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Abstract: Ancient basement faults within plate interiors may be reactivated by external forces, 

generating intraplate seismicity. However, the driving mechanisms remain unclear. The 2017 

Changdao earthquake swarm in the Bohai Bay Basin, eastern China, provides an opportunity to 

investigate such processes. A high-resolution earthquake catalog, constructed using matched 
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filter detection and waveform-based relocation, reveals that the swarm occurred at 7-13 km depth 

along an X-shaped fault network, with migration following sqrt(t) diffusion (D=0.08 – 1.2 m² s-

1). High b-values and external forcing rate, and substantial isotropic components (13-38%) in the 

moment tensors indicate fluid involvement. Combined with low VP/VS ratios and proximity to 

CO2-rich hydrocarbon fields, we propose a fault-valve model where highly compressible fluids 

episodically breach fault intersections, triggering transient crack opening and swarm migration. 

This study reveals how deep fluids reactivate ancient basement faults in intraplate regions, and 

provides new insights for seismic hazard assessment in hydrocarbon-bearing basins. 
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Introduction 

Faults are ubiquitous in the Earth’s crust and play crucial roles in controlling the mechanical 

properties of the crust and its seismogenic behaviors1,2. Crustal faults can be roughly categorized 

into basement faults that were formed during earlier tectonic phases, and neotectonic faults, 

which were primarily developed within sedimentary formations during recent geological 

activities3. Most neotectonic and basement faults remain quiescent for many years, but they can 

be reactivated by external stress perturbations such as fluid flow, aseismic slip, or other nearby 

earthquakes4,5. The reactivation of dormant faults, especially deep basement faults, may trigger 

moderate-size to large-magnitude events6,7,8,9. Understanding activation of ancient basement 

faults provides important insights into the geological evolution and seismic hazard assessment, 

especially at intraplate regions8,9,10,11,12,13.  

Fluids are known to play an appreciable role in crustal fault reactivation, which reduces the 

effective stress and/or fault strength and further induces seismic activities14,15,16,17. A common 

manifestation of fluid-driven fault reactivation is earthquake swarms, which refer to sequences 

that are closely clustered with clear migrations in space and time without a dominant 

mainshock18,19,20,21. The majority of earthquake swarms occurred at the shallow crust near 

volcanic and/or geothermal systems, which is generally attributed to the fluid migration from 

either natural source21,22,23,24,25 or industrial injections26,27 and possibly aseismic slips along 

active fault zones28,29,30. 

Compared to shallow earthquake swarms, research on swarms reactivated along deep 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

basement faults is challenging due to the scarcity of observations, limited resolution of basement 

fault geometry, and complex stress and fluid interactions7,31,32,33. Recent seismological and 

geodetic studies of earthquake swarms in well-monitored regions such as the Noto Peninsula, 

Japan, have provided insights into the physical mechanism of fault reactivation driven by deep 

fluids and aseismic slip8,9,16,17,34. However, how the basement faults respond to deep fluid 

pressure and other external stress perturbations is not well understood, especially at intraplate 

regions with relatively sparse instrumentations28,35,36,37. 

In February 2017, an earthquake swarm initiated in the Changdao area in the eastern edge of 

the Bohai Bay Basin, eastern China. Multiple earthquake swarms have been recorded in this 

region, including earthquake swarms that occurred in 1976, 2013, and most prominently in 2017. 

In a broader context, this region has hosted intense historic and current seismicity in the past, 

with the largest M7 event in 1548. The 2017 swarm lasted from February 14 to August 2017. It 

stands out as the most prominent one in terms of duration, frequency, and maximum magnitude, 

surpassing previous events (Figure 1). The Changdao area hosts a complex fault system 

including multiple shovel-shaped basement faults in the middle crust, most of which merge with 

the basin basement at a depth of 7-16 km, and the conjugate shear fault system with a flower-like 

structure in the shallow crust3. Some studies imaged the middle and lower crust as low-velocity 

zones, indicating possible connections between the swarm evolution and fluids from deep 

sources38,39. However, most previous studies were based on the standard earthquake catalog from 

the China Earthquake Networks Center (CENC), which has location precisions on the order of a 
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few kilometers and is likely incomplete, especially for lower magnitude events. Hence, the 

precise spatiotemporal evolution of seismicity, the 3D fault structure hosting the swarm, and the 

underlying physical mechanisms remain ambiguous. 

In this paper, we constructed a high-resolution earthquake catalog using matched-filter event 

detection40,41 and waveform cross-correlation-based double-difference relocation42,43 techniques. 

The refined catalog depicts a complex fault system and shows a clear spatio-temporal evolution 

consistent with a fluid-driven mechanism. Combining evidence from different observations, we 

proposed a mechanism of deep fluid-triggered fault reactivation, which may provide more 

insights into the interaction between earthquake swarms and deep fluids at intraplate regions. 

