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DNA methylation clocks can accurately estimate chronological age and, to
some extent, also biological age, yet the process by which age-associated

DNA methylation (DNAm) changes are acquired appears to be quasi-
stochastic, raising a fundamental question: how much of an epigenetic
clock’s predictive accuracy could be explained by a stochastic process

of DNAm change? Here, using DNAm data from sorted immune cells, we
build realistic simulation models, subsequently demonstrating in over
22,770 sorted and whole-blood samples from 25 independent cohorts that
approximately 66-75% of the accuracy underpinning Horvath'’s clock could
be driven by astochastic process. This fractionincreases to 90% for the
more accurate Zhang’s clock, but is lower (63%) for the PhenoAge clock,
suggesting that biological aging is reflected by nonstochastic processes.
Confirming this, we demonstrate that Horvath’s age acceleration in males
and PhenoAge’s age acceleration in severe coronavirus disease 2019 cases
and smokers are not driven by anincreased rate of stochastic change

but by nonstochastic processes. These results significantly deepen our
understanding and interpretation of epigenetic clocks.

Aging at the cellular level is associated not only with genomic abnor-
malities' * butalso epigenetic ones’'°. The development of bead array
technologies two decades ago allowed accurate quantification of DNA
methylation (DNAm) inwhole tissues at thousands of CpGs”", with early
studiesindicating that specific age-associated DNAm changes appear
tobetissue and cell type independent'>". These initial findings paved
the way for the development of epigenetic clocks, defined as multi-
variate linear predictors of chronological age, capable of estimating
chronological age in multiple tissue types with a remarkable degree
of accuracy (for example, Horvath'’s clock displays a median absolute
error (MAE) of +3-5 years)" "%, In this epigenetic clock framework, sam-
plesdisplaying abnormally large deviations from their true ages were
hypothesized to age faster or slower, yielding molecular estimates of
biological age™, with subsequent studies confirming that DNAm-based
biological age estimates can be informative of future disease risk and
mortality’®?°. Intuitively, the more accurate an epigenetic clockis in
predicting chronological age (for example, Zhang's clock?), the less

informativeitcanbe of biological age. Conversely, clocks thatare more
informative of biological age (for example, the PhenoAge™ or GrimAge
clocks?) are less predictive of chronological age'®**.

In parallel to the development of epigenetic clocks, numerous
studies have analyzed the spatial and systems-level patterns of age-
associated epigenetic changes, including DNAm and chromatin'>">7*,
These studies have unequivocally shown that specific genomicregions
aremore likely to acquire age-associated DNAm changes than others,
with CpGs marked by the polycomb-repressive complex-2 (PRC2) or
bivalent marks in stem cells being one clear example**°**, Moreover,
studies have shown that genomic regions that start out unmethyl-
ated in a suitably defined ground state (for example, promoter CpG
islands in fetal tissue) tend to gain DNAm with age?®®, while regions
that are generally methylated (for example, open sea and exon bod-
ies) or partially methylated (partially methylated domains) tend to
lose DNAmM*?*, This gradual erosion of the normal DNAm landscape
where initially well-demarcated boundaries between methylated and
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Quantifying the stochastic component of epigenetic clocks
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Fig.1| The overall strategy to quantify the stochastic component of
epigenetic clocks. a, The original epigenetic clocks are constructed from real
DNAm data describing a real aging process thatincludes both stochastic and
nonstochastic elements. The key idea is to simulate a realistic stochastic process
of DNAm change accrual at the same CpG sites that make up the original clocks.
In effect, this ‘replaces’ the real aging process with a pure stochastic one at the
same sites. With the simulation model in place, one can then generate artificial

DNAm-Age

cohorts from which machine learning predictor of age can be derived, defining
the ‘stochastic clock’ analogs. b, We then apply the original and stochastic clocks
toalarge collection of DNAm datasets representing both sorted immune cells
(to gauge the effect of CTH) and whole-blood tissue. The ratio of R* values
between the stochastic clock and its original counterpart provides a direct
quantification of the stochastic component of that clock. Created with
Biorender.com.

unmethylated regions become gradually blurred also appears to be
largely stochasticin the sense that neighboring CpGs do not necessarily
change synchronously or by the same amount®***¢, Indeed, the recent
study by Tarkhov et al. concluded that most age-associated DNAm
changes are devoid of nonstochastic coregulatory patterns®. Thus,
overall, the pattern of age-associated DNAm change in the genome
appears to be ‘quasi-stochastic’ in the sense that specific regions are
morelikely to acquire DNAm changes, but that oncerestricted to these
regions, the patterns appear more random. When viewed across the
whole genome, the DNAm distribution becomes more stochastic or
uniform with age, thus defining a state of higher statistical entropy.
From the perspective of single CpGs that begin as either unmethyl-
ated or fully methylated, their DNAm values generally approach more
intermediate values reflecting a higher uncertainty or entropy in the
DNAm distribution defined over single cells™*.

While it may be counterintuitive that alargely stochastic process
of age-associated molecular change could allow for the construction of
anaccurate, aka deterministic, predictor of chronological age, thisisin
fact guaranteed by the intrinsic linearity in which any counter of DNA
alterations, measured relative to awell-defined ground state, changes
within a predefined unit of time*~** (Methods). However, this insight
also begs a fundamental question in aging, namely, how much of the
accuracy displayed by an epigenetic clock such as Horvath’s can be

attributed to anunderlying pure stochastic process? In this Analysis, we
use state-of-the-art methodology and alarge collection ofindependent
DNAm datasets torigorously address this question, demonstrating that
thefraction of an epigenetic clock’s accuracy that could be explained by
apure stochastic process increases with the clock’s predictive ability.
Thisis consistent with the notion that biological aging, as measured by
aclock such as PhenoAge, is driven by nonstochastic processes” and
not merely by anincreased rate of stochastic change.

Results

Strategy to quantify stochasticity of epigenetic aging

We reasoned that away to quantify the stochastic component of epige-
netic agingisto take the CpGs that make up current epigenetic clocks
and to simulate astochastic process of DNAm-change accrual at these
sites, using only information about their effect sizes and directionality
of change (Fig. 1a). Once the stochastic simulation model s specified,
artificial DNAm datasets can be generated. From these simulated data-
sets, machine learning predictors of chronological age can then be
derived. As they are derived from data generated by a pure stochastic
process, we call these clocks ‘stochastic’ (Fig. 1a). In contrast, the origi-
nal epigenetic clocks are derived from real DNAm datasets describing
areal aging process that is thought to include both stochastic and
nonstochastic elements. Importantly, for any given epigenetic clock,
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Construction of the stochastic horvath clock
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Fig. 2| Construction of the StocH clock. a, Left: the age distribution of the 1,202
sorted monocyte samples from the MESA study. The shaded blue and red regions
highlight the youngest and oldest samples used in the simulation, respectively.
Middle: the average DNAm over the youngest (AVDNAm(Young)) and oldest
(AvDNAm(OId)) samples for each of the 353 Horvath Clock CpGs. Right: the
corresponding density of absolute effect sizes defined as the magnitude of the
DNAm difference between youngest and oldest samples. b, The stochastic
simulation of one CpG in one individual of a given age, which starts out from the
average DNAm in the youngest samples and subsequently adds a stochastic
deviate for each unit time step. The probability per time step thata CpGis altered
is given by a decaying exponential with exponent determined by the observed
absolute effect size of the CpG and a CpG-independent parameter, y, that
controls the overall probability of CpGs changing. The direction of the DNAm
change is dictated by the directionality of the observed effect size, with the
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magnitude determined by the standard deviation, g, of a signed Gaussian
distribution, as indicated. Of note, the simulation model adds Gaussian deviates
to the quantiles of aninverse normal distribution. The model is simulated to
generate effect sizes for each of the 353 CpGs, which is then compared with the
observed distribution to identify the optimal (A and o) parameters minimizing
the MAE between simulated and observed values. ¢, To build the StocH clock, we
then use the simulation model with the optimal (1 and o) parameter values to
generate three artificial cohorts of 195 samples each. There are 195 samples
because we simulate five samples per age value, with ages ranging between
45and 83 years; that s, a total of 39 distinct age values. One cohortis used to train
elastic net regression models with & = 0.5, and for varying penalty parameter
values, A. These models are then evaluated in the model selection set to select the
model that optimizes the root mean square error (RMSE). This optimal model is
then evaluated in the test set. Created with Biorender.com.

the original and stochastic clocks are defined over the exact same CpGs.
To quantify the stochastic component of an epigenetic clock, we apply
theoriginal and its stochastic clock counterpart to each one of alarge
collection of sorted immune cell and whole-blood DNAm datasets
(Fig.1b). For each of these cohorts, one can then estimate the stochastic
componentas theratio of the two clock’s R? values (abbreviated as RR2),
where the R? of a given clock quantifies the fraction of age variation
explained by that clock (Fig. 1b). In more detail, RR2 is defined as the
ratio of the stochastic clock’s R? value to the R* value of the original clock
(Fig.1b). Biologically, this ratio measures how much of agiven clock’s
accuracy (thatis, the R? or age variation explained) could be driven by
a pure stochastic process defined over the same set of CpGs. Taking
theratioisimportantbecause the actual R*value attained by aclockin
any given human cohort may be influenced by study-specific factors
such as age range, normalization and batch effects, environmental

exposures or comorbid conditions. As the two clocks being compared
are defined over the same set of CpGs, these study/cohort-specific
factors will influence both clocks equally, so that taking the ratio of
the R?value will naturally adjust for such study/cohort-specific biases.
By using a fairly large number of datasets, robustness of these RR2
estimates can be assessed.

