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Abstract

The last deglaciation provides an opportunity to assess the response of ElI Nino-Southern
Oscillation to rapid warming and disruptions of the Atlantic Meridional Overturning Circulation,
both projected in the near future. We present a reconstruction of deglacial EI Nino—Southern
Oscillation activity using finely laminated sediments from the ElI Nino—Southern Oscillation-
sensitive Peruvian margin. An interannual record of titanium fluxes, a proxy for riverine discharge,
shows that the frequency of extreme Eastern Pacific EI Nifio events and the amplitude of El Nino—
Southern Oscillation variability were higher during the deglaciation and peaked during episodes
of massive iceberg discharge into the North Atlantic. Maximum EI Nino-Southern Oscillation
variability occurred in the early phase of Heinrich event 1, at ~17.3-16.7 kyr BP, associated with
at least five extreme floods per century in southern Peru. This proxy evidence linking EI Nino—
Southern Oscillation and the North Atlantic suggests a possible increase in El Nifio-related extreme

climatic events under future Atlantic Meridional Overturning Circulation weakening.

Introduction

El Nifio-Southern Oscillation (ENSO), the most energetic mode of global interannual climate
variability, is a source of extreme and potentially catastrophic climatic events, especially in South
America=3, but its future behavior is still highly uncertain®®. In particular, the response of ENSO
and of the tropical Pacific circulation to the weakening of the Atlantic Meridional Overturning
Circulation (AMOC)’8 is a pressing and debated issue that has traditionally been explored using
numeric experiments simulating AMOC reduction events*910,

Here, we study the links between ENSO and the North Atlantic using proxy observations of ENSO
variability (hereafter defined as the standard deviation of the interannual frequency band) during

the last deglaciation, ca. 18 to 11 thousand years ago (ka), a period of abrupt global warming



associated with a ~80 ppm increase in atmospheric CO2'%. At the beginning of the deglaciation,
~18 to 14.5 ka, a destabilization of the northern ice sheet produced a massive discharge of icebergs
into the North Atlantic?24  an event known as Heinrich Event 1 (H1), followed by a rapid melting
of polar ice sheets and sea level rise'>!8. The freshwater released by iceberg melting in the North
Atlantic triggered a substantial slowdown of the AMOC"*8 with strong global impacts including
a cooling (warming) of the northern (southern) hemisphere, and an abrupt perturbation of monsoon
systems!®?, Climate model "hosing" experiments mimicking this freshwater discharge
consistently reproduce the AMOC shutdown and the interhemispheric temperature change, but the
response of the tropical Pacific appears model dependent®!%?122 On the other hand, proxy
observations of ENSO during the last deglacial warming are still scarce. In the Eastern Equatorial
Pacific (EEP), individual foraminifera analyses (IFA) using subsurface-dwelling species suggested
a 16 to 60% increase in ENSO variability in three deglacial snapshots (12.5, 15.1 and 17.9 ka)%,
while no increase was found at 16.8 ka using surface-dwelling foraminifera species®* also
influenced by seasonality changes®. Recently, three new foraminifera-derived snapshot records
from the EEP found increased ENSO variability at 14.9 ka, during H1, and decreased at 12.3 ka
(Younger Dryas) and at 13.4 ka (Belling-Allergd), suggesting that the mean climate state may
modulate ENSO's response to freshwater flux?®. However, distinguishing a forced response of
ENSO from its very large internal centennial variability requires long high-resolution time series.
Long, unforced equilibrium GCM simulations suggest that a period of 500 years may be necessary
to obtain a statistically robust estimate of ENSO variability?’, while Holocene transient simulations
indicate that the centennial-scale unforced variability of ENSO is comparable in magnitude to
orbitally forced changes?®. An initial attempt to reconstruct long-term ENSO activity from lithic
flux on the Peruvian margin, using photoreflectance, did not yield the required interannual-scale

resolution during H1?°. Here, we present a continuous multimillennial sedimentary record of



ENSO activity, derived from interannually resolved XRF measurements, extending back into H1
to assess ENSO’s response to planetary warming and AMOC disruption.

The core M77/2-005-3 (12°05 S, 77°40,07 W) was collected off Callao at 214 m depth, and core
G14 (14.38°S, 76.42°W) was collected off Pisco at 390 m depth on the Peruvian margin (Fig. 1,
Methods). We focus here on sections of the last deglaciation (18-13 ka) from both cores and a
Late Holocene section (2.7-1.3 ka) from Callao, which show irregularly spaced but well-preserved
laminae indicating minimal sediment mixing (Methods, supplementary Figs. 1-4), allowing
analysis of high-frequency variability.

