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Proteomics identifies potential 
immunological drivers of postinfection brain 
atrophy and cognitive decline
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Toshiko Tanaka12, Cassandra M. Joynes1,13, Chelsea X. Alvarado13,14, 
Mike A. Nalls13,14,15, Jenifer Cordon1, Gulzar N. Daya    1, Yang An1, 
Alexandria Lewis16, Abhay Moghekar    16, Priya Palta17, Josef Coresh    6, 
Luigi Ferrucci    12, Mika Kivimäki    2,5 & Keenan A. Walker    1 

Infections have been associated with the incidence of Alzheimer disease 
and related dementias, but the mechanisms responsible for these 
associations remain unclear. Using a multicohort approach, we found that 
influenza, viral, respiratory, and skin and subcutaneous infections were 
associated with increased long-term dementia risk. These infections were 
also associated with region-specific brain volume loss, most commonly in 
the temporal lobe. We identified 260 out of 942 immunologically relevant 
proteins in plasma that were differentially expressed in individuals with an 
infection history. Of the infection-related proteins, 35 predicted volumetric 
changes in brain regions vulnerable to infection-specific atrophy. Several 
of these proteins, including PIK3CG, PACSIN2, and PRKCB, were related to 
cognitive decline and plasma biomarkers of dementia (Aβ42/40, GFAP, NfL, 
pTau-181). Genetic variants that influenced expression of immunologically 
relevant infection-related proteins, including ITGB6 and TLR5, predicted 
brain volume loss. Our findings support the role of infections in dementia 
risk and identify molecular mediators by which infections may contribute to 
neurodegeneration.

A history of severe infections has been associated with increased risk 
for dementia and neurodegenerative diseases1–5, yet the mechanisms 
by which infections may contribute to this increased risk remain poorly 
understood. Cross-sectional neuroimaging studies indicate that acute 
viral and bacterial infections can be accompanied by brain volume loss6. 
Declines in gray matter thickness and total brain volume have been 
reported 6 months after severe acute respiratory syndrome-related cor-
onavirus 2 (SARS-CoV-2) infection7, and we recently found accelerated 
white matter atrophy among individuals with a history of symptomatic 
herpetic infections8. Conversely, brain atrophy in aviremic people living 

with human immunodeficiency virus (HIV) may not persist over time9,10 
and another study found no longitudinal evidence of herpes simplex 
virus-1-mediated cognitive decline or whole-brain atrophy among 
carriers of familial Alzheimer disease (AD) mutations11.

Systemic infections may influence dementia risk and neurode-
generation by triggering an acute inflammatory response or reshaping 
the host immune system, as in the case of chronic inflammation12. In 
response to immune insults, such as pathogens and tissue damage, 
changes in circulating inflammatory proteins can influence brain 
health through a variety of mechanisms, including their interactions 
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Of the 15 infections examined, 6 were associated with accelerated 
brain volume loss, predominantly in temporal gray and/or white mat-
ter regions (Fig. 2 and Supplementary Table 4). Follow-up analyses 
revealed that influenza-related volume loss was specific to temporal 
and occipital lobe gray matter (Fig. 2a and Extended Data Fig. 1a). 
Consistent with published findings8, declines in white matter volumes 
linked to herpetic infections (Fig. 2b) were localized to the temporal 
lobe (Extended Data Fig. 1b). Accelerated atrophy in the temporal lobe 
tied to miscellaneous viral infections was specific to gray matter (Fig. 2c 
and Extended Data Fig. 1c). URTIs were similarly linked to accelerated 
loss in total temporal lobe volume, but such decreases were not spe-
cific to either white or gray matter (Fig. 2d and Extended Data Fig. 1d). 
LRTI-related volume loss in the temporal lobe was exclusive to white 
matter, whereas decreases in the occipital lobe were evident in both 
white and gray matter (Fig. 2e and Extended Data Fig. 1e). Along with 
reduced total brain volume, the gray matter atrophy related to skin and 
subcutaneous infections was localized to the temporal and occipital 
lobes (Fig. 2f and Extended Data Fig. 1f). Although associations between 
infection history and brain volume changes were no longer statically 
significant after false recovery rate (FDR) correction, such correction 
may not be appropriate because of the inherent interdependence of 
the outcomes (for example, total gray matter loss is related to total 
brain volume loss). A history of any of the examined infections and 
total frequency of infections were not associated with volume changes. 
Despite limited power, sensitivity analyses restricting the comparison 
group to participants with a history of no infections (for example, 
influenza versus no history of any infection) showed consistent atrophy 
linked to influenza, herpes viruses, miscellaneous viral infections and 
LRTIs, with URTI- and skin and subcutaneous infection-related atrophy 
remaining marginally significant (P ≤ 0.10) (Supplementary Table 4). 
For primary ROIs, we did not find differences at baseline and results 
were similar after adjusting for total infection frequency (Supplemen-
tary Tables 4 and 5). These findings suggest that specific infections 
may be associated with accelerated brain volume loss, particularly in  
temporal regions.

Infection history is a risk factor for dementia
Using UK Biobank data (n = 495,896; Supplementary Table 6 and Sup-
plementary Fig. 2), we examined associations between infections linked 
to brain volume loss in the BLSA and risk for incident all-cause dementia, 
AD dementia, and VaD. After excluding dementia cases documented 
within 1 year postinfection (that is, to reduce the risk of ascertainment 
and reverse causation biases) and adjusting for demographic factors 
(age, sex, socioeconomic status), all infections linked to brain volume 
loss in the BLSA were also associated with increased risk of all-cause 
dementia (Fig. 2g). Although four out of five of these infections were 
also related to AD dementia and five out of five were related to VaD, 
risk was particularly elevated for VaD. With few exceptions, the results 
were similar after adjusting for physiological/lifestyle factors (body 
mass index (BMI), hypertension, diabetes, APOE genotype, alcohol 
consumption, smoking) and excluding dementia cases documented 
within 5 years postinfection; however, after applying a 10-year exclusion 
criterion, risk for AD dementia was attenuated whereas risk of all-cause 
dementia and VaD persisted (Supplementary Table 7 and Extended 
Data Fig. 2a,b). Insufficient sample size prevented the assessment of 
some infections with etiology-specific dementia risk (for example, 
HHVs/VaD).

Using the Finnish multicohort sample (n = 273,132; Supplemen-
tary Table 8 and Supplementary Fig. 3), along with similar exclusion 
criteria and demographic adjustments, we found that four out of five 
infections linked to brain volume loss in the BLSA were also associ-
ated with increased risk of incident all-cause dementia, with miscel-
laneous viral infections (related to increased dementia risk in the UK 
Biobank only) being the exception (Fig. 2h). One and two of these three 
infections were associated with elevated risk of AD dementia and VaD, 

with target cells in the central nervous system (CNS)13. For example, 
elevated cytokine signaling after SARS-CoV-2 infection can result in 
neuroinflammation and post-acute sequelae despite its low or absent 
copy numbers in the CNS14,15. Increases in plasma inflammatory markers 
among cognitively normal adults are associated with reduced brain vol-
umes and cognitive performance, and greater dementia risk decades 
later16–18. Although several studies have tied select immune markers 
(for example, tumor necrosis factor (TNF), interleukin (IL)-1β) to pre-
ceding inflammatory events and ensuing cognitive performance19,20, it 
remains unknown how infections relate to an array of immunological 
proteins, and which of these proteins may predict changes in brain 
regions vulnerable to infection-specific atrophy.

In the present study, we used multiple large cohorts to exam-
ine how past infection diagnoses relate to changes in brain volumes 
over time and risk for all-cause dementia, AD dementia, and vascular 
dementia (VaD). After investigating the associations of infection his-
tory with brain volume loss and dementia risk, we used large-scale 
proteomics in the Baltimore Longitudinal Study of Aging (BLSA) 
to identify a subset of immunologically relevant, infection-related 
proteins in plasma that predict changes in brain regions vulnerable 
to infection-specific atrophy. Several of these, including PIK3CG 
(phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit γ),  
PACSIN2 (protein kinase C and casein kinase substrate in neurons 
protein 2), and PRKCB (protein kinase C β type), were also associated 
with longitudinal cognitive performance and plasma biomarkers of 
AD pathology (amyloid beta (Aβ)42/40, phosphorylated tau (pTau)-181), 
neuronal injury (neurofilament light chain (NfL)) or reactive astro-
gliosis (glial fibrillary acidic protein (GFAP)). Last, we found genetic 
variants that influenced expression of immunologically relevant, 
infection-related proteins, including integrin subunit β 6 (ITGB6) and 
toll-like receptor (TLR) 5, which also predicted brain volume loss in 
the BLSA and in an independent cohort using two-sample Mendelian 
randomization (MR).

