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Advanced age is the most critical risk factor for heart disease 
and heart failure1. Most heart failure occurs in individuals 
older than 65 years, and yet we have an incomplete under-

standing of how aging promotes heart failure. With aging, cardiac 
function is impaired at the organ level as well as at the cardiomyo-
cyte level2. In the adult heart, cardiomyocyte cell size is stable, and 
proliferation is either very rare or absent. Nevertheless, cardiomyo-
cytes show changes in activation, contraction and relaxation, hyper-
trophy and, in some cases, cell loss with aging3. The underlying 
cause of these many aging phenotypes is likely molecular in nature, 
but its mechanism is not well understood.

Somatic mutations are genomic changes that escape the DNA 
repair machinery, and occur after the formation of the zygote and 
throughout the whole lifespan. The accumulation of somatic DNA 
mutations has been demonstrated to be a hallmark of aging in many 
human cell types, including postmitotic neurons4–7. In most cases, 
they have little or no phenotypic consequences, as most mutations 
have no effect on cellular function. In some cases, these mutations 
are toxic, or even lethal, to the mutant cell. Recent evidence sug-
gests that somatic mutations play a role in cancer as well as in other 
common diseases8–10, including coronary artery disease11. Each 
mutational process leaves a characteristic mutational mark in the 
genomic context (so-called mutational signature) and many of these 

mutational signatures have been linked to specific mutagen and bio-
logical processes, such as tobacco smoke or the deficiency of DNA 
repair processes12. Understanding mutational signatures and their 
mechanism of formation might lead us to unveil the mechanism 
of DNA damage and disease progression in the aging heart. This 
prompted us to evaluate the landscape of somatic single-nucleotide 
variants (sSNVs) and associated mutational signatures in aging 
human cardiomyocytes.

Results
Cardiomyocyte polyploidization starts early in life. To identify 
and isolate cardiomyocyte nuclei from heart tissue, we purified 
cardiac nuclei from fresh-frozen, unfixed, left ventricle human 
myocardium by density sedimentation (Supplementary Table 1)13. 
Cardiac nuclei were identified with cardiac troponin T (cTropo-
nin T) staining (Fig. 1a,b,d and Extended Data Fig. 1a), which is 
a well-characterized cardiomyocyte-specific marker14. Although 
the pericentriolar material 1 (PCM1) antibody is used widely to 
identify cardiomyocyte nuclei, it has been shown that about 20% 
of PCM1-positive nuclei correspond to nonmyocyte cells15. Careful 
doublet exclusion was performed by plotting the area for forward 
scatter (FSC) and side scatter (SSC) against the height (H) or width 
(W); H versus W or area (A) allows the separation of doublets 
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from single nuclei containing 4n amounts of DNA. Nuclei contain-
ing 4n amounts of DNA have double the A and H values, whereas 
W is roughly the same as cells containing 2n amounts of DNA  
(Fig. 1a,b; DAPI-H versus DAPI-W). We evaluated systematically 
cardiomyocyte nucleus ploidy from 50 human heart tissue samples 
from individuals ranging from 44 days to 81 years of age (Fig. 1c, 
showing only representative age group plots). Polyploid cardiomyo-
cyte nuclei were identified based on the intensity of nuclear stain 
4′,6-diamidino-2-phenylindole (DAPI). Fluorescence-activated 
nuclei sorting (FANS Fig. 1c,d), as well as Amnis imaging flow  
(Fig. 1e,f), revealed the presence of modest numbers of tetraploid car-
diomyocyte nuclei even in the newborn heart tissue. Cardiomyocyte 
ploidy was further confirmed after nuclear sorting with karyotyp-
ing (Fig. 1g). Single-cell gene expression analysis by droplet digital 
PCR (ddPCR) from tetraploid nuclei indicates that tetraploid nuclei 
all express cardiac marker genes PLN, TNNT2 and MYH7 and lack 
fibroblast and endothelial marker genes (Fig. 1h and Extended Data 
Fig. 1b), suggesting that all tetraploid nuclei are cardiomyocytes, 
and making it unlikely that tetraploid nuclei represent sorting arti-
facts. Extensive studies by fluorescence in situ hybridization and 
immunostaining have indicated that human cardiomyocyte nuclei 
are mostly diploid at birth and start to become polyploid mainly in 
the second decade of life16, and that 60% of human cardiomyocyte 
nuclei have higher ploidy at an advanced age17–19. Our data indicate 
that polyploidization in cardiomyocytes is evident in the neonatal 
heart but confirm that it becomes more common with age.

Somatic mutations increase with age in cardiomyocytes. We eval-
uated the genome-wide burden of sSNVs using single-cell whole-
genome sequencing (WGS) of DNA amplified from 48 tetraploid 
and 8 diploid single-cardiomyocyte nuclei from postmortem hearts 
of three infant (<4 years), six middle-aged (30–66 years) and three 
aged individuals (>75 years) (Fig. 2a and Table 1). Cardiomyocyte 
nuclei were isolated from the left ventricle, and DNA was ampli-
fied using multiple displacement amplification (MDA)20 fol-
lowed by quality control steps (Methods) and then high-coverage 
(>50×) WGS on selected, well-amplified cells10 (Supplementary 
Table 2). We identified single-cell sSNVs from each cardiomyocyte 
(Supplementary Table 3) using a modified version of the LiRA21 algo-
rithm, which uses read phasing information from adjacent germline 
variants to distinguish true somatic mutations from technical arti-
facts arising during whole-genome amplification and sequencing. 
The LiRA algorithm has been demonstrated to effectively remove 
most false positives21. We also estimated the genome-wide sSNV 
burden for each cardiomyocyte (Supplementary Table 4), after tak-
ing cell-specific dropout rates and sequencing depth distributions 
into consideration to account for the tetraploidy effect on detection 
sensitivity and power calculation, and subtracting the contribu-
tion of potential artifacts due to MDA amplification based on their 
highly distinctive nucleotide substitution pattern22,23 (Methods). We 
also measured the MDA amplification evenness across the genome 

for each single-cell using median absolute pairwise difference 
(MAPD) and coefficient of variation (CoV) of binned normalized 
copy number ratios, and incorporated them as covariates in our 
subsequent regression analyses.

Tetraploid cardiomyocytes showed a significant increase of sSNV 
with age (P = 7.3 × 10−4, mixed-effects regression; Fig. 2b) at a rate 
of 0.010 sSNV Mb–1 year–1 (or 124 sSNV cell–1 year–1), and the sSNVs 
were distributed broadly across the genome (Fig. 2c). Note that, in 
each age group, there are notable intraindividual and interindivid-
ual variations, particularly in the aged group, where a few outlier 
nuclei showed a very high sSNV burden (>2 sSNV Mb–1). We fur-
ther confirmed the age-dependent increase in diploid cardiomyo-
cytes, in which the aged heart showed significantly more sSNVs than 
the infant heart (P = 0.014, two-tailed t-test; Fig. 2d). We observed 
nearly doubled per-genome sSNV rate in tetraploid cardiomyocytes 
when compared with diploid cardiomyocytes, but, after normal-
izing to their different genomic size, no significant difference was 
observed between tetraploid and diploid cardiomyocytes obtained 
from infant and aged donors (P = 0.11 and 0.86, two-tailed Wilcoxon 
test; Extended Data Fig. 2a), suggesting a consistent increase of 
sSNV in human heart muscle cells with age, regardless of cardio-
myocyte nuclear ploidy. Since two of our donors were affected by 
ventricular hypertrophy (cases 5657 and 5840), we remeasured the 
age-associated increase after excluding cardiomyocytes obtained 
from these two donors, and still observed a consistent increase rate 
(0.010 sSNV Mb–1 year–1; P = 6.1 × 10−4, mixed-effects regression).