Results 

General features of the high-resolution earthquake catalog  

Using the matched filter technique and a waveform cross-correlation-based location 

procedure (see the Method section for details), we obtained two new catalogs: a matched-filter-

only (MFO) catalog (without relocation) containing 11,411 events (Supplementary Data 1), 6 

times more than the number (1804) provided by CENC, and a matched-filter-relocated (MFR) 

catalog, a subset of MFO, containing 2,142 events (Supplementary Data 2)45. The magnitudes of 

the newly detected events were primarily concentrated between 0.0 and 1.0 (Figure 2a). The 

corresponding magnitude of completeness Mc, obtained with the maximum curvature method46, 

decreases from 1.1 in the original CENC catalog to 0.8 in the MFO catalog (Figure 2b). The 

median location errors of MFR, indicated by 80% fitting errors, were less than 100 m in both the 
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horizontal and depth directions (Supplementary Figure S3). Such a high location precision 

enables the depiction of detailed structures as minor sub-faults.  

The 2017 earthquake sequence during this period can be roughly divided into three stages 

according to the seismicity rate variation in the MFO catalog (Figure 2a). The first stage started 

on February 14, 2017, and ended just before the largest ML4.5 earthquake on March 3, 2017. The 

second stage was the most energetic, beginning with the ML4.5 earthquake and ending on May 7, 

2017. The final stage lasted from May 8 to May 31, 2017. 

The subsequent analysis was based primarily on the relocated MFR catalog, where the 

swarm exhibited an overall NWW-SEE orientation (Figure 3a) in the horizontal plane. However, 

further zoomed distribution indicates that most earthquakes were concentrated in the central area 

along a NEE linear trend (Figure 3a), which was not evident in the CENC catalog (Figure 1). The 

relocated events delineated a complex X-shaped fault architecture, including a shovel-shaped 

listric fault (F1), an oppositely dipping fault (F2), and several secondary faults (Figure 3b). Fault 

F1 was characterized by a steeply inclined upper segment and a flatter lower segment, 

intersected by F2. The two faults exhibited dips of approximately 70° toward the southeast and 

northwest, forming an intersecting fracture zone (Figure 3b). Additionally, several secondary 

faults delineated by relocated seismicity branched off from the major faults (F1, F2), forming a 

forked fault geometry (Figure 3b). The focal depths ranged from 5 to 15 km, with the majority 

clustered at depths of 7 to 13 km (Figure 3b), and side-view along the NE direction shows the 

epicenters were primarily clustered within an area of ~4 km long and 3 km deep (Figure 3c). By 
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further zooming in on this region, we can clearly identify the earthquake migration process, 

which started from the northeast and migrated to the southwest horizontally over a period of 3.5 

months. These spatial patterns were further illustrated in the three-dimensional (3D) view (Figure 

4) and offered a detailed depiction of the complex fault architecture.  

Focal mechanisms 

We inverted moment tensors for six events with ML ≥ 3.5 using the Cut-and-Paste (CAP) 

method47. Those events were recorded with adequate azimuthal coverage, and the focal 

mechanism solutions explained the waveforms well (Supplementary Table S1). Focal 

mechanisms for 179 smaller (ML 2.0-3.4) earthquakes were also determined through P-wave 

first-motion polarity analysis48.  

All six ML ≥ 3.5 events were dominated by strike-slip (Figure 3), and focal mechanism 

solutions of all 179 smaller (ML 2.0-3.4) earthquakes (Supplementary Figure S4, Supplementary 

Data 1) were predominantly strike-slip, with a few events showing normal faulting 

characteristics. The largest event (ML 4.5) had one nodal plane solution of 321°/59°/3°, with a 

centroid depth of 9.3 km (2.1 km shallower than the MFR hypocenter depth 11.4 km). Moment 

tensor analysis revealed that three of the six ML ≥ 3.5 events exhibited robust positive isotropic 

(ISO) components even after uncertainty corrections: 15±4% for the ML 4.5 on March 3, 38±

13% for the ML 3.5 on March 16, and 13±4% for the ML 4.1 on March 27 (Supplementary Table 

S1, Supplementary Figure S2, S5). While the compensated linear vector dipole (CLVD) 

components were generally negligible (e.g., -0.03±0.03 for the ML 4.5 event). Substantial ISO 
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components, combined with the dominant double-couple (DC) slip mechanisms, suggest 

predominantly shear-tensile ruptures with fault opening49.  