Simulating stochastic age-associated DNAm changes

To build a realistic simulation model describing stochastic DNAm
changes with age, we begin with a single-cell model at one CpG site.
We used a simple two-state model to simulate binary DNAm switches
within a single cell (Methods and Extended Data Fig. 1a). This model
allows estimation of the probability of a CpG being methylated at any
time point and predicts that for an initially unmethylated (or methyl-
ated) site, the probability of methylationincrease (or decrease) changes
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linearly with time, until it entersanonlinear regime close to the steady-
state value (Methods and Extended Data Fig. 1b). From this single-cell
model, the expected methylation fraction (DNAm beta-value) inacell
population canbe computed and shown to alsobe alinear function of
time, unless DNAm values are close to the steady state (Methods). We
next used Illumina 450k DNAm data of sorted monocyte samples from
1,202 donors spanning a wide age range (minimum age of 44 years,
maximum age of 83 years and mean age of 60 = 9 years) (MESA study®®)
to demonstrate that, even in a purified cell population, typical effect
sizes of age-related DNAm change are very small (that is, <5% over
50 years; Extended DataFig. 1c). This small effect size means that only
avery small fraction of cells in a cell population display binary DNAm
changes. Thus, both theoretical considerations, as well as empirical
observation, justify using a linear approximation for our stochastic
simulation model (Methods).

Since the ultimate aimis to build an epigenetic clock fromasto-
chasticage-related process, we next extended the previous model to
incorporate realistic effect sizes, focusing initially on the 353 CpGs
that make up Horvath’s clock. Although it is now well recognized
that other CpG combinations could be used to build equally accurate
age predictors”, here we only focus on the original 353 CpGs since
we wish to directly compare to the original Horvath clock. To avoid
confounding by cell type heterogeneity (CTH) we estimated their
age-associated effect sizes from the sorted monocyte MESA sam-
ples®®, but now using only the youngest (age <46 years, n=43) and
oldest (age >80 years, n =11) samples (Methods and Fig. 2a). In our
simulation model, the absolute effect size of each CpG determines the
relative probability of that CpG being altered per unit time step, with
aglobal parameter y determining the overall probability of undergo-
inga DNAm change (Methods and Fig. 2b). The magnitude of DNAm
change per unit time step is controlled by the standard deviation
(o) of a Gaussian distribution, where the normal deviates are added
stochastically to the relevant CpG using the inverse normal quantiles
of their DNAm beta-values (Methods and Fig. 2b). Thus, our model
is parsimonious in only including two parameters (y and o) that we
tune so that the simulated end-state DNAm value distribution over
the 353 CpGs is as similar as possible to the observed one (Fig. 2¢
and Extended Data Fig. 2). While the time step unit is arbitrary, its
scale influences the optimal (y and o) values. To aid biological intui-
tion, and since we are dealing with animmune cell type for which the
annual intrinsic number of stem cell divisions is approximately 35
(see, for example, ref. 39), we run the simulation model for a total of
35x37=1,295time steps, corresponding to 1,295 ‘stem cell divisions’
over the course of 37 years (average age of old subjects, 82 years and
average age of young subjects, 45 years). We note that the model
does not require the process associated with the DNAm changes to
be cell division but doing so helps anchor the interpretation of the
actual parameter values. The inferred optimal parameter values
(y=9.25and 0 =0.0005) gave an excellent fit (MAE of 0.0018) to the
observed end-state DNAm values (Fig. 2b and Extended Data Fig. 2a).
These parameter values imply that, on average, 48 of 353 CpGs (that
is, 14%) change at every time step (Extended Data Fig. 2b) and that the
magnitude of average DNAm change per CpG per year is less than 0.1%
(thatis, a1% DNAm change over a decade), with the actual magnitude

of DNAm change displaying the characteristic heteroscedasticity of
beta-values, as required (Extended Data Fig. 2c).

Construction and validation of the StocH clock

Having built and tuned a model of stochastic DNAm change at the 353
Horvath CpG sites, we next used this model to simulate an artificial
cohort, with the aim to then derive a ‘stochastic’ analog of Horvath’s
clock, that is an elastic net regression predictor of chronological
age (Methods and Fig. 2c). We simulated a total of 39 ages, spanning
the range 45-83 years old, assuming 35 ‘stem-cell divisions’ (that is,
time steps) per year and with five independent samples per age value
(Methods), resulting in an artificial cohort of 195 samples. Of note,
theinitial DNAm profile (that s, the profile at age 45 years) was always
chosen randomly from the pool of youngest samples (n = 41). Elastic
net regression models*® for a range of different penalty parameter
values were then trained and the best-performing model selected using
anindependently generated artificial DNAm dataset of 195 samples
(Fig. 2c). We call the resulting optimal elastic net regression model
the ‘stochastic Horvath clock’ or ‘StocH clock’ for brevity. A third inde-
pendently generated artificial DNAm dataset was then used to confirm
that the optimal model can predict the simulated age with high accu-
racy (Fig. 2c).

StocH clock predicts age insorted cells

As the StocH clock was trained using information from only the young-
est and oldest monocyte MESA samples, it is legitimate to ask if the
StocH clock canpredict the chronological age of all other MESA samples
(n=1,148) not used in building the clock. On these samples, the StocH
clock attained an R-value of 0.64 (P <10 x 1'°°) and aMAE 0f 6.96, com-
parable to Horvath’s clockitself (R = 0.74, P <10 x 1"°°and MAE of 5.76)
(Fig.3a). However, when we assessed both clocks in the 214 sorted CD4*
T cell samples from the same MESA study, Horvath’s clock performed
significantly better with respect to the MAE, although the StocH clock
remained predictive of chronological age (R=0.61and P<10 x 1%,
Fig. 3a). We verified, using a modified simulation model (Methods),
that the increase in MAE displayed by the StocH clock in the
CD4"T cellsisnot due to any dependency of the StocH clock onground-
state DNAm values that are characteristic of monocytes (Supplemen-
tary Fig.1). Indeed, when we applied the StocH clock to the lllumina
450k DNAm data of sorted monocytes, neutrophils and T cells from
BLUEPRINT*, the MAE displayed in T cells was much better thanin
monocytes (Fig.3a), suggesting no obvious dependence on the ground-
state DNAm of the actual cell type.

Quantifying the stochastic component of Horvath’s clock

Given that our StocH clock is made up of exactly the same Horvath
clock CpGs, its accuracy of prediction relative to Horvath’s clock
provides a quantification of the stochastic component underlying
Horvath’s clock. Indeed, as reasoned earlier, RR2 (that is, the R* of the
StocH clock divided by the R? of Horvath’s clock; Fig. 1b) would be a
suitable measure to directly quantify the stochastic component of
Horvath’s clock, since the ratio automatically adjusts for any intrinsic
study-specific biases (Methods). Supporting this, we note that across
allsorted immune cell datasets analyzed here, Horvath’s clock always

Fig. 3| Quantification of stochastic component of Horvath’s clock. a, Scatter
plots of predicted age versus chronological (true) age for the StocH clock
(purple) and Horvath’s clock (slate blue) in various sorted immune cell datasets
asindicated. The number of sorted samples in dataset is indicated at the top
alongside the name of the cohort/study. In addition, we provide the MAE, R-value
and corresponding nominal correlation-test two-tailed Pvalue in each plot.

b, Abar plot comparing R? values of the StocH clock and Horvath’s clock in each
of the datasets. In addition, we also depict the ratio of the R? value from StocH

to the R?value from Horvath'’s clock. The sample sizes of sorted immune cell
datasets are as follows: MESA_Mono (n =1,148), MESA_CDA4T (n = 214), BP_Mono

(n=139), BP_Tcell (n =139), BP_Neu (n =139), Paul_Mono (n =104), Paul_Tcell
(n=98), Paul_Bcell (n=100) and Tserel_ CDS8T (n=100). The last set of bars
displays the average and standard deviation over all sorted immune cell datasets.
¢, Asinb, but for StocH and Horvath’s clock on 15 whole-blood cohorts. The
sample sizes of whole-blood datasets are as follows: Airway (n =1,032), Barturen
(n=>574),Flanagan (n = 184), Hannonl (n = 636), Hannon2 (n = 665), Hannum
(n=656), HPT_450k (n =418),Johansson (n =729), Lehne (n =2,707), LiuMS
(n=279), LiuRA (n=689), Tsaprouni (n =464), TZH (n=705), Ventham (n = 380)
and Zannas (n =422).
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displayed better prediction performance than its stochastic analog,
with the RR2being approximately 0.75 + 0.10 (Fig. 3b). To further test

this, we assembled 15 whole-blood cohorts, encompassing a total of

10,540 samples (Methods). Once again, the StocH clock was able to
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one standard deviation of the estimate obtained in sorted immune
cell datasets. Put together, these results indicate that approximately
66-75% of the relative accuracy underlying Horvath’s clock could be
driven by an underlying stochastic process.