Results
Infection history is associated with brain volume loss
Using data from the BLSA, we examined standardized longitudinal 
brain volume changes between participants with a history of a spe-
cific infection and participants without a history of such an infection  
(for example, influenza versus noninfluenza) (Fig. 1). Infections were 
classified a priori into categories using the International Classifica-
tion of Diseases, 9th revision (ICD-9) codes1, and included influenza, 
pneumonia, tuberculosis, candidiasis/fungal, miscellaneous bacterial 
infections, gastrointestinal infections, sexually transmitted infections, 
human herpes virus (HHV) infections, viral hepatitis, miscellaneous 
viral infections, upper respiratory tract infections (URTIs), lower 
respiratory tract infections (LRTIs), skin and subcutaneous infec-
tions, urinary tract infections, and ‘other’ infections (Supplementary 
Table 1). A total of 982 cognitively normal participants (age 65.4 years 
(s.d. = 14.9 years); 55.2% female; 66.9% white) were included in these 
analyses (Supplementary Table 2 and Supplementary Fig. 1). The aver-
age time between the date of any infection diagnosis and baseline scan 
was 16 years (median: 13.9, interquartile range (IQR) = 8.2, 22.6) (Sup-
plementary Table 3). The average follow-up time for magnetic reso-
nance imaging (MRI) analyses was 5.3 years (median: 5.0, IQR = 3.9, 7.1) 
with an average of 3.4 (s.d. = 1.5) scans per participant in longitudinal 
analyses (range: 2–10). Among participants with and without infections 
related to brain volume changes, mean follow-up times were similar. 
Less than half (42.9%; n = 421) of participants exhibited a history of no 
infection diagnoses and 10.1% (n = 108) exhibited a history of two or 
more infection diagnoses. Primary regions of interest (ROIs) included 
total brain, gray matter, white matter and lobar volumes, as well as an 
AD-signature region volume21,22. Follow-up analyses were performed 
on lobar white/gray matter volumes if an infection was significantly 
associated with a primary ROI.
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respectively. Although skin and subcutaneous infections were related 
to both AD dementia and VaD, risk was particularly elevated for VaD. 
Results were similar after adjusting for physiological factors (hyper-
tension, diabetes) and excluding dementia cases documented within 
5 years postinfection. After applying the 10-year exclusion criterion, 
insufficient sample size prevented VaD assessment, but AD demen-
tia risk was mitigated whereas all-cause dementia risk persisted for 
herpetic as well as skin and subcutaneous infections (Supplementary 
Table 9 and Extended Data Fig. 2c,d).

Infection history is related to an altered immune proteome
Next, we examined the plasma immune proteomic signature of infec-
tions linked to brain atrophy using the SomaScan v.4.1 Inflammation 
and Immune Response Panel (942 proteins; Supplementary Table 10). 
A total of 1,184 cognitively normal BLSA participants were included 
in these analyses and the average time between the date of infection 
diagnoses and blood sample collection was 13.8 years (median: 11.9, 
IQR = 4.4, 18.7) (Supplementary Tables 11 and 12 and Supplementary 
Fig. 4). In our proteomic sample, 63.2% (n = 749) of participants illus-
trated a history of any infection and 16.6% (n = 197) exhibited a history 
of an infection linked to longitudinal brain atrophy.

Influenza was associated with the highest number of differentially 
expressed proteins (141 proteins) and miscellaneous viral infections 
were associated with the fewest (21 proteins) (Fig. 3a–f and Supple-
mentary Table 13). Among proteins uniquely associated with specific 
infections, we observed lower levels of MME (aka neprilysin; primary 
Aβ degradation enzyme) with influenza, higher levels of TREM2 (mye-
loid receptor) with HHVs, higher levels of IFIT3 (interferon-induced 
antimicrobial peptide) with URTIs, and higher levels of ADAM17 

(TREM2-sheddase) with skin and subcutaneous infections. Among 
260 proteins associated with at least 1 infection, many were previously 
linked to influenza, Zika and/or SARS-CoV-2 infection(s), including 54 
out of 74 (73%) measured on the commonly used SomaScan v.1 plat-
forms and 93 of 260 (36%) measured on any SomaScan platform (Sup-
plementary Table 14). Among proteins related to multiple infections, 30 
out of 38 were associated with influenza, including total APOE, APOE3, 
APOE4 (apolipoproteins), DEFB4A (an antimicrobial peptide) and RAG1 
(a VDJ recombination activator) (Fig. 3g). Two proteins associated with 
influenza (LIF, KRT19 (which was also related to HHVs)) and one protein 
associated with skin and subcutaneous infections (CTNNA3) remained 
statistically significant at P < 0.05 after FDR correction. In addition to 
their associations with accelerated brain atrophy and increased demen-
tia risk, these results indicate that a history of infection is associated 
with differences in immunologically relevant proteins, many of which 
are associated with multiple infections.

Infection-related proteins predict brain atrophy
Using BLSA proteomic and longitudinal brain MRI data, we then iden-
tified which infection-related proteins were associated with changes 
in brain volumes over time in regions vulnerable to infection-specific 
atrophy. A total of 977 participants were included in these analyses 
(Supplementary Table 15 and Supplementary Fig. 5). The average 
follow-up was 5.3 years (median: 5.0, IQR = 3.9, 7.0) with an average of 
3.4 (s.d. = 1.5) MR scans (range: 2–10) per participant in longitudinal 
analyses.

Among the 260 proteins associated with at least one infection 
(Fig. 4a–f, y axis), we identified 35 that were also associated with brain 
volume changes (Fig. 4a–f, x axis), henceforth referred to as candidate 
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Fig. 1 | Study design. a, BLSA participants were classified according to the 
presence or absence of infection diagnoses using ICD-9 codes collected at study 
visits as early as 1958. Repeated 3T MRI scans were initiated in 2009–2010. Blood 
samples were collected at the initial 3T MRI scan and, for a subset of participants, 
at the time of a first PET scan as part of a separate study. b, Analyses examined 
how infection diagnoses are associated with brain volume changes over time 
and an immunological plasma proteome in the BLSA, as well as risk of all-cause 
dementia, AD dementia and VaD in the UK Biobank and a Finnish multicohort 
sample (the FPS study, the HeSSup study, and the STW study). c, Candidate 
proteins were selected if they were associated with an infection and related to 
changes in brain regions vulnerable to infection-specific atrophy, and were 

defined as protective or pathogenic, depending on whether they predicted 
preserved or reduced longitudinal brain volumes, respectively. d, Candidate 
proteins were related to longitudinal performance across five cognitive domains 
(the BLSA), cross-sectional performance across five cognitive domains (the GenS 
study), dementia risk (the ARIC study), and ADRD biomarkers (Aβ42/40, GFAP, 
NfL, pTau-181; the BLSA and the ARIC study). e, Genetic variants that influenced 
candidate protein levels were associated with changes in brain volumes in 
the BLSA and an external cohort (the ENIGMA consortium). f, The biological 
implications and functional relevance of candidate proteins were assessed using 
a variety of complementary analytical tools and open-source databases.  
All panels were created with BioRender.
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proteins. Candidate proteins were further defined as protective or 
pathogenic, depending on whether they were associated with pre-
served or reduced longitudinal brain volumes, respectively. With few 
exceptions (for example, DPP10 with influenza), protective proteins 
were decreased among individuals with a prior infection, whereas 
pathogenic proteins were increased (Supplementary Table 16). We also 
examined whether the associations of candidate proteins with changes 
in brain volumes were conditional on infection diagnosis using models 
that incorporated three-way interaction terms (that is, infection × pro-
tein × time) (Supplementary Table 17). Among four protective pro-
teins (PPP1R9B, CALD1, PLEK and DAPP1) and one pathogenic protein 
(PRDX5) that decreased and increased with influenza, respectively, the 
associations with brain volume loss were in the expected directions and 
more robust among participants with a history of influenza compared 
with those without. We found similar evidence of increased effects 
among individuals with past infection for one pathogenic protein 
(ITGB6) elevated with LRTIs, and another (PRDX5) increased with skin 
and subcutaneous infections (Extended Data Fig. 3). These results 
identified 35 candidate proteins, including a set of protective proteins 

that are decreased postinfection and a set of pathogenic proteins that 
are increased postinfection, by which infections may contribute to 
neurodegeneration, with the effects of several proteins magnified 
among infected individuals.

Candidate proteins are associated with cognitive decline
Next, we used data from the BLSA to determine whether levels of candi-
date proteins were associated with changes in cognitive performance 
across five cognitive domains. A total of 1,233 cognitively normal par-
ticipants were included in analyses (Supplementary Tables 18 and 19 
and Supplementary Fig. 6). The average follow-up time was 6.4 years 
(median: 6.1, IQR = 4.0, 8.3) with an average of 4.3 (s.d. = 2.4) cognitive 
assessments (range: 2–22) per participant in longitudinal analyses. 
Among 13 protective proteins that were decreased postinfection, 10 
were associated with preserved verbal memory performance over 
time, a subset of which were also related to preserved visuospatial or 
verbal fluency performance (Fig. 4g). Accelerated declines in perfor-
mance were associated with four pathogenic proteins, including one 
(NAMPT) linked to decreased capacities across four cognitive domains.  
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Fig. 2 | Annual changes in brain volumes and dementia risk associated with 
infections. a–f, Forest plots showing the associations of brain volume loss 
over time with influenza (a), HHVs (b), miscellaneous viral infections (c), URTIs 
(d), LRTIs, (e) and skin and subcutaneous infections (f) in the BLSA. Adjusted 
differences in annual changes of standardized brain volumes associated with 
a history of a given infection (β) were derived from linear mixed-effect models 
(n = 982) adjusted for intracranial volume, baseline age, sex, race, education, 
APOEε4, a comorbidity index (that is, obesity, hypertension, diabetes, cancer, 
ischemic heart disease, chronic heart failure, chronic kidney disease and chronic 
obstructive pulmonary disease) and two-way interactions of covariates with 
time. Pink squares reflect statistically significant associations. The AD signature 
region was the combined volume of the hippocampus, parahippocampal 
gyrus, entorhinal cortex, posterior cingulate gyrus, precuneus and cuneus. 
g,h, Additional forest plots showing the associations of infections with risk of 
all-cause dementia, AD dementia and VaD in the UK Biobank (g) and the Finnish 

multicohort sample (h; the FPS study, the HeSSup study and the STW study) after 
excluding dementia cases documented within 1 year postinfection. Columns 
report frequencies of the total sample, individuals exposed to a given infection 
and individuals diagnosed with dementia. Filled-in shapes reflect statistically 
significant associations. Data are presented as hazard ratios (HRs) and 95% 
confidence intervals (CIs). N/A indicates insufficient sample size to assess 
dementia risk. Adjusted differences in dementia risk associated with history of a 
given infection were derived from Cox proportional hazards regression models 
adjusted for age, sex and socioeconomic status. All-cause dementia included 
participants with a diagnosis of AD dementia, VaD, Parkinson’s disease dementia, 
frontotemporal dementia and other, less common dementia diagnoses  
(for example, unspecified dementia). Statistical significance was defined at a 
two-sided P < 0.05 without adjustment for multiple comparisons. The exact  
P values are presented in the source data files of Supplementary Tables 4, 7 and 9. 
AD sig, AD signature; exp., exposed; dem, dementia.
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One pathogenic protein (CD27) was unexpectedly related to preserved 
visuospatial abilities.