Based on the focal mechanisms of all ML ≥ 2.0 earthquakes, we inverted the stress 

orientations using an iterative stress inversion method50. The results indicated orientation and 

plunge of the maximum principal stress axis (σ1) are 103.1° and 6.1°, respectively. The inverted 

direction of the maximum horizontal principal stress was nearly east-west (102°±1°), consistent 

with the orientation (101.4°) of the maximum regional horizontal stress51.  

Spatio-temporal Migration of Earthquake Swarms 

The earthquake swarm initiated from the base of the northeastern segment of the fault 

system (Figures 3a, 4). During Stage I, the initial seismic cluster occurred at depths of 10.5 km to 

12 km mainly in the intersection zones between the shovel-shaped basement fault (F1) and the 

oppositely dipping fault (F2) (Figures 3d, 4, and S6a). Following the initial active period (12 

days), the activity paused for 5 days until the occurrence of the largest ML 4.5 event, at the base 

of the intersection between F1 and F2 on March 3, 2017 (Figure 2). After that, earthquakes 

gradually migrated to the upper segments of F1 and F2 (in Stage II) (Supplementary Figure S6b). 

Subsequently, seismic activity increased sharply after an ML 3.6 earthquake on March 14, 2017 

(from ~90 to ~179 events/day, Figure 2a), and earthquakes migrated southwestward in the central 

segment (Figure 4 and Supplementary Figure S6c). Simultaneously, earthquakes also occurred 

along the lower segment of F1 and secondary faults along F1 (Figure 3b and Supplementary 

Figure S6c). Several swarm-like seismic clusters successively occurred following relatively large 
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earthquakes, such as an ML 3.5 event on April 8 and an ML 3.3 event on May 2 (Figure 5). 

Finally, the seismic activity began to decay substantially from May 8 (in Stage III), but the 

hypocenters continued to expand until encompassing the entire fault system. The migration 

process of the whole swarm lasted for 105 days. More detailed spatio-temporal evolution is 

presented in Figure 4, Supplementary Figure S6 and Supplementary Movie S1. 

As mentioned before, the Changdao swarm exhibited systematic hypocentral migration 

where the distance between the activity front and the initial earthquake (2017-02-14 00:05:58) 

gradually increased with time (Figure 5a and Supplementary Figure S6a). The migration of 

activity front can be approximately fitted with the fluid diffusion equation19,31,52,53 (See 

Methods). The overall migration front for the entire swarm was generally behind the curve with a 

diffusivity of 1.2 m² s-1 (Figure 5a). Besides the overall migration pattern, there are several 

visible sub-migrations, which can be fitted with diffusivities ranging from 0.5 to 1.0 m² s-1 

(Figure 5a). Similar migration characteristics were also observed across distinct fault segments, 

and the migration fronts in the southeast and northwest regions (SR and NR in Figure 3a) were 

fitted with diffusivities of 0.5 m² s-1 and 0.3 m² s-1 (Figures 5c, 5d), respectively. In comparison, 

the seismicity in the central region (CR in Figure 3a) followed a similar pattern with a much 

smaller diffusivity of 0.08 m² s-1 (Figure 5b), and the sub-migration diffusivities in the central 

region during different time periods were 0.17 m² s-1 and 0.6 m² s-1, respectively. The cumulative 

seismicity plot (Figure 5a) showed that the earthquake surges and dense earthquake clustering 

were typically triggered by relatively large events, such as the ML 4.5 event on March 3, the ML 
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3.6 event on March 14, and the ML 3.5 event on April 8. The seismicity shortly following these 

large events did not follow the typical sqrt(t) migration pattern, suggesting a different driving 

mechanism. 

Discussion 

Fluid diffusion, aseismic slip, and cascade stress transfer are widely recognized driving 

mechanisms for earthquake swarms25,53,54,55 and other types of earthquake sequencesError! Reference 

source not found.. Recent studies found that these physical mechanisms often work in concert to drive 

earthquake swarms8,21,29,30,56. To quantify the role of aseismic slip in the 2017 Changdao swarm, 

we first examined data from the nearest GNSS station (YTA, Figure 1) but detected no robust 

aseismic signals (Supplementary Figure S8), possibly due to strong ocean-related noise and long 

distance (~ 80 km) from the swarm. Nevertheless, the systematic sqrt(t) type migration (Figure 

5) provided evidence of fluid pressure diffusion, as observed in other sequences20,22,31,57,58,59,60. In 

addition, cascade stress transfer often interacts with fluid pressure, which likely expands the 

swarm’s spatial range. 

