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Infections have been associated with the incidence of Alzheimer disease
andrelated dementias, but the mechanisms responsible for these
associations remain unclear. Using a multicohort approach, we found that
influenza, viral, respiratory, and skin and subcutaneous infections were
associated withincreased long-term dementia risk. These infections were
also associated with region-specific brain volume loss, most commonly in
the temporal lobe. We identified 260 out of 942 immunologically relevant
proteins in plasma that were differentially expressed in individuals with an
infection history. Of the infection-related proteins, 35 predicted volumetric
changesin brain regions vulnerable to infection-specific atrophy. Several

of these proteins, including PIK3CG, PACSIN2, and PRKCB, were related to
cognitive decline and plasma biomarkers of dementia (AP,,/40, GFAP, NfL,
pTau-181). Genetic variants that influenced expression of immunologically
relevantinfection-related proteins, including ITGB6 and TLRS5, predicted
brain volume loss. Our findings support the role of infections in dementia
risk and identify molecular mediators by which infections may contribute to
neurodegeneration.

A history of severe infections has been associated with increased risk
for dementia and neurodegenerative diseases', yet the mechanisms
by whichinfections may contribute to this increased risk remain poorly
understood. Cross-sectional neuroimaging studies indicate thatacute
viraland bacterial infections can be accompanied by brain volume loss®.
Declines in gray matter thickness and total brain volume have been
reported 6 months after severe acute respiratory syndrome-related cor-
onavirus 2 (SARS-CoV-2) infection’, and we recently found accelerated
white matter atrophy among individuals with a history of symptomatic
herpeticinfections®. Conversely, brain atrophy in aviremic peopleliving

with humanimmunodeficiency virus (HIV) may not persist over time®™°
and another study found no longitudinal evidence of herpes simplex
virus-1-mediated cognitive decline or whole-brain atrophy among
carriers of familial Alzheimer disease (AD) mutations'.

Systemic infections may influence dementia risk and neurode-
generation by triggering an acute inflammatory response or reshaping
the host immune system, as in the case of chronic inflammation'. In
response to immune insults, such as pathogens and tissue damage,
changes in circulating inflammatory proteins can influence brain
health through a variety of mechanisms, including their interactions
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with target cells in the central nervous system (CNS)". For example,
elevated cytokine signaling after SARS-CoV-2 infection can result in
neuroinflammation and post-acute sequelae despite its low or absent
copy numbersinthe CNS™". Increases in plasmainflammatory markers
among cognitively normal adults are associated with reduced brain vol-
umes and cognitive performance, and greater dementia risk decades
later'*™®, Although several studies have tied select immune markers
(for example, tumor necrosis factor (TNF), interleukin (IL)-1B) to pre-
cedinginflammatory events and ensuing cognitive performance'®, it
remains unknown how infections relate to an array of immunological
proteins, and which of these proteins may predict changes in brain
regions vulnerable to infection-specific atrophy.

In the present study, we used multiple large cohorts to exam-
ine how past infection diagnoses relate to changes in brain volumes
over time and risk for all-cause dementia, AD dementia, and vascular
dementia (VaD). After investigating the associations of infection his-
tory with brain volume loss and dementia risk, we used large-scale
proteomics in the Baltimore Longitudinal Study of Aging (BLSA)
to identify a subset of immunologically relevant, infection-related
proteins in plasma that predict changes in brain regions vulnerable
to infection-specific atrophy. Several of these, including PIK3CG
(phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit y),
PACSIN2 (protein kinase C and casein kinase substrate in neurons
protein 2), and PRKCB (protein kinase C 3 type), were also associated
with longitudinal cognitive performance and plasma biomarkers of
AD pathology (amyloid beta (Ap),,/4o, phosphorylated tau (pTau)-181),
neuronal injury (neurofilament light chain (NfL)) or reactive astro-
gliosis (glial fibrillary acidic protein (GFAP)). Last, we found genetic
variants that influenced expression of immunologically relevant,
infection-related proteins, includingintegrin subunit 8 6 (ITGB6) and
toll-like receptor (TLR) 5, which also predicted brain volume loss in
the BLSAandin anindependent cohort using two-sample Mendelian
randomization (MR).

Results

Infection history is associated with brain volume loss

Using data from the BLSA, we examined standardized longitudinal
brain volume changes between participants with a history of a spe-
cificinfection and participants without a history of such an infection
(for example, influenza versus noninfluenza) (Fig. 1). Infections were
classified a priori into categories using the International Classifica-
tion of Diseases, 9th revision (ICD-9) codes’, and included influenza,
pneumonia, tuberculosis, candidiasis/fungal, miscellaneous bacterial
infections, gastrointestinal infections, sexually transmitted infections,
human herpes virus (HHV) infections, viral hepatitis, miscellaneous
viral infections, upper respiratory tract infections (URTIs), lower
respiratory tract infections (LRTIs), skin and subcutaneous infec-
tions, urinary tract infections, and ‘other’ infections (Supplementary
Table1). A total of 982 cognitively normal participants (age 65.4 years
(s.d. =149 years); 55.2% female; 66.9% white) were included in these
analyses (Supplementary Table 2 and Supplementary Fig.1). The aver-
agetimebetween the date of any infection diagnosis and baseline scan
was 16 years (median: 13.9, interquartile range (IQR) = 8.2,22.6) (Sup-
plementary Table 3). The average follow-up time for magnetic reso-
nanceimaging (MRI) analyses was 5.3 years (median:5.0,IQR=3.9,7.1)
with an average of 3.4 (s.d. =1.5) scans per participant in longitudinal
analyses (range: 2-10). Among participants with and without infections
related to brain volume changes, mean follow-up times were similar.
Less than half (42.9%; n = 421) of participants exhibited a history of no
infection diagnoses and 10.1% (n =108) exhibited a history of two or
moreinfection diagnoses. Primary regions of interest (ROIs) included
total brain, gray matter, white matter and lobar volumes, as well as an
AD-signature region volume®-*%, Follow-up analyses were performed
on lobar white/gray matter volumes if an infection was significantly
associated with a primary ROI.

Ofthe15infections examined, 6 were associated with accelerated
brain volume loss, predominantly in temporal gray and/or white mat-
ter regions (Fig. 2 and Supplementary Table 4). Follow-up analyses
revealed that influenza-related volume loss was specific to temporal
and occipital lobe gray matter (Fig. 2a and Extended Data Fig. 1a).
Consistent with published findings®, declinesin white matter volumes
linked to herpetic infections (Fig. 2b) were localized to the temporal
lobe (Extended Data Fig.1b). Accelerated atrophy in the temporal lobe
tied tomiscellaneous viral infections was specific to gray matter (Fig. 2c
and Extended DataFig. 1c). URTIs were similarly linked to accelerated
loss in total temporal lobe volume, but such decreases were not spe-
cificto either white or gray matter (Fig. 2d and Extended Data Fig. 1d).
LRTI-related volume loss in the temporal lobe was exclusive to white
matter, whereas decreases in the occipital lobe were evident in both
white and gray matter (Fig. 2e and Extended Data Fig. 1e). Along with
reduced total brain volume, the gray matter atrophy related to skinand
subcutaneous infections was localized to the temporal and occipital
lobes (Fig. 2f and Extended Data Fig. 1f). Although associations between
infection history and brain volume changes were no longer statically
significant after false recovery rate (FDR) correction, such correction
may not be appropriate because of the inherent interdependence of
the outcomes (for example, total gray matter loss is related to total
brain volume loss). A history of any of the examined infections and
total frequency of infections were not associated with volume changes.
Despite limited power, sensitivity analyses restricting the comparison
group to participants with a history of no infections (for example,
influenzaversus no history of any infection) showed consistent atrophy
linked toinfluenza, herpes viruses, miscellaneous viral infections and
LRTIs, with URTI-and skin and subcutaneousinfection-related atrophy
remaining marginally significant (P < 0.10) (Supplementary Table 4).
For primary ROIs, we did not find differences at baseline and results
were similar after adjusting for total infection frequency (Supplemen-
tary Tables 4 and 5). These findings suggest that specific infections
may be associated with accelerated brain volume loss, particularly in
temporal regions.

Infection history is a risk factor for dementia

Using UK Biobank data (n = 495,896; Supplementary Table 6 and Sup-
plementary Fig.2), we examined associations between infections linked
tobrainvolumelossinthe BLSA andrisk forincident all-cause dementia,
AD dementia, and VaD. After excluding dementia cases documented
within1year postinfection (thatis, toreduce the risk of ascertainment
and reverse causation biases) and adjusting for demographic factors
(age, sex, socioeconomic status), all infections linked to brain volume
loss in the BLSA were also associated with increased risk of all-cause
dementia (Fig. 2g). Although four out of five of these infections were
alsorelated to AD dementia and five out of five were related to VaD,
risk was particularly elevated for VaD. With few exceptions, the results
were similar after adjusting for physiological/lifestyle factors (body
mass index (BMI), hypertension, diabetes, APOE genotype, alcohol
consumption, smoking) and excluding dementia cases documented
within 5 years postinfection; however, after applying a10-year exclusion
criterion, risk for AD dementia was attenuated whereasrisk of all-cause
dementia and VaD persisted (Supplementary Table 7 and Extended
DataFig. 2a,b). Insufficient sample size prevented the assessment of
some infections with etiology-specific dementia risk (for example,
HHVs/VaD).

Using the Finnish multicohort sample (n=273,132; Supplemen-
tary Table 8 and Supplementary Fig. 3), along with similar exclusion
criteriaand demographic adjustments, we found that four out of five
infections linked to brain volume loss in the BLSA were also associ-
ated with increased risk of incident all-cause dementia, with miscel-
laneous viral infections (related to increased dementia risk in the UK
Biobank only) being the exception (Fig.2h). One and two of these three
infections were associated with elevated risk of AD dementia and VaD,
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defined as protective or pathogenic, depending on whether they predicted
preserved or reduced longitudinal brain volumes, respectively. d, Candidate
proteins were related to longitudinal performance across five cognitive domains
(the BLSA), cross-sectional performance across five cognitive domains (the GenS
study), dementiarisk (the ARIC study), and ADRD biomarkers (AP ,,/40, GFAP,

NfL, pTau-181; the BLSA and the ARIC study). e, Genetic variants that influenced
candidate protein levels were associated with changes in brain volumes in

the BLSA and an external cohort (the ENIGMA consortium). f, The biological
implications and functional relevance of candidate proteins were assessed using
avariety of complementary analytical tools and open-source databases.