Clays in marine sediment of the continental margin are mostly of riverine origin®>-*? and enriched
in titanium (Ti)3334, which makes this element a reliable tracer of fluvial sediment input in central
Peru (Methods), as it has been in other similar geographical settings®-3’. XRF Ti counts,
normalized (Tinorm) to account for matrix variability effects, is therefore a tracer of rainfall in the
multiple watersheds extending from the altiplano to the arid Pacific coast and strongly connected

to ENSO (Fig. 1).

Results and discussion

The regional climatic significance of the records is demonstrated by the covariance between
sedimentary records off Pisco and Callao, previously shown by multiple organic and inorganic
tracers in box cores collected at the same sites®>?8, It is observed here on a longer timescale, not
only in Tinorm Variations but also in the millennial changes of interannual variability (Fig. 2).
Compared to the 1400-year-long Late Holocene section of the Callao core, Tinorm Values are on
average ~30% higher during the deglacial period (Fig. 2a). Lower sea level might be partly
responsible for the higher Ti content because of the reduced distance to the river mouths: the coast

at Callao was ~20 km closer to the coring site at 18 ka, but not significantly closer at Pisco due to



the abruptness of the inner shelf (Fig. 1b). However, sea level rose strongly from 18 to 13 kyr BP,
a trend that is not reflected in the Tinorm record at either Callao or Pisco. Hence, the larger deglacial
Tinorm values likely result from increased river discharge in central-southern Peru. Since coastal
precipitation is rare and mostly occurs at this latitude during extreme Eastern Pacific (EP) El Nifio
events (Supplementary material), the larger average river flow was primarily caused by
strengthened South American monsoon in the Andes and their foreland, in agreement with records
of increased precipitation in the northern and central Andes®"3°4% and with evidence of a southern

shift of the ITCZ mean position at that time**.

A high-resolution sediment record of ENSO variability

During EP El Nifio events*?, the most extreme warming is observed along the Peruvian coast
(anomalies up to 8 °C), making it one of the regions most sensitive to ENSO*® (Fig. 1a). Because
these warm waters trigger atmospheric convection and thunderstorms along this typically
hyperarid coast!?, precipitation in the Peruvian coastal lowlands is significantly correlated with
the eastern Pacific E index3* (Fig. 1d). During extreme events such as 19971998, the steep and
usually dry valleys that drain the western flank of the Andes (Fig. 1b) are suddenly activated,
producing mud floods on both the northern and southern coasts® (Supplementary text and
supplementary Fig. 6). Anomalous clastic flux in marine sediments and debris flow deposits in
lower valleys have yielded a consistent chronology of extreme events in the Holocene in the
northern, central and southern coast*®“°, Apart from these extraordinary events, the fluvial
sediment discharge depends on rainfall on the Altiplano, which, on interannual timescale, is
primarily determined by ENSO conditions in the central equatorial Pacific 3°°°2 (Fig. 1c). We
therefore extract two independent metrics from the Tinorm record: 1) the relative standard deviation

(RSD) of the 2.5-8 yr ENSO frequency band associated with the impact of Central Pacific (CP)



ENSO in the Andes, and 2) the frequency of extreme events associated with the impact of extreme
EP EI Nifio events on the southern coast (Methods).

ENSO-related RSD appears higher in Callao than in Pisco (Fig. 2c), likely due to closer river
mouths and stronger ENSO anomalies toward lower latitudes (Supplementary Fig. 6). Yet, ENSO
RSD variations are largely coherent in both sites reflecting ENSO variability modulations in the
central Pacific. Three maxima are observed in both sites in CP ENSO variability ca. 13.5-13.8 ka,
15.4-15.9 ka, and 16.7-17 ka, with different relative amplitudes, the earliest peak being the highest
in both cores. Differences between the sites also include offsets in the timing of ENSO changes,
in particular with the start of the first peak. These differences are likely due to dating uncertainty,
uncertainty in the temporal resolution, and to different coastal morphological evolution across the
deglaciation that affect sediment transport and deposition. Uncertainties in Tinorm as a proxy for
ENSO activity on the Peruvian margin also arise from the contribution of aeolian sediments from
the arid coast, from atmospheric teleconnections with other regions and modes of variability. We
minimize the potentially confounding effect of aeolian flux by using independent metrics specific
to ENSO coastal and Andean teleconnections (Methods, Supplementary Figs. 8,9). Primary
productivity has a diluting effect on Tinorm that tends to amplify the signal of extreme EP events,
since productivity is negatively linked to EP ENSO variability>3. We therefore discuss below the
changes observed in the mean climate, CP ENSO variability, and the frequency of extreme EP El

Nifio events during the deglacial warming.