This interplay between earthquakes is further investigated with the time-dependent 

epidemic-type aftershock sequence (ETAS) model61,62,63. The modeled time-varying background 

rate λ₀(t) revealed that external forcing accounts for ~63% of swarm activity, with the remainder 

attributable to Omori-type self-triggered activity (Figure 6a), indicating that ~63% of the 

earthquakes were forced externally and the most likely agent is mid-crustal fluids. Initially, 
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external forcing contributed 47.5% in Stage I suggesting a balance between fluids and seismic 

triggering effects; it then rose to 82.9% in the most active period of Stage II (Figures 2, 5), 

highlighting the dominance of fluid-driven processes. The Omori law parameter α varied from 

0.921 to 1.334, and decreased to 0.647, indicating weaker aftershock productivity than tectonic 

sequences (Figure 6b). The results from ETAS modeling are consistent with the sqrt(t)-type 

migration features (Figure 5).  

In the area of fluid-induced seismicity in the Western Canada Sedimentary Basin64, the 

positive component of the ISO component was observed to be larger than 15%. Prominent ISO 

component observed in our study (Supplementary Table S1, Supplementary Figures S2, S5) 

supports a fluid-overpressure model49, wherein trapped fluids build overpressure to reduce 

effective normal stress on the fault plane, facilitating tensile or mixed-mode faulting rather than 

pure shear slip.  

Although influenced by stress, fault heterogeneity, and fluid interactions18,46, relative b-

values in the Changdao swarm, ranging from 0.9 to 1.5 across the swarm and different stages, 

consistently exceeded the regional background of 0.74 (Supplementary Figures S9a, S9b). 

Spatially, the b-value (1.28) was higher around the main fault planes and multi-oriented small-

fault zones, while lower b-values (0.91) were observed in the southwestern part (Supplementary 

Figure S9c). The evolution of b-value may reflect the spatiotemporal evolution of pore pressure 

and its role in controlling fault rupture. 

Seismic tomography provided another independent evidence for the fluid-overpressure 
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mechanism, as it can delineate zones of fluid upwelling and fracture networks65,66. Using Qu et al. 

(2021) velocity model in this region39, we found that the swarm concentrated in a low-VP/VS zone, 

and laterally bounded by areas with higher VP/VS ratios (Figure 7a). This observation is generally 

consistent with another tomographic imaging study in the same region67, and other swarm 

sequences in California68,69 , Japan8,70,71,72 and Iceland73,74. Low VP/VS ratios generally indicate 

presence of special mineral types such as quartz75, gas-filled or unsaturated cracks, large-aspect-

ratio (0.01~0.1) water-filled fractures, or elevated heat flow76,77,78, with CO₂ further reducing the 

VP/VS ratios, mainly through changes in the compressibility65.  

Geochemical evidence showed persistent deep-sourced H₂ and CO emissions in Changdao 

Island, with CO₂-supersaturated soilsError! Reference source not found.. Since the mafic basalt flow in ~2 

Ma, the Changdao area has undergone multiple periods of deep-source CO2-rich fluid activityError! 

Reference source not found.. These CO2-rich fluids likely originate from the Big Mantle Wedge (BMW; 

Figure 6c), driven by Pacific Plate stagnation and dehydration80,,81 (Figure 6c), and then migrate 

up along pre-existing fractures67,Error! Reference source not found.. Here we hypothesized that deep CO2-

rich fluids migrated up through a main pathway (the low VP/VS zone) following pre-existing 

fracture network, driving the Changdao swarm sequence. 

The swarm was centered on the intersection of a low-angle listric basement fault (F1) and a 

steeply dipping reverse fault (F2) at depths of 9 - 12 km, above the brittle-ductile transition layer 

(~12 - 16 km)82,83, with negligible seismicity below low-permeability F1 acting as a caprock on 

top of a deep reservoir29. This geometry supported a fault-valve mechanism4,6,8,21,22,24,29,84, where 
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fluid accumulated beneath the low-permeability F1 until reaching a critical threshold, triggering 

rupture at the F1-F2 intersection and creating transient permeable pathways for upward 

migration into overlying faults along branching faults.  

During the early stage, fluid diffusion followed a high-permeability migration front, with a 

peak diffusivity of 1.2 m² s-1, consistent with overpressure‑driven reactivation at the F1 – F2 

intersection6,85,86 and transient permeability enhancement due to new fractures30,57, a pattern 

mirrored in the initial rise of ETAS background forcing (Figure 6b). After the largest ML 4.5 

event, diffusivity decreased to ~1.0 m² s-1 and then to ~0.5 m² s-1 following subsequent larger 

events, as expected in a fault-valve system where rupture temporarily increases permeability, 

followed by a relaxation/healing process that potentially reduce permeability6,8,84. These 

variations aligned with fluid-driven swarms in Long Valley Caldera31 and Weiyuan shale-gas 

region26,59,87, where high initial diffusivity rates decay as open fractures close. 