We leveraged computed results from the Generation Scotland 
(GenS) cohort23 (n = 1,065) to determine whether levels of candidate 
proteins were associated with cross-sectional differences across five 
cognitive domains, some of which were assessed in the BLSA using 
similar tasks (Supplementary Table 20). Among the ten pathogenic 
proteins increased postinfection in the BLSA and measured in GenS, 
six were associated with lower cognitive performance, especially in 

processing speed and nonverbal reasoning (Fig. 4h). One pathogenic 
protein (TLR5) was related to lower performance across all domains, 
whereas another protective protein (MYC) was surprisingly related 
to lower performance in processing speed, nonverbal reasoning and 
general cognition. We also examined how candidate protein levels were 
related to pre-existing all-cause dementia using cross-sectional data 
from the Atherosclerosis Risk in Communities (ARIC) study (n = 4,743; 
Supplementary Table 21 and Supplementary Fig. 7). Four protective 
proteins (PLEK, DAPP1, CSK and CASP3) that decreased postinfection 
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Fig. 3 | Differences in immunological plasma proteins (942 proteins; 
SomaScan Inflammation and Immune Response Panel) associated with 
infections in the BLSA. a–f, Volcano plots showing the differences in protein 
levels associated with influenza (a), HHVs (b), miscellaneous viral infections 
(c), URTIs (d), LRTIs, (e) and skin and subcutaneous infections (f). Adjusted 
differences in log2(protein levels) associated with history of a given infection (β) 
were derived from multiple linear regression models (n = 1,184) adjusted for age, 
sex, race, education, APOEε4, eGFR-creatinine, and a comorbidity index (that is, 
obesity, hypertension, diabetes, cancer, ischemic heart disease, chronic heart 
failure, chronic kidney disease, and chronic obstructive pulmonary disease). 
Proteins above the dashed horizontal black line were statistically significant 
(uncorrected P < 0.05), with red and blue dots indicating positive and negative 

associations, respectively. The FDR-corrected P-value threshold is indicated by 
the dashed gray line. Red and blue labels represent proteins associated with two 
or more infections, whereas black labels indicate proteins uniquely associated 
with a given infection. g, A clustered bar graph showing proteins associated with 
two or more infections. Adjusted differences in log2(protein levels) associated 
with history of a given infection were derived from multiple linear regression 
models adjusted for the aforementioned covariates. The (+) and (−) indicate that 
higher or lower protein levels were associated with a given infection. Statistical 
significance was defined at two-sided P < 0.05 without adjustment for multiple 
comparisons. The exact P values are presented in the source data files of 
Supplementary Table 13.
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in the BLSA were significantly decreased in dementia cases in the ARIC 
study, with several other protective proteins (EIF4A1, DSG1, PIK3CG, 
PRKCB and LYN) showing similar trends (Extended Data Fig. 4 and 
Supplementary Table 22).

Together, these findings indicate that the direction of protective 
and pathogenic effects of candidate proteins are generally consist-
ent with respect to changes in cognitive performance, and suggest 
that protective proteins decreased postinfection might otherwise be 
important for maintaining cognitive capacities over time.

Candidate proteins are associated with dementia biomarkers
We next examined how candidate proteins related to plasma biomark-
ers of AD pathology (Aβ42/40 ratio, pTau-181) and neurodegeneration 
(GFAP, NfL) using data from the BLSA and the ARIC study. BLSA analyses 
of Aβ42/40, GFAP and NfL included 757 participants and pTau-181 analy-
ses included 674 participants, all of whom were cognitively normal 
(Supplementary Tables 23 and 24 and Supplementary Fig. 8). In the 
BLSA, among 13 protective proteins decreased postinfection, 12 were 
associated with a significantly higher Aβ42/40 ratio (indicative of lower 
cortical amyloid) and 11 with lower levels of pTau-181 (Fig. 4i). However, 
two protective proteins were associated with a lower Aβ42/40 ratio, one 
of which (DPP10) was also related to increased NfL and GFAP. Of the 
pathogenic proteins, we found one protein (CD70) related to a lower 
Aβ42/40 ratio and elevated NfL, whereas several other proteins displayed 
unexpected negative associations with NfL and/or pTau-181. Among 
ten protective proteins that decreased postinfection in the BLSA and 
measured in the ARIC study (n = 1,419; Supplementary Tables 25 and 
26 and Supplementary Fig. 9), eight were associated with lower levels 
of one or more plasma biomarkers, especially a higher Aβ42/40 ratio 
(indicative of lower cortical amyloid) (Fig. 4j). MYC showed divergent 
associations with the Aβ42/40 ratio across the BLSA and the ARIC study. 
Several protective proteins (IL-18, CCL24) that increased postinfec-
tion in the BLSA were related to higher NfL levels in the ARIC study, 
whereas two pathogenic proteins showed unexpected negative associa-
tions with pTau-181 (HERC5, MGA). Our results suggest that protective 
proteins decreased postinfection might otherwise be important for 
proximally mitigating CNS amyloidosis and tau phosphorylation, two 
early features of AD pathogenesis.

Candidate protein genetic variation predicts brain atrophy
Last, we determined whether genetic variants that influence candidate 
protein levels in plasma relate to changes in brain volumes in the BLSA 
using protein quantitative trait loci (pQTLs) identified by the deCODE 
study (n = 35,559)24. Using candidate pQTLs as genetic instruments for 
469 BLSA participants with SNP data25 (Supplementary Table 27 and 
Supplementary Fig. 10), we replicated SNP associations with plasma 

protein levels for 11 of the 24 candidate proteins with available pQTLs (at 
least one SNP per protein). Nearly all candidate protein genetic variants 
identified in the deCODE study and the subset replicated in BLSA were 
trans-pQTLs (Supplementary Tables 28 and 29). Genetic variants associ-
ated with decreased levels of pathogenic proteins ITGB6 (rs8099840; 
Fig. 5a,b), TLR5 (rs1403631, rs75118229; Fig. 5c,d), F7 (rs6046), HERC5 
(rs406936) and MGA (rs704) were associated with preserved brain vol-
umes over time, including in regions susceptible to infection-specific 
atrophy (Extended Data Fig. 5). These findings support a potentially 
causal or pleiotropic link between a subset of candidate proteins and 
brain atrophy. However, genetic variants that decreased levels of patho-
genic proteins HERC5 (rs9332741), TLR5 (rs28427460), F7 (rs762635, 
rs3211727) and CD27 (rs16860992, rs1042464) were also associated 
with accelerated volume loss.

To determine whether genetic variants that influence candidate 
protein levels may also be associated with changes in brain volumes in 
an external cohort, we combined these candidate protein pQTLs with 
summary statistics from a genome-wide association study (GWAS) 
of brain volume change performed in the Enhancing Neuroimaging 
Genetics through Meta-Analyses (ENIGMA) consortium (n = 15,640)26 
and applied two-sample MR. After pruning, 24 candidate proteins 
maintained at least one pQTL instrumental variable. We found evi-
dence of a relationship between the levels of ten candidate proteins 
and changes in total brain volume (Fig. 5e). MR supported a protective 
effect of two proteins (PIK3CG and CRLF2) and the pathogenic effect 
another three (ITGB6, IL-10 and TLR5). Five proteins (PRDX5, ETNK1, 
CCL24, CD70 and DPP10) showed associations with brain volumes in 
MR that differed from those found in the BLSA. Results for proteins 
with more than two pQTLs derived using a weighted-median method 
provided further support for the effects of PIK3CG, TLR5 and CD70 
on brain volume changes (Supplementary Tables 28, 30 and 31 and 
Supplementary Fig. 11). These findings suggest distal genetic variation 
modulates levels of several candidate proteins in plasma and that such 
modulation may be mechanistically relevant to neurodegeneration.