All panels were created with BioRender.

respectively. Although skinand subcutaneous infections were related
to both AD dementia and VaD, risk was particularly elevated for VaD.
Results were similar after adjusting for physiological factors (hyper-
tension, diabetes) and excluding dementia cases documented within
Syears postinfection. After applying the 10-year exclusion criterion,
insufficient sample size prevented VaD assessment, but AD demen-
tia risk was mitigated whereas all-cause dementia risk persisted for
herpetic as well as skin and subcutaneous infections (Supplementary
Table 9 and Extended Data Fig. 2¢,d).

Infection history is related to an altered immune proteome
Next, we examined the plasmaimmune proteomic signature of infec-
tions linked to brain atrophy using the SomaScan v.4.1 Inflammation
and Immune Response Panel (942 proteins; Supplementary Table 10).
Atotal of 1,184 cognitively normal BLSA participants were included
in these analyses and the average time between the date of infection
diagnoses and blood sample collection was 13.8 years (median: 11.9,
IQR =4.4,18.7) (Supplementary Tables 11 and 12 and Supplementary
Fig. 4).In our proteomic sample, 63.2% (n = 749) of participants illus-
trated ahistory of anyinfection and 16.6% (n = 197) exhibited a history
of aninfection linked to longitudinal brain atrophy.

Influenza was associated with the highest number of differentially
expressed proteins (141 proteins) and miscellaneous viral infections
were associated with the fewest (21 proteins) (Fig. 3a—-f and Supple-
mentary Table 13). Among proteins uniquely associated with specific
infections, we observed lower levels of MME (aka neprilysin; primary
AP degradation enzyme) withinfluenza, higher levels of TREM2 (mye-
loid receptor) with HHVs, higher levels of IFIT3 (interferon-induced
antimicrobial peptide) with URTIs, and higher levels of ADAM17

(TREM2-sheddase) with skin and subcutaneous infections. Among
260 proteins associated with at least 1infection, many were previously
linked toinfluenza, Zika and/or SARS-CoV-2 infection(s), including 54
out of 74 (73%) measured on the commonly used SomaScan v.1 plat-
forms and 93 0f 260 (36%) measured on any SomaScan platform (Sup-
plementary Table 14). Among proteins related to multiple infections, 30
outof38wereassociated withinfluenza, including total APOE, APOE3,
APOE4 (apolipoproteins), DEFB4A (an antimicrobial peptide) and RAG1
(aVDJ recombinationactivator) (Fig. 3g). Two proteins associated with
influenza (LIF, KRT19 (which was also related to HHVs)) and one protein
associated with skin and subcutaneous infections (CTNNA3) remained
statistically significant at P < 0.05 after FDR correction. In addition to
their associations withaccelerated brainatrophy andincreased demen-
tia risk, these results indicate that a history of infection is associated
with differences inimmunologically relevant proteins, many of which
are associated with multiple infections.

Infection-related proteins predict brain atrophy
Using BLSA proteomic and longitudinal brain MRI data, we then iden-
tified which infection-related proteins were associated with changes
inbrain volumes over time in regions vulnerable to infection-specific
atrophy. A total of 977 participants were included in these analyses
(Supplementary Table 15 and Supplementary Fig. 5). The average
follow-up was 5.3 years (median: 5.0, IQR = 3.9, 7.0) with an average of
3.4 (s.d.=1.5) MR scans (range: 2-10) per participant in longitudinal
analyses.

Among the 260 proteins associated with at least one infection
(Fig.4a-f,yaxis), we identified 35 that were also associated with brain
volume changes (Fig. 4a-f, x axis), henceforthreferred to as candidate
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Fig. 2| Annual changes in brain volumes and dementia risk associated with
infections. a-f, Forest plots showing the associations of brain volume loss
over time with influenza (a), HHVs (b), miscellaneous viral infections (c), URTIs
(d), LRTlIs, (e) and skin and subcutaneous infections (f) in the BLSA. Adjusted
differences in annual changes of standardized brain volumes associated with
ahistory of agiveninfection (B) were derived from linear mixed-effect models
(n=982) adjusted for intracranial volume, baseline age, sex, race, education,
APOEe4,acomorbidity index (that is, obesity, hypertension, diabetes, cancer,
ischemic heart disease, chronic heart failure, chronic kidney disease and chronic
obstructive pulmonary disease) and two-way interactions of covariates with
time. Pink squares reflect statistically significant associations. The AD signature
regionwas the combined volume of the hippocampus, parahippocampal
gyrus, entorhinal cortex, posterior cingulate gyrus, precuneus and cuneus.
g, h, Additional forest plots showing the associations of infections with risk of
all-cause dementia, AD dementia and VaD in the UK Biobank (g) and the Finnish
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proteins. Candidate proteins were further defined as protective or
pathogenic, depending on whether they were associated with pre-
served or reduced longitudinal brain volumes, respectively. With few
exceptions (for example, DPP10 with influenza), protective proteins
were decreased among individuals with a prior infection, whereas
pathogenic proteins wereincreased (Supplementary Table 16). We also
examined whether the associations of candidate proteins with changes
inbrainvolumes were conditional on infection diagnosis using models
thatincorporated three-way interaction terms (that is, infection x pro-
tein x time) (Supplementary Table 17). Among four protective pro-
teins (PPP1IR9B, CALD1, PLEK and DAPP1) and one pathogenic protein
(PRDXS5) that decreased and increased withinfluenza, respectively, the
associations with brainvolume loss were in the expected directions and
more robust among participants with a history of influenza compared
with those without. We found similar evidence of increased effects
among individuals with past infection for one pathogenic protein
(ITGB6) elevated with LRTIs, and another (PRDX5) increased with skin
and subcutaneous infections (Extended Data Fig. 3). These results
identified 35 candidate proteins, including aset of protective proteins

thatare decreased postinfection and a set of pathogenic proteins that
are increased postinfection, by which infections may contribute to
neurodegeneration, with the effects of several proteins magnified
amonginfected individuals.

Candidate proteins are associated with cognitive decline

Next, we used data from the BLSA to determine whether levels of candi-
date proteins were associated with changes in cognitive performance
across five cognitive domains. A total of 1,233 cognitively normal par-
ticipants were included in analyses (Supplementary Tables 18 and 19
and Supplementary Fig. 6). The average follow-up time was 6.4 years
(median: 6.1,IQR = 4.0, 8.3) with an average of 4.3 (s.d. = 2.4) cognitive
assessments (range: 2-22) per participant in longitudinal analyses.
Among 13 protective proteins that were decreased postinfection, 10
were associated with preserved verbal memory performance over
time, a subset of which were also related to preserved visuospatial or
verbal fluency performance (Fig. 4g). Accelerated declines in perfor-
mance were associated with four pathogenic proteins, including one
(NAMPT) linked to decreased capacities across four cognitive domains.
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Fig.3 | Differencesinimmunological plasma proteins (942 proteins;
SomaScan Inflammation and Immune Response Panel) associated with
infectionsin the BLSA. a-f, Volcano plots showing the differences in protein
levels associated with influenza (a), HHVs (b), miscellaneous viral infections

(c), URTIs (d), LRTlIs, (e) and skin and subcutaneous infections (f). Adjusted
differences in log,(protein levels) associated with history of agiveninfection ()
were derived from multiple linear regression models (n = 1,184) adjusted for age,
sex, race, education, APOEe4, eGFR-creatinine, and acomorbidity index (that is,
obesity, hypertension, diabetes, cancer, ischemic heart disease, chronic heart
failure, chronic kidney disease, and chronic obstructive pulmonary disease).
Proteins above the dashed horizontal black line were statistically significant
(uncorrected P< 0.05), with red and blue dots indicating positive and negative

Protein level change (B) No. of infection types

associations, respectively. The FDR-corrected P-value threshold is indicated by
the dashed gray line. Red and blue labels represent proteins associated with two
or more infections, whereas black labels indicate proteins uniquely associated
withagiveninfection. g, A clustered bar graph showing proteins associated with
two or more infections. Adjusted differences in log,(protein levels) associated
with history of agiven infection were derived from multiple linear regression
models adjusted for the aforementioned covariates. The (+) and (-) indicate that
higher or lower protein levels were associated with a given infection. Statistical
significance was defined at two-sided P < 0.05 without adjustment for multiple
comparisons. The exact Pvalues are presented in the source data files of
Supplementary Table13.

One pathogenic protein (CD27) was unexpectedly related to preserved
visuospatial abilities.

We leveraged computed results from the Generation Scotland
(GenS) cohort® (n=1,065) to determine whether levels of candidate
proteins were associated with cross-sectional differences across five
cognitive domains, some of which were assessed in the BLSA using
similar tasks (Supplementary Table 20). Among the ten pathogenic
proteins increased postinfection in the BLSA and measured in GensS,
six were associated with lower cognitive performance, especially in

processing speed and nonverbal reasoning (Fig. 4h). One pathogenic
protein (TLR5) was related to lower performance across all domains,
whereas another protective protein (MYC) was surprisingly related
to lower performance in processing speed, nonverbal reasoning and
general cognition. We also examined how candidate protein levels were
related to pre-existing all-cause dementia using cross-sectional data
fromthe Atherosclerosis Riskin Communities (ARIC) study (n = 4,743;
Supplementary Table 21 and Supplementary Fig. 7). Four protective
proteins (PLEK, DAPP1, CSK and CASP3) that decreased postinfection
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inthe BLSA were significantly decreased in dementia cases in the ARIC
study, with several other protective proteins (EIF4A1, DSG1, PIK3CG,
PRKCB and LYN) showing similar trends (Extended Data Fig. 4 and
Supplementary Table 22).

Together, these findings indicate that the direction of protective
and pathogenic effects of candidate proteins are generally consist-
ent with respect to changes in cognitive performance, and suggest
that protective proteins decreased postinfection might otherwise be
important for maintaining cognitive capacities over time.