The most active F1-F2 intersection exhibited the lowest diffusivity (0.08 m² s-1) compared 

with the southeastern (SR ~0.5 m² s-1) and northwestern (NR ~0.3 m² s-1) segments (Figures 3, 

5), likely due to localized stress concentration closing fractures and inhibiting fluid mobility in 

high-stress environments89. This was supported by lower stress drops at the intersection than in 

adjacent segments88, indicating that fluid overpressure reduced effective normal stress for 

minimal stress release and fault reactivation with limited energy dissipation85,86. In addition, 

persistently high b-values (>1.0) (Supplementary Figure S9c) suggest abundant small ruptures in 

a weakened and likely fluid-saturated area.  
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The asymmetry between SR and NR may stem from differing fracture connectivity or stress 

perturbations. The forked fault geometry, combined with the exponentially decaying 

permeability with depth90, suggested that fluids were first trapped and accumulated near the low-

permeability intersection and migrated upward primarily through fracture networks bounded by 

low-permeability barriers91,92. Once overpressure reached a critical threshold, fluids then 

migrated along the upper and lower branches to secondary systems. These diffusivities aligned 

with similar-depth fluid-driven swarms, including Yellowstone23 (1.5 m² s-1 at 8 – 11 km), Noto 

Peninsula16,93 (0.09 – 200 m² s-1 or 0.02 – 1 m² s-1 at 5 – 20 km), Tengchong volcanic region21 

(0.02 – 40 m² s-1 at 5 – 15 km), and granite fluid-injection experiments94 (0.1 – 100 m² s-1). The 

fault-valve dynamics and permeability variations drive the swarm’s evolution and underscore the 

role of fluid overpressure in basement fault reactivation. 

Recent studies95,96 also found elevated background rates during waste-water injections and 

volcanic unrests can affect the system’s response to external stress perturbations such as long-

period surface waves from distant earthquakes. Analyses of 31 Mw ≥ 6.0 teleseismic events 

show no evidence of dynamic triggering during the 2017 Changdao swarm, with peak dynamic 

stresses of 1.63 kPa (Supplementary Figure S10), which is far below typical triggering thresholds 

(~10 kPa)97,98. While a few β-statistic values exceeded the typical threshold of 2, the 

corresponding dynamic stresses were very small (less than 0.2 kPa) (Supplementary Figure S10) 

and no obvious instantaneous triggering was observed during the teleseismic surface waves 

(Supplementary Figures S11, S12), likely reflecting statistical fluctuations rather than genuine 
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dynamic triggering99,100. These results further suggest that the swarm was internally driven by 

local fluid migration and fault-valve processes rather than remote seismic waves. 

Our study investigates multiple observational datasets surrounding the Changdao swarm, 

leading us to suggest that the swarm may be associated with episodic reactivation of ancient 

basement faults driven by deep volatile-rich fluids in an intraplate setting. Multiple lines of 

independent evidence support this fluid-driven mechanism: positive ISO components (13-38%), 

higher b‑values, high ETAS background forcing (~63%), a vertical low‑VP/VS conduit, and 

CO₂‑rich geochemical signatures. The spatiotemporal evolution of this fault-valve system, 

particularly its diffusivity variations (0.08 - 1.2 m² s-1) and migration patterns provided crucial 

insights into the underlying fluid dynamics. These findings reveal fluid-fault interaction as a 

primary control on swarm evolution and provide a framework for identifying and understanding 

similar fluid-induced seismicity globally. Future research will focus on the role of aseismic slip 

in such fluid-driven sequences investigating how the coupling between aseismic deformation and 

fluid pressure evolution controls the spatiotemporal patterns of earthquake swarms101. 

 

Methods 

Matched Filter Event Detection and hypoDD Relocation  

The analysis procedures largely follow the methodology41 and are briefly summarized here. 

Continuous seismic waveforms were recorded by 19 stations within 150 km of the Changdao 
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swarm (Figure 1), and each station equipped with broadband three-component instruments 

sampling at 100 Hz. For the matched filter event detection, we selected four stations (CHD, 

BHC, YTA, and LOK) within 100 km of the swarm. Additional stations were included for 

relocation and focal mechanism analysis (Figure 1). The continuous waveforms were band-pass 

filtered between 2 and 10 Hz. A total of 223 earthquakes (ML ≥2.0) were chosen as template 

events, using a 6-s window (1 s before and 5 s after the P- or S-wave arrival). Cross-correlation 

coefficients (CCCs) were computed with continuous waveforms from February 9 to May 31, 

2017. Note that the Changdao earthquake swarm lasted from February 14 to August 2017. 

However, the location of the nearest seismic station (CHD) was shifted 4 km to the northwest on 

June 6 2017, which may affect the location accuracy. In addition, the earthquake intensity and 

frequency declined substantially after June. Hence in this study we only analyzed data between 

February 9 2017 and May 31 2017. 