To better understand the age-dependent sSNV accumulation in 
cardiomyocytes, we first compared the accumulation rates between 
cardiomyocytes and neurons10,23, another nondividing human cell 
type. We found that cardiomyocytes accumulate sSNVs around three 
times faster than neurons (0.003 sSNV Mb–1 year–1 or 19 sSNV cell 
genome–1 year–1; P = 2.1 × 10−5 between cardiomyocyte and neuron, 
mixed-effects regression; Fig. 2e), suggesting that cardiomyocytes 
and neurons might undergo different mutational processes during 
aging. The age-dependent increase in cardiomyocytes and the car-
diomyocyte-neuron difference remained significant (P < 0.05) even 
after controlling potential confounding factors including MAPD 
and CoV scores (measurement of amplification evenness), sequenc-
ing depth, library insert size, number of heterozygous germline 
SNVs and postmortem interval (PMI), as well as excluding C > T 
sSNVs (Extended Data Fig. 3; Methods). We further compared the 
sSNV accumulation rate in cardiomyocytes with hepatocytes24—the 
liver cells of another highly active metabolic organ—and mitotically 
active lymphocyte blood cells25 profiled by other groups (Fig. 2e). 
We found that cardiomyocytes accumulated sSNV at a rate similar 
to that of hepatocytes (0.009 sSNV Mb–1 year–1 considering diploid 
genome or 55 sSNV cell–1 year–1; P = 0.54 between cardiomyocyte 
and hepatocyte, mixed-effects regression) but significantly higher 
than lymphocytes (0.004 sSNV Mb–1 year–1 or 22 sSNV cell–1 year–1; 
P = 2.0 × 10−4 between cardiomyocyte and lymphocyte, mixed-
effects regression).

Fig. 1 | Evaluating cardiomyocyte nuclei ploidy in postmortem human heart. a,b,d, Representative flow cytometry analysis of cardiac nuclei with Alexa 
Fluor 488 conjugate cTroponin T with careful doublet exclusion for 1278 (a), 5657 (b), and 1465 (d). c, DNA content histograms of heart cell nuclei with 
varied ages. The first peak indicates diploid (2n) nuclei, the second peak indicates tetraploid (4n) nuclei and the third and fourth peaks indicate multiploid 
(>4n) nuclei. d,e, Evaluation of cardiomyocyte nuclei ploidy by flow cytometry (d) and Amnis imaging flow cytometry (e), showing diploid (2N), 
tetraploid (4N) and multiploid (multiple N) cardiomyocyte nuclei proportion in case 1465. f, Representative photomicrographs of isolated cardiomyocyte 
nuclei (n = 4 independent experiments; images from 500 cells per experiment were examined from n = 20 cases), confirming DNA content of a single 
tetraploid and multiploid cardiomyocyte nuclei. Scale bar, 20 µm. g, Flow cytometry sorted cardiomyocyte nuclei karyotyping confirming cardiomyocyte 
chromosomes numbers, 46 (2n), 92 (4n) and 138 (>4n) in cardiomyocyte nuclei isolated from case 1465 (n = 6; 15–20 nuclei counted each time). Scale 
bar, 10 µm. h, Representative ddPCR analysis from flow cytometry sorted nuclei (n = 4, from 12 cases). cTroponin-T-positive 2n, 4n and greater than 4n 
are highly enriched for PLN and MYH7 (cardiac markers), whereas cTroponin-T-negative 2n nuclei express PDGFB or CD31 (markers for fibroblast and 
endothelial cells). The bottom clusters on the plot represent the negative droplets and the upper clusters represent the droplets that are positive for 
the respective reference assay. The plus sign indicates cells sorted from cTroponin-T-positive staining population; the dash indicates cells sorted from 
cTroponin-T-negative population; the blank box indicates that cells were sorted based solely on ploidy status.
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Signature analysis identifies distinct mutational processes in 
aging cardiomyocytes. Different types of mutagenesis processes 
manifest different mutational signatures on the genome, offering 
insight into the molecular mechanisms involved in their forma-
tion26. Using 10,407 sSNVs identified from 48 tetraploid cardiac 
nuclei (Supplementary Table 3), we first studied the base substi-
tution distribution of age-accumulated sSNVs by subtracting the 

sSNV profiles of infant cardiomyocytes from those of aged cardio-
myocytes, and observed that C > T and T > C mutations accumu-
lated predominantly during the aging process (Fig. 3a). To further 
decipher mutational processes in the aging heart, we deconvoluted 
the sSNV profiles of all cardiomyocytes into mutation signatures 
using non-negative matrix factorization (NMF)27. Cardiac sSNVs 
were best fit into four distinct mutational signatures. referred to in 
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this study as Signature A, B, C and D (Extended Data Fig. 4 and 
Extended Data Fig. 5). Signature B consisted mainly of C > T muta-
tions, depleted at CpG dinucleotides, and matched closely with 
mutational signatures that were previously ascribed to artifacts 
created by MDA amplification22, so Signature B was removed from 
mutation burden analysis and not considered further. We compared 
our cardiac signatures with single-base substitution (SBS) signa-
tures annotated by the COSMIC (Catalogue Of Somatic Mutations 
In Cancer) database28, a curated list of reference signatures gener-
ated from distinct types of human cancer, many of which had linked 
their mutagenesis mechanisms to various environmental factors 
and intrinsic processes. Further, we confirmed that tetraploid and 
diploid cardiomyocytes showed a similar contribution of Signatures 
A, C and D (Extended Data Fig. 2b,c,d).

Signature A comprised mainly C > T and T > C mutations  
(Fig. 3b), and its contribution in cardiomyocytes increased with age 
(Fig. 3c). Signature A closely resembled and was contributed domi-
nantly by SBS5 (Fig. 3d and Extended Data Fig. 6), an age-related, 
‘clock-like’ signature previously observed in many cancers26, normal 
cycling cells6 and single neurons5. This signature has been proposed 
to reflect faulty repair of deamination of methylated cytosines to 
thymine that frequently occurs in the CpG context29.

Signature C was distinct from the other signatures due to the 
prominent enrichment of C > A mutations (Fig. 3b). C > A muta-
tions often reflect faulty repair of 8-oxoguanine (8-hydroxygua-
nine (8-oxo-Gua)), created by oxidative DNA damage30—one of 
the most common threats to genome stability31. The heart is one 
of the most highly metabolic organs, with large oxidative demands 
resulting in production of reactive oxygen species (ROS)32, which 
is thought to generate 8-oxo-Gua33. Decomposition of Signature 
C revealed significant contributions of SBS8, SBS18, SBS32 and 
SBS39 (Fig. 3d). SBS8 and SBS18 have been associated with the  

transcription-coupled repair of damaged guanine by ROS via nucle-
otide excision repair (NER)34 and base excision repair (BER)35 path-
ways, respectively, suggesting that the C > A mutations may reflect 
the accelerated accumulation of oxidative DNA damage that over-
whelms these repair pathways.