Stochasticity underpins accuracy of chronological age
prediction

Next, we repeated the previous procedure, but now building the
stochastic clock from the 514 CpGs that make up Zhang’s clock®
(Fig. 1and Extended Data Fig. 4). Since Zhang’s clock is amore accu-
rate predictor of chronological age and consequently less predictive
of biological age”, we reasoned that this analysis may shed insight
into whether stochastic processes could underpin biological aging.
We systematically tested the stochastic analog of Zhang’s clock, the
StocZ clock, in the sorted immune cell and whole blood datasets
(Fig. 4a,b and Extended Data Fig. 5a,b). This revealed a striking pat-
tern, with the stochastic clock describing a much higher fraction of
the epigenetic clock’s accuracy inthe case of Zhang’s clock compared
with Horvath’s (Fig. 4c and Extended Data Fig. 5c). For instance, on
the sorted immune cell datasets, StocZ and Zhang’s clock achieved an
average R?value 0of 0.78 £ 0.09 and 0.86 + 0.06, respectively, with the
average RR2 values being 0.90 + 0.08 (Extended Data Fig. 5b,c). This
is much higher than the ratio 0.75 + 0.10 displayed by the StocH and
Horvath clocks. Statistical significance that RR2 values are higher for
Zhang's CpGs compared with Horvath was confirmed using two dif-
ferent statistical tests, including a weighted test that takes cohort size
into account (Fig.4d). Of note, while the above analyses in whole blood
included mostly healthy samples, the results remained unchanged
uponrestriction to only healthy nonsmokers without comorbid con-
ditions (Supplementary Figs. 2 and 3).

All these results strongly suggest that, the more accurate an epi-
genetic clock is in predicting chronological age, the more it could be
driven by anunderlying stochastic process. Consequently, clocks that
areless predictive of chronological age but that are better at predicting
biological age are more likely to reflect nonstochastic processes. To test
this, we repeated the above analysis but now for the 513 CpGs that make
up Levine’s PhenoAge clock? (Fig. 1), building astochastic clock analog
(StocP) and subsequently computing its, as well as PhenoAge’s clock,
R?valuesinthesortedimmune celland whole-blood datasets (Extended
Data Figs. 6 and 7). To increase power, we added an additional cohort
0f10,050 whole-blood samples from mostly healthy individuals (TruD-
cohort; Methods and Extended DataFig. 8)**. Confirming our hypoth-
esis, the ratio of R*values was significantly lower for StocP/PhenoAge
compared with StocZ/Zhang (paired Wilcoxon, P <107 and weighted
paired t-test, P<107?) and StocH/Horvath (paired Wilcoxon, P= 0.017
and weighted paired t-test, P < 0.005) (Fig.4c,d). Thus, these data point
toward stochasticity underpinning the accuracy of epigenetic clocks.

To further stress this important insight, we next show that an
alternative assumption or hypothesis, namely that stochastic clocks
describe the age variation not explained by a given clock, is incon-
sistent with empirical observation. Indeed, according to this alter-
native hypothesis, R%(StocClock) -~ 1- R*(Clock), which would imply
that RR2 - 1/R? - 1. However, plotting RR2 against 1/R* - 1 revealed
that data points for each clock type and cohort clustered away from

the line of proportionality, with no evidence of a positive correlation
(Extended DataFig.9).

Decreased accuracy for clocks built from other CpGs

The StocH, StocZ and StocP clocks were built from the corresponding
CpGs that make up Horvath, Zhang and PhenoAge clocks, respectively,
andassuch, these stochastic clocksindirectly use information gleaned
from large numbers of datasets. Indeed, given how Horvath and Zhang
clock CpGs were derived, these loci are clearly optimized for linear
prediction of chronological age, althoughitisimportant to stress here
that their selection is naive to the underlying nature of the biological
processesthat giverise to age-related DNAm changes. Consequently, if
we were tobuild astochastic clock from age-related CpGs derived from
only onestudy, the predictive performance of acorresponding stochas-
tic clock should drop significantly. To test this, we built a stochastic
clock from CpGs undergoing the biggest DNAm differences between the
young and old monocyte samples from the MESA study (Supplementary
Fig. 4a,b). In this instance, however, we built two clocks, one where
modelselection (thatis, selection of penalty parameter) was done using
aseparate simulated dataset (the StocF clock, Supplementary Fig. 4c)
and another quasi-stochastic clock were the optimal penalty parameter
was chosen using 50% of the MESA samples (n = 574) (the StocQ clock)
that were not used in the CpG selection procedure (Supplementary
Fig. 4d). Confirming our hypothesis, these stochastic clocks could
not predict chronological age as well as, for example, StocH or StocZ
(Supplementary Fig. 4e). Thus, the relatively high accuracy of StocH
and StocZin predicting chronological age hinges onthe specific CpGs
that make up the original Horvath and Zhang clocks, suggesting that
their selection implicitly finds CpGs that are more likely to undergo
stochastic DNAm changes with age.

Age acceleration not driven by anincreased rate of
stochastic change
We nextexplored whether our stochastic clocks could be informative
of biological age. We first focused on sex, since the increased epigenetic
clock accelerationin males compared with females has been fairly well
established, albeit only for Horvath’s clock”. Consistent with this, we
observed that Horvath clock’s extrinsic and intrinsic age-accelera-
tion measures (EAA and IAA) were positively correlated with male sex
(Fig.5a). Thisassociation was evidentin13 of the 16 whole blood cohorts
(Extended DataFig. 4a). In contrast, the stochastic analog (StocH) did
not display significant age acceleration in males despite this clock being
made up of exactly the same CpGs (Fig. 5a and Extended Data Fig. 4a).
This suggests that age acceleration in males cannot be explained by
anincrease rate of stochastic change, but rather that it is driven by
nonstochastic processes. Indeed, itis worth pointing out that of the 13
wholeblood datasets where EAA was correlated with male sex, thatin12
ofthese, the corresponding IAA was either not significantly correlated
or significantly less so (Extended Data Fig. 4a), indicating that subtle
nonstochastic shifts in immune cell composition between males and
females* could be driving the association of Horvath’s EAA with sex.
Next, we focused on coronavirus disease 2019 (COVID-19)
severity. Recent work by Cao et al. highlighted age acceleration (for
both EAA and IAA) in severe COVID-19 cases compared with mild

Fig. 4 |Stochastic componentincreases with accuracy of clock. a, Scatter plots
of predicted age versus chronological (true) age for the stochastic Zhang clock
(StocZ clock) in each of 15 whole-blood datasets. The number of samplesin the
dataset isindicated at the top alongside the name of the cohort. In addition we
provide the MAE, R-value and corresponding nominal correlation-test two-tailed
Pvalueineachplot. b, A bar plot comparing R? values of the StocZ clock and
Zhang's clock in each of the 15 whole-blood datasets. Inaddition, we also depict
the ratio of the R? value from StocZ to the R? value from Zhang’s clock. The last

set of bars displays the average and standard deviation over the 15 datasets. The
samplesize of each cohortis givenina. ¢, Acomparison of the ratio of R values

among Zhang, Horvath and PhenoAge clocks across all sorted and whole-blood
datasets. The sample size of the sorted datasets are givenin Fig. 3 legend. d, Heat
maps displaying meta-analysis Pvalues comparing the ratio of R* values across
the sorted datasets (S), the whole-blood datasets (WB) and all together (All).

We provide two sets of Pvalues, one derived from a one-tailed paired Wilcoxon
rank sum test over cohorts and another derived by running a weighted linear
regression model of the ratios against clock with the cohort as a covariate and
using the sample sizes of the cohorts as weights. In the latter case, the Pvalueis
two tailed.
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Fig. 5| Age acceleration in males, severe COVID-19 cases and smokers is the
result of nonstochastic processes. a, Violin plots for EAA and IAA (adjusted for
12immune cell type fractions) for Zhang, Horvath and PhenoAge clocks, as well
as their stochastic analogs. The Pvalues derive from two-tailed Wilcoxon rank
sum tests correlating the age acceleration measures to sex (male (M) and female
(F)). Dataare displayed for the TZH cohort but results are similar for all other
cohorts. The number of samplesin each violin plot is given below the violin.

b, Asin a, but evaluated in the DNAm dataset of Barturen et al., with EAA/

IAA being correlated to COVID-19 disease severity, as indicated. ¢, Asin a, but
evaluated in the DNAm dataset of Tsaprouni et al., with EAA/IAA being correlated
tosmoking status. The Pvalues derive from alinear regression test, with smoking
status an ordinal variable (never smoker 0, ex-smoker 1and smoker 2). Created
with Biorender.com.
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Fig. 6 | Anincreased rate of stochastic change describes mitotic age
accelerationin precancer. a, Left: violin plots comparing the IR per year
between normal breast from healthy women (N) and normal breast adjacent to
breast cancer (NADJ), as estimated using the epigenetic mitotic clock EpiTOC2.
The Pvalues are from a one-tailed Wilcoxon test. The number of samples is given
below violin. Middle and right: as left, but for the stochastic analog of EpiTOC2
and StocH. Samples between groups are age matched. b, Asinabut foraDNAm
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dataset profiling normal breast tissue and breast DCIS. ¢, As in abut fora DNAm
dataset profiling normal lung tissue and LCIS. d, Asin abut for a DNAm dataset
profiling normal colon tissue and colon adenoma (ColAD). e, Asinabut fora
DNAm dataset profiling normal gastric mucosa and gastric metaplasia (MetaPl).
f, Asinabut fora DNAm dataset profiling normal squamous esophagus and
Barrett’s esophagus (BE). Created with Biorender.com.

cases and unaffected individuals, albeit only for Levine’s PhenoAge
clock®. This was a surprising result to us because severe COVID-19
infection is well associated with pronounced shifts in blood cell type
composition****, Indeed, the application of EpiDISH to the same
dataset to estimate fractions for 12 immune cell types** revealed that
PhenoAge’s EAA association with severe COVID-19 disease vanished
when considering the IAA (Fig. 5b). In contrast, both EAA and IAA
measures of the StocP clock did not correlate with COVID-19 dis-
ease severity (Fig. 5b). Thus, our analysis indicates that the reported
age acceleration in severe COVID-19 cases is the result of changes in
immune cell type composition, thus reflecting a nonstochastic pro-
cess, consistent with the nonsignificant associations obtained with
the StocP clock.

