3

vuuuut

ð4:6Þ
Where, Vpc: Potential coastal compound flood hazard; Ep: population

exposure. Each components used in the PCCFR calculation were divided
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into 10 quantiles, with each assigned values from 0.1 to 1.0. This quantile-
based normalization allows for consistent comparison across variables with
different units and magnitudes, reduces the influence of outliers, and
enables integration into a unified systemic risk, where higher values cor-
respond to higher risk. Then we apply the cubic root because, given nor-
malized inputs, the product of the HEV components always lies between 0
and 1. Their raw product can become disproportionately small. The cubic
root restores scale through the geometric mean, yielding a more balanced
integration of the three factors, consistent with the approach of Fox et al.41.

Data availability
World Resources Institute’s Aqueduct Floods Hazard Data (2020 ver-
sion) are available at http://wri-projects.s3.amazonaws.com/
AqueductFloodTool/download/v2/index.html. Population data from
Worldpop with a high-precision spatial resolution of 30 arc-seconds are
available at https://hub.worldpop.org/geodata/listing?id=64. Grided
Gross Domestic Product data with a high-precision spatial resolution of 1
km are available at https://figshare.com/articles/dataset/Global_1_km_
1_km_gridded_revised_real_gross_domestic_product_and_electricity_
consumption_during_1992-2019_based_on_calibrated_nighttime_
light_data/17004523/1. The country’s current classification by income
from the World Bank is available at https://datahelpdesk.worldbank.org/
knowledgebase/articles/906519-world-bank-country-and-lending-
groups. HydroSHED DEM dataset at 30 arc-seconds is available at
https://www.hydrosheds.org/hydrosheds-core-downloads. The 0.1
degree grid-scale source data used for generating the figures, maps, and
statistical analyses is available at Figshare (https://doi.org/10.6084/m9.
figshare.30782060).

Code availability
Codes to replicate the calculation of PCCFR are deposited in https://github.
com/zhangjiaqi1996/Coastal-Compound-Flood-Risk.git.
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