Signature D was also enriched for C > T and T > C mutations 
but distinct from Signature A in its trinucleotide context (Fig. 3b). 
Signature D closely resembled COSMIC SBS44 (Extended Data Fig. 
6) along with significant contributions from SBS6, SBS39, SBS42 
and SBS46 (Fig. 3d). Both SBS6 and SBS44 have been associated 
with defective DNA mismatch repair (MMR) machinery and are 
increased in tumors associated with loss of MMR genes26. MMR 
is regulated by a small set of MMR-specific proteins in all cells36. 
Mutagenesis in the absence of one of the core MMR factors is 
shaped by the sequence spectrum of the unrepaired mismatches, 
which themselves are the product of the insertional specificity and 
proofreading activity of DNA polymerases. Signature D showed a 
striking similarity to the mutational signature of MSH6-defective 
human HAP1 cells, or the DLD-1 human colorectal cancer cell line, 
dominated by C > T and T > C mutations37 in a range of contexts, 
and small contributions of C > A, C > G, T > A, and T > G muta-
tions. Signature D hence likely reflects a defect in the repair of dam-
age that involves almost all mismatches.

Comparative signature analysis between cardiomyocytes, neu-
rons, hepatocytes and lymphocytes shows shared and distinct 
mutational signatures (Fig. 3c). The age-dependent accumulation 
of Signature A was observed in all four cell types (P < 0.001, mixed-
effects regression; Fig. 3c); we did not observe a significant differ-
ence in the rate of increase between cardiomyocytes and neurons 
(P = 0.24), which might suggest a similar ‘clock-like’ accumulation 
of such mutations among postmitotic cell types. Signature C also 
increased with age in all four cell types, but at a relatively similar rate 
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(Fig. 3c). On the other hand, the dramatic increase in the contribu-
tion of Signature D with age was observed only in cardiomyocytes, 
not in neurons, hepatocytes or lymphocytes (P < 0.001 between car-
diomyocyte and other cell types, mixed-effects regression; Fig. 3c). 
sSNVs that accumulated in aging cardiomyocytes showed broader 
substitution types with enrichment in untranscribed strands, such 
as T > C and T > G mutations, than those in neurons, whereas age-
accumulated sSNVs in neurons showed enrichment of C > T and 
T > C mutations in transcribed strands (Fig. 3e). This putative 
MMR-related Signature D, which accumulates specifically in aged 
cardiomyocytes, seems to represent a distinct mutational process 
in the heart. The uniqueness of the signature to heart cells—both 
diploid and tetraploid—also argues strongly against this signature 
representing any sort of universal technical artifact.

Potential sources and mechanisms of mutation formation in 
the aging heart. To understand how mutations can be formed and 
accumulate during aging in the absence of cell cycling, it is impor-
tant to recognize that both MMR, BER and NER involve steps of 
exonuclease removal of a segment of DNA, followed by replica-
tion of the remaining strand to reconstitute double-stranded DNA, 
using the nondamaged strand as template. Although oxidative base 
lesions are commonly repaired via the BER pathway, and NER is 
the main pathway for the repair of bulky adducts and other helix-
distorting lesions, recent evidence has suggested a role for NER pro-
teins in the repair of oxidative damage through interactions with 
BER proteins38–40. Our analysis of mutational signatures (Fig. 3b,d) 
suggested a model in which oxidative stress leads to an increased 
burden of damaged bases, which might overwhelm the NER, BER 
and MMR machinery in aged cardiomyocytes.

Using the RNA-seq expression data from the GTEx41 portal, 
which compiles data from 168 nondiseased donors with available 
heart and brain tissue gene expression profiles, we observed an 
overall lower gene expression for the core components of the MMR 
complex (MLH3, MSH2, MSH3, MSH6, PMS1 and PMS2) in heart 
samples compared with brain samples (P = 2.5 × 10−8, two-tailed 

paired Wilcoxon test; Fig. 4a), and a significantly stronger decrease 
of those gene expression levels with aging in heart samples (P = 0.04, 
linear regression; Fig. 4a), suggesting compromised MMR activity in 
aged heart, except one of the MMR complex protein MLH1. Existing 
evidence from primary endometrial cancer studies indicates a highly 
variable expression pattern of MMR complex proteins even in clini-
cal cases and the decrease of one or more MMR complex proteins 
is considered damaging42. The age-dependent decreasing of gene 
expression in human cardiomyocytes was further confirmed for 
most MMR complex genes in a recent single-cell RNA-seq dataset43.

We also examined the expression of NER and BER pathway 
genes among GTEx heart and brain samples (Extended Data Fig. 7). 
We observed a twofold slower reduction of gene expression for NER 
and BER pathway genes in heart samples with age (−0.014 year–1; 
P = 0.22 and 0.04) than the MMR pathway (−0.030 year–1). This 
suggested that the MMR pathway might be affected more severely 
during the aging of cardiomyocytes, which could potentially explain 
the cardiomyocyte-specific accumulation of sSNVs from the MMR-
related Signature D.

Under physiological conditions, ROS are scavenged by the 
antioxidant system, but when the ROS concentration is very high, 
oxidative damage occurs to DNA. Guanosine is the most oxidized 
among the DNA nucleobases, with 8-hydroxy-2-deoxyguanosine 
(8-OHdG) being a product of oxidative DNA damage and con-
sidered as a biomarker of oxidative stress. High levels of 8-OHdG 
have been correlated with various age-related cardiovascular disease 
progression44, but the exact causal relationship has not been fully 
elucidated. We directly assessed potential oxidative damage in the 
left ventricular cardiomyocytes (n = 10, five infant and five aged 
donors) using an enzyme-linked immunosorbent assay (Methods). 
We found that the level of 8-OHdG in aged hearts was more than 
twice as high as that in infant hearts (P = 0.008, two-tailed Wilcoxon 
test; Fig. 4b). These data suggest that increased oxidative stress 
leads to elevated 8-OHdG, which may overwhelm DNA repair 
systems, and contributes, at least in part, to the increased DNA  
mutational burden.

Table 1 | Case information analyzed in this study for sequencing

Case 
ID

Age 
(years)

Height  
(inches, range)

HW 
(g)

BW (lb, 
range)

Sex Diagnosis Cause of death Hypertrophy/
fibrosis?

RIN PMI 
(h)

1278 0.4 20–25 42 15–20 M Normal SIDS No NA 8

1864 2 35–40 59 30–35 F Normal Laryngitis and bronchiolitis 
associated with beta  
hemolytic streptococcus  
group A infection

No 7.2 8

6032 4 40–45 110 55–60 M Normal Head and neck injuries, accident No 7 25

1863 30 65–70 300 125–130 F Normal Multiple injuries, accident No 8.8 7

1104 35 70–75 450 225–230 M Normal Multiple injuries, accident No 8.4 12

1028 39 65–70 228 125–130 F Normal Accident No 8.9 21

936 49.2 65–70 280 155–160 F Normal Liver cirrhosis No 7.8 7

5919 63 70–75 430 185–190 M Normal Drowning No 6.1 12

5828 66 60–65 320 140–150 F Normal Accident No 8.2 18

5084 75 65–70 400 205–210 F Normal Accident No NA 12

5840 75.3 70–75 650 225–230 M Hypertrophy Ruptured abdominal aortic 
aneurysm

No; LV 1.6 cm, 
Septum 1.6 cm,  
RV 0.4 cm

7.8 17

5657 82.2 70–75 700 235–240 M Hypertrophy Natural death No; LV 1.8 cm,  
Septum 1.8 cm,  
RV 0.2 cm