As a final example, we considered the case of smoking and obe-
sity. As expected, the PhenoAge clock displayed significant age accel-
eration (both EAA and IAA) in smokers, although this was only seen
in four of eight cohorts with available smoking information (Fig. 5c
and Extended Data Fig. 4b). As with sex and COVID-19 disease sever-
ity, these associations vanished when considering the StocP clock
(Fig.5cand Extended DataFig.4b). Thus, inthis case, although the asso-
ciation for PhenoAge clock persists upon adjusting for all 12 immune
cell fractions, it is not present for the stochastic analog, suggesting
that the age acceleration in smokers is driven by a nonstochastic pro-
cess unrelated to shifts in immune cell composition. A similar pat-
tern was also evident for body mass index (Extended Data Fig. 4c).
In summary, these results indicate that reported age accelerations
of Horvath- and PhenoAge clocks are probably the result of nonsto-
chastic processes as opposed to an increase in the rate of stochastic
DNAm change.

Increased stochastic rate of change underpins mitotic age
acceleration

While all previous examples illustrate how epigenetic age accelera-
tion in blood requires nonstochasticity, we reasoned that an excep-
tion to this would be CpGs that track mitotic age®>***. Indeed, DNAm
maintenance errors have long been hypothesized to accrue quasi-
stochastically following cell division*®*’, and given that the rate of stem
cell division increases in precancerous and cancer conditions**%, we
thusreasoned that mitotic age accelerationin precancerous conditions
would be detectable using a fully stochastic clock. We focused on 163
CpGs that make up a mitotic clock called EpiTOC2 (ref. 39) and, using
the same strategy as for the other clocks, we built a fully stochastic
version of it called StocM (Methods). We then assessed both EpiTOC2
and StocM in six independent DNAm datasets profiling normal and
precancerous samples fromsolid tissues including breast, lung, colon,
stomach and esophagus (Methods). Validating our hypothesis, StocM
displayed clear mitotic age acceleration in all precancerous condi-
tions, with alevel of statistical significance very similar to that attained
by EpiTOC2 itself (Fig. 6). As the data are from solid tissues, we also
assessed the stochastic analog of the multitissue Horvath clock (StocH).
In contrast to StocM, StocH did not display a consistentincreased age
accelerationinall datasets, and in those where there was age accelera-
tion, the level of statistical significance was much lower compared with
StocM (Fig. 6). This is consistent with the nonmitotic nature of most
of Horvath clock CpGs™®. Overall, these data support the view that the
process by which DNAm changes accrue following stem cell division
isaquasi-stochastic process and, consequently, thatanincreased rate
of stem cell divisionin atissue, as observed in precancer states, canbe
described as anincreased rate of stochastic change.
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Discussion
Using 25 independent DNAm datasets encompassing over 22,000
whole-blood and sorted immune cell samples, we have here quanti-
fiedhow much of the predictive accuracy of epigenetic clocks could be
driven by a stochastic process of cumulative DNAm change. This was
done by focusing on the CpGs that make up three distinct clocks and
building stochastic analogs fromartificial cohorts generated through
astochastic process of DNAm change accrual. By considering three
DNAm clocks (Zhang, Horvath and PhenoAge) that vary in their pre-
dictive accuracy of chronological and biological age, we have demon-
strated that the more predictive aclock is of chronological age, the more
this predictive accuracy could be driven by a pure stochastic process.
This insight has deep implications. It strongly suggests that pro-
cesses thatunderlie biological aging are not the result of anincreased
rate of stochastic DNAm change, but rather the result of nonstochastic
mechanisms®. Consistent with this, we find that several of the reported
associations between epigenetic clock age-acceleration measures
and phenotypes are driven by nonstochastic processes such as shifts
inimmune cell type composition*’, a concrete example being the
reported age acceleration with COVID-19 disease severity®. In the
case of sex, Horvath'’s clock still displayed an association after adjust-
ment for immune cell counts but in most cohorts, this association
disappeared or weakened. In all cohorts, no association was evident
upon using the stochastic analog clock (StocH), suggesting that age
acceleration in males is mainly the result of nonstochastic processes,
including shifts inimmune cell composition. In this context, itis worth
noting that we recently demonstrated significant shifts inimmune cell
composition between males and females, including increased naive
CD4*and CD8' T cell fractions in females*”. Althoughlinear adjustment
for 12 immune cell counts, as done here, can address confounding by
CTH, itisworth noting that a posteriori correction may not fully adjust
for subtle changes in immune cell composition, specially if some of
the original Horvath CpGs are capturing such changes®. In the case
of smoking, cohorts that displayed significant extrinsic PhenoAge
acceleration did so also for the IAA, but not when considering the StocP
clock. Thus, biological age acceleration in smokers seems associated
with nonstochastic processes that are unrelated to shiftsinimmune cell
composition. This is notinconsistent with the high reproducibility of
smoking-related DNAm signatures that reflect a reaction to smoking
exposure, mapping to the nicotinic acetylcholine receptor and detoxi-
fication enzyme pathways’°*, an inherently nonstochastic process.
Our work also highlights the striking difference between tradi-
tional epigenetic clocks and those that track mitotic age. It is widely
known that asubstantial component of age-associated DNAm changes
inmitotic tissues is associated with cell division®>*~****" If one restricts
to the pool of CpGs that preferentially gain or lose DNAm following
cell division (that is, PRC2-marked sites for hypermethylation), the
pattern of DNAm changes appears to be stochastic®. Consequently,
the increased stem cell division rate, which is thought to underpin
cancer risk*®*®, would be reflected by an increased stochastic rate of
DNAm change at these sites. Consistent with this, building a stochastic
analog of the EpiTOC2 mitotic clock resulted ina clock that displayed
an increased mitotic age acceleration in precancer states, similar to
EpiTOC2 itself, suggesting that the PRC2-marked CpGs that make up
EpiTOC2 are already capturing an inherently stochastic process of
DNAm change. Using the 12-module composition model of epigenetic
clocks as recently derived by Levine et al.*’, the ‘pink’ and ‘navy-blue’
modules that make up EpiTOC2 would reflect a stochastic process of
DNAm accrual associated withinvivoand, to some extent, also in vitro
cell division. In contrast to StocM/EpiTOC2, the StocH clock displayed
highly inconsistent patterns depending ontissue type, inline with the
nonmitotic nature of Horvath’s clock CpGs*. Thus, while epigenetic
mitotic clocks appear to largely capture an underlying stochastic
process of age-related DNAm changes linked with cell division, the
stochastic component of traditional epigenetic clocks is distinct. As

illustrated by the Zhang clock, the stochastic process underlying its
high prediction of chronological age is different to the one underpin-
ning mitotic clocks, consistent with Zhang clock CpGs being made
up of entirely different Levine modules (‘green-yellow’ and ‘orange’
modules)®. It will be very interesting for future work to explore the
underlying stochasticity of these modules in more detail. In thisregard,
we note that although the Levine CpG modules were identified using
unsupervised clustering, correlations driving such modules can natu-
rally emerge among CpGs changing stochastically with ageif the under-
lying stochastic DNAm changes display a strong directional skew, as
indeed observed for these specific modules®.

Itisimportant to note that the stochastic clock analogs built here
constitute epigenetic clocks in their own right, consistent with the
recent works of Tarkhov et al.** and Meyer et al.**. Indeed, according
to Horvath and Raj", any age predictor that can achieve R values >0.8
inanindependent large dataset encompassing a broad age range (for
example,20-100 years) deserves the label ‘epigenetic clock’ and while,
forinstance, StocH achieved anaverage R-value of -0.74 (R* - 0.55) inthe
sorted immune cell datasets, the 95% confidence interval (+1.96 x s.d.)
includes the value 0.8. Given that many of the datasets analyzed here
displayed age ranges less than 80 years, this suggests that the sto-
chastic clocks built here would meet the strict definition of epige-
netic clock as proposed by Horvath and Raj. In relation to this, it is
equally important to stress that our work, as well as those of Meyer
and Tarkhov****, do notimply that stochastic processes are necessary
for accurate epigenetic age prediction; all these studies converge on
pointing toward stochastic processes only being sufficient. Moreover,
itis plausible that complex, as yet unknown, deterministic processes
could give rise to the seemingly random age-associated DNAm pat-
terns that underpin the predictive accuracy of chronological age.
Indeed, it is worth noting the underlying simplicity of the stochastic
models considered here as well as those of Meyer and Tarkhov****,
when there is a whole plethora of unmodeled factors that probably
contribute to the dynamic DNA methylome. For instance, while current
proposed models are cell autonomous and largely nonmechanistic,
more detailed mechanistic models that also incorporate other omic
datatypesatcelltyperesolution (for example, single-cell sequencing
assay for transposase-accessible chromatin and single-cell RNA-Seq)
may in future help shed further light on the mechanisms underlying
epigenetic clocks and aging®®. Besides this limitation, here we also did
not explore stochasticity at the level of spatial correlative patternsin
real data®. Our findings are however broadly in agreement with those
of Tarkhov et al.**, which indicated that most of the age-associated
DNAm patterns are spatially stochastic.