Candidate protein characterization
Pathway analyses demonstrated that candidate proteins were enriched 
for pathogen-related signaling cascades (Fig. 6a, Supplementary 
Table 32 and Supplementary Figs. 12 and 13) and identified an antiviral 
medication (resiquimod) as their strongest upstream regulator (Fig. 6b 
and Supplementary Table 33). Protein interaction analyses revealed a 
robust network among candidate proteins, including co-expression 
patterns (Fig. 6c and Supplementary Table 34). The levels of seven 
cognate genes encoding candidate proteins were highly expressed in 
at least one CNS cell type, but another eleven were undetectable in CNS 
cells (Fig. 6c, Extended Data Figs. 6 and 7 and Supplementary Tables 35 

Fig. 4 | Candidate proteins relate to changes in brain regions vulnerable 
to infection-specific atrophy, longitudinal cognitive performance, 
plasma biomarkers and cognitive performance. a–f, Scatterplots showing 
how differences in protein levels associated with specific infections (y axis) 
relate to a given protein’s longitudinal effect on brain regions vulnerable to 
infection-specific atrophy (x axis) in the BLSA, specifically for influenza (a), 
HHVs (b), miscellaneous viral infections (c), URTIs (d), LRTIs, (e) and skin and 
subcutaneous infections (f). Candidate proteins were defined as protective 
or pathogenic, depending on their associations with preserved or reduced 
longitudinal brain volumes. Differences in protein levels associated with 
infections (y axis, β) were derived from linear regression models (n = 1,184) 
adjusted for the aforementioned covariates, and differences in brain volumes 
changes related to protein levels (x axis, β) were derived from linear mixed- 
effect models (n = 977) adjusted for similar covariates plus intracranial volume 
and two-way interactions with time. All displayed associations are statistically 
significant. g, Heatmap showing associations of candidate proteins with 
longitudinal cognitive performance in the BLSA. Differences in annual changes  
of cognitive scores related to protein levels (β) were derived from linear  

mixed-effect models (n = 1,233) adjusted for the aforementioned covariates. 
h, Heatmap showing associations of candidate proteins with cognitive 
performance in the GenS cohort. Differences in cognitive scores related to 
protein levels (β) were derived from linear mixed-effect models (n = 1,065) 
corrected for relatedness across individuals, age, sex, depression, study site, and 
storage time. i, Heatmap showing associations of candidate proteins with plasma 
biomarkers in the BLSA. Differences in biomarkers related to protein levels 
(β) were derived from linear regression models (Aβ42/40, GFAP and NfL, n = 757; 
pTau-181, n = 674) adjusted for the aforementioned BLSA covariates plus eGFR-
creatinine. j, Heatmap showing associations of candidate proteins with plasma 
biomarkers in the ARIC study. Differences in biomarkers related to protein levels 
(β) were derived from linear regression models (n = 1,419) adjusted for age, sex, 
race center, education, APOEε4, eGFR-creatinine, and cardiovascular risk factors. 
*Statistically significant (uncorrected P < 0.05). Statistical significance was 
defined at two-sided P < 0.05 without adjustment for multiple comparisons.  
The exact P values are presented in the source data files of Supplementary  
Tables 13, 16, 19, 20, 24 and 26. Temp. Temporal; Occ., Occipital.
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and 36). Leveraging results obtained from comprehensive postmortem 
tissue collections, every cognate gene with available transcriptomic 
data was differentially expressed at the RNA level in AD brains, with 
another three also differentially expressed at the protein level (Fig. 6c 
and Supplementary Table 37). Among neurovascular cell types, patterns 
of AD-related expression were most apparent in pericytes, oligoden-
drocytes and astrocytes (Supplementary Table 38 and Extended Data 
Fig. 8). Four candidate proteins (IL-18, IL-10, TLR5, and DPP10) have 

been nominated as targets for AD treatment by the AMP-AD (Acceler-
ating Medicine Partnership Program for AD) consortium (Fig. 6c and 
Supplementary Table 37). We also found 93 medications (primarily 
monoclonal antibodies) that modify levels of 13 candidate proteins, 
suggesting that such drugs may have the potential for repurposing in 
the treatment of neurodegeneration, particularly among individuals 
at increased risk for, or exposure to, infectious pathogens (Fig. 6c and 
Supplementary Table 39).
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Fig. 5 | Genetic variants that influence expression of candidate proteins 
also relate to brain volume loss in the BLSA and an independent cohort, the 
ENIGMA consortium. a, A boxplot showing plasma levels of ITGB6 stratified by 
the rs8099840 genotype. b, A scatterplot showing the associations of plasma 
ITGB6 protein levels with rates of temporal gray matter (TEMGM) volume loss 
over time stratified by rs8099840 alleles. c, A boxplot of TLR5 plasma levels 
stratified by the rs75118229 genotype. d, A scatterplot showing the associations 
of plasma TLR5 protein levels with rates of total brain (TB) volume loss over 
time stratified by rs75118229 alleles. Adjusted differences in log2(protein levels) 
associated with a given SNP were derived from multiple linear regression models 
(n = 469) adjusted for covariates used in the pQTL discovery cohort, namely 
baseline age and sex. Adjusted differences in annual changes of standardized 
brain volumes associated with a given SNP were derived from linear mixed-effect 
models (n = 469) adjusted for similar covariates, along with intracranial volume 
and two-way interactions with time. Individual specific rates of brain volume loss 
(random effect of time) are displayed. Associations displayed in b and d reflect 

statistically significant relationships. *Statistically significant (uncorrected 
P < 0.05); **statistically significant (uncorrected P < 0.01). Box plots: median, 
25–75th quartiles; whiskers: 1.5× the IQR. The pQTLs were obtained from deCODE 
Genetics and SNPs in the BLSA were used for analyses. e, A forest plot displaying 
the results of Mendelian randomization analyses that assessed the relationship 
between genetically determined plasma protein levels and changes in MRI-
derived TB volumes. The results were derived from inverse variance-weighted 
or Wald’s ratio estimates. Plasma pQTLs were obtained from deCODE Genetics 
(n = 35,559). Longitudinal TB volume summary statistics were obtained from an 
ENIGMA consortium GWAS (n = 15,640). Data are presented as β coefficients and 
95% CIs. Red triangles indicate statistically significant associations (uncorrected 
P < 0.05). Statistical significance was defined at two-sided P < 0.05 without 
adjustment for multiple comparisons. The exact P values are presented in the 
source data files of Supplementary Tables 29 and 30. Misc., miscellaneous; r.f.u., 
relative fluorescence units.
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to frequencies of overlapping candidate proteins across respective biological 
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are derived from ingenuity pathway analysis (IPA). b, A radial plot showing 
resiquimod, an antiviral medication and the top upstream regulator of candidate 
proteins, as well as its predicted effects on specific candidate proteins. Shapes 
correspond to protein type (cytokine, enzyme, transmembrane, kinase). Results 
were derived from Fisher’s exact tests in IPA. c, An upset plot summarizing 
evidence for candidate proteins, including empirical results obtained from  
the current analyses, as well as protein–protein interaction networks  
(STRING; predicted protein conformations are depicted in each circular node), 
cell-specific expression patterns (Human Protein Atlas), expression levels  
(RNA, protein) in postmortem AD brain tissue (AMP-AD), nominated therapeutic 

targets (AMP-AD), and targets of known medications (Open Targets).  
d, Proposed model by which infections may contribute to increased risk for 
neurodegeneration. A history of specific infections is linked to increased levels of 
proteins that exert deleterious effects on brain volumes over time (pathogenic) 
and decreased levels of proteins associated with stable brain volumes 
(protective), which are indicated in corresponding circles for each infection  
type. Protective proteins may exert their effects through alterations to 
amyloidogenic pathways, as indicated by changes in plasma Aβ42/40 ratio and 
pTau-181, whereas pathogenic proteins may exert their effects through other 
mechanisms that require further elucidation. Modulation of the plasma immune 
proteome among individuals with a prior infection and subsequent changes  
in rates of brain atrophy over time may ultimately increase risk for cognitive 
decline and dementia. The exact P values are presented in the source data files  
of Supplementary Tables 32–39. Diff., differential; RAR, retinoic acid receptor. 
Panel d was created with BioRender.
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Discussion
Using data from multiple large cohort studies, our findings illustrate 
how a range of infections, namely influenza, herpes viruses, URTIs, 
LRTIs, skin and subcutaneous infections and a category of miscella-
neous viral infections, are associated with increased regional brain 
atrophy and risk for future dementia. We extended these findings by 
identifying 35 immunologically relevant plasma proteins (among 942) 
that are differentially expressed after infection and associated with 
changes in brain regions vulnerable to infection-specific volume loss. 
We showed that a subset of these proteins was associated with cognitive 
decline and levels of AD and neurodegeneration plasma biomarkers, 
including PIK3CG, PACSIN2 and PRKCB. We also found genetic evidence 
linking infection-related proteins, such as ITGB6 and TLR5, with brain 
volume loss, suggesting that these proteins in particular may represent 
the molecular underpinnings linking infection with subsequent neu-
rodegenerative disease (findings summarized in Fig. 6d).

The accelerated temporal lobe atrophy associated with infections 
in our study—although not robust to multiple-comparison correction—
aligns with evidence of long-term reductions in this region resulting 
from immune insults, such as surgery and chemotherapy27,28. Although 
the absence of infection-related changes in other regions could be 
caused by a variety of factors, we speculate that these findings could 
be influenced by regional differences in brain-resident (for example, 
microglia) or infiltrating immune cells (for example, T cells), varying 
tropism of different pathogens across regions and cell types, and 
differing exposure to systemic inflammation via unique vasculature 
and blood–brain barrier conduits29–34. Each infection linked to brain 
volume loss in the BLSA was also associated with increased risk of 
incident dementia in the UK Biobank and/or the Finnish multicohort 
sample, in line with other studies1–5. Our results add to existing evidence 
by specifically implicating URTIs, as opposed to general respiratory 
infections or LRTIs3,4. Consistent with previous reports2,4, infections 
were associated with greatest risk of VaD, followed by all-cause and 
AD dementia, suggesting that postinfection immune alterations may 
be especially strong drivers of cerebrovascular pathology underlying 
large- and small-vessel diseases35,36. This hypothesis is supported by 
evidence that circulating inflammatory factors can impair the blood–
brain barrier permeability, promote endothelial cell activation and 
induce neuroinflammation37.