8.4 22

HW, heart weight; BW, body weight; LV left ventricle; NA, not available; RIN, RNA integrity number; RV, right ventricle; SIDS, sudden infant death syndrome; PMI, post-mortem interval.
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Functional impact of sSNVs in the aging process. To further inves-
tigate whether the occurrence of sSNVs is associated with defective 
gene transcription and function, we stratified and compared cardiac 
and neuronal sSNVs by using the expression profiles of correspond-
ing tissues in GTEx. By estimating the mutational signature compo-
sition of genic sSNVs in each gene expression quartile and for each 
age group, we found that Signature A sSNVs are enriched in highly 

expressed genes at a similar level in both aged cardiomyocytes and 
aged neurons (Fig. 4c, upper), suggesting Signature A as a common 
transcription-associated signature45. In contrast, Signatures C and 
D showed higher contributions in aged cardiomyocytes than in 
aged neurons, without a strong association with gene transcription 
level (Fig. 4c, middle and lower), indicating that Signatures C and 
D might result from mechanisms distinct from Signature A, and 
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relatively specific to cardiomyocytes. We found a higher propor-
tion of exonic and nonsynonymous mutations in aged cardiomyo-
cytes when compared with germline heterozygous SNVs (Fig. 4d 
and Extended Data Fig. 8), which could be explained by the relaxed 
constraint of negative selection in the somatic context. Gene ontol-
ogy (GO) analysis found that genes involved in mismatch repair, 
mitochondria organization and phosphatidylinositol 3-kinases 
(PI3Kinase) pathways showed sSNV enrichment in aged cardiomy-
ocytes (false discovery rate (FDR)-adjusted P < 0.05, permutation 
test; Fig. 4e). More specifically, we observed protein-altering del-
eterious somatic mutations in kinase pathway genes of aged cardio-
myocytes (Supplementary Table 5), such as WNK2 (ref. 46), TAOK3 
(ref. 47) and BAZ1B48, which play key roles in the regulation of elec-
trolyte homeostasis, cell signaling survival, proliferation activities, 
and DNA damage response. Additionally, protein-altering muta-
tions were identified in ZMYM6 (ref. 49) and DOCK6 (ref. 50) that are 
associated with cytoskeletal organization (Supplementary Table 5).

Although many heterozygous mutations would likely compro-
mise cardiomyocyte function, it is expected that deleterious gene 
‘knockout’ (KO) mutations in haploinsufficient genes would be 
especially damaging if all the alleles are affected, and that there may 
be a threshold for the accumulation of such KOs above which car-
diomyocyte function would deteriorate. Higher ploidy cells with 
more copies of chromosomes may potentially represent adaptive 
mechanisms to guard cells against these KO mutations. Therefore, 
we compared the accumulation of gene KOs in diploid versus tet-
raploid cardiomyocytes using a prediction model. In this model, 
at least two coincident deleterious sSNV events in a diploid cell, or 
four deleterious sSNVs within one gene in a tetraploid cell, cause 
loss of function. Diploid cardiomyocytes had an average probability 
of 0.2% of getting one or more genes completely knocked out by 
age 60 years, with this probability increasing to 1% by age 80 years, 
implying that a substantial fraction of cardiomyocytes would carry 
damaging mutations (Fig. 4f). In contrast, tetraploid cardiomyocytes 
showed a significantly lower probability of gene KO (P = 4.9 × 10−4, 
two-tailed paired Wilcoxon test), with less than 0.2% of cells with 
KO genes at age of 80 years (Fig. 4f). These data strongly suggest that 
tetraploid cardiomyocytes are more effective in averting the loss of 
gene function caused by age-related mutations (Fig. 4g).

Discussion
Our data show that each individual cardiomyocyte has a profoundly 
distinctive genome, harboring sSNVs accumulated throughout the 
lifetime. After controlling for the genomic size difference between 
tetraploid and diploid cells, cardiomyocytes accumulate age-related 
SNVs at rates higher than neurons and lymphocytes, but similar 
to hepatocytes. This finding indicates that the heart and liver, two 
highly metabolic active organs, harbor a higher load of somatic 
mutations and have the tenacity to become polyploid, potentially to 
endure oxidative stress. Although the accumulation rates of hepato-
cyte and cardiomyocyte are similar, cardiomyocyte sSNVs display 
distinct signatures of mutagenic processes, with a predominant con-
tribution of Signature D that has been associated with defects in the 
MMR pathway.

Existing literature shows that cardiomyocyte genome ploidies 
and nuclear counts vary widely across different mammalian spe-
cies19. Polyploidization is a characteristic feature of mammalian 
cardiomyocytes and can be stress-induced and/or developmentally 
programmed51,52. Polyploidization not only plays a role in increasing 
cell size and metabolic output, but also promotes alterations in the 
transcriptome and metabolome. Polyploidy also frequently confers 
resistance to environmental stresses not tolerated by diploid cells. 
Our prediction models show that tetraploid cardiomyocytes have a 
significantly lower probability of complete gene KO compared with 
diploid cardiomyocytes, indicating that cardiomyocyte polyploidi-
zation potentially offers a mechanism to ameliorate the deleterious 

effects of this rapid mutation accumulation. Human cardiomyo-
cytes initially are mainly diploid, though tetraploid cardiomyocytes 
begin to appear soon after birth. The formation of hexaploid, octo-
ploid and potentially higher ploidy cells arises with advanced age.

Our data indicate that aging results in increased generation, 
decreased repair, or both, of oxidative DNA lesions. Age-related 
myocardial sSNVs have distinctive C > A mutations, which are hall-
marks of oxidative damage, and direct quantification by enzyme-
linked immunosorbent assay shows increased oxoguanine in the 
aged heart. Decomposition of Signature C with COSMIC signature 
indicates significant contributions of SBS8 and SBS18. This finding 
strongly suggests that the damaged guanine accumulates either via 
disrupted NER, linked to SBS8 as well as disrupted BER, linked to 
SBS18. Most likely these C > A mutations are from the accelerated 
accumulation of oxidized nucleotides that overwhelm these repair 
pathways, since our finding from GTEx expression data indicates 
expression of both NER and BER pathway genes are changed only 
mildly during heart aging. Oxidized guanine nucleotides reflect 
the presence of increased ROS, which has previously been associ-
ated with various cardiovascular diseases, and can be generated by 
a variety of processes including inflammation and mitochondrial 
dysfunction that are well studied in cardiovascular disease. Our 
findings suggest that increased oxidative stress leads to elevated 
8-OHdG, which may overwhelm NER and BER repair machinery, 
resulting in increased DNA mutational burden. Another mutational 
signature that is uniquely enriched in cardiomyocytes compared 
with neurons suggests a role of defective MMR in mutation gen-
eration. It is known that failure of DNA MMR is associated with 
a strikingly elevated rate of base substitution mutations and, as a 
consequence, tumors with MMR deficiency are amongst those with 
the highest number of somatic mutations. Our findings of increased 
sSNV counts in the aged heart suggest that MMR may not be effi-
cient at correcting mismatched nucleotides in aged cardiomyocytes, 
contributing to the large increase in sSNVs.

