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Circulating metabolites can identify biochemical risk factors related

to Alzheimer’s disease (AD). We measured plasma metabolitesin1,068
participants of Caribbean Hispanic ancestry (250 patients with AD and 818
healthy controls) across 2 cohorts and analyzed their relationship with
clinical AD, biomarker-supported AD and plasmabiomarkers (P-taul81,
P-tau217, P-tau231and AB42:AB40). Amino acid metabolism pathways were
enriched among metabolites associated with P-tau biomarkers, whereas
sialic acid and N-glycan pathways were associated with AB42:Ap40. Through
several dimensionality reduction approaches, we identified an APOE-€4
dependent relationship between lysophosphatidylcholines (lysoPCs)

carrying polyunsaturated fatty acids and biomarker-supported AD and P-tau
biomarkers. Inanindependent dataset of 110 postmortem brain tissues from
non-Hispanic white participants, lysoPCs in the brain were also associated

with AD neuropathological features. Our results show that biomarker-based

diagnostic criteriaidentified an APOE-e4 dependent association with
lysoPCs, which play a critical role in the transport of neuroprotective
polyunsaturated fatty acids into the brain, and AD.

ADisaprogressive neurodegenerative disorder characterized by cogni-
tiveand memory decline, affecting millions of individuals worldwide.
Despite extensive research, there are stillmany unanswered questions
regarding the underlying pathogenic mechanisms of AD, hindering
the development of effective therapeutic strategies; however, recent
advancementsin high-throughput omics technologies have provided a
powerful platformto explore the complex molecular landscape of AD".

Profiling the metabolome using high-resolution mass spectrom-
etry offersacomprehensive analysis of small molecules involvedin cel-
lular metabolism. It provides a unique opportunity to study metabolic
alterations associated with disease pathogenesis, thus contributingtoa
better understanding of AD at the molecular level**. Metabolomic stud-
iesin AD haverevealed arange of altered metabolic signaling. Several

studies have demonstrated dysregulation of energy metabolism path-
ways in AD®%, These include altered glucose metabolism’, reduced
glycolysis'®™, impaired mitochondrial function®*" and decreased
levels of metabolites such as glucose, lactate and pyruvate'®, Altera-
tionsin the tricarboxylicacid (TCA) cycle intermediates have also been
observed. Studies have reported lower levels of phosphatidylcholine,
phosphatidylethanolamine and sphingomyelins in AD'??, suggesting
disruptions in membrane integrity and signaling pathways as well
as altered cholesterol metabolism. Other studies have uncovered
alterations inamino acid metabolismin AD*. Reduced levels of certain
amino acids, such as tryptophan®*, phenylalanine??, tyrosine*”** and
branched-chain amino acids (valine, leucine and isoleucine)>**~** may
reflect disruptions in neurotransmitter synthesis, neuroinflammation
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and protein homeostasis. Studies have also shown alterations in the
levels of neurotransmitters such as acetylcholine, glutamate and
y-aminobutyric acid (GABA) in patients with AD***, These changes
may contribute to cognitive dysfunction and synaptic alterations in
the disease. Several groups have reported elevated levels of reactive
oxygen species and oxidative damage markers, and alterations in
antioxidant metabolites and enzymes in whole blood and brains of
patients with AD. These findings suggest arole for altered redox status
in AD pathogenesis** ™.

Given that metabolomics is the omics layer closest to the pheno-
type, it has the potential to uncover critical insights into the disease
risk and progression and potentially uncover therapeutic targets;
however, previous studies do not resolve the role of metabolites and
metabolic pathways in different stages of the disease. By integrating
metabolomics data with clinical diagnosis and plasmabiomarker levels
of AD, we aim to identify metabolic networks underlying the stages of
the disease.

Inthis study, weinvestigated the associations between metabolites
and clinical and biomarker-supported diagnosis of AD, using published
plasma P-taul81*® and P-tau217 cutoffs for diagnosis. We also investi-
gated the associations between metabolites and P-taul81, P-tau217,
P-tau231and AB42:AB40 ratio. Previous studies have shown that cer-
ebrospinal fluid (CSF) and plasma P-taul81 are elevated 15-18 years*’
before onset of clinical symptoms. Our analysis of metabolomics in
relationto clinical and plasmabiomarker-based diagnosis of AD could
shed light on early and mid-stage metabolic changes in disease.

Results

Study participants

Atotal of 717 participants were included in the study, of whom 150
(20.9%) were diagnosed with clinical AD and 567 were cognitively unim-
paired controls (Table 1). The study population had a mean + s.d. age
of 69.6 + 7.6 years, the individuals with clinical AD were slightly older,
with amean +s.d. age of 73.2 + 8.3 years), compared to controls who
had amean + s.d. age of 68.6 + 7.2 years. Two-thirds of the group were
women (65%), and this proportion was similar among patients with
AD (67%) and controls (65%). A third of the study group had at least
one APOE ¢4 allele (38%) and this proportion was only marginally
higherin AD (43%) compared to controls (36%). Among AD, 58% were
biomarker positive, while 29% of controls were biomarker positive.
The mean levels of most plasma-based AD biomarkers were higher
in AD than in controls, including P-taul81 (3.02 + 1.7 pg ml™ in AD
and 2.13 +1 pg ml™in healthy controls), P-tau217 (0.67 + 0.56 pg ml™
in AD and 0.36 + 0.24 pg ml™ in healthy controls) and P-tau231
(4.43+2.49 pgml™in AD and 3.4 +1.71 pg ml™ in healthy controls).
The mean ratio of AB42:A340 was lower in AD cases (0.049 + 0.01)
compared to healthy controls (0.053 + 0.03). A subset of the study
population (n =113) also had CSF metabolomic data generated
(Extended Data Table1). Amongthem, 35 were clinically diagnosed with
AD and 78 were controls. We also used clinical, plasma metabolomics
and biomarker data the Washington Heights, Hamilton Heights and
Inwood Community Aging Project (WHICAP) for replication, n = 351. We
used dataavailable from participants of Caribbean Hispanic ethnicity,
100 of whom were clinically diagnosed with AD and 251 were healthy
controls (Extended Data Table 2). Further, we obtained postmortem
brain tissue metabolomic data available in a subset of participants of
the Religious Orders Study and Memory and Aging Project (ROSMAP)
cohort, n=110 (Extended Data Table 3). Of them, 71 were diagnosed
with AD and had brain pathology information available.