In summary, by using over 20,000 DNAm samples from 25 inde-
pendent datasets, this work has rigorously and accurately quantified
the stochastic component of epigenetic clocks, demonstrating that
stochasticity on its own can explain a substantial fraction of an epi-
genetic clock’s accuracy in predicting chronological age, with this
fractionincreasinginline with aclock’s predictive ability. Conversely,
and withthe exception of mitotic age, this indicates that biological-age
acceleration is driven by nonstochastic processes. As such, this work
significantly deepens our understanding of epigenetic clocks.

Methods

Ethics

All DNAm datasets analyzed here have already been published else-
where. We refer to the respective publications. For the TruD cohort,
already published previously by us*?, participants provided written
informed consent for participation and publication.

Statistics and reproducibility

Fromastatistics perspective, the design of this study involves deriving
R?values for a number of different linear age predictors (the epige-
netic clocks), as applied to anumber of DNAm datasets. These DNAm
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datasets were composed of sorted immune cell samples and whole
blood (for the application of epigenetic age clocks: Horvath, Zhang,
PhenoAge, StocH, StocZ and StocP) and solid tissues for the applica-
tion of epigenetic mitotic clocks (epiTOC2 and StocM). As such, the
sample sizes of each DNAm dataset are fixed by the original study, that
is, no samples were excluded unless otherwise stated. However, large
sample size was one key criterion for the selection of all these DNAm
datasets. Overall, we analyzed 15-16 whole-blood DNAm datasets,
encompassing over 22,000 samples in total; 9 sorted immune cell
datasets encompassing over 2,500 samples and 6 normal precancer
datasets, encompassing 574 samples. In more detail, the sample sizes
were as follows: whole blood: Airway (n=1,032), Barturen (n=574),
Flanagan (n=184), Hannonl (n = 636), Hannon2 (n = 665), Hannum
(n=656), HPT 450k (n=418), Johansson (n=729), Lehne (n=2707),
LiuMS (n =279), LiuRA (n = 689), Tsaprouni (n=464), TZH (n=705),
Ventham (n=380), Zannas (n =422) and TruD (n=10,050); sorted
immune cells: MESA-Monocytes (n=1,202, with n = 54 for effect size
estimation and n =1,148 for validation), MESA-CD4T-Cells (n = 214),
BP-Monocytes (n=139), BP-Neutrophils (n = 139), BP-naiveCD4 T-cells
(n=139), Paul-Monocytes (n=104), Paul-Tcells (n = 98), Paul-Bcells
(n=100) and Tserel-CD8T-cells (n = 100); solid tissues: lung preinvasive
(n=56), breast preinvasive (n = 55), gastric metaplasia (n =191), Barret’s
esophagus and adenocarcinoma (n =157), colonadenoma (n =47) and
normal breast Erlangen (n = 92).

The number of DNAm datasets analyzed is sufficiently large to
ensure statistical significance when comparing the ratio or R* values
between clocks using a paired Wilcoxon rank sum test. As only pub-
licly available DNAm datasets were analyzed, experiments were not
randomized and investigators were not blinded to allocation during
experiments and outcome assessment.

DNAm datasets of sorted samples and whole blood

Sorted immune cell datasets. We obtained DNAm profiles ofimmune
cell sorted samples from the following sources, all encompassing Illu-
mina450k DNAm technologies: from the Reynolds et al. (MESA study)*’
we obtained1,202 monocyte and 214 CD4" T cell samples (Gene Expres-
sion Omnibus (GEO): GSE56581); from BLUEPRINT (BP)*, we obtained
139 monocyte, 139 naive CD4" T cell and 139 neutrophil samples from
139individuals; from Tserel et al.**, we obtained 100 CD8* T cell samples
(GEO: GSE59065); and from Paul et al.®*, we obtained 49 CD4" T cell,
50 B cell and 52 monocyte 450k samples (EGA: EGAS00001001598).
We used the normalized DNAm datasets as processed and described
in the respective publications. The sex distribution of samples for
those cohorts, where this information is available, is as follows: sex
(no. males, no. females): BP_Mono (59, 80), BP_Tcell (59, 80), BP_Neu
(59,80), Paul_Mono (34,70), Paul_Tcell (30, 68), Paul Bcell (32, 68) and
Tserel_CDS8T (48, 52). The age distribution, that is, age (mean £ s.d.
(minimum-maximum)): MESA_Mono (60 + 9 (44-83)), MESA_CD4T
(59 +9 (45-79)), BP_Mono (58 +11 (23-75)), BP_Tcell (58 + 11 (23-75)),
BP_NEU (58 +11(23-75)), Paul_Mono (35 + 18 (4-75)), Paul_Tcell (35 + 18
(4-75)), Paul_Bcell (34 +17,(4-73)) and Tserel CDST (52 + 24 (22-84)).

Whole-blood datasets. We also analyzed a total of 16 whole-blood
datasets. All whole-blood datasets used lllumina DNAm bead arrays
(EPICor450k), and were processed and normalized exactly as described
in our recent meta-analysis*2. Sex information for cohorts where this
information was available is as follows: sex (no. males, no. females):
Airway (621, 411), Barturen (287,287), Flanagan (0, 184), Hannon1 (377,
259), Hannon2 (480, 185), Hannum (318, 338), HPT_450k (120, 298),
Johansson (341, 388), Lehne (1,838, 869), LiuMS (77, 202), LiuRA (197,
492), Tsaprouni (327, 137), TZH (358, 347), Ventham (196, 184) and
Zannas (122, 300). Age distribution was as follows: age (mean * s.d.
(minimum-maximum)): Airway (42 + 8 (26-59)), Barturen (67 +17
(19-103)), Flanagan (56 = 9 (35-83)), Hannonl1 (40 + 15 (18-90)),
Hannon2 (45 +13 (18-81)), Hannum (64 + 15 (19-101)), HPT_450k

(61+8(34-91)), Johansson (47 + 21 (14-94)), Lehne (51 + 10 (24-75)),
LiuMS (41+11 (16-66)), LiuRA (52 +12 (18-70)), Tsaprouni (557
(38-67)), TZH (55 +10 (19-71)), Ventham (37 + 14 (17-79)), Zannas
(42 +13(18-77)) and TruD (54 £ 14 (3-98)).

Single-cell model of stochastic age-related DNAm change
Ignoring allele-specific DNAm, at any given CpGinany given cel DNAm
is effectively binary (O unmethylated and 1 methylated). Without loss
of generality we assume that a given CpG starts out unmethylated,
thatis X(t = 0) = 0. One can then model the change in DNAm over time
as a two-state Markov Chain process specified by the following 2 x 2
transition probability matrix P:

<a—m p )
P= .
qg A-9

Inthe above, pis the probability of switching from the X = O state
to a fully methylated one X =1, while g is the probability of binary
DNAm-loss (X =1 — X = 0). From this model, and using the fact that
P! = prp, one can derive recurrence relations for the matrix entries
of the transition matrix at time step ¢ + 1 (ref. 64). For instance,

P’ =p+1-q-pPy

with starting value P = 0. To find the steady-state probability
we can set PV = PO = m; in the above equation so it must satisfy
m = p/(q + p) and, consequently, m, = g/(q + p). Defining a new vari-
able y, — pg1> — iy one canthen show that

Yi=A=-p-QJy.,

which can be solved to yield the solution y,=1-p—¢q)y,, or
alternatively,

o_ _ P P

t
oG @p PV

Assumingp = g, theninthe steady state (¢t - ), the probability of
finding the CpG methylated is exactly 0.5. It follows by the binomial
theoremthat over acell population, the measured DNAm value would
alsobe 0.5. Hence, the methylation and demethylation probabilities p
and g can be tuned to any desired steady-state value. In practice we
know that these probabilities of methylation change are very small
(p.q ~107° < 1)(ref.39). Thus, assuming that all cells start out unmeth-
ylated, the above model implies that the DNAm beta-value fraction
increases linearly withtime untilit reaches anonlinear regime close to
the steady-state value. Specifically, assuming very small p,g so that we
canapproximate (1-p — ¢)' ~1— (p + q)t, it follows that fora CpG that
starts out unmethylatedin one cell, the probability of finding it methyl-
ated attimet, is

pg(t):l = pg?:)OPg{ +p§21P(1? = Pg{ ~ pt.

Thus, by the binomial theorem, the DNAm fractionin a cell popula-
tionalsoincreases linearly with time.