ENSO variability during the deglaciation
Changes in CP ENSO variability (measured here as a relative standard deviation in 300-yr moving
windows, see methods) during the deglacial climate ranged approximately from -10% to +105%

compared to the Late Holocene (Fig. 2c), when ENSO had similar to modern



characteristics?32428495455 'ENSO is known to be subject to large decadal to centennial internal
unforced modulations?”-?2°¢ but the duration of this record allows a robust measurement of
variability ranging from similar to substantially higher during the deglaciation, especially during
H1 (~18-15 ka), in broad agreement with foraminifera-based estimates?®2® (Fig. 3d,e,f). Within
the deglaciation, the interannual-to-multidecadal frequency bands exhibit similar millennial-scale
variation patterns, consistent with the well documented relationship between the Pacific decadal
variability and ENSO®’. However, whereas interannual variability was larger during H1 compared
to the Late Holocene, the decadal and multidecadal variability were substantially weaker
(Supplementary Fig. 7), indicating conditions that favored ENSO variability in the Pacific relative
to lower frequency bands.

Large millennial-scale changes are observed within the deglaciation, both in the frequency of
extreme EP events and in CP ENSO variability (Fig. 3). The reproducibility of these independent
metrics (Supplementary Fig. 8) and the 4500-year time span of the record provides exceptional
statistical robustness for this ENSO reconstruction. The covariance of these complementary

metrics indicates a qualitatively similar response of ENSO in the central and eastern Pacific.

Relationship with the ITCZ and South American monsoon

Weakening events of the AMOC have been shown to produce southern shifts of the ITCZ*%,
Could the deglacial ENSO peaks recorded in Peru result from these ITCZ shifts? Two lines of
evidence suggest otherwise. First, the mean position of the ITCZ may affect remote ENSO
atmospheric teleconnections with the tropical Andes and could therefore modulate our record of
interannual variability, but it would not directly influence the ENSO-precipitation relationship in
the Peruvian coast. Since precipitation anomalies on the Peruvian coast during extreme EP events

are triggered by the atmospheric convection occurring locally over nearby anomalously warm



waters?, the record of EP extreme events is not modulated by the mean ITCZ position or the South
American monsoon strength. Second, peaks of ENSO variability are not associated with Tinorm
maxima that would characterize phases of strengthened monsoon. We conclude that centennial-
scale modulations of ENSO variability in our record are not caused by ITCZ or monsoon changes.
On the other hand, the high frequency of extreme EP EI Nifio events recorded during H1 must

have had profound impacts on the hydrology and ecosystems of South America.

Links of ENSO with the North Atlantic during H1

Heinrich event 1 (H1) was a period of destabilization of the Laurentide and Eurasian ice sheets
resulting in massive discharge of icebergs drifting into the North Atlantic!?45°® The fresh and
cool water released over a vast surface area blocked the formation of North Atlantic deep water,
leading to the substantial slowdown of the AMOC. This circulation change reduced northward
heat transport, leading to strong cooling in the North Atlantic and warming in the South Atlantic,
an interhemispheric seesaw that extended to the Pacific basinl®:21:22.61-64

Detailed records of ice-rafted debris (IRD) showed that H1 includes two main events of iceberg
discharge, the first one being the largest'®!4. Here we compare ENSO deglacial modulations with
high resolution IRD records from the Nordic sea that track centennial-scale variability of
freshwater forcing in the area of Atlantic deep water formation®¥% (Fig. 3c). Two large peaks are
also observed in CP ENSO variability (Fig. 3d) and EP extreme event frequency (Fig. 3e) within
H1. The first peak of ENSO, dated at ~17.3-16.7 ka represents a doubling of CP ENSO variability
compared to the Holocene. A maximum frequency of 6 extreme EP events per century is observed
while it is less than 1 per century after H1 or in Late Holocene coastal flood deposits*®. A second
peak, dated at ~16-15.3 ka, represents a ~50% increase in CP ENSO variability and 2—-3 extreme

events per century. Including secondary peaks, a total of six maxima of ENSO activity are detected



in the eastern Pacific, coinciding with the timing of IRD peaks within the limits of dating
uncertainty (Fig. 3).

The effects of an AMOC shutdown have been explored in coupled global climate models
(CGCMs) by applying a strong, transient freshwater forcing to the North Atlantic®®. CMIP3 models
mostly find an amplification of ENSO variability associated with zonally more symmetric mean
conditions and a reduced annual cycle?*2-%4 and has been generally explained by the non-linear
frequency entrainment theory?-%. While simulations are consistent with the strong reduction of
the zonal and cross-equatorial SST gradients during H1 shown by SST reconstructions?>%7 (Fig.
30), the negative ENSO-annual cycle link proposed by the frequency entrainment hypothesis is,
however, not supported by seasonally resolved proxy observations?®, ENSO spatial pattern has
also been found to be sensitive to North Atlantic freshwater forcing in CGCMs, exhibiting an
eastward shift of ENSO variance in a perturbed control experiment?? and in an early Holocene
configuration®, but a shift toward more central Pacific activity under an anthropogenic climate
change scenario®. A recent modelling study proposed that a collapse of the AMOC could reduce
ENSO activity by strengthening the Walker circulation®, which is opposite to proxy observations.
Our results, together with previous foraminifera-based estimates?®2%, support an intensification of
both the E and C modes of ENSO in response to North Atlantic freshwater forcing. These changes
in ENSO arise from a shift in the background state of the tropical Pacific. Proxy observations
indicate reduced rainfall in the northern tropics and increased rainfall in the southern tropics during
H1, consistent with the southern shift of the mean ITCZ position simulated in most climate model
hosing experiments®®%270.71 - Analysis of modeling experiments consistent with observations
indicate a transmission of the Tropical North Atlantic cooling to the Pacific basin through cooler
trade winds across the Central American Isthmus’. The cooling of the northeastern tropical Pacific