Candidate proteins are associated with dementia biomarkers
We next examined how candidate proteins related to plasmabiomark-
ers of AD pathology (AP, ratio, pTau-181) and neurodegeneration
(GFAP,NfL) using datafrom the BLSA and the ARIC study. BLSA analyses
of AP0, GFAP and NfL included 757 participants and pTau-181analy-
ses included 674 participants, all of whom were cognitively normal
(Supplementary Tables 23 and 24 and Supplementary Fig. 8). In the
BLSA, among13 protective proteins decreased postinfection, 12 were
associated with a significantly higher A, ratio (indicative of lower
corticalamyloid) and 11 with lower levels of pTau-181 (Fig. 4i). However,
two protective proteins were associated with alower AB,,,, ratio, one
of which (DPP10) was also related to increased NfL and GFAP. Of the
pathogenic proteins, we found one protein (CD70) related to a lower
AP0 ratio and elevated NfL, whereas several other proteins displayed
unexpected negative associations with NfL and/or pTau-181. Among
ten protective proteins that decreased postinfection in the BLSA and
measured in the ARIC study (n=1,419; Supplementary Tables 25 and
26 and Supplementary Fig. 9), eight were associated with lower levels
of one or more plasma biomarkers, especially a higher AP, ratio
(indicative of lower cortical amyloid) (Fig. 4j). MYC showed divergent
associations with the AB,,/,, ratio across the BLSA and the ARIC study.
Several protective proteins (IL-18, CCL24) that increased postinfec-
tion in the BLSA were related to higher NfL levels in the ARIC study,
whereas two pathogenic proteins showed unexpected negative associa-
tions with pTau-181 (HERC5, MGA). Our results suggest that protective
proteins decreased postinfection might otherwise be important for
proximally mitigating CNS amyloidosis and tau phosphorylation, two
early features of AD pathogenesis.

Candidate protein genetic variation predicts brain atrophy

Last, we determined whether genetic variants thatinfluence candidate
proteinlevelsin plasmarelateto changesinbrain volumesinthe BLSA
using protein quantitative trait loci (pQTLs) identified by the deCODE
study (n=35,559)*. Using candidate pQTLs as genetic instruments for
469 BLSA participants with SNP data” (Supplementary Table 27 and
Supplementary Fig. 10), we replicated SNP associations with plasma

protein levels for 11 of the 24 candidate proteins with available pQTLs (at
least one SNP per protein). Nearly all candidate protein genetic variants
identified inthe deCODE study and the subset replicated in BLSA were
trans-pQTLs (Supplementary Tables 28 and 29). Genetic variants associ-
ated with decreased levels of pathogenic proteins ITGB6 (rs8099840;
Fig.5a,b), TLR5(rs1403631, rs75118229; Fig. 5c,d), F7 (rs6046), HERCS
(rs406936) and MGA (rs704) were associated with preserved brain vol-
umesover time, including in regions susceptible to infection-specific
atrophy (Extended Data Fig. 5). These findings support a potentially
causal or pleiotropic link between a subset of candidate proteins and
brainatrophy. However, genetic variants that decreased levels of patho-
genic proteins HERCS (rs9332741), TLRS (rs28427460), F7 (rs762635,
rs3211727) and CD27 (rs16860992, rs1042464) were also associated
with accelerated volume loss.

To determine whether genetic variants that influence candidate
proteinlevels may also be associated with changesinbrain volumesin
anexternal cohort, we combined these candidate protein pQTLs with
summary statistics from a genome-wide association study (GWAS)
of brain volume change performed in the Enhancing Neuroimaging
Genetics through Meta-Analyses (ENIGMA) consortium (n =15,640)*
and applied two-sample MR. After pruning, 24 candidate proteins
maintained at least one pQTL instrumental variable. We found evi-
dence of a relationship between the levels of ten candidate proteins
and changesintotal brain volume (Fig. 5e). MR supported a protective
effect of two proteins (PIK3CG and CRLF2) and the pathogenic effect
another three (ITGB6, IL-10 and TLRS). Five proteins (PRDXS5, ETNK1,
CCL24, CD70 and DPP10) showed associations with brain volumes in
MR that differed from those found in the BLSA. Results for proteins
with more than two pQTLs derived using aweighted-median method
provided further support for the effects of PIK3CG, TLR5 and CD70
on brain volume changes (Supplementary Tables 28, 30 and 31 and
Supplementary Fig.11). These findings suggest distal genetic variation
modulates levels of several candidate proteinsin plasmaand that such
modulation may be mechanistically relevant to neurodegeneration.

Candidate protein characterization

Pathway analyses demonstrated that candidate proteins were enriched
for pathogen-related signaling cascades (Fig. 6a, Supplementary
Table 32 and Supplementary Figs.12 and 13) and identified an antiviral
medication (resiquimod) as their strongest upstream regulator (Fig. 6b
and Supplementary Table 33). Protein interaction analyses revealed a
robust network among candidate proteins, including co-expression
patterns (Fig. 6¢c and Supplementary Table 34). The levels of seven
cognate genes encoding candidate proteins were highly expressed in
atleast one CNS cell type, but another eleven were undetectablein CNS
cells (Fig. 6¢, Extended Data Figs. 6 and 7 and Supplementary Tables 35

Fig. 4| Candidate proteins relate to changesinbrain regions vulnerable

to infection-specific atrophy, longitudinal cognitive performance,
plasmabiomarkers and cognitive performance. a-f, Scatterplots showing
how differences in protein levels associated with specificinfections (y axis)
relate to a given protein’s longitudinal effect on brain regions vulnerable to
infection-specific atrophy (x axis) in the BLSA, specifically for influenza (a),
HHVs (b), miscellaneous viral infections (c), URTIs (d), LRTlIs, (e) and skin and
subcutaneous infections (f). Candidate proteins were defined as protective

or pathogenic, depending on their associations with preserved or reduced
longitudinal brain volumes. Differences in protein levels associated with
infections (y axis, B) were derived from linear regression models (n =1,184)
adjusted for the aforementioned covariates, and differences in brain volumes
changes related to protein levels (x axis, ) were derived from linear mixed-
effect models (n=977) adjusted for similar covariates plus intracranial volume
and two-way interactions with time. All displayed associations are statistically
significant. g, Heatmap showing associations of candidate proteins with
longitudinal cognitive performance in the BLSA. Differences in annual changes
of cognitive scores related to protein levels () were derived from linear

mixed-effect models (n =1,233) adjusted for the aforementioned covariates.

h, Heatmap showing associations of candidate proteins with cognitive
performance in the GenS cohort. Differences in cognitive scores related to
protein levels () were derived from linear mixed-effect models (n =1,065)
corrected for relatedness across individuals, age, sex, depression, study site, and
storage time. i, Heatmap showing associations of candidate proteins with plasma
biomarkersin the BLSA. Differences in biomarkers related to protein levels

(B) were derived from linear regression models (AB,,/40, GFAP and NfL, n = 757;
pTau-181, n = 674) adjusted for the aforementioned BLSA covariates plus eGFR-
creatinine. j, Heatmap showing associations of candidate proteins with plasma
biomarkers in the ARIC study. Differences in biomarkers related to protein levels
(B) were derived from linear regression models (n =1,419) adjusted for age, sex,
race center, education, APOEe4, eGFR-creatinine, and cardiovascular risk factors.
‘Statistically significant (uncorrected P < 0.05). Statistical significance was
defined at two-sided P < 0.05 without adjustment for multiple comparisons.

The exact Pvalues are presented in the source data files of Supplementary
Tables13,16,19, 20, 24 and 26. Temp. Temporal; Occ., Occipital.
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and 36). Leveraging results obtained from comprehensive postmortem
tissue collections, every cognate gene with available transcriptomic
data was differentially expressed at the RNA level in AD brains, with
another three also differentially expressed at the protein level (Fig. 6¢
and Supplementary Table 37). Among neurovascular cell types, patterns
of AD-related expression were most apparent in pericytes, oligoden-
drocytes and astrocytes (Supplementary Table 38 and Extended Data
Fig. 8). Four candidate proteins (IL-18, IL-10, TLR5, and DPP10) have

been nominated as targets for AD treatment by the AMP-AD (Acceler-
ating Medicine Partnership Program for AD) consortium (Fig. 6¢c and
Supplementary Table 37). We also found 93 medications (primarily
monoclonal antibodies) that modify levels of 13 candidate proteins,
suggesting that such drugs may have the potential for repurposingin
the treatment of neurodegeneration, particularly among individuals
atincreased risk for, or exposure to, infectious pathogens (Fig. 6c and
Supplementary Table 39).
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Fig. 5| Genetic variants that influence expression of candidate proteins
alsorelate to brain volume loss in the BLSA and anindependent cohort, the
ENIGMA consortium. a, Aboxplot showing plasma levels of ITGB6 stratified by
the rs8099840 genotype. b, Ascatterplot showing the associations of plasma
ITGB6 protein levels with rates of temporal gray matter (TEMGM) volume loss
over time stratified by rs8099840 alleles. ¢, Aboxplot of TLR5 plasmalevels
stratified by the rs75118229 genotype. d, A scatterplot showing the associations
of plasma TLRS protein levels with rates of total brain (TB) volume loss over

time stratified by rs75118229 alleles. Adjusted differences in log,(protein levels)
associated with a given SNP were derived from multiple linear regression models
(n=469) adjusted for covariates used in the pQTL discovery cohort, namely
baseline age and sex. Adjusted differences in annual changes of standardized
brain volumes associated with a given SNP were derived from linear mixed-effect
models (n = 469) adjusted for similar covariates, along with intracranial volume
and two-way interactions with time. Individual specific rates of brain volume loss
(random effect of time) are displayed. Associations displayed inb and d reflect

Misc. viral infections LRTIs URTIs

statistically significant relationships. ‘Statistically significant (uncorrected
P<0.05); "statistically significant (uncorrected P < 0.01). Box plots: median,
25-75th quartiles; whiskers: 1.5x the IQR. The pQTLs were obtained from deCODE
Genetics and SNPs in the BLSA were used for analyses. e, A forest plot displaying
the results of Mendelian randomization analyses that assessed the relationship
between genetically determined plasma protein levels and changes in MRI-
derived TB volumes. The results were derived from inverse variance-weighted
or Wald’s ratio estimates. Plasma pQTLs were obtained from deCODE Genetics
(n=35,559). Longitudinal TB volume summary statistics were obtained from an
ENIGMA consortium GWAS (n =15,640). Data are presented as 3 coefficients and
95% Cls. Red triangles indicate statistically significant associations (uncorrected
P<0.05).Statistical significance was defined at two-sided P < 0.05 without
adjustment for multiple comparisons. The exact Pvalues are presented in the
source data files of Supplementary Tables 29 and 30. Misc., miscellaneous; r.f.u.,
relative fluorescence units.
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Fig. 6 | Pathway analysis and summary of evidence. a, A canonical pathway
plot showing the top six biological pathways enriched for candidate proteins.
Values in the nodes correspond to —log(Benjamini-Hochberg corrected)