New events were detected when the CCC exceeded a threshold of 12 times the median 

absolute deviation (MAD). To avoid false detections, only one event was allowed within 5 s and 

selected based on the maximum CCC. The detected event’s origin time was estimated assuming 

similar travel times to the corresponding template event, and magnitudes were determined by 

comparing the S-wave maximum amplitudes of the detected and template events within a 4-s 

window (2 s before and after the S-wave arrival)41. An example is shown in Supplementary 

Figure S1. Using this method, 11,411 events were detected (including 225 template earthquakes) 

(Figure 2; Supplementary Data 1). 
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The detected events were relocated using the double-difference method hypoDD 42. Relative 

differential times were measured for similar waveforms recorded at the same station using cross-

correlation techniques, achieving sub-sample precision102,103. Four additional stations (ZHY, 

LZH, YTA, WEH) were included in the relocation process (Figure 1). CCCs were calculated 

within a 3-s window starting 1 s before the P-wave arrival (vertical component) and S-wave 

arrival (horizontal components). The derived differential times and CCCs were used as input for 

hypoDD. Additional analysis steps and the error analyses43 were from Yang et al. (2009).  

We used a 1-D velocity model derived from seismic tomography104 (Supplementary Table 

S2) with a VP/VS ratio of 1.72, which is standard for double-difference relocations in similar 

studies22 and minimizes bias when combined with waveform cross-correlation22. Events with 

CCCs ≥0.8 and at least four differential station measurements were selected, resulting in 6,255 

event pairs. In total, 2,142 events (18.8% of detected events) were successfully relocated 

(Supplementary Data 2). 

Focal mechanism 

Focal mechanisms were determined using P-wave first motions48 for events with the 

magnitude between 2.0 and 3.4, and moment tensors were inverted for six ML ≥3.5 events using 

the Cut-and-Paste (CAP) method47. The same 1-D velocity model was used for ray tracing and 

Green’s function computation. First-motion solutions were calculated for events with well-

constrained locations and at least eight first motion polarities, events with over 10% inconsistent 

polarities were excluded. For CAP inversion, we selected stations with high-quality waveforms. 
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The inversion included isotropic and CLVD components. Optimal solutions were determined by 

minimizing residuals between observed and synthetic waveforms (Supplementary Figure S2). 

The frequency bands were 0.05-0.2 Hz for Pnl waves and 0.05-0.1 Hz for surface waves. Focal 

mechanism solutions were obtained for 185 earthquakes (ML >2.0) (Supplementary Figure S4, 

Supplementary Data 3). We chose twelve focal mechanism solutions marked in Figure 3 and 4, 

representative earthquakes were selected based on three criteria: (1) events with magnitudes ML 

≥3.5; (2) the largest event occurring each month during the swarm sequence; (3) the largest 

event along each distinct fault branch identified through seismicity distribution. 

Fluid Diffusions from Migrating Seismicity 

Earthquake migration patterns often reflect fluid diffusion processes, which can be described 

by the equation 𝑟 = √4𝜋𝐷𝑡, where r is the distance from the injection point (assumed to be the 

initial event) to the seismicity front at time t, and D is the hydraulic diffusivity53,57,58. We fit the 

seismicity front by this diffusion equation, varying D value. Similarly, we referred to the 

estimated D as seismic diffusivity58, encompassing mechanisms such as pore fluid diffusion and 

static stress triggering. Typical D values range from 10-2 to 10 m2 s-1 for natural or induced 

earthquakes31,52,59. D values obtained in this study range from 0.08 to 1.2 m² s-1 (Figure 5).  

Epidemic-Type Aftershock Sequence Modeling 

To estimate the temporal evolution of fluid-induced seismicity, we applied the Epidemic-

Type Aftershock Sequence (ETAS) model63, which accounts for both background (fluid-driven) 

and triggered seismicity. The total occurrence rate λ(t) is expressed as the sum of a time-varying 
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forcing rate λ0(𝑡) (representing background activity) and the rate of earthquakes triggered by all 

previous events: 

λ(𝑡) = λ0(𝑡) + ∑ 𝐾0𝑖:𝑡𝑖<𝑡 𝑒𝛼(𝑀𝑖−𝑀𝑐)(𝑡 − 𝑡𝑖 + 𝑐)−𝑝      (1) 

where, 𝑀𝑐 is the completeness magnitude, and 𝐾0, 𝛼, 𝑐, and 𝑝 are parameters governing the 

triggering efficiency, magnitude dependence, and temporal decay of aftershocks. The specific 

inversion procedure63 is briefly summarized here. The model parameters were estimated using an 

iterative algorithm: (1) an initial constant forcing rate λ0 was assumed. (2) the ETAS parameters 