reduces the meridional temperature gradient, increasing rainfall in the southeastern tropical Pacific



and the Andes, and leads to a weakening of the zonal temperature gradient. Our record supports a
mechanistic link with iceberg discharge events through air-sea interaction rather than a marine
teleconnection associated with AMOC slowdown®:®4, Indeed, when AMOC was overall much
weaker during H1, centennial-scale variability is not observed’?, as in the ENSO records (Fig. 3),
which points to the anomalous SST field in the North Atlantic as the primary driver of ENSO
changes during H1 through rapid atmospheric teleconnections.

The mechanisms of ENSO enhancement during H1 is likely related to the reduced zonal and
meridional SST gradients in the tropical Pacific, according to CGCMs with the best ENSO
representation* and according to the strong ENSO-mean state correlation in proxy data?®. A more
zonally and meridionally symmetric SST pattern shifts the westerly wind anomalies that trigger
ENSO eastward and facilitates the onset of convection in the eastern Pacific, thereby increasing

the likelihood that these anomalies develop into extreme El Nifio events®,

Mixed forcings during the deglaciation

A number of additional rapidly changing forcing factors may have influenced ENSO behavior
during the deglaciation, including insolation, the presence of large polar ice sheets, and greenhouse
gases. The change in the seasonal flux of solar energy related to the Earth's orbital parameters has
been shown to be a significant driver of ENSO in models®® 3" and to account for the mid-
Holocene ENSO minimum (3-6 kyr BP) in paleoclimate records?. While orbital forcing cannot
account for multicentennial-scale peaks in ENSO variability during H1 (Fig. 3), its damping effect
on ENSO, strengthening towards the precession minimum at 11 ka?86%.737° ‘may have contributed
to the long-term decreasing trend observed from 18 to 13 ka (Fig. 3d,e). The orbital damping effect
in the Early Holocene climate simulations was found to exceed the strengthening effect of a

freshwater flux’.



The effect of the large ice sheet in the Northern Hemisphere is still unclear. The ice sheet changes
the mean position and intensity of the mid-latitude westerly jet stream®®, modifying the surface
winds in the tropical Pacific, with a model-dependent impact on ENSO variability. In the IPSL-
CM4 model, the ice sheet slightly increases ENSO variability in the eastern Pacific®. Conversely,
in the CCSM3 model TRACE transient simulation of the past 21,000 years (Fig. 3h) forced
uniquely by continental ice sheet variations, an abrupt ENSO increase (25%) is found at 14 kyr
BP in response to a marked retreat of the Laurentide ice sheet. This effect that disappeared in the
all-forcing simulation®®.

How increasing greenhouse gases influence ENSO is also strongly debated. While CMIP5 and
CMIP6 model ensembles suggest an increased ENSO variability with increasing atmospheric CO2
concentrations’®’’, two recent studies found that ENSO is weakening with increasing CO2 when
simulations are run over several millennia’”® or when model biases are minimized with an ultra-
high-resolution model®. The 80 ppm increase of CO: during the deglaciation is slightly lower than
the current 100 ppm anthropogenic CO2 increase that has not yet produced a clearly detectable
impact on ENSO, and is much lower than the x2 or x4 scenarios tested for the future that yields
contradictory effects”®. Thus, CO2 changes could arguably be considered as a relatively minor
forcing of ENSO during the deglaciation.

Very few model experiments have, however, explored the combined influence of multiple external
forcings on ENSO during the deglaciation. Although TRACE reproduced correctly large-scale
features of the evolution of the global climate (e.g., AMOC intensity, cross-Equator SST contrast,
tropical Pacific SST), the deglacial reduction of ENSO in the all-forcing experiment is at odds
with Peruvian sediments showing increased variability compared to the Late Holocene. Early
Holocene meltwater flux experiments also fail to reproduce ENSO variability similar to the

modern state?®%%7, These disagreements point to an underestimation of ENSO's sensitivity to



iceberg meltwater discharge in these CGCMs, compared to the influence of other forcings. This

issue is lekely shared by other climate models and may bias projections.