The present study extends our understanding of how infections 
differentially relate to an immunological plasma proteome beyond 
select inflammatory markers. We suspect that the infection-related 
protein expression reported here reflect a pattern of long-term immune 
activation or systemic inflammation associated with prior infections, 
given that remote infections can alter the immune proteome through 
the training or priming of the immune system12. It is also possible that 
we are capturing the proteomic signature of individuals whose host 
immune traits render them susceptible to infection or maladaptive 
inflammatory responses38; this same host immune signature may 
influence one’s vulnerability to neurodegenerative processes. This 
hypothesis is supported by a recent study that linked predisposition 
to autoimmunity and AD risk34. A large number of the infection-related 
proteins that we detected have been previously associated with influ-
enza, Zika and/or SARS-CoV-2 infection(s), but we did not find increases 
in C-reactive protein, TNF, IL-1β or IL-6, that is, proteins which are typi-
cally elevated as part of the acute response to infection. This finding is 
consistent with the idea that we are capturing the long-term immuno-
proteomic signature of past infections with an average interval between 
a first report of infection and blood draw for proteomic measurement 
of 14 years. Proteins most strongly associated with a participant’s infec-
tion status included peptides with validated antimicrobial activity 
(IFIT3 (ref. 39), DEFB4A40), products of AD risk genes (APOE41, TREM2 
(ref. 42)) and several proteins that we recently showed to be associated 
with inflammatory dietary patterns and adverse neurocognitive out-
comes (CDCP1 and CCL3 (ref. 43)). The comparatively large quantity 

of influenza-related proteins, many of which were strongly associated 
with other infections, may reflect infection-related alterations to the 
immune proteome that are insensitive to infectious etiology.

The present study identified plasma proteins increased after 
infection that were associated with brain atrophy (pathogenic), as 
well as proteins decreased after infection that were associated with 
preserved brain volume (protective). Our hypothesis that infections 
may increase levels of pathogenic immune proteins was supported 
and complemented by the finding that infection history, primarily 
influenza, was also associated with decreases in protective proteins, 
such as PIK3CG, PACSIN2 and PRKCB: proteins that have been previ-
ously implicated in neurodegeneration44–46, and were associated with 
reduced brain volume loss, preserved cognitive capacities and lower 
levels of AD pathology in our study. The pattern of infection-related 
downregulation of protective proteins could reflect the secondary 
consequences of attenuated host immunity induced by pathogens to 
evade immune detection47. Although the direction of protective and 
pathogenic effects of candidate proteins was generally consistent 
with respect to brain volumes, cognitive performance and biomark-
ers of AD and neurodegeneration, the unexpected associations of 
some candidate proteins (for example, protective proteins increased 
after infection) may reflect the temporally dynamic and pleiotropic 
relationship between inflammation and neurodegeneration that can 
vary dependent on disease stage48,49. Most candidate proteins that we 
identified were not highly expressed in CNS cells and only six showed 
associations with a biomarker of astrocyte-mediated neuroinflam-
mation (GFAP), yet the consistent detection of their differing RNA  
(and even some protein) concentrations in AD brains suggests that 
these proteins emanating from peripheral immune cells may be espe-
cially important drivers of neurodegeneration.

Genetic variants modulating levels of ITGB6 and TLR5 were 
associated with brain volume loss across two independent cohorts, 
suggesting that these plasma proteins may be especially relevant to 
neurodegenerative mechanisms. ITGB6, the rate-limiting subunit of 
the αvβ6 integrin heterodimer, is elevated in the context of inflam-
matory stimuli (for example, infections and wound healing) where 
it is responsible for activation of the anti-inflammatory cytokine 
transforming growth factor-β1 and inhibiting immune cell infiltra-
tion, indicating that the pathogenic effects of increasing ITGB6 levels 
in the present study may be a sign of long-term, inadequately con-
trolled systemic inflammation after infection50,51. TLR5 is a nominated 
therapeutic target by the AMP-AD consortium that is among the most 
conserved pattern recognition receptors, suggesting that its patho-
genic effects on brain volumes may be attributed to chronic activation 
of its downstream proinflammatory pathways (for example, nuclear 
factor κ-light chain enhancer of activated B cells (NF-κB), TNF)52. As 
our analyses were largely limited to trans-pQTLs, distal regulation of 
ITGB6 and TLR5 through unknown intermediate genes may account 
for the ensuing effects on brain volume (for example, transcription 
factors near these trans-pQTLs that then influence expression of 
the plasma proteins). However, trans-pQTLs may also affect brain 
volume loss and protein levels through independent mechanisms, sug-
gesting that the observed associations could also reflect pleiotropy. 
The discordant effects for some proteins across the BLSA and two- 
sample MR analyses indicate that the life-long contributions of genetic 
variants encoding candidate proteins on brain volumes captured 
by the ENIGMA consortium may not be adequately reflected in the 
observational window of the BLSA.

Although the present study has several strengths, including the 
use of longitudinal 3T MRI, a multicohort replication of dementia risk, 
state-of-the-art proteomics, and genetic techniques to support causal-
ity, it has several limitations. First, as evaluations at study visits were 
used to identify infections, inaccurate reporting or undiagnosed infec-
tions may have led to exposure misclassifications, a bias that would 
probably favor null results. Second, dementia analyses in external 
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cohorts leveraged infection diagnoses in hospital discharge records, 
probably reflecting more severe cases compared with those reported 
in the BLSA, and with a 1-year time lag, probably captured the mixed 
effects of infections on dementia risk and increased infection vulner-
ability among individuals with prodromal or early dementia. Third, 
because of the retrospective nature of our study, we were unable to 
reliably control for the time between a participant’s infection and 
baseline MR scan. Although the levels of many inflammatory pro-
teins—and plasma proteins more broadly—remain relatively stable 
across time53,54, the mean 14-year gap between infection documentation 
and blood collection in our study suggests that the infection-related 
proteomic signatures we identified may differ greatly from those seen 
in the acute or early post-acute phase of an infection. As a result of the 
exploratory nature of the present study, we did not adjust P values 
for multiple comparisons in our primary analysis of infection-related 
protein changes. Therefore, a fourth limitation is our study’s liberal 
threshold (uncorrected P < 0.05) and the lack of statistical signifi-
cance for some of the results after FDR correction. Considering the 
extensive size of the proteomic panel, the limited number of cases for 
specific infections probably reduced the power to detect significant 
effects at an FDR-corrected threshold. Although we demonstrated 
that a large proportion of our infection-associated proteins has been 
externally replicated, future studies will be needed to validate associa-
tions between past infections and the expression of specific immune 
proteins. Fifth, as our study samples were predominantly of European 
ancestry, our findings may not be as generalizable to individuals of 
non-European ancestries. Last, although follow-up times for cases and 
controls did not differ for the six infections of interest, the attrition rate 
caused by death was elevated among those with a history of influenza 
and LRTIs. Although it is unclear how differential attrition may have 
affected our results, increased study dropout among those with a 
history of certain infections would probably bias estimates toward 
the null. Despite these limitations, our results show a link between 
infections, accelerated brain atrophy and increased dementia risk, 
while highlighting the immunological proteins by which infections 
may contribute to neurodegeneration.

Methods
Study sample
The present study used data from the BLSA, an ongoing longitudinal 
study designed to assess physical and cognitive measures in a cohort 
of community-dwelling volunteers55. Participants received compre-
hensive health and functional screening evaluations at each study 
visit (including ICD-9 documentation, blood draws and cognitive and 
physical examinations), which were completed by licensed healthcare 
professionals (for example, nurse practitioner, medical doctor). Study 
visits occurred biennially until 2005, then every 1–4 years depending 
on age (age <60 years, every 4 years; age 60–79 years, every 2 years; 
age ≥80 years, every year). For a subset of participants enrolled in the 
BLSA neuroimaging substudy, study visits occurred annually beginning 
in 1994. As a result of the BLSA’s continuous enrollment, participants 
entered the study at different times and thus varied with respect to 
follow-up times. Participants were selected if they had ICD-9 codes 
and MRI, SomaScan v.4.1 proteomic, Simoa biomarker, cognitive task, 
or GWAS data, as well as no neurological conditions that could affect 
brain structure or function (for example, strokes, seizures), and did 
not exhibit cognitive impairment at baseline or follow-up (that is, 
dementia, mild cognitive impairment (MCI), impaired but no MCI; 
procedures for determining cognitive status are detailed elsewhere56).