Pvalues derived from Fisher’s exact tests. Values in between nodes correspond
to frequencies of overlapping candidate proteins across respective biological
pathways, with color coding used to improve interpretability. The results

are derived from ingenuity pathway analysis (IPA). b, A radial plot showing
resiquimod, anantiviral medication and the top upstream regulator of candidate
proteins, as well as its predicted effects on specific candidate proteins. Shapes
correspond to protein type (cytokine, enzyme, transmembrane, kinase). Results
were derived from Fisher’s exact tests in IPA. ¢, An upset plot summarizing
evidence for candidate proteins, including empirical results obtained from

the current analyses, as well as protein-protein interaction networks

(STRING; predicted protein conformations are depicted in each circular node),
cell-specific expression patterns (Human Protein Atlas), expression levels

(RNA, protein) in postmortem AD brain tissue (AMP-AD), nominated therapeutic

CD27

targets (AMP-AD), and targets of known medications (Open Targets).

d, Proposed model by which infections may contribute to increased risk for
neurodegeneration. A history of specific infections is linked to increased levels of
proteins that exert deleterious effects on brain volumes over time (pathogenic)
and decreased levels of proteins associated with stable brain volumes
(protective), whichare indicated in corresponding circles for each infection
type. Protective proteins may exert their effects through alterations to
amyloidogenic pathways, as indicated by changes in plasma AB,, 4, ratio and
pTau-181, whereas pathogenic proteins may exert their effects through other
mechanisms that require further elucidation. Modulation of the plasmaimmune
proteome among individuals with a prior infection and subsequent changes
inrates of brain atrophy over time may ultimately increase risk for cognitive
decline and dementia. The exact Pvalues are presented in the source data files

of Supplementary Tables 32-39. Diff., differential; RAR, retinoic acid receptor.
Paneld was created with BioRender.

Nature Aging | Volume 4 | September 2024 | 1263-1278

1271


http://www.nature.com/nataging

Article

https://doi.org/10.1038/s43587-024-00682-4

Discussion

Using data from multiple large cohort studies, our findings illustrate
how arange of infections, namely influenza, herpes viruses, URTIs,
LRTIs, skin and subcutaneous infections and a category of miscella-
neous viral infections, are associated with increased regional brain
atrophy and risk for future dementia. We extended these findings by
identifying 35immunologically relevant plasma proteins (among 942)
that are differentially expressed after infection and associated with
changesinbrainregions vulnerable to infection-specific volume loss.
We showed that asubset of these proteins was associated with cognitive
decline and levels of AD and neurodegeneration plasma biomarkers,
including PIK3CG, PACSIN2 and PRKCB. We also found genetic evidence
linking infection-related proteins, such asITGB6 and TLR5, with brain
volumeloss, suggesting that these proteinsin particular may represent
the molecular underpinnings linking infection with subsequent neu-
rodegenerative disease (findings summarized in Fig. 6d).

Theaccelerated temporal lobe atrophy associated with infections
inour study—although not robust to multiple-comparison correction—
aligns with evidence of long-term reductions in this region resulting
fromimmuneinsults, such as surgery and chemotherapy”*%. Although
the absence of infection-related changes in other regions could be
caused by a variety of factors, we speculate that these findings could
be influenced by regional differences in brain-resident (for example,
microglia) or infiltrating immune cells (for example, T cells), varying
tropism of different pathogens across regions and cell types, and
differing exposure to systemic inflammation via unique vasculature
and blood-brain barrier conduits®*. Each infection linked to brain
volume loss in the BLSA was also associated with increased risk of
incident dementia in the UK Biobank and/or the Finnish multicohort
sample, inline with other studies'”. Our results add to existing evidence
by specifically implicating URTIS, as opposed to general respiratory
infections or LRTIs**. Consistent with previous reports®*, infections
were associated with greatest risk of VaD, followed by all-cause and
AD dementia, suggesting that postinfection immune alterations may
be especially strong drivers of cerebrovascular pathology underlying
large- and small-vessel diseases®*°. This hypothesis is supported by
evidence that circulatinginflammatory factors canimpair the blood-
brain barrier permeability, promote endothelial cell activation and
induce neuroinflammation®.

The present study extends our understanding of how infections
differentially relate to an immunological plasma proteome beyond
select inflammatory markers. We suspect that the infection-related
proteinexpressionreported here reflect a pattern oflong-termimmune
activation or systemic inflammation associated with prior infections,
given thatremote infections can alter the immune proteome through
the training or priming of the immune system'. It is also possible that
we are capturing the proteomic signature of individuals whose host
immune traits render them susceptible to infection or maladaptive
inflammatory responses®; this same host immune signature may
influence one’s vulnerability to neurodegenerative processes. This
hypothesis is supported by a recent study that linked predisposition
toautoimmunity and AD risk**. Alarge number of the infection-related
proteins that we detected have been previously associated with influ-
enza, Zikaand/or SARS-CoV-2infection(s), but we did not find increases
inC-reactive protein, TNF, IL-1B or IL-6, that is, proteins which are typi-
cally elevated as part of the acute response to infection. This finding is
consistent with theideathat we are capturing the long-termimmuno-
proteomicsignature of pastinfections with anaverage interval between
afirstreportofinfection and blood draw for proteomic measurement
of14 years. Proteins most strongly associated witha participant’sinfec-
tion status included peptides with validated antimicrobial activity
(IFIT3 (ref. 39), DEFB4A*°), products of AD risk genes (APOE", TREM2
(ref.42)) and several proteins that we recently showed to be associated
with inflammatory dietary patterns and adverse neurocognitive out-
comes (CDCP1and CCL3 (ref. 43)). The comparatively large quantity

ofinfluenza-related proteins, many of which were strongly associated
with other infections, may reflect infection-related alterations to the
immune proteome that are insensitive to infectious etiology.

The present study identified plasma proteins increased after
infection that were associated with brain atrophy (pathogenic), as
well as proteins decreased after infection that were associated with
preserved brain volume (protective). Our hypothesis that infections
may increase levels of pathogenic immune proteins was supported
and complemented by the finding that infection history, primarily
influenza, was also associated with decreases in protective proteins,
such as PIK3CG, PACSIN2 and PRKCB: proteins that have been previ-
ously implicated in neurodegeneration**~*¢, and were associated with
reduced brain volume loss, preserved cognitive capacities and lower
levels of AD pathology in our study. The pattern of infection-related
downregulation of protective proteins could reflect the secondary
consequences of attenuated host immunity induced by pathogens to
evade immune detection”. Although the direction of protective and
pathogenic effects of candidate proteins was generally consistent
with respect to brain volumes, cognitive performance and biomark-
ers of AD and neurodegeneration, the unexpected associations of
some candidate proteins (for example, protective proteinsincreased
after infection) may reflect the temporally dynamic and pleiotropic
relationship between inflammation and neurodegeneration that can
vary dependent on disease stage*®*’. Most candidate proteins that we
identified were not highly expressed in CNS cells and only six showed
associations with a biomarker of astrocyte-mediated neuroinflam-
mation (GFAP), yet the consistent detection of their differing RNA
(and even some protein) concentrations in AD brains suggests that
these proteins emanating from peripheralimmune cells may be espe-
ciallyimportant drivers of neurodegeneration.

Genetic variants modulating levels of ITGB6 and TLRS5 were
associated with brain volume loss across two independent cohorts,
suggesting that these plasma proteins may be especially relevant to
neurodegenerative mechanisms. ITGB6, the rate-limiting subunit of
the avp6 integrin heterodimer, is elevated in the context of inflam-
matory stimuli (for example, infections and wound healing) where
it is responsible for activation of the anti-inflammatory cytokine
transforming growth factor-f1 and inhibiting immune cell infiltra-
tion, indicating that the pathogenic effects of increasing ITGB6 levels
in the present study may be a sign of long-term, inadequately con-
trolled systemic inflammation after infection®*. TLR5 is anominated
therapeutic target by the AMP-AD consortium that isamong the most
conserved pattern recognition receptors, suggesting that its patho-
genic effects on brain volumes may be attributed to chronicactivation
of its downstream proinflammatory pathways (for example, nuclear
factor k-light chain enhancer of activated B cells (NF-kB), TNF)*. As
our analyses were largely limited to trans-pQTLs, distal regulation of
ITGB6 and TLRS through unknown intermediate genes may account
for the ensuing effects on brain volume (for example, transcription
factors near these trans-pQTLs that then influence expression of
the plasma proteins). However, trans-pQTLs may also affect brain
volumeloss and protein levels through independent mechanisms, sug-
gesting that the observed associations could also reflect pleiotropy.
The discordant effects for some proteins across the BLSA and two-
sample MR analyses indicate that the life-long contributions of genetic
variants encoding candidate proteins on brain volumes captured
by the ENIGMA consortium may not be adequately reflected in the
observational window of the BLSA.

Although the present study has several strengths, including the
use of longitudinal 3T MRI, amulticohort replication of dementiarisk,
state-of-the-art proteomics, and genetic techniques to support causal-
ity, it has several limitations. First, as evaluations at study visits were
used toidentify infections, inaccurate reporting or undiagnosed infec-
tions may have led to exposure misclassifications, a bias that would
probably favor null results. Second, dementia analyses in external
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cohorts leveraged infection diagnoses in hospital discharge records,
probably reflecting more severe cases compared with those reported
inthe BLSA, and with a 1-year time lag, probably captured the mixed
effects of infections on dementiarisk and increased infection vulner-
ability among individuals with prodromal or early dementia. Third,
because of the retrospective nature of our study, we were unable to
reliably control for the time between a participant’s infection and
baseline MR scan. Although the levels of many inflammatory pro-
teins—and plasma proteins more broadly—remain relatively stable
acrosstime™**, the mean 14-year gap betweeninfection documentation
and blood collection in our study suggests that the infection-related
proteomic signatures we identified may differ greatly from those seen
intheacute orearly post-acute phase of aninfection. Asaresult of the
exploratory nature of the present study, we did not adjust P values
for multiple comparisons in our primary analysis of infection-related
protein changes. Therefore, a fourth limitation is our study’s liberal
threshold (uncorrected P < 0.05) and the lack of statistical signifi-
cance for some of the results after FDR correction. Considering the
extensive size of the proteomic panel, the limited number of cases for
specific infections probably reduced the power to detect significant
effects at an FDR-corrected threshold. Although we demonstrated
that alarge proportion of our infection-associated proteins has been
externally replicated, future studies will be needed to validate associa-
tions between past infections and the expression of specificimmune
proteins. Fifth, as our study samples were predominantly of European
ancestry, our findings may not be as generalizable to individuals of
non-European ancestries. Last, although follow-up times for cases and
controls did not differ for the six infections of interest, the attritionrate
caused by death was elevated among those with a history of influenza
and LRTIs. Although it is unclear how differential attrition may have
affected our results, increased study dropout among those with a
history of certain infections would probably bias estimates toward
the null. Despite these limitations, our results show a link between
infections, accelerated brain atrophy and increased dementia risk,
while highlighting the immunological proteins by which infections
may contribute to neurodegeneration.