Implications for future trends

There are multiple lines of evidence for a slowdown of AMOC in the 20th century, possibly as a
result of Greenland ice sheet melting”8-8 which is accelerating with global warming®. CMIP6
models project a sustained weakening of the AMOC during the 21st century®*. An underestimation
of the impact of meltwater discharge and AMOC weakening on tropical climate variability in
climate models, as suggested by our results, raises serious concerns in the context of current global
warming. However, the AMOC slowdown during H1 bears substantial differences from the
modern and potential future weakening. Modern AMOC weakening is thought to result from
various forcings, including greenhouse gases, anthropogenic aerosols, and  Greenland
meltwater881.85 Meltwater flux would not be spatially distributed by drifting icebergs but would
have a more coastal influence, and would therefore be associated with a different pattern of SST
anomalies'®®!, A recent study showed that the AMOC and SST responses to freshwater depends
on the region of input®. Since evidence converges on identifying the SST field and atmospheric
teleconnections as the key drivers of ENSO changes during H1, these differences prevent a simple
extrapolation of an analogous ENSO response in the future. Our record provides a benchmark for
further transient climate simulations to evaluate the relative response of ENSO to competing

forcings in models.

Conclusions
Laminated marine sediments off Peru provide a ~4,500-year-long continuous record of centennial-

to millennial-scale changes in CP ENSO variability and in the frequency of extreme EP events



during the deglaciation. The doubling of CP ENSO variability during the first phase of H1
represents the highest level recorded to date, thereby extending the known potential range of such
fluctuations. The frequency of extreme EP EI Nifio events is more than one every 20 years during
that period. Millennial-scale peaks of ENSO coincide with the timing of massive iceberg discharge
in the North Atlantic. The record provides thus a clear support to climate models that found a
strengthening of ENSO in the eastern Pacific in response to freshwater input to the North Atlantic.
SST changes associated with the spatial distribution of iceberg meltwater flux in the North Atlantic
were likely the primary driver of ENSO changes via atmospheric teleconnections and a relaxation
of zonal and meridional SST gradients in the Eastern tropical Pacific. The role of AMOC
weakening at that time is less clear: on one hand, it is tightly linked to North Atlantic surface
conditions and is assumed to respond rapidly to meltwater flux; on the other hand, its changes
appear slower than those of IRD and ENSO during the deglaciation. Although a direct prediction
of future El Nifio behavior cannot be drawn from these results given the profound differences
between H1 climate conditions and those expected in the future (global temperature, ice sheet
volume, forcing of AMOC), our record allows the assessment of CGCMs' ability to produce a
realistic response of ENSO in a context of mixed forcings and abrupt global change. Overall, our
paleoclimate data indicate that iceberg meltwater flux in the North Atlantic was the primary forcing

of ENSO variability during the last deglaciation.

METHODS
Marine sediments core
The cores from Callao (M77/2-005-3, 11.08°S, 78.02°W, water depth 210 m) and Pisco (G14,

14.38 °S, 76.42 °W, water 390 m) were retrieved from the southeast Pacific continental slope



during the M77-2 and Galathea-3 expeditions respectively®:%2, The lithology of both cores,
previously described by Salvatteci et al.**%is here complemented by X-Ray images and presented
in supplementary Fig. 1 and supplementary Fig. 3. The Late Holocene and deglacial sediments are
mainly composed of “irregularly spaced laminae” and “isolated laminae™, as defined by Brodie
and Kemp®. The “irregularly spaced laminae” are packets of laminae (several centimeters to
decimeters thick) separated by intervals of homogeneous sediments (several centimeters to
decimeters thick). These laminae packages include alternations between diatom oozes and
diatomaceous mud, the latter with a higher content of clay minerals. The "isolated laminae™ are
packets of millimetric and sub-millimetric laminae (solitary diatom o0oze) enclosed in
homogeneous mud. The Pisco core is more finely laminated than the Callao core. The chronology
is based on 26 *C datings in the Callao core, and 29 '*C datings in the Pisco core, obtained on
bulk sediment organic matter (Supplementary Table 1). Radiocarbon dates were calibrated using
the Marine20 dataset™, and a reservoir age deviation AR=367+40 years estimated for the Late
Holocene in southern Peru®®>% Bayesian age models were calculated with the Bacon R
package®” (Supplementary Fig. 2 and 4). The analyzed section (36-588 c¢cm) of the Callao core
included the last deglaciation (17-13 kyr BP; 102-588 cm), and, above a sedimentation hiatus at
94 cm, part of the Late Holocene (2.7-1.4 kyr BP; 36-93 cm). Holocene sediments were not
recovered in Pisco, which is common in sediment cores of the region, especially for the mid-
Holocene, which has been interpreted as the result of erosion by bottom currents®%. The analyzed
section (10-285 cm) of the Pisco core spans the last deglaciation (18-13.5 kyr BP). Depth-age
models indicate reasonably constant sediment accumulation rates in the analyzed sections, and
were thus estimated by a linear regression. We obtained accumulation rates of 0.7 mm/yr in Pisco,

and of 0.5 mm/yr and 1.2 mm/yr in Callao for the Holocene and deglacial sections respectively. In



the deeper parts, the accumulation rate was too low for interannual variability to be estimated from

this record.