(𝐾0, 𝛼, 𝑐, and 𝑝) were estimated by minimizing the Akaike Information Criterion (AIC). (3) the 

forcing rate λ0(𝑡) was updated by smoothing the probabilities 𝜔𝑖 that each event is a background 

event, using a moving window of 2𝑛𝑒 + 1 events (𝑛𝑒 events before and after 𝑡𝑖). The optimal 

smoothing window was determined by minimizing AIC. (4) steps 2 and 3 were repeated until all 

parameters converged. The forcing rate and other ETAS parameters of the whole Changdao 

swarm were obtained with the minimum AIC at 𝑛𝑒=8, corresponding to a smoothing window of 

17 events (Figure 6a). We also estimated forcing rate λ0(𝑡) and other ETAS parameters for 

different periods (Figure 6b). In order to capture the temporal evolution of the forcing rate, we 

further estimated the time-dependent forcing rate λ0(𝑡) and other ETAS parameters for distinct 

periods (Figure 6b), which correspond to different seismic activity stages of the earthquake 

sequence (Figure 2a). In particular, Stage II was divided into three subintervals separated by 

March 14 and April 8 (Figure 6b). 
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Calculation of Dynamic Stress Remotely Triggered Seismicity 

To investigate potential teleseismic influences on the Changdao earthquake swarm, we 

calculated peak dynamic stresses and β-statistics for 31 global earthquakes with Mw ≥ 6.0 

occurring within one month before and the swarm activity period, at epicentral distances greater 

than 1000 km, as sourced from the USGS earthquake catalog. Peak ground velocity (PGV) was 

directly measured from the recorded teleseismic surface waveforms. Dynamic stress 𝜎 (MPa) 

was computed with a shear modulus (G = 30 GPa), surface wave velocity (𝑣𝑠𝑢𝑟𝑓=3.5 km s-1): 

𝜎 ≈ 𝐺
𝑃𝐺𝑉

𝑣𝑠𝑢𝑟𝑓
                                (1) 

To assess seismicity rate changes following teleseismic wave arrivals, we calculated the 𝛽-

statistic, which is the most common statistic used in dynamic earthquake triggering studies, 

defined as105: 

𝛽 =
𝑁𝑝𝑜𝑠𝑡−𝑁𝑝𝑟𝑒

√𝑁𝑝𝑟𝑒
                           (2) 

Where, N_post is the number of earthquakes observed in a 3-day window post-arrival, and N_pre 

is the number in pre-window based on background seismicity rates. Elevated 𝛽 values (𝛽 > 2) 

were identified to detect potential triggering, though these were further evaluated for spatial 

clustering and stress thresholds to distinguish teleseismic influences from background 

fluctuations99. 

To further investigate the instantaneous triggering effects of teleseismic surface waves on the 

Changdao region, we selected 12 Mw ≥ 6.5 global earthquakes recorded by local stations near 

Changdao Island. Following previous studies97,106,107,108, we applied a 5 Hz high-pass filter to the 
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original waveforms of these teleseismic records. This filtering process suppresses the low-

frequency teleseismic surface waves while amplifying signals from local small earthquakes. 

Consequently, any potential triggering phenomena would reveal previously obscured micro-

earthquakes hidden beneath the large-amplitude surface waves. Additionally, spectrograms 

corresponding to the teleseismic waveform intervals were analyzed. These spectrograms clearly 

display the energy distribution across different frequencies upon the arrival of seismic waves: 

teleseismic energy is predominantly concentrated in the low-frequency band, whereas signals from 

local to regional earthquakes should show up in the relatively high-frequency band. Supplementary 

Figure S11 shows an example of the transverse T component from teleseismic waveforms of the 

maximum dynamic stress earthquake (1.63 Kpa, the Jan 22, 2017 Mw 7.9 Papua New Guinea 

event at ~6080 km). A few events occurred right following the P wave of the distant mainshock. 

These events mostly occurred near the Haicheng region, about 100-200 km away from the study 

region. Supplementary Figure S12 shows that one magnitude 1.8 event occurred during the surface 

waves of the Mar 29, 2017 M6.6 event near Ust'-Kamchatsk Staryy, Russia. A few additional 

events occurred following the distant seismic waves. However, the corresponding 𝛽 values are -

2.6 and -6.5 for 0.5 and 1 days, respectively, and the dynamic stress is only 1.02 KPa, well below 

triggering thresholds and inconsistent with a triggering interpretation. These events likely 

represent temporal coincidences with the teleseismic waves rather than genuine triggering.  
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Data availability 

Three-component (3-C) waveform data from 12 seismic stations are available from the China Earthquake 

Network Center (CENC) Data Sharing Service (login required): https://data.earthquake.cn/datashare/login.jsp. 