Methods

Study sample

The present study used data from the BLSA, an ongoing longitudinal
study designed to assess physical and cognitive measures in a cohort
of community-dwelling volunteers®. Participants received compre-
hensive health and functional screening evaluations at each study
visit (including ICD-9 documentation, blood draws and cognitive and
physical examinations), whichwere completed by licensed healthcare
professionals (for example, nurse practitioner, medical doctor). Study
visits occurred biennially until 2005, then every 1-4 years depending
on age (age <60 years, every 4 years; age 60-79 years, every 2 years;
age =80 years, every year). For asubset of participants enrolled in the
BLSA neuroimaging substudy, study visits occurred annually beginning
in1994. As aresult of the BLSA’s continuous enrollment, participants
entered the study at different times and thus varied with respect to
follow-up times. Participants were selected if they had ICD-9 codes
and MRI, SomaScanv.4.1 proteomic, Simoabiomarker, cognitive task,
or GWAS data, as well as no neurological conditions that could affect
brain structure or function (for example, strokes, seizures), and did
not exhibit cognitive impairment at baseline or follow-up (that s,
dementia, mild cognitive impairment (MCI), impaired but no MCI;
procedures for determining cognitive status are detailed elsewhere’®).

Infection diagnoses

Using ICD-9 codes documented at each study visit beginning as early as
1958, along with infection-related medical codes derived fromarecent
study using the Danish National Patient Registry', participants were
categorized accordingtothe presence (+) or absence (-) of aninfection

(Supplementary Table 1). ICD-9 codes in the BLSA were derived from
one or more potential sources ofinformation collected at enrollment
and each study visit, including medical history records, comprehen-
sive health and functional screening evaluations, and laboratory test
results. Evidence of infections was adjudicated by a central panel of
board-certified clinicians to ensure diagnostic reliability and accu-
racy. Infection categories with limited numbers of participants (<20
cases; for example, HIV, septicemia) were not considered in the current
analyses owing to limited statistical power. Such classification parallels
methodology used in recent studies, whereby the diagnosed sample
primarily represents infected participants with clinical symptoms
severe enough to report during follow-up patient healthcare consulta-
tions*®, Participants with infection diagnoses documented at or before
study enrollment or during follow-up visits (that is, a participant’s
infectionoccurred in between study visits) were considered exposed.
For positive and negative cases, the baseline visit for each participant
was the earliest visit at which the presence or absence of an infection
diagnosis was documented, respectively.

3T brain MRI

Beginning in 2009-2010, T1-weighted, magnetization-prepared,
rapid gradient echo (MPRAGE) scans were acquired on a 3-T Philips
Achieva (repetition time = 6.8 ms, echo time = 3.2 ms, flip angle = 8°,
image matrix = 256 x 256, 170 slices, pixel size =1 x1mm?, slice thick-
ness =1.2 mm). We applied a validated, Multi-atlas Region Segmen-
tation Utilizing Ensembles (MUSE) anatomical labeling method
specifically designed to achieve a consistent parcellation of brain
anatomy in longitudinal MRI studies using T1-weighted sequences®.
Analyses adjusted forintracranial volume (defined at age 70 years) and
examined standardized values of total brain, gray matter, white matter
and lobar volumes (frontal, parietal, occipital, temporal), as well as
an AD-signature region volume (that is, the combined volume of hip-
pocampus, parahippocampal gyrus, entorhinal cortex, posterior cingu-
late gyrus, precuneus and cuneus®?). If aninfection was significantly
associated with a primary region of interest, we performed secondary
analyses on lobar white/gray matter volumes. Standardized volumes
of all 48 MUSE-labeled regions were used to explore change-related
pQTLs (see below for further description of pQTL analyses).

Immune plasma proteomics

Proteins were measured withthe SOMAmer-based array method (Som-
alogic)®, with analyses restricted to the Inflammation and Immune
Response Panel which initially contained 938 SOMAmer reagents
from the larger SomaScan v.4.1 (Supplementary Table 10). Plasma
used for analyses was collected at baseline MR scan using standardized
protocols and frozen at -80 °C until analysis; a subset of samples was
collected at the time of a first positron emission tomography (PET)
scan as part of aseparate study. Samples from participants that did not
pass SomaScan quality control (QC) criteriawere excluded (n=7). An
additional two aptamers were included in analyses to capture variation
in APOE3 and APOE4 and an additional four aptamers to capture vari-
ation in two proteins (CDCP1 and ITGA11) that we recently showed to
be associated with inflammatory dietary and cognitive impairment®.
Using 102 blind duplicates, aptamers with intra-assay coefficients of
variation (CVs) > 50% were excluded (n = 2). The medianintra-assay CV
for aptamers on the Inflammation and Immune Response Panel was
4.5%. The median intra-assay CV for the aptamers measuring the 35
candidate proteins was 7%. Values were log,(transformed) and those
beyond 5 s.d. values were winsorized. EntrezGene IDs were used as
labels for corresponding aptamers.

Cognitive assessment

Five cognitive composite scores across five domains—visuospatial
ability, verbal memory, verbal fluency, executive functioning and
attention—were calculated from standardized (converted to az-score
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using the baseline mean and s.d.) and averaged individual task com-
ponents®*’. Cognitive performance was measured at baseline and
follow-up visits. As certain cognitive tasks were initiated in the BLSA
atdifferent periods accordingto protocol changes, composite scores
for participants at each visit were computed from those tasks avail-
ableat the time of assessment. Visuospatial ability was assessed using
amodified version of the Educational Testing Service Card Rotations
Test and two Clock Drawing Tests (CDTs), where participants were
asked to draw the hands and face of clocks indicating 3:25 and 11:10.
Inthe present study, acomposite score was calculated using the aver-
age of the standardized z-scores from the Card Rotations Test and the
mean of the CDTs. Verbal memory was assessed using immediate (sum
of five learning trials) and long-delay free recall from the California
Verbal Learning Test. Verbal fluency was calculated using Verbal Flu-
ency Letters (F, AandS) and Verbal Fluency Categories (fruit, animals
and vegetables). Executive function was assessed using Trail Making
Test Part B and the Digit Span Backward subset of the Wechsler Adult
Intelligence Scale (WAIS), revised. Attention was evaluated using Trail
Making Test Part A and the Digit Span Forward subset of the WAIS,
revised. Scores of Trail Making Test Parts A and B were first natural
log(transformed), z-scored, and then signs inverted so that higher
scoresreflected higher performance, consistent with the direction of
performance across other cognitive tasks.

AD and neurodegeneration biomarkers

AB,o, AB4,, GFAP, NfL, and pTau-181 concentrations were measured
using the Single Molecule Array (Simoa) Neurology 4-Plex E (N4PE) and
pTau-181(v.2) assays onthe SimoaHD-X instrument (Quanterix). Plasma
used for analyses was collected at baseline. Assays were runin duplicate
andvalues averaged. CVs were 2.8%,1.9%, 5.0%, 5.1%, and 4.4% for Ap,,,
AB.,, GFAP, NfL, and pTau-181, respectively. The AB,,/, ratio was used
inanalyses. Values for GFAP, NfL, and pTau-181 were log,(transformed)
to correct for skewedness. Biomarker values were standardized and at
athreshold of 5 s.d. values no outliers were detected.

GWA, pQTLs and MRI

The pQTLs were obtained from the deCODE Genetics GWAS of Somas-
can plasma protein levels*. For our analyses we incorporated pQTLs
that metagenome-wide significant Pvalue of 1.8 x 10~°. Genome-wide
genotyping in the BLSA was performed using the Illumina 550K or
NeuroChip platforms using standard QC procedures described pre-
viously®°. Variants were excluded for poor call rate (missing >1%),
violations of the Hardy-Weinberg equilibrium (P <1x107°), and limited
minor allele frequency (<1%). Samples were excluded for poor genotyp-
ing efficiency (missing >2%), sex inconsistencies, cryptic relatedness
(pihat >0.25), or if they were not of European ancestry by self-report
or principal component detection. Imputation was performed for
Illumina 550K or NeuroChip datasets separately with the Michigan
Imputation Server MaCH (https://imputationserver.sph.umich.edu)
using the HRC r1.1.2016 reference panel. After imputation, datasets
were merged, overlapping samples were removed, and SNPs with low
imputation quality (R*< 0.9), minor allele frequencies <1%, Hardy-
Weinbergequilibrium Pvalues <1 x107%, and those that did not overlap
between the two datasets (missingness <99%) were excluded. The
final genetic datasetincluded 5,439,477 SNPs and 1,184 individuals; of
them, 469 had neuroimaging data available in the present study. BLSA
datawerenotincluded in the ENIGMA consortium, which was used to
validate findings with two-sample MRI.

For two-sample MRI, we used deCODE genome-wide significant
plasma pQTLs as genetic instruments for candidate plasma proteins.
The outcome (brain atrophy) was characterized using summary statis-
tics froma GWAS of longitudinal MRI-derived total brain volumes from
the ENIGMA consortium (n =15,640)%. Plasma pQTLs were pruned to
remove genetic variants in linkage disequilibrium (LD) (r* < 0.05) as
previously described® with 1000 Genomes Project European as the

reference panel. If the allele information for a given pQTL was not
reported, the LDproxy Tool (https://Idlink.nih.gov/?tab=Idproxy) was
used to identify another SNP (> 0.80) and its allele information for
replacement; if multiple replacement SNPs foragiven pQTL wereiden-
tified, we used the SNP with the highest * value®”. The random-effect,
inverse variance-weighted estimate (for proteins with multiple genetic
instruments) or Wald’s ratio estimate (for proteins with asingle genetic
instrumental variable) was used for primary analyses. Sensitivity analy-
ses were performed to assess the violation of MR assumptions using
MR-Egger, weighted-median and weighted modes. Among candidate
proteins with sufficient numbers of available instruments, heteroge-
neity between causal estimates was tested using Cochran’s Q and/or
the Mendelian Randomization Pleiotropy Residual Sum and Outlier
(MR-Presso) Global test, and horizontal pleiotropy assumptions were
tested using the MR-Egger intercept.