XRF analysis

Ti was measured at high resolution (1 mm) in both cores using an XRF scanner, but only in the
laminated or banded sections of the sediment cores to ensure that the analyzed intervals represent
deposition from the water column rather than reworking of upslope material®!. XRF analyses of
the Callao core were performed at the ALYSES facility (IRD-Sorbonne University, Bondy,
France) using a Bruker-ARTAX p-XRF core scanner with a Cr anode and polycapillary X-Ray
optics at 25 kV and 500 pA during 10 s. The Pisco core was analyzed at the University of Bordeaux
1 using an Avaatech core scanner at 10 kV and 400 pA during 10 s.

XRF does not only depend on elemental concentrations but also on changes in matrix physical
properties such as density, grain size or water content'1%, To correct for this matrix effect, Ti
counts were normalized (Tinorm) by the 20-yr smoothed sum of all the other elements to correct for
low frequency, centimetric scale, changes of the matrix effect. Ca was excluded because of the
large variability related to postdepositional calcium carbonate dissolution on the southern Peruvian
margin®. This approach is similar to the centered log-ratio method but avoids suppressing the
short-term positive anomalies associated with extreme EI Nifio events, which are the focus of this

study.

Relationship between Ti and rainfall
Ti in marine sediments is associated with terrestrial particles transported to the ocean either by
rivers or by wind. West of the Peru-Chile trench, lithogenic material in marine sediments is

primarily composed of aeolian particles eroded from the south-American coast!®2, On the



continental margin, however, the lithogenic fraction is primarily composed of clay transported by
rivers and secondarily of a coarser fraction transported by wind®%32, Clay particles are enriched in
Ti compared to coarser particles because titanium is mainly present as oxides resulting from
weathering and pedogenesis, bound to clay minerals®3341%3-10° Thjs is supported in Peru by the
Ti-enriched clayish layer observed in marine sediment trap following the 2017 flood®
(supplementary Fig. 5). Because lithogenic sediments are largely composed of river-transported
clays enriched in Ti, we interpret Ti as a proxy of fluvial discharge, as in previous studies in similar
environments 237197 This is confirmed by the negative correlation observed between Tinorm mean
and Tinorm Standard deviation, inconsistent with an aeolian source of Ti, but consistent with the
negative impact of CP ENSO on river discharge (Supplementary Fig. 10). The contribution of
aeolian sediment, and its temporal variations, does, however, introduce uncertainty in the proxy
interpretation. We minimize this issue by using two independent and complementary statistical
metrics that characterize CP and EP ENSO rainfall responses (see Fig. 1c,d, and below), isolating

the rainfall signal from the wind-derived noise.

ENSO diversity and teleconnection in Peru

El Nifio events may be categorized into general types, or flavors, based on the spatial pattern of
temperature anomalies, which are associated with distinct atmospheric teleconnection patterns,
We briefly review here the impacts on the Peruvian rainfall regime of the Central Pacific (CP),
Eastern Pacific (EP)*, and coastal El Nifio events, to decipher how Ti variability relates to ENSO
in our study sites.

The impact of Eastern Pacific (EP) El Nifio events on Peruvian coastal rainfall has been reported
in many studies. Instrumental data show that SST warm anomalies in the easternmost Pacific

associated with the strongest EP events cause anomalously high rainfall on the coastal lowlands



and on the Andes Pacific slope often causing mud floods®°052199.110 - A significant link between
coastal rainfall anomalies and the EP index was found (Fig. 1d) using the PISCOp high resolution
rainfall dataset of Peru®®’. Floods on the south coast of Peru during extreme EP events are a locally
notorious phenomena albeit less catastrophic and thus less commented compared to floods of the
northern coast. Evidence of these southern floods is found in news reports, administrative reports,
or in subsequent geomorphological observation of the debris flow deposits*’. In particular, report
citations and pictures of the catastrophic flood that occurred in the Ica valley (14-14.8°S) during
the 1997-98 extreme El Nifio event are provided in supplementary material. Precipitation on the
coast activates a network of usually dry steep valleys and mobilize a disproportionate amount of
sediment turning into mud floods. Such rare events generate short and massive sediment discharge
to the ocean producing clayish layers in the marine sediment' characterized by outsized peaks in
the Ti record, that no other climatic phenomena could produce.