Infection diagnoses
Using ICD-9 codes documented at each study visit beginning as early as 
1958, along with infection-related medical codes derived from a recent 
study using the Danish National Patient Registry1, participants were 
categorized according to the presence (+) or absence (−) of an infection 

(Supplementary Table 1). ICD-9 codes in the BLSA were derived from 
one or more potential sources of information collected at enrollment 
and each study visit, including medical history records, comprehen-
sive health and functional screening evaluations, and laboratory test 
results. Evidence of infections was adjudicated by a central panel of 
board-certified clinicians to ensure diagnostic reliability and accu-
racy. Infection categories with limited numbers of participants (<20 
cases; for example, HIV, septicemia) were not considered in the current 
analyses owing to limited statistical power. Such classification parallels 
methodology used in recent studies, whereby the diagnosed sample 
primarily represents infected participants with clinical symptoms 
severe enough to report during follow-up patient healthcare consulta-
tions4,8. Participants with infection diagnoses documented at or before 
study enrollment or during follow-up visits (that is, a participant’s 
infection occurred in between study visits) were considered exposed. 
For positive and negative cases, the baseline visit for each participant 
was the earliest visit at which the presence or absence of an infection 
diagnosis was documented, respectively.

3T brain MRI
Beginning in 2009–2010, T1-weighted, magnetization-prepared, 
rapid gradient echo (MPRAGE) scans were acquired on a 3-T Philips 
Achieva (repetition time = 6.8 ms, echo time = 3.2 ms, flip angle = 8°, 
image matrix = 256 × 256, 170 slices, pixel size = 1 × 1 mm2, slice thick-
ness = 1.2 mm). We applied a validated, Multi-atlas Region Segmen-
tation Utilizing Ensembles (MUSE) anatomical labeling method 
specifically designed to achieve a consistent parcellation of brain 
anatomy in longitudinal MRI studies using T1-weighted sequences57. 
Analyses adjusted for intracranial volume (defined at age 70 years) and 
examined standardized values of total brain, gray matter, white matter 
and lobar volumes (frontal, parietal, occipital, temporal), as well as 
an AD-signature region volume (that is, the combined volume of hip-
pocampus, parahippocampal gyrus, entorhinal cortex, posterior cingu-
late gyrus, precuneus and cuneus21,22). If an infection was significantly 
associated with a primary region of interest, we performed secondary 
analyses on lobar white/gray matter volumes. Standardized volumes 
of all 48 MUSE-labeled regions were used to explore change-related 
pQTLs (see below for further description of pQTL analyses).

Immune plasma proteomics
Proteins were measured with the SOMAmer-based array method (Som-
aLogic)58, with analyses restricted to the Inflammation and Immune 
Response Panel which initially contained 938 SOMAmer reagents 
from the larger SomaScan v.4.1 (Supplementary Table 10). Plasma 
used for analyses was collected at baseline MR scan using standardized 
protocols and frozen at −80 °C until analysis; a subset of samples was 
collected at the time of a first positron emission tomography (PET) 
scan as part of a separate study. Samples from participants that did not 
pass SomaScan quality control (QC) criteria were excluded (n = 7). An 
additional two aptamers were included in analyses to capture variation 
in APOE3 and APOE4 and an additional four aptamers to capture vari-
ation in two proteins (CDCP1 and ITGA11) that we recently showed to 
be associated with inflammatory dietary and cognitive impairment43. 
Using 102 blind duplicates, aptamers with intra-assay coefficients of 
variation (CVs) > 50% were excluded (n = 2). The median intra-assay CV 
for aptamers on the Inflammation and Immune Response Panel was 
4.5%. The median intra-assay CV for the aptamers measuring the 35 
candidate proteins was 7%. Values were log2(transformed) and those 
beyond 5 s.d. values were winsorized. EntrezGene IDs were used as 
labels for corresponding aptamers.

Cognitive assessment
Five cognitive composite scores across five domains—visuospatial 
ability, verbal memory, verbal fluency, executive functioning and 
attention—were calculated from standardized (converted to a z-score 
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using the baseline mean and s.d.) and averaged individual task com-
ponents8,59. Cognitive performance was measured at baseline and 
follow-up visits. As certain cognitive tasks were initiated in the BLSA 
at different periods according to protocol changes, composite scores 
for participants at each visit were computed from those tasks avail-
able at the time of assessment. Visuospatial ability was assessed using 
a modified version of the Educational Testing Service Card Rotations 
Test and two Clock Drawing Tests (CDTs), where participants were 
asked to draw the hands and face of clocks indicating 3:25 and 11:10. 
In the present study, a composite score was calculated using the aver-
age of the standardized z-scores from the Card Rotations Test and the 
mean of the CDTs. Verbal memory was assessed using immediate (sum 
of five learning trials) and long-delay free recall from the California 
Verbal Learning Test. Verbal fluency was calculated using Verbal Flu-
ency Letters (F, A and S) and Verbal Fluency Categories (fruit, animals 
and vegetables). Executive function was assessed using Trail Making 
Test Part B and the Digit Span Backward subset of the Wechsler Adult 
Intelligence Scale (WAIS), revised. Attention was evaluated using Trail 
Making Test Part A and the Digit Span Forward subset of the WAIS, 
revised. Scores of Trail Making Test Parts A and B were first natural 
log(transformed), z-scored, and then signs inverted so that higher 
scores reflected higher performance, consistent with the direction of 
performance across other cognitive tasks.

AD and neurodegeneration biomarkers
Aβ40, Aβ42, GFAP, NfL, and pTau-181 concentrations were measured 
using the Single Molecule Array (Simoa) Neurology 4-Plex E (N4PE) and 
pTau-181 (v.2) assays on the Simoa HD-X instrument (Quanterix). Plasma 
used for analyses was collected at baseline. Assays were run in duplicate 
and values averaged. CVs were 2.8%, 1.9%, 5.0%, 5.1%, and 4.4% for Aβ40, 
Aβ42, GFAP, NfL, and pTau-181, respectively. The Aβ42/40 ratio was used 
in analyses. Values for GFAP, NfL, and pTau-181 were log2(transformed) 
to correct for skewedness. Biomarker values were standardized and at 
a threshold of 5 s.d. values no outliers were detected.

GWA, pQTLs and MRI
The pQTLs were obtained from the deCODE Genetics GWAS of SomaS-
can plasma protein levels24. For our analyses we incorporated pQTLs 
that met a genome-wide significant P value of 1.8 × 10−9. Genome-wide 
genotyping in the BLSA was performed using the Illumina 550K or 
NeuroChip platforms using standard QC procedures described pre-
viously60. Variants were excluded for poor call rate (missing >1%), 
violations of the Hardy–Weinberg equilibrium (P < 1 × 10−6), and limited 
minor allele frequency (<1%). Samples were excluded for poor genotyp-
ing efficiency (missing >2%), sex inconsistencies, cryptic relatedness 
(pihat >0.25), or if they were not of European ancestry by self-report 
or principal component detection. Imputation was performed for 
Illumina 550K or NeuroChip datasets separately with the Michigan 
Imputation Server MaCH (https://imputationserver.sph.umich.edu) 
using the HRC r1.1.2016 reference panel. After imputation, datasets 
were merged, overlapping samples were removed, and SNPs with low 
imputation quality (R2 < 0.9), minor allele frequencies <1%, Hardy–
Weinberg equilibrium P values < 1 × 10−6, and those that did not overlap 
between the two datasets (missingness <99%) were excluded. The 
final genetic dataset included 5,439,477 SNPs and 1,184 individuals; of 
them, 469 had neuroimaging data available in the present study. BLSA 
data were not included in the ENIGMA consortium, which was used to 
validate findings with two-sample MRI.

For two-sample MRI, we used deCODE genome-wide significant 
plasma pQTLs as genetic instruments for candidate plasma proteins. 
The outcome (brain atrophy) was characterized using summary statis-
tics from a GWAS of longitudinal MRI-derived total brain volumes from 
the ENIGMA consortium (n = 15,640)26. Plasma pQTLs were pruned to 
remove genetic variants in linkage disequilibrium (LD) (r2 < 0.05) as 
previously described61 with 1000 Genomes Project European as the 

reference panel. If the allele information for a given pQTL was not 
reported, the LDproxy Tool (https://ldlink.nih.gov/?tab=ldproxy) was 
used to identify another SNP (r2 > 0.80) and its allele information for 
replacement; if multiple replacement SNPs for a given pQTL were iden-
tified, we used the SNP with the highest r2 value62. The random-effect, 
inverse variance-weighted estimate (for proteins with multiple genetic 
instruments) or Wald’s ratio estimate (for proteins with a single genetic 
instrumental variable) was used for primary analyses. Sensitivity analy-
ses were performed to assess the violation of MR assumptions using 
MR-Egger, weighted-median and weighted modes. Among candidate 
proteins with sufficient numbers of available instruments, heteroge-
neity between causal estimates was tested using Cochran’s Q and/or 
the Mendelian Randomization Pleiotropy Residual Sum and Outlier 
(MR-Presso) Global test, and horizontal pleiotropy assumptions were 
tested using the MR-Egger intercept.

Covariates
For BLSA analyses, baseline age (years), sex (male/female), race (white/
non-white), and education level (years) were defined based on partici-
pant reports. Non-white race includes Black, American Indian or Alaska 
Native, Chinese, Filipino, Hawaiian, Japanese, other Asian or Pacific 
Islander, and other non-white. APOEε4 carrier status (0 ε4 alleles/≥1 
ε4 alleles/missing) was defined via PCR with restriction isotyping 
using the type IIP enzyme Hhai or the Taqman method. Estimated 
glomerular filtration rate (eGFR)-creatinine was defined from blood 
samples using the CKD-EPI (Chronic Kidney Disease Epidemiology 
Collaboration) criteria. Comorbid diseases that represent potential 
confounders were defined using a comorbidity index calculated as the 
sum (score range: 0–8; converted to a percentage to account for miss-
ing data) of eight conditions: obesity, hypertension, diabetes, cancer, 
ischemic heart disease, chronic heart failure, chronic kidney disease, 
and chronic obstructive pulmonary disease63. A BMI ≥ 30 kg m−2 and 
a glycated hemoglobin (HbA1c) ≥ 6.5% (48 mmol mol−1) were used to 
define obesity and diabetes, respectively; comorbid conditions were 
identified by the study physician at each visit from medical history.