Covariates

For BLSA analyses, baseline age (years), sex (male/female), race (white/
non-white), and educationlevel (years) were defined based on partici-
pantreports. Non-whiteraceincludes Black, AmericanIndian or Alaska
Native, Chinese, Filipino, Hawaiian, Japanese, other Asian or Pacific
Islander, and other non-white. APOEe4 carrier status (0 €4 alleles/>1
€4 alleles/missing) was defined via PCR with restriction isotyping
using the type IIP enzyme Hhai or the Tagman method. Estimated
glomerular filtration rate (eGFR)-creatinine was defined from blood
samples using the CKD-EPI (Chronic Kidney Disease Epidemiology
Collaboration) criteria. Comorbid diseases that represent potential
confounders were defined using acomorbidity index calculated as the
sum (scorerange: 0-8; converted to a percentage to account for miss-
ing data) of eight conditions: obesity, hypertension, diabetes, cancer,
ischemic heart disease, chronic heart failure, chronic kidney disease,
and chronic obstructive pulmonary disease®. ABMI =30 kg m™ and
a glycated hemoglobin (HbAlc) > 6.5% (48 mmol mol™) were used to
define obesity and diabetes, respectively; comorbid conditions were
identified by the study physician at each visit from medical history.

Protein characterization

Several analytical tools were used to understand the biological impli-
cations of candidate proteins. A complete description is provided in
Supplementary Methods.

External cohorts

Acompletedescription of external cohorts (thatis, UK Biobank, Finnish
multicohort sample, the GenS study and the ARIC study) is provided
in Supplementary Methods.

Ethics statement

The BLSA protocol was approved by the Institutional Review Board
of the National Institute of Environmental Health Science, National
Institutes of Health (NIH, protocol no. 03AG0325). All participants gave
written informed consent before participation and deidentified data
were used for analyses. BLSA participants were not financially com-
pensated. The UK Biobank study was approved by the National Health
Service National Research Ethics Service (protocol no. 11/NW/0382).
All participants gave informed consent. The FPS study was approved by
the ethics committee of the Hospital District of Helsinki and Uusimaa
(protocolno. HUS/1210/2016), the HeSSup study was approved by the
ethics committee of Turku University Hospital and the Finnish Popu-
lation Register Centre (protocol no. VRK 2605/410/14), and the STW
study was approved by the ethics committee of the Finnish Institute
of Occupational Health. All participants gave informed consent. Inthe
FPS study, there were additional participants fromwhom only deiden-
tified register data were collected and thus no consent was required.
The ARIC study protocols were approved by the institutional review
boards at each participating center: University of North Carolina at
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Chapel Hill, Chapel Hill, NC; Wake Forest University, Winston-Salem,
NC; Johns Hopkins University, Baltimore, MD; University of Minne-
sota, Minneapolis, MN; and University of Mississippi Medical Center,
Jackson, MS. All ARIC study participants gave written informed con-
sentateach study visit; proxies provided consent for participants who
were judged to lack capacity.

Statistics and reproducibility

Statistical significance was defined at two-sided P < 0.05. Analyses
were performed using R (v.4.2.2) and Stata/MP (v.17). R packages
included nlme (v.3.1.162), data.table (v.1.15), tidyverse (v.2.0), ggplot2
(v.3.5.1), TwoSampleMR (v.0.5.6), MendelianRandomization (v.0.6.0)
and MR-Presso (v.1.0). No statistical methods were used to predeter-
mine samplesizes, but they were similar to those reportedin previous
publications®®. Data distributions were visually inspected to confirm
assumptions for statistical tests (for example, normality and equal vari-
ance), but this was not formally tested. Randomization of participants
was not necessary and therefore not employed. Investigators were
blinded during datacollection and throughout analyses. Graphs were
generated in R, Graphpad Prism (v.9.3.1) and the Biorender platform
(https://www.biorender.com).

BLSA

Inthe BLSA, linear mixed-effect models were used to examine associa-
tions of infections with longitudinal rates of change in brain volumes. In
additionto adjusting for intracranial volume (defined at age 70 years),
models included the following covariates: baseline age, sex, race,
education, APOEe4, comorbidity index, and the interactions of age,
sex, race, education, APOEe4, and comorbidity index with time. Ran-
dom effects of intercept and time with unstructured covariance were
included toaccount for the within-subject correlation of the repeated
assessments. In addition to comparing participants with and without
a history of a specific infection (for example, influenza versus nonin-
fluenza; primary analysis), sensitivity analyses compared participants
with history of a specific infection with those without a history of any
infection (for example, influenza versus no history of any infection).
Multiple linear regression models adjusting for baseline age, sex, race,
education, APOEg4, comorbidity index, and eGFR-creatinine were
used to examine associations of infections with SomaScan Inflamma-
tion and Immune Response panel proteins. Sensitivity analyses were
performed to adjust for a participant’s total concurrent frequency of
infections observed at the time of infection diagnosis. Similar linear
mixed-effect models were used to examine associations of candi-
date proteins with longitudinal rates of change in brain volumes and
cognitive performance. Multiple linear regression models, similar
to those described above, were used to examine the associations of
candidate proteins with AD and neurodegeneration biomarkers. Sepa-
rate, linear mixed-effect modelsincorporated two-way and three-way
interaction terms (infection x protein, infection x protein x time) to
examine whether an infection diagnosis modified the association
of immunological proteins with longitudinal brain volume change.
Multiplelinear regression models (adjusted for covariates used in the
pQTL discovery cohort*, namely baseline age and sex) were used to
examine associations of pQTLs with SomaScan protein levels in BLSA
participants, and linear mixed-effect models (adjusted for the afore-
mentioned BLSA covariates) were used to examine the associations of
pQTLs withlongitudinal rates of change in brain volumes in the same
participants. Welch’s ¢t-test was used to compare expression levels of
genes encoding candidate proteins (cognate genes) between AD and
control participants across neurovascular cell types®*.

UK Biobank and Finnish multicohort sample

Using Cox proportional hazards models, hazard ratios and 95% Cls were
computed for the associations of infections with all-cause dementia,
AD dementia, and VaD**. Follow-up for dementiacommenced at study

entry and continued until the first record of dementia, death, loss to
follow-up, orend of the hospital records, whichever occurred first. For
eachgroup ofinfections, participants witharecord of arelevantinfec-
tion on or before study entry were considered exposed from the start
of the follow-up. Those with their first record of a relevant infection
during follow-up were considered nonexposed until the infection and
exposed thereafter. Those who had no record of a relevant infection
before the end of the follow-up were considered unexposed across the
entire follow-up period. In the UK Biobank: model 1 was adjusted for
age (using time since birth as the time scale), sex, and socioeconomic
status; model 2 was additionally adjusted for BMI, hypertension, dia-
betes, and APOE genotype; and model 3 had further adjustments for
alcohol consumption and smoking. Inthe Finnish multicohort sample,
model1was adjusted for age (using time since birth as the time scale),
sex, and socioeconomic status, and model 2 was additionally adjusted
for hypertension and diabetes. Both models also took the within-cohort
clustering of participantsinto account using cohort-specific baseline
hazards. Ascertainment bias can occur if the medical attention received
foraninfectionincreases the probability thatanunderlying dementiais
noticed and recorded, whereas reverse causation can occur if systemic
changes related to the long preclinical phase of dementia increase
susceptibility to infections***’. To reduce the risk of these biases,
we additionally conducted 1-, 5- and 10-year lag analyses, in which we
excludedthefirst1,5and 10 years of follow-up after infection, respec-
tively. P.N.S. had full access to these data and took responsibility for
their integrity and the data analysis.

GenS

Standardized [ coefficients for each protein-cognitive domain
relationship were derived from linear mixed-effect models that cor-
rected for relatedness between individuals (that is, kinship matrix)
and adjusted for age, sex, depression diagnosis, clinic study site, and
sample storage time.

ARIC

Dementia risk was assessed using binary logistic regression models
adjusted for age, sex, race center, education, APOE€4, eGFR-creatinine,
and cardiovascular risk factors (BMI, diabetes, hypertension, and
current smoking status). Associations with AD and related dementia
(ADRD) biomarkers were assessed using multiple linear regression
models adjusting for similar covariates.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Alldatageneratedinthe presentstudy areincludedinthisarticle (and
Extended DataFigs.1-8, Supplementary Figs.1-13 and Supplementary
Tables 1-39), available on reasonable request, or in an online public
repository. Participants did not consent to unrestricted data sharing
atthetime of the study conducted for BLSA. Researchers are welcome
and encouraged to request use of BLSA data for scientific projects.
Anonymized data not published within this article may be shared
upon request from qualified investigators for purposes of replicat-
ing procedures and findings. Researchers who wish to use BLSA data
are encouraged to develop a pre-analysis plan that can be submitted
for approval (https://blsa.nia.nih.gov/how-apply). BLSA proteomic
data are publicly available via the Alzheimer’s Disease Data Initiative
as part of the participation in the Global Neurodegeneration Prot-
eomics Consortium (https://www.neuroproteome.org). Toapply and
requestaccess to BLSA proteomics data for purposes of reproducibil-
ity, researchers should submita pre-analysis plan for approval (https://
blsa.nia.nih.gov/how-apply). Data, protocols and other metadata of
the UK Biobank are available to the scientific community upon request
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inaccordance with the UK Biobank data-sharing policy (https:/www.
ukbiobank.ac.uk/enable-your-research/apply-for-access). Inthe Finn-
ish cohort studies, linked health records require separate permission
from the Finnish Institute of Health and Welfare and Statistics Finland
(https://thl.fi/en/web/thlfi-en/statistics-and-data/data-and-services/
research-use-and-data-permits; https://tilastokeskus.fi/tup/mikroai-
neistot/aineistojen-yhdistaminen_en.html). ARIC proteomic dataare
available through the NHLBI Biologic Specimen and Data Repository
Information Coordinating Center (https://biolincc.nhlbi.nih.gov/
studies/aric). Additional requests for clinical or proteomic data from
individual investigators may be submitted to the ARIC steering com-
mittees and will be reviewed to ensure that data can be shared without
compromising patient confidentiality or breachingintellectual prop-
ertyrestrictions. Participant-level demographic, clinical and proteomic
datamay be partially restricted based on previously obtained partici-
pant consent. Data-sharing restrictions may also be applied to ensure
consistency with confidentiality or privacy laws and considerations
(https://sites.cscc.unc.edu/aric).