Central Pacific (CP) EI Nifio events have no significant impact on coastal rainfall in Peru (even
the extreme 2015-2016 CP event) because the deep atmospheric convection occurs mostly in the
Nifo3.4 region. The CP mode of ENSO has, however, a strong remote atmospheric teleconnection
with the High Andes, where rainfall decrease (increases) during warm (cold) events 354109111 (Fijg,
1c). As a result, the interannual variability of summer monsoon rainfall in the Peruvian Altiplano
has been shown to be primarily determined by ENSO in the central Pacific®®°1110-112 which is
necessarily translated into interannual variability of coastal river flow.

Coastal El Nifio events refer here to warm surface anomalies restricted to the easternmost tropical
Pacific, off Peru, that produce anomalous rainfall and flood on the Peruvian coast. Only three such
events are known with confidence: two of them are quite recent and well-documented (2017 and
2023), and the third occurred in 19252, These events are characterized by warm SST anomalies

lasting a few months in austral summer along the Peruvian coast north of 12°S (Lima). On the



southern coast, where the Pisco core is located, SST anomalies were mild or even negative'4
(Supplementary Fig. 6). Floods occurred in Lima (close to the Callao core) during the 2017 and
2023 events but not in the southern coast. Coastal EI Nifio events do not appear to be disconnected
from global ENSO, since in two cases (1925 and 2023) coastal anomalies spread and evolved into
the canonical El Nifio events of 1926 and 20243116 Still, these events could account for
differences between our two sedimentary records since the Callao core is located at ~11.1°S, in
the range of Coastal El Nifio, and the Pisco core is located at ~14.4°S, outside the range of coastal
El Nifio events. However, the overall coherency between interannual variability changes at both
sites suggests a minor influence of coastal EI Nifio events and a primary influence of large-scale
events. Finally, the Pisco (G14) sedimentary record was primarily used here to estimate the
frequency of extreme EI Nifio rainfall, because of more continuous lamination, and because this
site is less influenced by coastal El Nifio events in the instrumental record.

In summary, coastal EI Nifio events have limited impact on river flux in the southern coast of Peru,
while the interannual frequency band is dominated by the remote influence of the ENSO CP mode
on the Peruvian Altiplano, and outsized sedimentary discharges are associated with extreme EP El
Nifio events. The distinct influences of CP and EP ENSO modes on rainfall form the basis for

different ENSO metrics.

ENSO metrics

The XRF analyses with 1 mm steps yield a temporal resolution of 0.8 years in the deglacial sections
of the Callao core and 2.2 years in the Late Holocene section (2.7-1.3 kyr). The temporal resolution
of the XRF record in the deglacial section of the Pisco core is 1.3 years. The Tinorm records were
resampled by linear interpolation at 0.5-year resolution in the deglacial and Late Holocene sections

so a 2.5-8 years band pass filter could be equally applied to all records to extract the ENSO



frequency band (Fig. 2b). 10-30 years and 30-100 years band pass filters were also applied to
extract decadal and multidecadal variability respectively (Supplementary Fig. 7).

As shown in the previous section, the interannual frequency band is primarily related to the CP
mode of ENSO in influencing Andean rainfall, whereas the EP mode only impacts the southern
coast in rare extreme events. To correct for a potential effect of background monsoon intensity
changes, we used the relative standard deviation (RSD) of Tinorm as an estimate of CP ENSO-
related interannual climate variability (standard deviation divided by the Tinorm mean value,
calculated over moving 300-year windows). The change in ENSO variability in Callao was
calculated as a percentage relative to the Late Holocene average value in Callao.

Coastal rainfall events associated with extreme EP El Nifio events were identified by peaks in
Tinorm interannual variability exceeding 26. The number of extreme events was calculated over
300-year moving windows, and the frequency was expressed in events per century.

RSD(Tinorm) was then calculated after removing extreme events from the interannual variability if
Tinorm. We obtain thus a metric linked to the Andean influence of the CP mode of ENSO,
independent from extreme EP El Nifio coastal floods. Excluding extreme events reduced the
interannual variability by up to ~20%, but the centennial variations are unchanged (Supplementary
Fig. 8). Importantly, the independent metrics of ENSO, RSD and the frequency of extreme events,
are strongly correlated which supports the robustness of the approach, and yields information on
the two major modes of ENSO.

The similarities between Callao and Pisco records shown in figure 2 shows the regional
representativity and the link with large scale ENSO variability. Then, the record from Pisco was
selected to represent past ENSO changes in figure 3 for three reasons: (1) the core has more

continuous laminations, (2) it is less influenced by coastal Nifio events (Supplementary figure 6),



and (3) it is less influenced by deglacial sea-level rise. The complete record of Callao is presented

in Supplementary Figure 9.