Importantly, for CpGs that start out unmethylated and that typi-
cally map to regions of relatively high CpG density, one can further
assume that g <« p. Conversely, for CpGs that start out methylated and
that often map to low-CpG-dense regions, one can assume that p < q.
Thus, the more realistic modelis one where either p or g is vanishingly
small and where, with sufficient time, DNAm values would approach O
orl, respectively.Indeed, thismodel would be consistent with the big
DNAm differences (ADNAm >0.8) as observed in long-term cell cul-
tures®. In human tissues and on timescales of a human life, however,
initially unmethylated or methylated CpGs would rarely display such
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big DNAm differences, as indeed typically we only observe 5% DNAm
changes (ADNAm ~-0.05) over a period of 50 years. This means that for
studies profiling DNAmin humantissues, CpG DNAm levels are far from
their putative steady-state values, whichjustifies using alinear approxi-
mation of the above model. We describe this approximation below.

Stochastic simulation model for a cell population

To specify the simulation model, we use the youngest (n = 43) and old-
est (n=11) monocyte samples from the MESA study (n =1,202) (ref. 61)
to define the directionality of age-related change of the 353 Horvath
clock CpGs (or alternatively the 514 Zhang clock or 513 PhenoAge
clock CpGs), as well as toinfer their starting and end-state methylation
values and effect sizes. The youngest samples were of age 44 years
(n=2)and age 45 years (n=41), while the oldest samples were all older
than 80 years (five of age 81 years, five of age 82 years and one of age
83 years). From the young and old samples separately, we computed
the average DNAm level for each of the clock CpGs and estimated the
effect size accordingly as the difference in average DNAm between
old and young. The average DNAm over young samples defines the
starting DNAm level of each CpG. Let EffSize. denote the effect size of
CpG c, with the sign of this effect size determining the directionality
of DNAm change, which is kept constant throughout the simulation.
Of note, although in a single cell the DNAm level at a given CpG could
be dynamic, for example, a DNAm gain could be followed by a DNAm
loss and vice versa, the probability of these events occurring at the
same locus is relatively small: since our simulation model operates at
thelevel of a cell population, itis thus very reasonable to assume that
DNAm changes atagivenlocus occurinaunidirectional fashion. Thus,
ateachtimestep of the simulation, werandomly change agiven CpG’s
cDNAm value according to a probability given by

Pe = 1— e—y\EffSizec\,

where yisaparameter that controls the global probability of a DNAm
change. For larger y values, the probability of a CpG’s DNAm value
changing approaches 1. For small y values, the probability of a CpG’s
DNAm value changing increases linearly with its observed effect size.

For each CpG that needs to be altered, we than randomly pick a
stochastic deviate from a truncated normal distribution, that is from
N.(0,0) if the effect size has a positive sign, otherwise from a corre-
sponding truncated negative normal distribution. Thus, our simulation
modelis also specified by the parameter o, which controls the magni-
tude of DNAm change. However, because DNAm values are beta-dis-
tributed and hence heteroscedastic, adding normal deviates to such
beta-values would not preserve the beta-valued nature of the DNAm
data. Thus, before adding stochastic normal deviates, we first trans-
form the DNAm beta-value g% at the given iteration ¢ into normal
quantiles using the inverse of the normal cumulative distribution
function, iF. Mathematically, x? =if(8?). Then x&* =xO4
sign(EffSize )r. where r, is a random deviate drawn from #,(0,0),
depending on the sign of the effect size. Finally, we transform back to
DNAm beta-values: g5 = F™+D).

Parameter estimation

To estimate the parameters (y, 0), we run the simulation a number of
time steps and compare the end-state DNAm values of the 353 CpGs
(or514/513 CpGsinthe case of Zhang/PhenoAge CpGs) to the observed
ones derived from the 11 oldest samples. To give the time step a con-
crete biological meaning, we equate atime step with one cell division,
although we stress that this is not necessary and the actual DNAm
changesinreal datamay be unrelated to cell division. Since blood turns
over at the rate of approximately 35 divisions per year*’, and since there
are 37 yearsinbetween the median youngest age (45 years) and median
oldest age (82 years), the total number of time steps in our simulation
is37 x 35=1,95. To find the optimal parameter values, we implemented

arecursive process defining two-dimensional grids of increased resolu-
tion, running a total of 50 simulations per grid value pair. The MAE
between simulated and observed end-state DNAm values over the clock
CpGswasthen used as the metric to find the optimal (y, o) values.

Construction of the stochastic Horvath, Zhang and PhenoAge
clocks (StocH, StocZ and StocP)

To construct a stochastic analog of Horvath'’s clock, we next used the
simulation model with inferred optimal parameter values to simulate
an artificial cohort of samples. We generated five samples per age
value, with ages ranging from 45 to 83 years of age, for a total of 195
samples. Each sample’s DNAm profile was generated de novo by run-
ning the simulation model starting out from a initial DNAm profile
drawn randomly from the 43 youngest samples. Of note, this means
that not all 195 samples start out from a different ground state. Nev-
ertheless, this procedure allows us to generate as many independent
artificial DNAm datasets as possible: for our purposes, we generated
three separate cohorts of 195 samples each, to be used for training,
modelselection and testing®®. Using the training set, we implemented
anelasticnetregression model (elastic net parameter alpha of 0.5) for
variable lambda penalty parameter values (lambda varied fromOto1
in units of 0.001, so a total of 1,001 values) using the glmnet R pack-
age. Of note, for each CpG, DNAm values were standardized to mean
zero and unit variance before running glmnet. This standardizationis
important as this significantly reduces the influence/bias of baseline
DNAmalevels that could vary between cell types, at least when assessing
clocksinacorrelative sense. Itis also veryimportant to note that since
the simulation model induces age-related DNAm changes at all of the
Horvath clock CpGs, that none of these is a false positive and hence
thatregularizationis not really necessary.Indeed, the 1,001 elastic net
models were evaluated inthe model selection set, identifying lambda
of 0 (zero penalty) as the optimal model. Finally, this optimal model
was validated in the artificial test cohort. This elastic net clock model
defines our StocH clock. The exact same procedure was followed for the
514 Zhang clock and 513 PhenoAge clock CpGs, resulting in stochastic
clock models that we call ‘StocZ’ and ‘StocP’, respectively.

Quantification of stochastic component of epigenetic aging

The StocH/StocZ/StocP clocks were applied to sorted immune cell and
wholeblood datasets to yield DNAm-based estimates of chronological
age (DNAm-Age), whichwe compared tothe known ages of the samples,
using the MAE as well as the Pearson correlation coefficient (R-value)
and associated Pvalue. To quantify the stochastic component of Hor-
vath’s clock, for each dataset we directly compared the R*value from
the StocH clock to the corresponding R?value from Horvath’s clock™ by
computing theratio, that is, R*(StocH)/R?*(Horvath). We often abbrevi-
ate this ratio with the term RR2. Similar ratios were computed for StocZ
and Zhang's clock as well as StocP and PhenoAge. The DNAm-Ages of the
Horvath, Zhang and PhenoAge clocks were computed using our own
scripts and verified using the methyclock R Bioconductor package®’.
On effectively all datasets, the RR2 values were <1. This strongly sup-
portstheinterpretation of RR2 as the fraction of an epigenetic clock’s
accuracy that can be attributed to a pure stochastic process of DNAm
change. Tounderstand this, we first note that both StocH and Horvath
clocks are built from the same underlying CpGs, that they both use all
353 CpGs (thatis, the estimated regression coefficients are allnonzero)
and that they were trained from an elastic net regression model at the
same alphavalue of 0.5. The only difference between the two clocksis
that the StocH clock was trained from simulated databuilt fromapure
stochastic process of age-related DNAm accrual, while Horvath’s clock
was built from multitissue real DNAm datasets (predominantly whole
blood) representing areal molecular aging process. Since the R? value
describes the fraction of variation explained by a given model, the
ratio of R*values describes the fraction of the age variation explained
by Horvath’s clock that can be attributed to a pure stochastic process.
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Identical arguments apply to StocZ and Zhang’s clock, as well as to
StocP and PhenoAge clock.

Of note, taking the ratio of R? values (that is, RR2) has the sig-
nificant advantage that this automatically adjusts for any intrinsic
study specific biases. For instance, Zhang’s clock was built from a
large number of 450k DNAm datasets, including some that were also
analyzed here, which may naturally lead to higher R? values for StocZ
and Zhang in those specific datasets. Thus, by taking the ratio of the
corresponding R*values (R*(StocZ)/R*(Zhang)) we automatically adjust
for this potential bias.

Insensitivity of StocH clock to ground-state DNAm values

To assess the dependency of the StocH clock to the cell type used inits
construction (thatis, monocytes), we used two different approaches.
First, we built a reduced StocH clock by restricting the construction
of the clock to Horvath CpGs that (1) displayed similar ground-state
DNAm values in monocytes and CD4" T cells (beta-value difference
<0.1) and (2) same directionality of DNAm change with age in both cell
types. Thisreduced StocH clock was also trained on the monocyte data.
Hence, we reasoned that the reduced clock should yield better predic-
tion measures in the CD4" T cells compared with the full StocH clock
because the formeris based on CpGs that have the same ground-state
DNAmvaluesinmonocytesand CD4"* T cells. The second approach was
to apply the StocH clock to sorted immune cell datasets representing
otherblood celltypes todirectly compare prediction performance of
monocytes with these other immune cell subtypes.