Code availability
The statistical code programs are publicly available through GitHub
at https://github.com/dugganmr and https://github.com/pyrysipila.
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Extended Data Fig.1| Annual changes in lobar white and gray matter history of agiven infection () were derived from linear mixed-effects models
volumes associated with infections. Forest plots show the associations of brain (n=982) adjusted for intracranial volume, baseline age, sex, race, education,
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intervals. Pink squares reflect statistically significant associations. Adjusted adjustment for multiple comparisons. The exact p-values are presented in the
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Nature Aging


http://www.nature.com/nataging

Article

https://doi.org/10.1038/s43587-024-00682-4

N(total) N(exp) N(dem) HR (95% Cl)
495892 412 7321 NA
Influenza 495892 412 2717 NA
495802 412 1345 NA
495887 910 7352 1.77(1.17-2.69)
Human Herpes 495887 910 2730 NA
Viruses 495887 910 1357 NA
) A 495887 3610 7316 2.02(1.60-2.54)
Miscellaneous Viral 495887 3610 2719 165(1.10-249)
Infections 495887 3610 1345 224 (1.35-372)
Ubper Respirat 495887 4338 7325  154(1.21-197)
Pper Respiraiory 495887 4338 2722 1.26 (0.81-1.95)

Tract Infections 495887 4338 1351
495763 9969 6791
495763 9969 2562
495763 9969 1208

495781 13905 7048
495781 13905 2633
495781 13905 1279

1,50 (0.85-2.64)

2.09 (1.85-2.36)
1.48 (1.18-1.87)
321 (2.54-4.06)

1.74 (1.55-1.06)
1.33 (1.07-1.66)
2.11(1.65-2.71)

Lower Respiratory
Tract Infections

Skin/Subcutaneous
Infections

5 1 2 3

Dementia Risk, UK Biobank
Hazard Ratio, 95% CI

@ All cause dementia
O Alzheimer’s disease
A Vascular dementia

C N (total) N(exp.) N (dem.) HR(95% CI)
- T B O M
niluenza 273131 899 233 NA
273130 786 3108 1.95(1.13-3.35)
Human Herpes 273130 786 1948 NA
Viruses 273130 786 233 NA

273130 4072 3108

. . 1.04 (0.63-1.73)
Miscellaneous Viral 273130 4072 1946 NA

Infections 273130 4072 234 NA
’ 273122 21659 3001 1.33 (1.06-1.66
Upper Respiratory 273122 21659 1940 ( )

1.29 (0.95-1.75)
NA

Tract Infections 273122 21659 232

273128 2801 3058 1.65 (1.20-2.27)

Lower Respiratory

. 273128 2801 1934 1.49 (0.99-2.25)
Tract Infections 273128 2801 224 NA
Skin/Subcutaneous 273127 6878 3038 1.61(1.34-1.94)
Infections 273127 6878 1906 1.33(1.03-1.71)
273127 6878 226 247 (1.434.25) _|
5

Dementia Risk, Finnish Multicohort

g Excluding diagnoses of dementia
Hazard Ratio, 95% CI

within 5-yr post-infection
Extended Data Fig. 2| Dementia risk associated with infections. Forest plots
show the associations of infections with risk of all-cause, Alzheimer’s disease,
and vascular dementias in the UK Biobank after excluding dementia cases
documented withina 5-yr and b10-yr post-infection. Additional forest plots
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Extended Data Fig. 3| Annual changes in brain volumes associated with
candidate proteins as afunction of infection. Line graphs display annual
changes in temporal gray matter volumes associated with PRDX5 levels as a
function of ainfluenzaand b skin/subcutaneousinfections in the Baltimore
Longitudinal Study of Aging. Toimprove interpretation, the effects of PRDXS5 are
displayed based on lower/upper PRDXS quartiles (continuous PRDXS levels were
used inanalyses). Adjusted differences in annual changes of standardized brain
volumes associated with history of a given infection were derived from linear
mixed-effects models (n =1,184) adjusted for intracranial volume, baseline age,
sex, race, education, APOEe4, acomorbidity index (that is, obesity, hypertension,
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diabetes, cancer, ischemic heart disease, chronic heart failure, chronic kidney
disease, and chronic obstructive pulmonary disease), and two-way interactions
of covariates with time, as well as two-way and three-way interaction terms
(infection*protein, infection*protein*time) to examine whether an infection
diagnosis modified the association of protein level with longitudinal brain
volume change. The displayed associations reflect statistically significant
relationships. Statistical significance was defined at two-sided p < 0.05 without
adjustment for multiple comparisons. The exact p-values are presented in the
source data files, Supplementary Table 17.
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Extended Data Fig. 4 | Dementiarisk in the Atherosclerosis Risk in
Communities (ARIC) study. A forest plot shows odds ratio of pre-existing all-
cause dementia associated with candidate proteins. Adjusted odds of dementia
risk were derived from binary logistic regression models (n = 4,743) adjusted for
age, sex, race-center, education, APOEe4, eGFR-creatinine, and cardiovascular

risk factors (BMI, diabetes, hypertension, and current smoking status).

Pink circles reflect statistically significant associations. Data are presented as
odds ratios and 95% confidence intervals. Statistical significance was defined
attwo-sided p < 0.05 without adjustment for multiple comparisons. The exact
p-values are presented in the source data files, Supplementary Table 22.

Nature Aging


http://www.nature.com/nataging

Article

https://doi.org/10.1038/s43587-024-00682-4

>

o o
Q Q
™) @

o
2

Effect of the rs8099840 C allele on
annual brain volume change (B)
=} o
o o
= S
p—o—

(ve]

0.050

0.025 T ] T T l

0.000

Effect of the rs75118229 C allele
on annual brain volume change (B)
—»
}_

-0.025

CESLEE L L LLE CELL S EFF IS

0\30 < 0

R &K NN @ @2 PN N NS @
O SIS
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TLRS5) in the Baltimore Longitudinal Study of Aging. Adjusted differencesin
annual changes of standardized brain volumes associated with a given SNP were
derived from linear mixed-effects models (n = 469) adjusted for covariates used
inthe pQTL discovery cohort (deCODE Genetics), namely intracranial volume,
baseline age and sex and two-way interactions of age and sex with time. Pink
triangles reflect statistically significant associations (uncorrected p < 0.05).
Dataare presented as beta coefficients and 95% confidence intervals. Statistical
significance was defined at two-sided p < 0.05 without adjustment for multiple
comparisons. Key: TB, Total brain; vCSF, Ventricle; GM, Gray matter; WM, White
matter; Frontal, Frontal lobe; Temporal, Temporal lobe; Parietal, Parietal lobe;
Occipital, Occipital lobe; FRNGM, Frontal gray matter; TEMGM, Temporal gray
matter; PARGM, Parietal gray matter; OCCGM, Occipital gray matter; FRNWM,
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Frontal white matter; TEMWM, Temporal white matter; PARWM, Parietal white
matter; OCCWM, Occipital white matter; SFG, Superior frontal gyrus; MFG,
Middle frontal gyrus; IFG, Inferior frontal gyrus; MFC, Medial frontal cortex;
OFC, Orbitofrontal gyrus; PrG, Precentral gyrus; PoG, Postcentral gyrus; SPL,
Superior parietal lobe; SMG, Supramarginal gyrus; AnG, Angular gyrus; PCu,
Precuneus; STG, Superior temporal gyrus; MTG, Middle temporal gyrus; ITG,
Inferior temporal gyrus; HIP, Hippocampus; PHG, Parahippocampal gyrus; ERC,
Entorhinal cortex; Amy, Amygdala; Fus, Fusiform gyrus; SOG, Superior occipital
gyrus; MOG, Middle occipital gyrus; I0G, Inferior occipital gyrus; OCP, Occipital
pole; Cun, Cuneus; ACgG, Anterior cingulate gyrus; PCgG, Posterior cingulate
gyrus; MCgG, Middle cingulate gyrus; CN, Caudate; GP, Global pallidum; Put,
Putamen; Thal, Thalamus. The AD-signature region volume was the combined
volume of hippocampus, parahippocampal gyrus, entorhinal cortex, posterior
cingulate gyrus, precuneus, and cuneus. The exact p-values are presented in the
source data files, Supplementary Table 29.
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Extended Data Fig. 6 | Expressionin all cell types. Heatmap shows expression one CNS cell type. Dendrograms reflect hierarchical clustering using Euclidean
levels of genes encoding candidate proteins (cognate genes) across 76 available distances calculated from normalized Transcripts per Million. Key: nTPM,
celltypes based onssingle cell transcriptomics data sourced from the Human normalized Transcripts per Million. The exact p-values are presented in the

Protein Atlas. *Gene encoding candidate protein was highly expressed in at least source data files, Supplementary Table 35.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Cohort data was derived from the BLSA study using R (4.2.2). Proteomic measurements were outsourced to the vendor, Somalogic Inc,
Boulder Co USA. Analyses were restricted to the Inflammation and Immune Response Panel from the larger SomaScan v4.1 assay.