Protein characterization
Several analytical tools were used to understand the biological impli-
cations of candidate proteins. A complete description is provided in 
Supplementary Methods.

External cohorts
A complete description of external cohorts (that is, UK Biobank, Finnish 
multicohort sample, the GenS study and the ARIC study) is provided 
in Supplementary Methods.

Ethics statement
The BLSA protocol was approved by the Institutional Review Board 
of the National Institute of Environmental Health Science, National 
Institutes of Health (NIH, protocol no. 03AG0325). All participants gave 
written informed consent before participation and deidentified data 
were used for analyses. BLSA participants were not financially com-
pensated. The UK Biobank study was approved by the National Health 
Service National Research Ethics Service (protocol no. 11/NW/0382). 
All participants gave informed consent. The FPS study was approved by 
the ethics committee of the Hospital District of Helsinki and Uusimaa 
(protocol no. HUS/1210/2016), the HeSSup study was approved by the 
ethics committee of Turku University Hospital and the Finnish Popu-
lation Register Centre (protocol no. VRK 2605/410/14), and the STW 
study was approved by the ethics committee of the Finnish Institute 
of Occupational Health. All participants gave informed consent. In the 
FPS study, there were additional participants from whom only deiden-
tified register data were collected and thus no consent was required. 
The ARIC study protocols were approved by the institutional review 
boards at each participating center: University of North Carolina at 
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Chapel Hill, Chapel Hill, NC; Wake Forest University, Winston-Salem, 
NC; Johns Hopkins University, Baltimore, MD; University of Minne-
sota, Minneapolis, MN; and University of Mississippi Medical Center,  
Jackson, MS. All ARIC study participants gave written informed con-
sent at each study visit; proxies provided consent for participants who 
were judged to lack capacity.

Statistics and reproducibility
Statistical significance was defined at two-sided P < 0.05. Analyses 
were performed using R (v.4.2.2) and Stata/MP (v.17). R packages 
included nlme (v.3.1.162), data.table (v.1.15), tidyverse (v.2.0), ggplot2 
(v.3.5.1), TwoSampleMR (v.0.5.6), MendelianRandomization (v.0.6.0) 
and MR-Presso (v.1.0). No statistical methods were used to predeter-
mine sample sizes, but they were similar to those reported in previous 
publications2,8. Data distributions were visually inspected to confirm 
assumptions for statistical tests (for example, normality and equal vari-
ance), but this was not formally tested. Randomization of participants 
was not necessary and therefore not employed. Investigators were 
blinded during data collection and throughout analyses. Graphs were 
generated in R, Graphpad Prism (v.9.3.1) and the Biorender platform 
(https://www.biorender.com).

BLSA
In the BLSA, linear mixed-effect models were used to examine associa-
tions of infections with longitudinal rates of change in brain volumes. In 
addition to adjusting for intracranial volume (defined at age 70 years), 
models included the following covariates: baseline age, sex, race, 
education, APOEε4, comorbidity index, and the interactions of age, 
sex, race, education, APOEε4, and comorbidity index with time. Ran-
dom effects of intercept and time with unstructured covariance were 
included to account for the within-subject correlation of the repeated 
assessments. In addition to comparing participants with and without 
a history of a specific infection (for example, influenza versus nonin-
fluenza; primary analysis), sensitivity analyses compared participants 
with history of a specific infection with those without a history of any 
infection (for example, influenza versus no history of any infection). 
Multiple linear regression models adjusting for baseline age, sex, race, 
education, APOEε4, comorbidity index, and eGFR-creatinine were 
used to examine associations of infections with SomaScan Inflamma-
tion and Immune Response panel proteins. Sensitivity analyses were 
performed to adjust for a participant’s total concurrent frequency of 
infections observed at the time of infection diagnosis. Similar linear 
mixed-effect models were used to examine associations of candi-
date proteins with longitudinal rates of change in brain volumes and 
cognitive performance. Multiple linear regression models, similar 
to those described above, were used to examine the associations of 
candidate proteins with AD and neurodegeneration biomarkers. Sepa-
rate, linear mixed-effect models incorporated two-way and three-way 
interaction terms (infection × protein, infection × protein × time) to 
examine whether an infection diagnosis modified the association 
of immunological proteins with longitudinal brain volume change. 
Multiple linear regression models (adjusted for covariates used in the 
pQTL discovery cohort24, namely baseline age and sex) were used to 
examine associations of pQTLs with SomaScan protein levels in BLSA 
participants, and linear mixed-effect models (adjusted for the afore-
mentioned BLSA covariates) were used to examine the associations of 
pQTLs with longitudinal rates of change in brain volumes in the same 
participants. Welch’s t-test was used to compare expression levels of 
genes encoding candidate proteins (cognate genes) between AD and 
control participants across neurovascular cell types64.

UK Biobank and Finnish multicohort sample
Using Cox proportional hazards models, hazard ratios and 95% CIs were 
computed for the associations of infections with all-cause dementia, 
AD dementia, and VaD2,65. Follow-up for dementia commenced at study 

entry and continued until the first record of dementia, death, loss to 
follow-up, or end of the hospital records, whichever occurred first. For 
each group of infections, participants with a record of a relevant infec-
tion on or before study entry were considered exposed from the start 
of the follow-up. Those with their first record of a relevant infection 
during follow-up were considered nonexposed until the infection and 
exposed thereafter. Those who had no record of a relevant infection 
before the end of the follow-up were considered unexposed across the 
entire follow-up period. In the UK Biobank: model 1 was adjusted for 
age (using time since birth as the time scale), sex, and socioeconomic 
status; model 2 was additionally adjusted for BMI, hypertension, dia-
betes, and APOE genotype; and model 3 had further adjustments for 
alcohol consumption and smoking. In the Finnish multicohort sample, 
model 1 was adjusted for age (using time since birth as the time scale), 
sex, and socioeconomic status, and model 2 was additionally adjusted 
for hypertension and diabetes. Both models also took the within-cohort 
clustering of participants into account using cohort-specific baseline 
hazards. Ascertainment bias can occur if the medical attention received 
for an infection increases the probability that an underlying dementia is 
noticed and recorded, whereas reverse causation can occur if systemic 
changes related to the long preclinical phase of dementia increase 
susceptibility to infections2,66,67. To reduce the risk of these biases, 
we additionally conducted 1-, 5- and 10-year lag analyses, in which we 
excluded the first 1, 5 and 10 years of follow-up after infection, respec-
tively. P.N.S. had full access to these data and took responsibility for 
their integrity and the data analysis.

GenS
Standardized β coefficients for each protein–cognitive domain 
relationship were derived from linear mixed-effect models that cor-
rected for relatedness between individuals (that is, kinship matrix) 
and adjusted for age, sex, depression diagnosis, clinic study site, and 
sample storage time.

ARIC
Dementia risk was assessed using binary logistic regression models 
adjusted for age, sex, race center, education, APOEε4, eGFR-creatinine, 
and cardiovascular risk factors (BMI, diabetes, hypertension, and 
current smoking status). Associations with AD and related dementia 
(ADRD) biomarkers were assessed using multiple linear regression 
models adjusting for similar covariates.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data generated in the present study are included in this article (and 
Extended Data Figs. 1–8, Supplementary Figs. 1–13 and Supplementary 
Tables 1–39), available on reasonable request, or in an online public 
repository. Participants did not consent to unrestricted data sharing 
at the time of the study conducted for BLSA. Researchers are welcome 
and encouraged to request use of BLSA data for scientific projects. 
Anonymized data not published within this article may be shared 
upon request from qualified investigators for purposes of replicat-
ing procedures and findings. Researchers who wish to use BLSA data 
are encouraged to develop a pre-analysis plan that can be submitted 
for approval (https://blsa.nia.nih.gov/how-apply). BLSA proteomic 
data are publicly available via the Alzheimer’s Disease Data Initiative 
as part of the participation in the Global Neurodegeneration Prot-
eomics Consortium (https://www.neuroproteome.org). To apply and 
request access to BLSA proteomics data for purposes of reproducibil-
ity, researchers should submit a pre-analysis plan for approval (https://
blsa.nia.nih.gov/how-apply). Data, protocols and other metadata of 
the UK Biobank are available to the scientific community upon request 
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in accordance with the UK Biobank data-sharing policy (https://www.
ukbiobank.ac.uk/enable-your-research/apply-for-access). In the Finn-
ish cohort studies, linked health records require separate permission 
from the Finnish Institute of Health and Welfare and Statistics Finland 
(https://thl.fi/en/web/thlfi-en/statistics-and-data/data-and-services/
research-use-and-data-permits; https://tilastokeskus.fi/tup/mikroai-
neistot/aineistojen-yhdistaminen_en.html). ARIC proteomic data are 
available through the NHLBI Biologic Specimen and Data Repository 
Information Coordinating Center (https://biolincc.nhlbi.nih.gov/ 
studies/aric). Additional requests for clinical or proteomic data from 
individual investigators may be submitted to the ARIC steering com-
mittees and will be reviewed to ensure that data can be shared without 
compromising patient confidentiality or breaching intellectual prop-
erty restrictions. Participant-level demographic, clinical and proteomic 
data may be partially restricted based on previously obtained partici-
pant consent. Data-sharing restrictions may also be applied to ensure 
consistency with confidentiality or privacy laws and considerations 
(https://sites.cscc.unc.edu/aric).