Here we show that the number of sSNVs and the likelihood 
of disrupting essential gene function in human cardiomyocytes 
increases significantly with age, suggesting that the age-related cel-
lular dysfunction in aged cardiomyocytes could be due partially to 
somatic mutations, although more studies will be needed to draw 
a causal relationship between mutational burden and age-associ-
ated decrease in cardiac function. We identified a total of 10,407 
sSNVs from 48 tetraploid cardiac nuclei by LiRA. Among 75 coding 
sSNVs, 36 were predicted to be damaging (Supplementary Table 5). 
We also observed seven sSNVs shared by two cardiomyocytes (no 
sSNVs shared by three or more cardiomyocytes); six of these were 
shared by cardiomyocytes obtained from the same donor, indicat-
ing early somatic mutations in the common lineage of these cardio-
myocytes. More comprehensive measurements of somatic mutation 
from healthy and diseased myocardium will be needed to decipher 
the functional impact of somatic mutation in aging and heart dis-
ease. In this study, we investigated only single nucleotide variants, 
but cardiomyocytes could also carry other types of somatic muta-
tions, including indels and structural variations. MDA requires 
extensive quality control to identify well-amplified samples, so that 
our samples are biased towards cells that amplified well and evenly, 
that is, cells more likely to have intact genomes. Importantly, the 
sSNV increase rate in neurons amplified by MDA (19 sSNV per cell 
genome per year) is consistent with the rate estimated by a recently 
developed duplex sequencing protocol6 without genome amplifica-
tion (20 sSNV per cell genome per year), suggesting the accuracy of 
MDA-based sSNV analysis. Newer methods, such as primary tem-
plate amplification (PTA)7 or META-CS53 may provide an improved 
means to study somatic mutations in diploid and multiploid cardio-
myocytes with broader genomic coverage for variant calling and bet-
ter distinction of sSNVs from single-stranded lesions. Nevertheless, 
these results provide an early view into the mutational landscape 
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of terminally differentiated cardiomyocytes. Our analysis of human 
cardiomyocytes lays a foundation for better understanding of the 
genomic landscape and mechanisms driving mutation accumula-
tion in aging cardiomyocytes that may help develop new treatments 
to reduce age-related cardiomyocyte dysfunction.

Methods
Human tissues and DNA sample preparation. This study was approved by the 
Boston Children’s Hospital institutional review board. Samples were processed 
according to a standardized protocol under the supervision of the National 
Institutes of Health (NIH) NeuroBioBank ethics guidelines. Research on these 
deidentified specimens and data was performed at Boston Children’s Hospital with 
approval from the Committee on Clinical Investigation (S07-02-0087 with waiver of 
authorization, exempt category 4). All human tissues were obtained from the NIH 
NeuroBioBank at the University of Maryland. Once we received the tissue from the 
BioBank, DNA degradation evaluation was performed by isolating DNA from the 
tissue and performing gel electrophoresis as well as a Genomic DNA Screen Tape 
Station. Tissues with fragmented DNA were not selected for further studies.

Statistics and reproducibility. No statistical methods were used to predetermine 
sample size. The experiments were not randomized, and the investigators were not 
blinded to allocation during experiments and outcome assessment.

Isolation of cardiomyocyte nuclei. Cardiac nuclei were isolated using a density 
sedimentation protocol13. Briefly, 100 mg of cardiac tissue from the left ventricle 
was homogenized in 5 ml of ice-cold lysis buffer (0.32 M sucrose, 5 mM CaCl2, 
3 mM magnesium acetate, 2.0 mM EDTA, 0.5 mM EGTA, 10 mM Tris-HCl (pH 8.0) 
and 1 mM dithiothreitol (DTT)). The suspension was further dounced (20 strokes) 
with a type A pestle in a glass douncer (Sigma). The homogenized solution was 
filtered through 100 and 70 μm strainer (Pluriselect) and centrifuged for 7 min 
at 700g at 4 °C and the crude nuclear pellets were resuspended in 2.1 M sucrose 
solution (2.1 M sucrose, 3 mM magnesium acetate, 1 mM DTT and 10 mM Tris-
HCl, pH 8.0). This was then layered onto a cushion of 5 ml 2.1 M sucrose solution 
and centrifuged at 30,000g for 1 h at 4 °C. The pellet from each tube was then 
resuspended with 1.5 ml nuclei storage buffer (0.43 M sucrose, 70 mM KCl, 2 mM 
MgCl2, 10 mM Tris-HCl (pH 7.2) and 5 mM EGTA) for further analysis.

Flow cytometry. Accurate identification of cardiomyocyte nuclei is crucial for 
the analysis of this study. Single cardiac nuclei were isolated using FANS-based 
cardiac troponin T staining and nuclear DAPI intensity, using FACSAria (20 psi, 
100-mm nozzle, Becton Dickenson Biosciences). Cardiac nuclei were identified 
using a sequential gating strategy. Initial size gates for FSC versus SSC were 
set to select the large cardiac nuclei with high FSC and SSC corresponding to 
larger and more granular cells. Cell doublet discrimination was performed by a 
combination of high forward scatter height and area FSC-H/FSC-A and SSC-H 
versus SSC-W plots. H versus W or A allows separating the doublets from the 
single-cells containing 4n amounts of DNA. Cells containing 4n amounts of DNA 
have double the A and H values whereas W is roughly the same as cells containing 
2n amounts of DNA. Cardiomyocytes are the only tetraploid cell in cardiac tissue, 
so ploidy is a convenient way to purify them. However, to rule out any possibility 
that tetraploid cells accumulate mutations in different ways from diploid cells, 
or that the amplification, sequencing and calling process performs differently in 
tetraploid cells, we carried out replicate analysis of diploid cells by isolating diploid 
cardiomyocytes using cardiomyocyte-specific markers (cardiac troponin T). The 
genomes of every single nucleus were amplified using MDA20.

Ploidy quantification by imaging flow cytometry and karyotyping. We used a 
FlowSight Imaging Flow Cytometer to combine the advantages of traditional flow 
cytometry and microscopy to verify the cardiac nuclei ploidy. Left ventricular 
cardiomyocyte nuclei were isolated and stained with Hoechst (Invitrogen, catalog 
no. H3570; 1:1,000) and the cardiomyocyte marker cardiac troponin T (Abcam, 
catalog no. ab56357; 1:250). The nuclei were resuspended in PBS at a concentration 
of 2 × 107 cells ml–1. The DNA content was detected by a FlowSight Imaging 
Flow Cytometer (Luminex), equipped with a ×20 objective lens, and analyzed 
by image analysis software (IDEAS). The percentage of 2n, 4n and greater than 
4n ploidy was determined by setting gates using the calibration with nuclei of 
noncardiomyocytes at 2n. The software separated the cardiomyocyte nuclei using 
brightfield, Hoechst and Troponin T images.

Chromosomes were visualized by Giemsa staining (GIBCO KaryoMAX 
Giemsa Stain Stock Solution, catalog no. 10092-013) according to the 
manufacturer’s protocol. Briefly, sorted cardiac nuclei from 1465 were treated 
with a hypotonic solution (0.075 M KCl) and preserved in their swollen state with 
Carnoy’s fixative; further nuclei were dropped on to slides and air-dried. The slides 
were stained with freshly prepared Giemsa staining solution (3:1 ratio of Gurr 
Buffer and Giemsa Stain) and visualized at ×100 magnification.

Expression analysis of sorted cardiac nuclei. ddPCR assays were performed to 
test the cardiomyocyte-specific gene expression by using Tagman probe of PLN 

(Hs01848144), TNNT2 (Hs00943911), MYH7 (Hs01110632), CD31 (Hs00169777_
m1) and PDGFB (Hs01019589). QX100 Droplet Digital PCR System (Bio-Rad) 
was used with standard parameters. We measured numbers of droplets that were 
positive and negative for each gene using QuantaSoft software .

Library preparation and WGS. We sequenced 48 tetraploid and 8 diploid single 
cardiac nuclei from 12 individuals with ages from 0.4 to 82 years, including three 
infant (<4 years), six middle-aged (30–66 years) and three aged (>75 years) 
individuals (Table 1). From each of the 12 individuals, we sequenced four single 
cardiac nuclei. Low coverage library preparations were carried out according 
to the manufacturer’s instructions (QIAseq FX single-cell DNA Kit). MDA-
amplified DNA libraries were prepared with the Illumina TruSeq Nano LT sample 
preparation kit. Bulk DNA was extracted using the QIAamp DNA Mini kit with 
RNase A treatment. Paired-end sequencing (150 bp × 2) was performed on a HiSeq 
×10 instrument. Single-cell and bulk WGS library preparations and sequencing 
were done at Macrogen Genomics. The sequencing depth of cardiomyocytes was 
comparable with that of neurons we previously studied (Extended Data Fig. 9).