Limitations and uncertainties

The contribution of aeolian sediment, and its temporal variations, introduces uncertainty in Ti
record's interpretation. We minimized this issue by using statistical metrics that characterize ENSO
rainfall response (see previous section). Winds off Peru increase during austral winter but are not
clearly linked to ENSO activity since winds tend to be stronger during periods of low ENSO
activity!*” but have also been observed to maintain a normal or increased intensity during Nifio
events!'®11% Focusing on the variability of the ENSO frequency band thus isolates the ENSO
signal from the noise produced by wind activity. In addition, we show that the interannual
variability of Tinorm iS negatively correlated on centennial timescales with its mean value
(Supplementary Fig. 10). This is opposite to the effect that a wind-related flux of Ti would have
produced, but consistent with a rainfall signal forced by CP ENSO since higher CP ENSO activity
tends to reduced rainfall in the high Andes. Finally, short and extreme peaks of Tinorm correspond
to sudden, massive sediment input that is better explained by EI Nifio-related coastal floods than
by wind. The strong correlation between the frequency of extreme EP events and changes in the
interannual variability rules out significant influence of aeolian transport and of secondary sources
of variability due to teleconnections with other regions, and confirms ENSO as the main driver.
Uncertainty in the record of interannual variability arises from uncertainties in the chronology and
thus in the estimate of the sedimentation rate. Here, we used a constant sedimentation rate value
because of the quasi linear age-depth model relationship in the analysed sections, although small
variations in the sedimentation rate are to be expected, affecting the record's temporal resolution.

When the temporal resolution is underestimated, higher, more powerful frequencies are obtained



by the band-pass filter, resulting in an overestimation of the interannual variability. The opposite
would occur when the sedimentation rate is overestimated. This effect, likely contributes to the
differences observed between the Callao and Pisco records. Radiocarbon dating, due to the large
radiocarbon reservoir age in this upwelling area'?®, yields confidence intervals larger than 500
years in the deglaciation (Supplementary Figs. 2,4), which likely explains the timing difference in
the beginning of the first ENSO peak between Pisco and Callao ca. 17.4-17ka.

Finally, Tinorm also depends on variations of the primary productivity that dilutes the terrigenous
signal. Primary productivity is influenced by EP conditions of ENSO, with anomalously low
productivity observed during El Nifio conditions in the eastern Pacific because of a deeper
nutricline®121122 ‘and higher productivity during La Nifia conditions®. EP El Nifio events are thus
associated with a reduced flux of biogenic silica, thereby amplifying the magnitude of flood-
related Ti peaks. Although anomalies in the central Pacific have little influence on Peruvian
upwelling, an interannual productivity frequency band necessarily interferes to some degree with

the interannual variability of the Ti flux in our record.
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Figure 1. Study area. (a) Standard deviation of the Eastern Pacific ENSO E index (shading). The
cores' locations (black triangle) and the study area (white box) enlarged in panel b are indicated.
(b) Map of central Peruvian coast with the location of sediment cores M77/2-005-3 (Callao) and
G14 (Pisco) in the Peruvian margin. (c) Pearson correlation coefficient between JFM rainfall in
Peru (PISCO dataset, 0.1°, 1981-20198") and the El Nifio Central Pacific C index*? calculated from

ERSST5%). (d) Same for El Nifio Eastern Pacific E index.
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Figure 2. Titanium record of ENSO-related interannual climate variability in Peru. a,
Normalized Ti counts in the M77/2-005-3 core off Callao (red) and in the G14 core off Pisco
(blue). b, 2.5-8 year bandpass filtered record typical of ENSO variability. c, Variations of
ENSO-related climate variability estimated by the relative standard deviation of the Tinorm ENSO
band over a 300-year moving window. Because of distinct sedimentary and analytical settings,

the Pisco and Callao Ti records are represented on different scales.



FIGURE 3
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Figure 3. Deglacial ENSO millennial variability compared to North Atlantic records. The
left narrow panel shows Late Holocene mean values (0-3ka). a, Seasonal insolation contrast

(DJF-JJA) at 30°S®°. b, Composite record of 231Pa/%*°Th in marine sediment reflecting AMOC



intensity®. ¢, Records of ice raft debris (IRD) flux in Norvegian sea cores MD95-2010 (green),
GS07-148-17GC (black) and GIK23074 (blue)>®. d, CP ENSO variability off Pisco over a 300-yr
running window (blue) without extreme EI Nifio events. e, Frequency of extreme EP El Nifio
events per century off Pisco (orange). A tentative correlation aligning IRD peaks with ENSO
maxima is proposed (black lines). f, foraminifera-based ENSO variability relative change in the
eastern equatorial Pacific in core CD38-17P (pink dots)?® and core MV1014-02-17JC (green
diamonds)?. g, Pacific SST zonal gradient (red line)®, and h, ENSO variability in CCSM3

TraCE-21k simulations with meltwater forcing only (black), and all forcings (green)®e.



Editor Summary:

El Nifio—Southern Oscillation variability was not only stronger during the deglaciation but also
correlated with North Atlantic records of iceberg discharge, according to analysis of finely
laminated sediments from the Peruvian margin.
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