Estimation ofimmune cell type fractions in whole blood and
definition of EAA and IAA

In all whole blood cohorts, we used our 12 immune cell type DNAm
reference matrix for either the lllumina 850k or 450k datasets*, to
estimate corresponding celltype fractions. We did this with the EpiDISH
Bioconductor R package®®®. Specifically, we ran the epidish function
with ‘RPC’ as the method and maxit of 500. Subsequently, EAA of a
clock was defined as the residuals of a linear regression of predicted
DNAm-Age against chronological age. IAA of a clock was defined as
the residuals of a linear regression of predicted DNAm-Age against
chronological age and 11 of the12immune cell type fractions (because
onlyllareindependent).

DNAm datasets of solid tissues representing normal and
precancer states

Lung preinvasive dataset. This is an Illumina 450k DNAm dataset of
lung tissue samples that we have previously published®. We used the
normalized dataset from Teschendorff et al.”> encompassing 21 nor-
mal lung and 35 age-matched lung-carcinoma in situ (LCIS) samples,
and 462,912 probes after quality control. Of these 35 LCIS samples, 22
progressed to aninvasive lung cancer.

Breast preinvasive dataset. Thisis an lllumina 450k dataset of breast
tissue samples from Johnson et al.”’. Raw idat files were downloaded
from GEO under accession number GSE66313 and processed with
minfi. Probes with sample coverage <0.95 (sample coverage is defined
asthe fraction of samples with detected probes (thatis, P < 0.05)) were
discarded. The remaining unreliable values were assigned NA (not
available) and imputed with impute.knn (imputation with k-nearest
neighbors) (k= 5) (ref. 71). After BMIQ (beta-mixture quantile) nor-
malization, we were left with 448,296 probes and 55 samples, encom-
passing 15 normal-adjacent breast tissue and 40 age-matched ductal
carcinoma in situ (DCIS) samples, of which 13 were from women who
later developed aninvasive breast cancer.

Gastric metaplasia dataset. Raw idat files were downloaded from
GEO (GSE103186) (ref. 72) and processed with minfi. Probes with over
99% coverage were kept and missing valuesimputed using theimpute

Rpackage usingimpute.knn (k=5). Subsequently, datawas intra-array
normalized with BMIQ, resulting in a final normalized data matrix over
482,975 CpGsand191samples, encompassing 61 normal gastric muco-
sas, 22 mild intestinal metaplasias and 108 metaplasias. Although age
information was not provided, we used Horvath’s clock™ to confirm
that normal and mild intestinal metaplasias were age matched. This is
justified because Horvath'’s clock is not a mitotic clock® and displays
aMAE of +3 years (ref. 14).

Barrett’s esophagus and adenocarcinoma dataset. This lllumina
450k dataset” is freely available from GEO under accession number
GSE104707. Data were normalized as described by us previously™.
The BMIQ-normalized dataset is defined over 384,999 probes and 157
samples, encompassing 52 normal squamous epithelial samples from
the esophagus, 81 age-matched Barrett’s esophagus specimens and 24
esophageal adenocarcinomas.

Colon adenoma dataset™. lllumina 450k raw idat files were down-
loaded from ArrayExpress E-MTAB-6450 and processed with minfi.
Only probes with 100% coverage were kept. Subsequent data were
intra-array normalized with BMIQ, resulting inanormalized data matrix
over 483,422 CpGs and 47 samples, encompassing 8 normal colon
specimens and 39 age-matched colon adenomas. Although age infor-
mation was not made publicly available, we imputed them using Hor-
vath’s clock, confirming that normals and adenomas are age matched.

Normal breast Erlangen dataset. This [llumina 450k dataset is freely
available from GEO under accession number GSE69914. Data were
normalized as described by us previously”. The BMIQ-normalized
dataset is defined over 485,512 probes and 397 samples, encompass-
ing 50 normal breast samples from healthy women, 42 age-matched
normal-adjacent samples and 305 invasive breast cancers.

Construction of stochastic mitotic clock (StocM) and
estimation of mitotic age

Asamodel of an epigenetic mitotic clock, we focused on EpiTOC2 (ref.
39), which is based on 163 CpGs that (1) are constitutively unmethyl-
ated across many different fetal tissue types and (2) map to within
200 bp of atranscription start site. These CpGs are strongly enriched
for sites marked by the polycomb-repressive-complex-2 (PRC2) in
human embryonic stem cells. EpiTOC2 was built from fitting an explicit
stochastic model of DNAm transmission between cell generations to
real DNAm data®. As such, this model can be viewed as semi-stochastic
becauseitisstill trained from real DNAm data representing areal aging
process. Thus, in analogy to the previous epigenetic clocks, we fol-
lowed the exact same procedure to build a fully stochastic version of
EpiTOC2 that we call ‘StocM’. Of note, because StocM is built from the
same 163 CpGs that define EpiTOC2, this clockis not aimed at predict-
ing chronological age, butinstead yields arelative estimate of mitotic
age (RelMitoAge). On real DNAm datasets, we applied EpiTOC2 toyield
age-adjusted estimates of the intrinsic rate of stem cell division (IR) of
eachsample”. Likewise, we applied StocM toyield relative estimates of
mitotic age. As abenchmark we also applied StocH, since the original
Horvath clockis amultitissue age predictor, thus makingit applicable
tosolid tissues.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The following DNAm datasets are publicly available from GEO (www.
ncbi.nlm.nih.gov/geo/) under accession numbers: GSE56581 (Reyn-
olds et al. (MESA study), GSE59065 (Tserel), GSE40279 (Hannum),
GSE42861 (LiuRA), GSE50660 (Tsaprouni), GSE106648 (LiuMS),
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GSE169156 (Song), GSE210255 (HPT-EPIC), GSE210254 (HPT-450Kk),
GSE179325 (Barturen), GSE147740 (Airway), GSE117860 (VACS),
GSE87648 (Ventham), GSE84727 (Hannon2), GSE80417 (Hannonl),
GSE72680 (Zannas), GSE61151 (Flanagan/FBS), GSE87571 (Johansson),
GSE55763 (Lehne), GSE66313 (breast preinvasive), GSE103186 (Gastric
Metaplasia), GSE104707 (Barret’s esophagus and adenocarcinoma)
and GSE69914 (normal breast Erlangen). The colon adenoma DNAm
dataset was downloaded from ArrayExpress (https://www.ebi.ac.uk/
biostudies/arrayexpress) under accession number E-MTAB-6450. The
BLUEPRINT DNAm data of sorted monocytes, neutrophilsand CD4* T
cellsisavailable from European Genome Archive (EGA) under accession
number EGASO00001001456. The DNAm data of sorted CD4" T cells,
B cells and monocytes is available from EGA (EGAS00001001598).
The Illumina EPIC DNAm data for the TZH cohort can be viewed at
National Omics Data Encyclopedia (NODE) under accession number
OEP000260, or directly at https://www.biosino.org/node/project/
detail/OEP000260, and accessed by submitting a request for data
access. Data usage shall be in full compliance with the Regulations on
Management of Human Genetic Resourcesin China. The lung preinva-
sive datasetis available uponrequest to the corresponding author. The
TruD DNA methylation dataset is available upon request to TruDiag-
nostic (TD) Inc. (varun@trudiagnostic.com). To protect data privacy
of the individuals represented in this cohort, individual applications
will be reviewed by TD and in case TD is willing to share data, a data
sharing agreement will be set up.

Code availability

Thestochastic clock predictors (StocH, StocZ and StocP) aswellasanR
script to estimate DNAm-Age and age accelerations according to these
clocks are freely available from figshare at https://doi.org/10.6084/
m9.figshare.24168483 or Supplementary Software. An R function
implementing EpiTOC2 is freely available from https://github.com/
aet21/EpiMitClocks.
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Extended Data Fig. 1| Single-cell stochastic model of DNAm change with
age. a) Depiction of a2-state Markov Chain model with X = O representing the
unmethylated state of one CpG, X = I representing it’s methylated state. Pis
the stochastic matrix so that row-entries add to 1. mrepresents the invariant
steady-state probability distribution of finding a CpG in one cell unmethylated
or methylated. The solution to the dynamics specified by the Markov-Chain

as well as the steady-state values are given. b) Examples of how the probability
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of finding a CpG methylated in one cell changes with timestep for different
scenarios specified by p (the probability of methylation), g (the probability

of demethylation) and initial conditions. ¢) Empirically estimated effect sizes
for real age-associated CpGs, as derived from a large 450k DNAm dataset of
1202 monocytes. Right scatterplot depicts the top-ranked CpG displaying the
largest effect size.
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Extended Data Fig. 4 | Construction of the Stochastic Zhang (StocZ) clock.
a) Left: age distribution of the 1202 sorted monocyte samples from the MESA
study, for which Illumina 450k DNAm profiles have been generated. The shaded
blue and red regions highlight the youngest and oldest samples that are used
inthe simulation model. Middle panel displays the average DNAm over the
youngest and oldest samples for each of the 514 Zhang Clock CpGs and right
panel displays the corresponding density of absolute effect sizes defined as the
magnitude of the DNAm difference between youngest and oldest samples.