Read alignment and postprocessing. Reads generated from single-cell WGS were 
aligned against the GRCh37 human reference genome by BWA (v.0.7.15) with 
default parameters. Duplicate reads were masked by Mark Duplicate of Picard 
(v.2.8) and then postprocessed with local realignment around indels and base 
quality score recalibration using Genome Analysis Toolkit (GATK) (v.3.5).

Measuring the evenness of genome amplification in single-cells. We measured 
the evenness of genome amplification in single-cells using two metrics: MAPD and 
CoV. MAPD is the median value of absolute differences between the copy number 
ratios of neighboring bins with variable lengths, where bins were divided to have 
the same number of uniquely mapping reads. CoV is the measure of variance 
of bin-wise copy number ratios, calculated by taking the ratio of their standard 
deviation to the mean. Both higher MAPD and CoV scores represent greater 
unevenness of single-cell genome amplification. Binning, GC normalization, 
segmentation and copy estimation were performed following the previous single-
cell copy number analysis protocol54, to obtain the copy number ratio per bin and 
calculate MAPD and CoV scores.

Estimation of amplification dropout rates in single-cell WGS data. Germline 
heterozygous SNVs were identified from bulk WGS data using HaplotypeCaller 
of GATK with default parameters (-stand_call_conf 30.0 -stand_emit_conf 30.0 
-ploidy 2)55, and only those reported by the 1000 Genomes Project were considered 
subsequently as high-confidence variants to estimate dropout rate. For each single-
cell, a germline heterozygous SNV was considered as locus dropout if the total 
coverage in single-cell WGS is less than five times and considered as allelic dropout 
if the number of reads supporting either a reference or a mutant allele is less than 
two. The genome-wide locus- and allele-dropout rates were then calculated as the 
proportions of dropout sites among all germline heterozygous SNVs.

Somatic SNV calling from single-cell WGS data. We performed phasing-based 
linked read analysis using the LiRA method (v.2018Feb)21 to identify sSNVs 
in single-cells using around 30× WGS data of nonheart tissue from the same 
individual as bulk germline controls. Served as the input of LiRA, SNVs from 
each single-cell and bulk sample were called using the HaplotypeCaller from 
GATK with default parameters (-stand_call_conf 30.0 -stand_emit_conf 30.0 
-ploidy 2); germline SNVs identified from bulk samples were further phased by 
Shapeit 2 (v.904)56. LiRA distinguishes true somatic mutations from base-calling 
or amplification errors by leveraging the linkage information between the somatic 
candidate and adjacent phased germline mutations. For each single-cell, the 
threshold for number of phasable reads supporting mutant allele was calculated to 
control for more than 90% true positive rate. The detection sensitivity in phasable 
regions was estimated from germline SNVs and then used to adjust the LiRA-
detected sSNV count to the real count. sSNV density per megabase was calculated 
for each single-cell with the consideration of doubled genomic size for tetraploid 
cardiomyocytes. We considered sSNVs in autosomes only to avoid potential 
detection bias in sex chromosomes between different genders.

Somatic SNV burden correction for tetraploid cells. Each tetraploid cardiomyocyte 
contains two sets of diploid genomes (that is, four haplotypes). Theoretically, somatic 
mutations present in one out of the four haplotypes can be called by LiRA only 
when the reads violating complete linkage were lost due to allelic or locus dropout 
(Extended Data Fig. 10a). In comparison, germline mutations can be called in the 
same way as in the diploid cells. Therefore, the LiRA-estimated power from germline 
SNVs should be corrected by cell-specific allelic or locus dropout rates before 
applying to the count of identified sSNVs in tetraploid cells.

Theoretically, the dropout status of a site in a tetraploid cell (S4n) was 
determined by the status of its two diploid origin cells (Extended Data Fig. 10b): 
a locus dropout happened in a tetraploid cell only when both of its diploid origin 
cells were locus dropout, whereas an allelic (reference or mutant allele) dropout 
happened in a tetraploid cell when two copies of the corresponding alleles from 
two diploid origin cells were lost by locus or allelic dropout. Using simulated 
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tetraploid cells by an in silico mixture of single-cell WGS data from two diploid 
cells from the same individual, we observed that the locus dropout rate in 
simulated tetraploid cells generally equals the product of the dropout rates in the 
two original diploid cells, suggesting independence of dropout occurrences across 
the genome between MDA-amplified cells.

Cell-specific allelic and locus dropout rates were estimated for each tetraploid 
cell, and the dropout rate for its two diploid origins was then calculated from the 
above matrix under the assumption of equal rates between the two diploid origins. 
The count and density of LiRA-called sSNVs were further adjusted by the locus and 
allelic dropout rate of the corresponding diploid origins and the sensitivity loss due 
to the decrease of per-haplotype sequencing depths from diploid to tetraploid cells.

Mutational signature analysis. Mutational signatures were decomposed de novo 
by the NMF-based mutational signature framework27 using MutationalPatterns 
(v.1.8.0), using the 96 trinucleotide contexts of sSNVs detected from tetraploid 
cardiomyocytes in this study as well as nondisease neurons that were previously 
studied10. For most of the downstream analyses, except the regression modeling of 
sSNV density where we used all neurons to cover the whole age span, only neurons 
from the same donors of the studied cardiomyocytes were considered to better 
control for donor background. We estimated signature stability and reconstruction 
error and found that four signatures best fit the observed sSNV profiles (Extended 
Data Fig. 4). We then compared our de novo signatures (Signatures N1, N2, N3 
and N4) with previously reported signatures in neurons (Signatures A, B and C)10 
and signatures potentially resulting from MDA artifacts (SBS, scE and scF)22. As 
shown in Extended Data Fig. 5, Signatures N1, N2 and N3 resemble Signature B 
(as well as SBS scF), A and C, respectively, whereas Signature N4 did not show 
high similarity to any of these signatures, suggesting a potential cardiac-specific 
signature (renamed as Signature D).

To remove the potential contamination of MDA artifacts, we decomposed 
the sSNV profile of each single-cell into Signatures N2/A, N3/C, N4/D as well as 
SBS scE and scF (Signature N1/B was not included because it was nearly identical 
to SBS scF) using MutationalPatterns. We then calculated the signature-specific 
sSNVs density for each single-cell by multiplying the overall sSNV density and the 
cell-specific weight for each signature. The contributions of SBS scE and scF were 
subtracted from the overall sSNV density for subsequent burden analyses.

Burden and list of sSNVs in hepatocytes and lymphocytes. Genome-wide sSNV 
burden and list of MDA-amplified hepatocytes and lymphocytes profiled by single-
cell WGS were extracted from Brazhnik et al.24 and Zhang et al.25, respectively. The 
contributions of SBS, scE and scF were estimated and subtracted from the overall 
sSNV burden for each hepatocyte and lymphocyte, following the same strategy as 
that performed in each cardiomyocyte and neuron.

Mixed-effects modeling of somatic SNV density. To study the age-dependent 
somatic mutation accumulation and the rate difference between cardiomyocyte 
and other cell types, we performed linear mixed-effects regression modeling using 
the lme4 (v.1.1-23) and lmerTest (v.3.1-2) R packages. Overall and signature-
specific sSNV density per megabase was modeled as continuous outcomes. Age was 
modeled as a fixed effect, whereas donor and cell type were modeled as random 
effects, because cells from the same donor and cell type may share the biological 
environment and thus be independent in terms of sSNV density. The maximum 
likelihood method was used to fit linear mixed-effects regression models.