Data analysis Analyses were performed using R version 4.2.2 (linear mixed effects models used nlme package (version 3.1.162) and Stata/MP version 17,
two-sample MR analyses were performed using the TwoSampleMR (version 0.5.6), MendelianRandomization (version 0.6.0) packages), and
MR-Presso (version 1.0). Additional packages included data.table (version 1.15), tidyverse (version 2.0), ggplot2 (version 3.5.1).LD pruning
used the PLINK clumping algorithm available through the TwoSampleMR R package (version 0.5.6). Pathway analyses were conducted using
Ingenuity Pathway Analysis (Qiagen Inc; version 01-22-01). Graphs were generated in R, Graphpad Prism (version 9.3.1), and the Biorender
platform (https://www.biorender.com; version 0.1). Code is available through GitHub at /dugganmr/duggan-infections and /pyrysipila/sipila-
infections-dementia-2.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data generated in the current study are included in this article (and its extended data figures, supplementary figures or supplementary tables), available upon
reasonable request, or available in an online public repository. Researchers are welcome and encouraged to request use of BLSA data for scientific projects.
Anonymized data not published within this article may be shared upon request from qualified investigators for purposes of replicating procedures and findings.
Researchers who wish to use BLSA data are encouraged to develop a pre-analysis plan that can be submitted for approval (https://blsa.nia.nih.gov/how-apply). BLSA
proteomic data have been deposited via the Alzheimer’s Disease Data Initiative as part of the participation in the Global Neurodegeneration Proteomics Consortium
(https://www.neuroproteome.org). Data, protocols, and other metadata of the UK Biobank are available to the scientific community upon request in accordance
with the UK Biobank data sharing policy (https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access). In the Finnish cohort studies, linked health records
require separate permission from the Finnish Institute of Health and Welfare and Statistics Finland (https://thl.fi/en/web/thlfi-en/statistics-and-data/data-and-
services/research-use-and-data-permits; https://tilastokeskus.fi/tup/mikroaineistot/aineistojen-yhdistaminen_en.html). ARIC proteomic data is available through
the NHLBI Biologic Specimen and Data Repository Information Coordinating Center (https://biolincc.nhlbi.nih.gov/studies/aric/). Additional requests for clinical or
proteomic data from individual investigators may be submitted to the ARIC steering committees and will be reviewed to ensure that data can be shared without
compromising patient confidentiality or breaching intellectual property restrictions. Participant-level demographic, clinical and proteomic data may be partially
restricted based on previously obtained participant consent. Data sharing restrictions may also be applied to ensure consistency with confidentiality or privacy laws
and considerations (https://sites.cscc.unc.edu/aric/). Datasets of transcript expression levels for cell types were obtained through the Human Protein Atlas (https://
www.proteinatlas.org/).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Our main analyses are not stratified by sex or gender as this was not the focus of our research questions. Sex (self-reported)
was used as a covariate throughout all analyses.

Reporting on race, ethnicity, or  The primary sample included 982 cognitively normal participants (age=65.4 yrs. [SD=14.9]; 55.2% female; 66.9% white).

other socially relevant Sample descriptions according to each analyses are reported in sTables 2, 6, 8, 11, 15, 18, 21, 23, 25 and 27.
groupings
Population characteristics Data were collected as part of the Baltimore Longitudinal Study of Aging, an ongoing longitudinal study designed to assess

physical and cognitive measures in a cohort of community-dwelling volunteers. Sample characteristics of the primary
analyses were as follows: age=65.4 yrs. [SD=14.9]; 55.2% female; 66.9% white. A complete description of all participants
groups and all demographic, physiological and comorbid data are provided in the supplementary tables. For more
information, see the BLSA study website (https://www.blsa.nih.gov) and references:

Shock, N.W., et al. Normal human aging: The Baltimore longitudinal study of aging, (National Institutes of Health,
Washington, D.C., 1984

Resnick, Susan M., et al. "Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain." Journal of
Neuroscience 23.8 (2003): 3295-3301.

Recruitment Community-dwelling volunteers were recruited from the city and surrounding areas of Baltimore, Maryland.

Ethics oversight The BLSA protocol was approved by the Institutional Review Board of the National Institute of Environmental Health Science,
National Institutes of Health (03AG0325). All participants gave written informed consent prior to participation and
deidentified data were used for analyses. The UK Biobank study was approved by the National Health Service National
Research Ethics Service (11/NW/0382). All participants gave informed consent. The Finnish Public Sector study (FPS) was
approved by the ethics committee of the Hospital District of Helsinki and Uusimaa (HUS/1210/2016), the Health and Social
Support study (HeSSup) was approved by the ethics committee of Turku University Hospital and the Finnish Population
Register Centre (VRK 2605/410/14), and the Still Working study (STW) was approved by the ethics committee of the Finnish
Institute of Occupational Health. All participants gave informed consent. In FPS, there were additional participants from
whom only de-identified register data were collected and thus no consent was required. ARIC study protocols were approved
by institutional review boards at each participating center: University of North Carolina at Chapel Hill, Chapel Hill, NC; Wake
Forest University, Winston-Salem, NC; Johns Hopkins University, Baltimore, MD; University of Minnesota, Minneapolis, MN;
and University of Mississippi Medical Center, Jackson, MS. All ARIC participants gave written informed consent at each study
visit; proxies provided consent for participants who were judged to lack capacity.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The sample sizes for the primary analyses and secondary, external analyses were derived based on available data in the BLSA and
corresponding cohorts (e.g., UK Biobank, ARIC). Sample sizes are similar to those reported in previous publications (e.g., Duggan et al., 2023;
Sipila et al., 2022; Walker et al., 2023). No power calculation was conducted a priori for the current analyses. With over 900 participants for
the primary analyses and for each of the external analyses, we are well-powered to detect meaningful associations between predictors (e.g.,
infection exposure) and outcomes (e.g., plasma protein abundance).

Data exclusions  The sample used for primary analyses was selected based on available International Classification of Diseases, Ninth Revision (ICD9) codes,
and MRI, SomaScan v4.1 proteomic, Simoa biomarker, cognitive task or GWAS data, as well as no neurological conditions that could affect
brain structure or function (e.g., strokes, seizures) and no cognitive impairment at baseline or follow-up (i.e., dementia, MCl, impaired but not
MCI).

Replication A direct replication of primary analyses (i.e., the effect of infection exposures on brain volume changes over time) is not possible at this point
because there are no comparable datasets (i.e., no other cohorts have both clinically-adjudicated infection exposures and longitudinal 3T MRI
scans on 900+ participants).

Randomization  Randomization was not applicable to our study design. This was an observational cohort study conducted on data that was already collected
and stored. As such, no allocation to experimental groups was performed.

Blinding 3T MRI scans were obtained by the BLSA clinical research core who were blinded to status of the sample. Protein measurement was

outsourced to the Somalogic research team who were also blinded to status of the sample. Investigators were blinded during data collection
and throughout analyses.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
n/a | Involved in the study n/a | Involved in the study
X Antibodies [] chip-seq
X Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
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Magnetic resonance imaging

Experimental design
Design type

Design specifications

structural MRI

T1-weighted magnetization-prepared rapid gradient echo (MPRAGE) scans were acquired on a 3-T Philips Achieva
(repetition time [TR] = 6.8 ms, echo time [TE] = 3.2 ms, flip angle = 8°, image matrix = 256 x 256, 170 slices, pixel size = 1
x 1 mm, slice thickness = 1.2 mm)

Behavioral performance measures Not applicable. Participants were not asked to perform tasks or behaviors during scans.

Acquisition
Imaging type(s)

Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI [ ] used

Preprocessing

Preprocessing software
Normalization
Normalization template

Noise and artifact removal

Volume censoring

structural
3T

A fully automated pipeline was used for processing structural MRIs. A multi-atlas skull stripping algorithm using a large
set of reference atlases was first applied for robust and accurate extraction of the brain tissues. In order to maintain
longitudinal consistency, the brain mask at each scan time point was combined with a probabilistic brain mask that was
propagated from the baseline image. Skull stripped T1 images were corrected for intensity inhomogeneities using FAST.
Each scan was segmented into a set of anatomical regions of interest (ROIs) using a multi-atlas label fusion method,
MUSE, which obtained state-of-the-art accuracy in independent evaluations against benchmark methods. In this
framework, multiple atlases with semi-automatically extracted ground-truth ROI labels are individually warped through
deformable registration to the target image using two different registration methods, and the warped labels are fused
into a consensus segmentation. For longitudinal scans, a pseudo-4D approach was used by propagating atlases that
were warped to the baseline image space into each follow-up time point, thus imposing a more unified registration path
before the fusion of reference labels.A convolutional deep learning based method, DeepMRSeg, was used for
segmenting a mask of the intra-cranial area. The proposed method is built upon the UNet architecture with the
convolutional layers in the network replaced by an Inception ResNet architecture. The segmentation model was trained
on a large multi-site dataset with manually verified ground-truth masks that were obtained using T1 and T2 weighted
scans. The model was applied on each raw T1-weighted image. Intra-cranial volume was estimated from the output
mask, and it was used in subsequent analysis steps for the adjustment of imaging values against inter-individual
differences in head size.

whole brain

Not used

Skull stripped T1 images were corrected for intensity inhomogeneities using FAST.
Brain volumes was measured on MPRAGE images in subject space then mapped to MNI152 using ANTs.
MNI152

The BLSA Neuroimaging Study's Clinical Core reviewed image quality, image processing procedures, and image segmentation
as a quality control check. Preprocessing was used to address motion artifacts.

None. This study used structural, rather than functional, MRI.

Statistical modeling & inference

Model type and settings

Effect(s) tested

Linear mixed-effects models were used to examine associations of infections with longitudinal rates of change in brain
volumes. In addition to adjusting for intracranial volume, models included the following covariates: baseline age, sex, race,
education, APOEe4, comorbidity index and the interactions of age, sex, race, education, APOEe4 and comorbidity index with
time. Random effects of intercept and time with unstructured covariance were included.

Associations of infections with longitudinal brain volume changes in primary analyses; secondary analyses also examined
associations of plasma proteins with longitudinal brain volume changes.

Specify type of analysis: [ | whole brain  [X| ROI-based || Both

Anatomical location(s)

Analyses examined standardized values of total brain, gray matter, white matter and lobar volumes
(Frontal, Parietal, Occipital, Temporal), as well as an AD Signature Region volume (i.e., the combined
volume of hippocampus, parahippocampal gyrus, entorhinal cortex, posterior cingulate gyrus, precuneus,
and cuneus). If an infection was significantly associated with a primary region of interest, we performed
secondary analyses on lobar white/gray matter volumes. Standardized volumes of all 48 MUSE labeled
regions were used to explore changes related pQTLs (see below for further description of pQTL analyses).
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Statistic type for inference We did not conduct voxel-level analysis.

(See Eklund et al. 2016)

Correction We did not conduct voxel-level analysis.

Models & analysis

n/a | Involved in the study
|Z| |:| Functional and/or effective connectivity
|:| Graph analysis

|Z| |:| Multivariate modeling or predictive analysis
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