Code availability
The statistical code programs are publicly available through GitHub 
at https://github.com/dugganmr and https://github.com/pyrysipila.
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Extended Data Fig. 1 | Annual changes in lobar white and gray matter 
volumes associated with infections. Forest plots show the associations of brain 
volume loss over time with a influenza b human herpes viruses c miscellaneous 
viral infections d upper respiratory tract infections e lower respiratory tract 
infections and F skin/subcutaneous infections in the Baltimore Longitudinal 
Study of Aging. Data are presented as beta coefficients and 95% confidence 
intervals. Pink squares reflect statistically significant associations. Adjusted 
differences in annual changes of standardized brain volumes associated with 

history of a given infection (β) were derived from linear mixed-effects models 
(n = 982) adjusted for intracranial volume, baseline age, sex, race, education, 
APOEε4, a comorbidity index (that is, obesity, hypertension, diabetes, cancer, 
ischemic heart disease, chronic heart failure, chronic kidney disease, and 
chronic obstructive pulmonary disease), and two-way interactions of covariates 
with time. Statistical significance was defined at two-sided p < 0.05 without 
adjustment for multiple comparisons. The exact p-values are presented in the 
source data files, Supplementary Table 4.
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Extended Data Fig. 2 | Dementia risk associated with infections. Forest plots 
show the associations of infections with risk of all-cause, Alzheimer’s disease, 
and vascular dementias in the UK Biobank after excluding dementia cases 
documented within a 5-yr and b 10-yr post-infection. Additional forest plots 
show the associations of infections with risk of all-cause, Alzheimer’s disease, and 
vascular dementias in the Finnish multicohort sample (the Finnish Public Sector 
study, the Health, and Social Support study, and the Still Working study) after 
excluding dementia cases documented within c 5-yr and d 10-yr post-infection. 
Columns report frequencies of the total sample, individuals exposed to a given 
infection, and individuals diagnosed with dementia. Data are presented as hazard 
ratios and 95% confidence intervals. NA indicates insufficient sample size to 

assess dementia risk. Filled in shapes reflect statistically significant associations. 
Adjusted differences in dementia risk associated with history of a given infection 
(hazard ratios) were derived from Cox proportional hazards regression models 
adjusted for age, sex, and socioeconomic status. All-cause dementia included 
participants with a diagnosis of Alzheimer’s disease dementia, vascular 
dementia, Parkinson’s disease dementia, frontotemporal dementia, and 
other, less commonly specified dementia diagnoses (for example, unspecified 
dementia). Statistical significance was defined at two-sided p < 0.05 without 
adjustment for multiple comparisons. The exact p-values are presented in the 
source data files, Supplementary Tables 7, 9.
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Extended Data Fig. 3 | Annual changes in brain volumes associated with 
candidate proteins as a function of infection. Line graphs display annual 
changes in temporal gray matter volumes associated with PRDX5 levels as a 
function of a influenza and b skin/subcutaneous infections in the Baltimore 
Longitudinal Study of Aging. To improve interpretation, the effects of PRDX5 are 
displayed based on lower/upper PRDX5 quartiles (continuous PRDX5 levels were 
used in analyses). Adjusted differences in annual changes of standardized brain 
volumes associated with history of a given infection were derived from linear 
mixed-effects models (n = 1,184) adjusted for intracranial volume, baseline age, 
sex, race, education, APOEε4, a comorbidity index (that is, obesity, hypertension, 

diabetes, cancer, ischemic heart disease, chronic heart failure, chronic kidney 
disease, and chronic obstructive pulmonary disease), and two-way interactions 
of covariates with time, as well as two-way and three-way interaction terms 
(infection*protein, infection*protein*time) to examine whether an infection 
diagnosis modified the association of protein level with longitudinal brain 
volume change. The displayed associations reflect statistically significant 
relationships. Statistical significance was defined at two-sided p < 0.05 without 
adjustment for multiple comparisons. The exact p-values are presented in the 
source data files, Supplementary Table 17.
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Extended Data Fig. 4 | Dementia risk in the Atherosclerosis Risk in 
Communities (ARIC) study. A forest plot shows odds ratio of pre-existing all-
cause dementia associated with candidate proteins. Adjusted odds of dementia 
risk were derived from binary logistic regression models (n = 4,743) adjusted for 
age, sex, race-center, education, APOEε4, eGFR-creatinine, and cardiovascular 

risk factors (BMI, diabetes, hypertension, and current smoking status).  
Pink circles reflect statistically significant associations. Data are presented as 
odds ratios and 95% confidence intervals. Statistical significance was defined 
at two-sided p < 0.05 without adjustment for multiple comparisons. The exact 
p-values are presented in the source data files, Supplementary Table 22.
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Extended Data Fig. 5 | Annual changes in brain volumes associated with 
genetic variants. Forest plots show the associations of brain volume loss over 
time with a the rs8099840 C allele (which significantly influenced levels of 
ITGB6) and b the rs75118229 C allele (which significantly influenced levels of 
TLR5) in the Baltimore Longitudinal Study of Aging. Adjusted differences in 
annual changes of standardized brain volumes associated with a given SNP were 
derived from linear mixed-effects models (n = 469) adjusted for covariates used 
in the pQTL discovery cohort (deCODE Genetics), namely intracranial volume, 
baseline age and sex and two-way interactions of age and sex with time. Pink 
triangles reflect statistically significant associations (uncorrected p < 0.05). 
Data are presented as beta coefficients and 95% confidence intervals. Statistical 
significance was defined at two-sided p < 0.05 without adjustment for multiple 
comparisons. Key: TB, Total brain; vCSF, Ventricle; GM, Gray matter; WM, White 
matter; Frontal, Frontal lobe; Temporal, Temporal lobe; Parietal, Parietal lobe; 
Occipital, Occipital lobe; FRNGM, Frontal gray matter; TEMGM, Temporal gray 
matter; PARGM, Parietal gray matter; OCCGM, Occipital gray matter; FRNWM, 

Frontal white matter; TEMWM, Temporal white matter; PARWM, Parietal white 
matter; OCCWM, Occipital white matter; SFG, Superior frontal gyrus; MFG, 
Middle frontal gyrus; IFG, Inferior frontal gyrus; MFC, Medial frontal cortex; 
OFC, Orbitofrontal gyrus; PrG, Precentral gyrus; PoG, Postcentral gyrus; SPL, 
Superior parietal lobe; SMG, Supramarginal gyrus; AnG, Angular gyrus; PCu, 
Precuneus; STG, Superior temporal gyrus; MTG, Middle temporal gyrus; ITG, 
Inferior temporal gyrus; HIP, Hippocampus; PHG, Parahippocampal gyrus; ERC, 
Entorhinal cortex; Amy, Amygdala; Fus, Fusiform gyrus; SOG, Superior occipital 
gyrus; MOG, Middle occipital gyrus; IOG, Inferior occipital gyrus; OCP, Occipital 
pole; Cun, Cuneus; ACgG, Anterior cingulate gyrus; PCgG, Posterior cingulate 
gyrus; MCgG, Middle cingulate gyrus; CN, Caudate; GP, Global pallidum; Put, 
Putamen; Thal, Thalamus. The AD-signature region volume was the combined 
volume of hippocampus, parahippocampal gyrus, entorhinal cortex, posterior 
cingulate gyrus, precuneus, and cuneus. The exact p-values are presented in the 
source data files, Supplementary Table 29.
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Extended Data Fig. 6 | Expression in all cell types. Heatmap shows expression 
levels of genes encoding candidate proteins (cognate genes) across 76 available 
cell types based on single cell transcriptomics data sourced from the Human 
Protein Atlas. *Gene encoding candidate protein was highly expressed in at least 

one CNS cell type. Dendrograms reflect hierarchical clustering using Euclidean 
distances calculated from normalized Transcripts per Million. Key: nTPM, 
normalized Transcripts per Million. The exact p-values are presented in the 
source data files, Supplementary Table 35.
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Extended Data Fig. 7 | Expression in CNS cell types. Heatmap shows expression 
levels of genes encoding candidate proteins (cognate genes) across CNS cell 
types based on single cell transcriptomics data sourced from the Human Protein 
Atlas. *Gene encoding candidate protein was highly expressed in at least one CNS 

cell type. Dendrograms reflect hierarchical clustering using Euclidean distances 
calculated from normalized Transcripts per Million. Key: nTPM, normalized 
Transcripts per Million. The exact p-values are presented in the source data files, 
Supplementary Table 35.

http://www.nature.com/nataging


Nature Aging

Article https://doi.org/10.1038/s43587-024-00682-4

Extended Data Fig. 8 | Expression in neurovascular cell types. A bar graph 
shows the frequency of genes encoding candidate proteins (cognate genes) 
differentially expressed in AD brains across 18 different neurovascular cell types. 

Results derived from Welch’s t-test that compared expression levels between AD 
and control participants. Key: AD, Alzheimer’s disease. The exact p-values are 
presented in the source data files, Supplementary Table 38.
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