The datasets supporting this study are deposited on Figshare (DOI: 10.6084/m9.figshare.30944375), including 

the detected earthquake catalogue (Supplementary Data 1), the relocated earthquake catalogue (Supplementary 

Data 2), and the focal-mechanism catalogue (Supplementary Data 3). The Figshare files are under embargo 

until 24 January 2026, after which they will be publicly accessible45. 

Code availability 

ETAS modelling was implemented using GeoTaos61 (https://bemlar.ism.ac.jp/lxl/). The MFT code41 is also 

available from the corresponding author. 
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Figure captions 

Figure 1. The spatio-temporal evolution of the 2017 Changdao earthquake swarm.  

(a) Map of seismicity and seismic stations in the study region. Red, blue, and cyan circles are earthquakes 

recorded by the China Earthquake Networks Center (CENC) during earthquake swarms in 2017, 2013, and 1976, 

respectively. The yellow star indicates the largest ML4.5 earthquake in the 2017 swarm with its focal mechanism 

(red beach ball). The gray circle marks the largest historic earthquake in 1548 with a magnitude of 7.0. Triangles 

are seismic stations, and blue triangles mark stations used for matched filter event detection. Brown lines mark 

the surface traces of major faults from Wang et al. (2006) 44. The inset indicates the study region (blue box) in a 

larger map of East Asia, and the black dashed lines are the two major faults: Zhangjiakou-Penglai Fault and Tan-

Lu Fault. (b) Magnitudes versus the occurrence times and the cumulative numbers of all earthquakes within 40 

km of Changdao Island since 1970. 

Figure 2. Temporal evolution and frequency–magnitude characteristics of the Changdao swarm. 

(a) Magnitudes and cumulative numbers versus time of the MFO (blue dots, N=11,411) and CENC (red dots, 

N=1804) catalogs. (b) Frequency-magnitude distribution of the MFO (blue), the MFR (black, N=2142), and 

the CENC (red) catalogs. The estimated magnitudes of completeness (Mc) calculated by the maximum 

curvature method of the MFO and the CENC catalogs are 0.8 and 1.1, respectively.  

Figure 3. Spatio-temporal distribution of the Changdao earthquake swarm.  

Hypocenter dots are colored by occurrence time relative to the initial event (2017-02-14 00:05:58 ML1.2; 

marked as a black triangle). (a) Map view of all MFR events. The focal mechanism solutions of twelve 

representative earthquakes were marked. The magenta solid line indicates the mapped major (Penglai-Weihai) 
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fault. The orientation of the regional stress field was marked on the top right. The black star indicates the 

largest ML4.5 earthquake. The red and two dashed white parallelograms mark the central region (CR) and 

southeast and northwest regions (SR and NR). (b) and (c) are side views along profiles XX' and YY', 

respectively. The red and magenta lines in (b) indicate interpreted primary and secondary faults, respectively. 

PW: Penglai-Weihai. (d) A zoom-in view corresponding to the red box in (c). The red arrow marks the 

migration direction.  

Figure 4. A 3D view of the relocated seismicity in the Changdao earthquake swarm.  

The 3D view illuminates the complex fault structures. Black/dotted lines highlight the fault segments. The 

magenta arrow indicates the direction of earthquake migration in the fault intersection. 

Figure 5. Spatiotemporal migration of seismicity relative to the first event. 

The distance of seismicity relative to the first earthquake as a function of time for the entire region (a), the 

central (b), northwest (c), and southeast regions (d). The red lines were the fitted line with the sqrt(t) function 

(𝑟 = √4𝜋𝐷𝑡). The red dotted ellipse marks a swarm-like cluster with spatiotemporal concentration. The black 

curve in (a) marks the cumulative number of events over time.  

Figure 6. ETAS results of the Changdao swarm. 

(a) the forcing rate 𝜆0(t) for the whole period (ne=8, corresponding to a smoothing window of 17 events). (b) 

the forcing rate 𝜆0(t) for different distinct periods. The f.s. indicates the forced seismicity. The initial and final 

periods stand for Stage I and Stage III in Figure 2a, respectively. The three middle periods corresponded to 

Stage II in Figure 2a. 

Figure 7. VP/VS structure beneath the Changdao earthquake swarm. 
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(a) Diagram showing the VP/VS profiles and the hypocentral locations of the Changdao swarm. The white dotted 

circle marks the relatively low VP/VS area, and red arrows mark the upwelling hydrothermal fluid with CO2 from 

deeper areas. (b) The location of cross-section profile in (a).  
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Editorial summary: 

A distinctive migration pattern consistent with fluid pressure diffusion is 

identified within a high-resolution earthquake catalogue of the 2017 Changdao 

swarm and suggests a fault-valve mechanism driven by overpressure CO2-rich 

fluids was responsible. 
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