To test the age effect of sSNV density in healthy individuals, we fitted the 
model yij = β × ρj + μ + θj + εij where yij is the sSNV density in cell i of donor 
j, β is the fixed effect of age, ρj is the age of donor j, μ is the number of sSNVs at 
birth, θj is the random effect of each donor following a normal distribution with 
mean 0 and variance τ, and εij is the measurement error of each cell following a 
normal distribution with mean 0 and variance σij. We observed a significant age-
association of sSNV density in tetraploid cardiomyocytes (P = 7.3 × 10−4; Fig. 2b), 
and further confirmed similar sSNV densities between tetraploid and diploid 
cardiomyocytes (Extended Data Fig. 2).

To test the difference in the age effect between different cell types, we fit the 
model yijk = (β + γk) × ρj + μ + θjk + εijk where yikj is the sSNV density in cell 
i from cell type k of donor j, β is the fixed effect of age, γk is the fixed effect of cell 
type k on age (interaction terms between age and cell type), ρj is the age of donor 
j, μ is the number of sSNVs at birth, θjk is the random effect of the donor-cell type 
pair following a normal distribution with mean 0 and variance τ, and εijk is the 
measurement error of each cell following a normal distribution with mean 0 and 
variance σijk. As shown in Fig. 2e, we observed that cardiomyocytes showed an age 
effect that was significantly larger than neurons and lymphocytes (P = 5.0 × 10−3 
and 8.7 × 10−4) but not hepatocytes (P = 0.53).

To control for potential confounding factors in sSNV detection, we introduced 
δij into the previous models, where δij denotes one of the potential confounding 
factors including MAPD and CoV scores (measurement of amplification 
evenness), sequencing depth, library insert size, number of heterozygous germline 
SNVs and PMI of donors. We confirmed that the age-dependent increase in 
cardiomyocytes and the cardiomyocyte-neuron difference remained statistically 
significant (P < 0.05), suggesting that the sSNV accumulation pattern we found in 
cardiomyocytes was very unlikely to be caused by these technical issues.

Mutation spectrum and strand bias analysis. The LiRA-identified sSNVs were 
grouped into three categories according to the age of their cell donor: infant 
(<4 years), middle-aged (30–66 years) and aged (>75 years), and then the mutation 
spectrum and strand bias were calculated for each age category. The transcriptional 
strands of genic sSNVs were assigned based on the UCSC TxDb annotations by 
MutationalPatterns57, where mutated bases (‘C’ or ‘T’) on the same strand as the 
gene direction were categorized as ‘untranscribed’ and on the opposite strand 
as ‘transcribed.’ To characterize sSNV accumulation during aging, we further 
estimated the mutation spectrum and strand bias for the net increase of sSNVs 
between infant and aged categories. Specifically, we first measured the absolute 
sSNV count for each mutation type by multiplying its proportion and the average 
sSNV burden for each age category, and then subtracted the sSNV count for each 
mutation type between infant and aged categories. The statistical significance of 
strand bias was determined by the Poisson test.

Gene expression analysis. The expression matrix ‘Gene read counts’ (GTEx 
Analysis v.8) for left ventricle of the heart and frontal cortex (BA9) of the brain was 
downloaded from the GTEx portal, since these two regions are the corresponding 
source tissues for our single-cell cardiomyocytes and neurons, respectively. The 
per-gene expression value was then normalized for each tissue sample after 
estimating sample-specific size factor and dispersion as well as modeling tissue, 
age and gender factors using DESeq2 (ref. 58) (v.1.24.0) with the recommended 
protocol and default parameters. To study the age-dependent changes in 
MMR activity in the heart and brain, we extracted the expression levels of core 
components of the MMR complex (MLH1, MLH3, MSH2, MSH3, MSH6, PMS1 
and PMS2) as well as genes in the NER and BER pathways annotated by the KEGG 
database59. Individuals with both heart and brain expression profiles were binned 
according to their ages. Individuals with ages less than 40 years and more than 70 
years were excluded due to the small sample size (n ≤ 10). For the remaining 168 
individuals, we calculated the average expression levels of the MMR, NER and BER 
genes in heart and brain samples, separately, and tested their association with age 
using the linear regression model.

To investigate the relationship between somatic mutation and gene expression, 
we assigned genes into four quartiles based on their average expression values in 
heart or brain samples across all GTEx individuals. Cardiac and neuronal sSNV 
densities were calculated for each quartile of genes, after normalizing by gene 
length and per-cell sSNV detection power. The standard deviation of sSNV density 
was estimated using a permutation test, in which the quartile classification of 
genes was shuffled randomly and the permuted sSNV densities were calculated 
for 1,000 rounds. We further performed an NMF-based mutational signature 
decomposition for sSNVs located in each quartile of genes, to estimate the relative 
contributions of Signature A, Signature C, Signature D, SBS scE and SBS scF for 
each quartile. The sSNV density for each signature was calculated by multiplying 
the overall sSNV density by the signature contribution. We also performed the 
above analysis by using the expression profiles from aged individuals (>75 years) 
only and observed robust results.

Functional enrichment analysis. GO functional enrichment analysis was 
performed using GOseq (v.1.34.1). We assigned a binary value ‘0’ or ‘1’ to each 
RefSeq gene according to whether any sSNV was present in the gene in any single-
cell and built the sSNV-gene table for cardiac and neuronal sSNVs separately. 
GOseq uses the Wallenius approximation method to test the enrichment of sSNVs 
for each GO term, after applying a probability weighting function to control for 
potential bias from gene length. Genes without any GO annotation were ignored 
when calculating the total gene count. GO terms with fewer than five member 
genes with sSNVs were excluded to avoid ascertainment bias. GO terms with more 
than 1,000 member genes were also excluded.

To identify GO terms that were specifically enriched in cardiomyocytes but not 
in neurons, we performed a permutation test among all GO terms with P < 0.01 
for either cardiac or neuronal sSNVs. For each permutated GO term, we compared 
the observed rank difference in GOseq’s P between cardiac and neuronal sSNVs 
against the expected null distribution, which was estimated by 1,000 rounds of 
random shuffling of the sSNV-gene tables. The FDR method was applied for 
correcting multiple hypothesis testing.

Measurement of oxidative stress. The level of 8-OHdG and 8-oxo-Gua 
was measured in 250 ng total nucleic acids extracted from left ventricular 
cardiomyocytes using a competitive enzyme-linked immunosorbent assay 
kit (Cayman Chemical, catalog no. 589320) according to the manufacturer’s 
instructions. The samples were incubated for 1 h with a monoclonal antibody 
against 8-OHdG in a microtiter plate precoated with 8-OHdG and 8-oxo-Gua. 
The final color was developed by the addition of 3,3,5,5-tetramethylbenzidine, and 
absorbance was measured at 450 nm. The samples were diluted at 1:50 with enzyme 
immunoassay buffer before assaying.