b) The stochastic simulation model of one CpG inone individual of a given age,
starts out from the average DNAm in the youngest samples, and subsequently
adds astochastic deviate for each unit time-step. The probability per time-step
thata CpGisaltered is given by an exponential decaying function with the
exponent determined by the observed absolute effect size of the CpG and a
CpG-independent parameter, y, that controls the overall probability of CpGs
changing. The direction of the DNAm change is dictated by the directionality
ofthe observed effect size, with the magnitude determined by the standard

deviation, o, of asigned Gaussian distribution, as indicated. Of note, the
simulation model adds Gaussian deviates to the quantiles of aninverse Normal
distribution, where the DNAm-values are interpreted as probabilities of DNAm.
The model is simulated to generate effect sizes for each of the 514 Zhang

clock CpGs, whichis then compared to the observed distribution to identify

the optimal (A,0) parameters that minimize the median absolute error (MAE)
between simulated and observed values. ¢) To build the stochastic Zhang clock,
we then use the simulation model with the optimal (A,0) parameter values to
generate 3 artificial cohorts of 195 samples each. There are 195 samples, because
we simulate 5 samples per age-value with ages ranging between 45 and 83 that is
atotal of 39 distinct age-values. One cohort is used to train Elastic Net Regression
models with a = 0.5, and for varying penalty parameter values A. These models
arethen evaluated in the model selection set to select the model that optimizes
the root mean square error (RMSE). This optimal model is then evaluated in

the test set.
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Extended Data Fig. 5| See next page for caption.
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Extended Data Fig. 5| Quantification of the stochastic component of Zhang’s
clockinsorted immune cell sets. a) Scatterplots of predicted age vs true age

for the StocZ-clock (brown) and Zhang’s clock (green) in sorted immune cell
datasets. Number of sorted samplesin dataset is indicated at the top of the panel
alongside the name of the cohort/study. In addition, we provide the median
absolute error (MAE), R-value and corresponding nominal correlation-test two-
tailed P-value. b) Barplot comparing R? values of the StocZ-clock and Zhang’s
clockin each of the datasets. We also depict the ratio of the R* value from StocZ to

the R?value from Zhang's clock. Sample sizes are: MESA_Mono (n =1148), MESA_
CD4T (n=214), BP_Mono (n =139), BP_Tcell (n =139), BP_Neu (n =139), Paul_ Mono
(n=104), Paul_Tcell (n = 98), Paul_Bcell (n =100), Tserel_CD8T (n=100).The last
set of bars displays the average and standard deviation over all sorted immune
cell datasets. ¢) Comparison of the ratio of R? values between Horvath and Zhang
CpGs. P-value is from a one-tailed paired Wilcoxon rank sum test comparing the
ratio of R?values. Sample sizes as in b). The last set of bars displays the average
and standard deviation over all sorted immune cell datasets.
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Extended Data Fig. 6 | Quantifying stochastic component of PhenoAge- two-tailed P-value. b) R* values for StocP, PhenoAge clock and their ratio across
clockinsorted immune cell datasets. a) Scatterplots of predicted age vs all datasets. Sample sizes are: MESA_Mono (n =1148), MESA_CD4T (n =214),
chronological (true) age for the stochastic PhenoAge-clock (StocP) in sorted BP_Mono (n =139), BP_Tcell (n =139), BP_Neu (n =139), Paul_Mono (n=104),
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Extended Data Fig. 7 | Quantifying stochastic component of PhenoAge-clock
inwholeblood datasets. a) Scatterplots of predicted age vs chronological (true)
age for the stochastic PhenoAge-clock (StocP) in whole blood datasets. Number
of samples in dataset isindicated at the top of the panel alongside the name of the
cohort/study. In addition, we provide the median absolute error (MAE), R-value
and corresponding nominal correlation-test two-tailed P-value. b) R? values for
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Zhang and PhenoAge, bottom row). In each case, we provide the MAE, Rand
nominal correlation-test two-tailed P-value. b) Barplot comparing the R?values
of the 6 clocks (left) and the ratio of R* values (right).

Extended Data Fig. 8 | Quantification of stochastic aging component in TruD
cohort. a) Scatterplot of predicted age vs chronological age for the 3 stochastic
clocks (StocH, StocZ and StocP, top row) and their original clocks (Horvath,
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Extended Data Fig. 10 | Stochastic clocks display reduced age-accelerations
with sex, smoking and obesity. a) Balloon plot depicting associations of
extrinsic and intrinsic age acceleration (EAA & IAA) with sex for the Horvath

and StocH-clocks across 17 whole blood cohorts with available sex information.
P-values derive from a one-tailed Wilcoxon rank sum test, with the alternative
hypothesis being higher age-acceleration (AA) in males. b) Balloon plot
depicting associations of extrinsic and intrinsic age acceleration (EAA & IAA)
with smoking status for the PhenoAge and StocP-clocks across 4 whole blood

cohorts with smoking information and where associations with smoking-status
were found. P-value derives from a two-tailed correlation test. In the color-
legend, + means higher AA in smokers. ¢) Balloon plot depicting associations

of extrinsic and intrinsic age acceleration (EAA & IAA) with body-mass-index
(BMI) for the Horvath/StocH and PhenoAge/StocP-clocks in the TruD cohort
where an association of AA with BMIwas found. P-value derives from a two-tailed
correlation test. In the color-legend, + means higher AAin smokers.
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Data collection ~ No commercial code or software was used to download data. Data was downloaded manually from the websites hosting the data.

Data analysis All analyses were performed using R-software version R_4.3.1 (https://cran.r-project.org) . The stochastic clock predictors (StocH, StocZ and
StocP) as well as an R-script to estimate DNAmM-Age and age-accelerations according to these clocks is freely available from figshare: https://
doi.org/10.6084/m9.figshare.24168483 and Supplementary Software. The epigenetic clock estimates for Horvath, Zhang and PhenoAge clocks
were derived using the methylclock Bioconductor R-package, version 1.6.0, available from https://bioconductor.org/packages/release/bioc/
html/methylclock.html . An R-package EpiMitClocks, version 0.1.0, freely available from (https://github.com/aet21/EpiMitClocks ) was used to
obtain estimates of the mitotic clock. R-package glmnet version 4.1.7 was used to build elastic net regression models. EpiDISH version 2.16.0
was used to obtain cell-type fractions in blood. R-packages impute version 1.74.1 and minfi version 1.46.0 were used for normalization of
DNAm datasets.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The following DNAm datasets are publicly available from GEO (www.ncbi.nlm.nih.gov/geo/) under accession numbers: GSE56581 (Reynolds et al (MESA study),
GSE59065 (Tserel), GSE40279 (Hannum), GSE42861 (LiuRA), GSES0660 (Tsaprouni), GSE106648 (LiuMS), GSE169156 (Song), GSE210255 (HPT-EPIC), GSE210254
(HPT-450k), GSE179325 (Barturen), GSE147740 (Airway), GSE117860 (VACS), GSE87648 (Ventham), GSE84727 (Hannon2), GSE80417 (Hannon1), GSE72680
(Zannas), GSE61151 (Flanagan/FBS), GSE87571 (Johansson), GSE55763 (Lehne), GSE66313 (Breast Preinvasive), GSE103186 (Gastric Metaplasia), GSE104707
(Barret’s Esophagus & adenocarcinoma), GSE69914 (Normal Breast Erlangen). The colon adenoma DNAm dataset was downloaded from ArrayExpress (https://
www.ebi.ac.uk/biostudies/arrayexpress) under accession number E-MTAB-6450. The BLUEPRINT DNAm data of sorted monocytes, neutrophils and CD4+ T-cells is
available from EGA under accession number EGAS00001001456. The DNAm data of sorted CD4+ T-cells, B cells and monocytes is available from EGA:
EGAS00001001598. The Illumina EPIC DNAm data for the TZH cohort can be viewed at NODE under accession number OEP0O00260, or directly at https://
www.biosino.org/node/project/detail/OEP000260, and accessed by submitting a request for data-access. Data usage shall be in full compliance with the Regulations
on Management of Human Genetic Resources in China. The Lung Preinvasive dataset is available upon request to the corresponding author. The TruD DNA
methylation dataset is available upon request to TruDiagnostic (TD) Inc. (varun@trudiagnostic.com). In order to protect data privacy of the individuals represented
in this cohort, individual applications will be reviewed by TD and in case TD is willing to share data, a data sharing agreement will be set up.
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size In this work, we meta-analyze approximately 25 DNAm whole blood and sorted immune-cell datasets, which are the largest available datasets.
All these datasets together encompass over 20,000 samples. All the chosen datasets have the power to detect associations between
epigenetic clocks and chronological age. Very small datasets containing less than 25 samples were never included in this study. As to the
number of whole blood (15-16) and sorted immune-cell datasets (9) chosen these are sufficient to perform meta-analysis and detect
significant differences in R2 values between clocks.

Data exclusions  No specific data or samples were excluded. When computing the R*2 values in the whole blood DNAm datasets, we did it both ways,
including and not including samples from individuals with disease, which only had a very minor effect on results.

Replication Our study-design involves a meta-analysis over 25 DNAm datasets, encompassing 20,000 samples. This constitutes ample replication and was
done precisely to check if results generalize and are reproducible across independent datasets. All results were successfully reproduced.

Randomization  Randomization refers to the randomization in the design of a study that generates new data. Since here we only analyze publicly available
datasets, randomization is not applicable.

Blinding Stochastic epigenetic clocks were trained from simulation models built from the MESA study using only 54 of the youngest and oldest
samples. ALL other datasets are blinded to this training data.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems

Methods
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