Modeling accumulation of gene KOs in cardiomyocytes. Accumulation of 
exonic, deleterious gene KO mutations might be detrimental to proper cell 
function. These mutations can be ‘biallelic’ in the case of diploid cells, or 
‘quadallelic’ in the case of tetraploid cells. The number of sSNVs identified in this 
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study were used to estimate the accumulation of gene KOs in single-cells, using an 
extension of the method described in Lodato et al.5. To account for genes that are 
highly dosage sensitive, and thus can be haploinsufficient, we included a factor to 
capture the probability of a mutation landing on an allele of a gene with a high pLI 
score. The pLI metric measures the probability of loss-of-function intolerance60, 
and genes with pLI score greater than 0.90 are considered highly dosage sensitive. 
These high pLI score genes comprise 17% of all genes. Consequently, the 
calculation was computed as follows:

n = number of estimated sSNVs × total number of deleterious variants
total number of variants × p

di = {event that gene i has at least onemutation}

πi = { event that gene i has a high pLI score}

D = { probability of a gene having a deleteriousmutation}

Pr (KO|π, D, n) = π ×

(

1 − (1 − D)n
)

+ (1 − π)(1 − e−nD
)

where p is the ploidy factor that captures the probability of obtaining a mutation 
on the remaining alleles of the gene (for example, P = 0.5 for diploid genomes, 
and P = 0.125 for tetraploid genomes) and n is the expected number of deleterious 
mutations. Considering the similar sSNV density but halved genomic size in 
diploid cardiomyocytes when compared with tetraploid cardiomyocytes (Extended 
Data Fig. 2), the genome-wide sSNV burden in diploid cardiomyocytes of each 
individual was calculated as 50% of the burden in corresponding tetraploid 
cardiomyocytes. The mean and s.e.m. were calculated across all cells per individual, 
for tetraploid and diploid cardiomyocytes separately. Regressions were performed 
using an exponential model to capture the nonlinear trend of the probability of 
obtaining cells with KO genes with age. All calculations were performed using 
custom R scripts.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Single-cardiomyocyte WGS data is deposited in the NCBI dbGaP with accession 
number phs002284.v1.p1. The data are available under controlled use conditions 
set by human privacy regulations. Other data are available upon request.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Isolation and identification of cardiac nuclei. A, Representative immune-histochemical detection of cTroponin T in cardiomyocyte 
nuclei. Section from non-diseased human left ventricle tissue stained against cTroponin T and the nuclear marker DAPI demonstrating nuclear labeling 
in cardiomyocytes. Scale bar, 20 μm. B,C, Purity check of fluorescence-activated sorted cardiomyocyte nuclei. ddPCR analysis (n = 4 experiments for 12 
cases) of tetraploid cardiac nuclei (B), and cTroponin T+ve diploid cardiac nuclei (C). Both tetraploid and cTroponin T positive diploid cardiomyocytes 
are highly enriched for PLN and TNNT2, cardiac markers, but not PDGFB or CD31, markers for fibroblast and endothelial cells. Each lane represents 1 single 
nucleus, except the first lane, containing 100 nuclei. The bottom clusters on the plot represent the negative droplets and the upper clusters represent the 
droplets that are positive for the respective reference assay.
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Extended Data Fig. 2 | Comparison of sSNV burden between tetraploid and diploid cardiomyocytes for total mutations (A) and per-signature mutations 
(B–F). Except for the SBS scF mutations in infant cardiomyocytes, there were no statistically significant differences (p > 0.05, two-tailed Wilcoxon test) 
in the mutation burden between tetraploid (n = 12 for infant and aged each) and diploid (n = 4 for infant and aged each) cardiomyocytes. Boxplot with 
whisker denotes minimum, 25%, median, 75% quartiles, and maximum.
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Extended Data Fig. 3 | Evaluation of sSNV burden in cardiomyocytes with the consideration of amplification evenness or non-C > T mutations. 
A, Uncorrected sSNV density of tetraploid cardiomyocytes. B–C, sSNV density of tetraploid cardiomyocytes after correcting for two metrics about 
amplification evenness, MAPD (B) and CoV (C). D, sSNV density of tetraploid cardiomyocytes after excluding C > T mutations. Tetraploid cardiomyocytes 
showed consistent age-dependent accumulation of sSNVs, robust to amplification evenness (p = 3.9 × 10−4 for MAPD correction and 1.3 × 10−3 for CoV 
correction, mixed-effects model) and the exclusion of C > T mutations (p = 3.3 × 10−5, mixed-effects model).
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Extended Data Fig. 4 | Signature metrics for de novo mutational signature analysis. De novo mutational signature analysis was performed using non-
negative matrix factorization (NMF), in which the factorization rank is critical to define the number of signatures used to decompose the target matrix of 
sSNVs. We identified that four signatures can maximize the cophenetic and best fit the observed sSNV matrix.
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Extended Data Fig. 5 | Comparison of mutational signatures identified in this and other studies. (Left panel) De novo mutational signatures identified 
from single human cardiomyocytes in this study. (Middle panel) Previously published signatures identified from single human neurons (Lodato et al.). 
(Right panel) Recently published signatures thought to represent artifacts of single-cell whole genome amplification, SBS scE and scF, from a study of 
cultured cells (Petljak et al.). Signature D/N4 was present only in cardiomyocytes but not in neurons. Signature B/N1 identified in cardiomyocytes and 
neurons resembles the artifact signature SBS scF, thus it was excluded for further mutational burden and signature analyses in this study.
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Extended Data Fig. 6 | Hierarchical clustering between cardiac and COSMIC cancer signatures. Unsupervised clustering was performed among single-
cardiomyocyte-derived signatures (Signatures A, C, and D) and cancer-derived COSMIC signatures (SBS1-60), by using cosine similarity of 96-class of 
trinucleotide context to measure the pairwise distance. Signature A resembles SBS5 and Signature D resembles SBS44.
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Extended Data Fig. 7 | mRNA expression level of NER (A) and BER (B) pathway genes in the GTEx heart and brain samples (n = 186 donors). Heart vs. 
brain (p = 3.7 × 10−15 and 1.9 × 10−15 for NER and BER, two-tailed paired Wilcoxon test); age effect in heart (p = 0.04 for BER, linear regression). Boxplot with 
whisker denotes minimum, 25%, median, 75% quartiles, and maximum.

Nature Aging | www.nature.com/nataging

http://www.nature.com/nataging


Articles Nature AgingArticles Nature Aging

Extended Data Fig. 8 | Distribution of sSNVs across different categories of genic annotation (A) and mutation type (B). sSNVs identified from tetraploid 
cardiomyocytes (n = 10,407) and neurons (n = 19,101) were grouped according to the age group of donors. Error bar, mean ± 95%CI.
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Extended Data Fig. 9 | Sequencing depth and down-sampling performance for cardiomyocytes and neurons. A, No systematic difference in sequencing 
depth (p = 0.51, two-tailed Wilcoxon test) between tetraploid cardiomyocytes (n = 48) and neurons (n = 155). Eight outlier cardiomyocytes (in the dashed 
rectangle) were intentionally sequenced at doubled sequencing depth from two donors. Boxplot with whisker denotes minimum, 25%, median, 75% 
quartiles, and maximum. B, LiRA-estimated sSNV burden remained generally robust with varied sequencing depths at or above the average depth in 
neurons, denoted by the dashed line. Four outlier cardiomyocytes from (A) were randomly chosen, and their sequencing reads were in silico down-sampled 
into 25%, 50%, and 75% of the original sequencing depths. Error bar, mean ± 95%CI.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Model for calling sSNVs from diploid and tetraploid cells by LiRA. A, In diploid cells, LiRA identified the complete linkage 
between each sSNV candidate and its adjacent germline heterozygous mutation, which distinguishes true sSNVs from technical artifacts. In tetraploid 
cardiomyocytes, sSNVs present in one out of the four haplotypes were able to be called by LiRA when the reads violating complete linkage were lost due to 
allelic or locus dropout. B, Dropout status of a tetraploid cell determined by its two diploid origin cells. Rows and columns denote the dropout status of two 
diploid origin cells, respectively. mut-allele, mutant allele of the germline mutation; ref-allele, reference allele of the germline mutation.
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