Metabolome-wide association study

We detected 6,445 and 5,827 metabolic featuresin the HILIC* and C18~
columns, respectively. Restricting to metabolic features detected in
atleast 70% of all participants, 3,253 and 3,628 features were retained
for further analysis. Overall, 442 features were associated with at least

Table 1| Characteristics of the study population

Healthy control AD case (h=150) Overall (n=717)
(n=567)
Age, years
Meants.d. 68.6+£7.17 73.2+8.26 69.6+7.64
Median 68.0 (41.0-91.0) 73.0 (50.0-103) 69.0 (41.0-103)
(min-max)
Sex
Male 200 (35.3%) 50 (33.3%) 250 (34.9%)
Female 367 (64.7%) 100 (66.7%) 467 (65.1%)
Biomarker-supported AD (plasma P-tau181 cutoff)
<2.63 425 (75.0%) 67 (44.7%) 492 (68.6%)
22.63 114 (20.1%) 77 (51.3%) 191(26.6%)
Missing 28 (4.9%) 6 (4.0%) 34 (4.7%)
APOE-g4 allele
No g4 358 (63.1%) 86 (57.3%) 444 (61.9%)
Atleast1e4 206 (36.3%) 64 (42.7%) 270 (37.7%)
Missing 3(0.5%) 0 (0%) 3(0.4%)
Plasma P-tau181, pgml™
Meants.d. 213%1.00 3.02+1.67 2.32+1.23
Median 1.93 (0.164-8.19) 274(0.380-12.5) 2.01(0.164-12.5)
(min-max)
Missing 28 (4.9%) 6 (4.0%) 34 (4.7%)
Plasma P-tau217, pgml™
Mean+s.d. 0.359+0.240 0.665+0.566 0.425+0.360
Median 0.290(0.013-1.96)  0.417 0.311(0.013-3.00)
(min-max) (0.022-3.00)
Missing 21(3.7%) 1(0.7%) 22 (31%)
Plasma P-tau231, pgml™
Meants.d. 3.40+1.71 4.43+2.49 3.62+1.94
Median 3.07 (0.038-11.8) 3.72(0.215-14.1) 319 (0.038-14.1)
(min-max)
Missing 40 (71%) 9 (6.0%) 49 (6.8%)
Plasma AB42:AB40 ratio
Meants.d. 0.0534+0.0306 0.0493+0.01M 0.0525+0.0277
Median 0.051 0.048 0.0512
(min-max) (0.002-0.677) (0.017-0.085) (0.002-0.677)
Missing 33(5.8%) 7 (8.7%) 40 (5.6%)

one phenotype (clinical diagnosis of AD, biomarker-supported AD,
plasma levels of AB42:AB40 ratio, P-taul8l, P-tau217 and P-tau231).
Ofthose, 93 features were annotated with level 1to level 3 confidence
based on Schymanskiscale (Fig.1, Table 2and Supplementary Table1).
A network visualization of associated metabolic features and feature
classes is summarized in Fig. 2a.

Weidentified 77 metabolic features associated (false discoveryrate
(FDR) g-value < 0.05) with both clinical AD and biomarker-supported
AD. Metabolites associated with biomarker-supported AD were
enriched in pathways related to amino acid metabolism and the urea
cycle. Tryptophan metabolism and drug metabolism (other enzymes)
pathways were enriched by metabolites associated with clinical AD. The
top metabolites associated with clinical AD included phenylacetylglu-
tamine (g-value = 0.04, level 1 confidence in annotation), dodecanoyl
carnitine (g-value = 0.01, level 3) and tryptophan (g-value = 0.04, level
3). The top metabolites associated with biomarker-supported AD
included creatinine (g-value = 0.01, level 1), valyl-serine (g-value = 0.03,
level 1) and phenylacetylglutamine (g-value = 0.03, level 1). 143
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Fig. 1| Metabolic features and pathways associated with clinical AD,
biomarker-supported AD and plasma biomarkers. a, Modified Miami plot
shows features with positive 3 values above the zero line and those with negative
B values below the zero line. The dark blue points indicate features with FDR

g-value < 0.05 for data obtained for each column (C18 and HILIC). NS, not
significant. b, Metabolic pathways, with Fisher’s exact test P < 0.05, enriched by
features nominally associated with the clinical AD, biomarker-supported AD and
plasmabiomarker.

metabolites withalevel 1-3 confidence score for annotation were asso-
ciated (g-value < 0.05) with at least one measured plasma biomarker
(Fig.1and Supplementary Table 1). The top metabolites associated
with AB42:AP40 ratio included 3-oxododecanoic acid (g = 0.01, level
3) and pyridoxamine 5-phosphate (g = 6.3 x 107, level 5). Metabolic
features associated with AB42:AB40 ratio were enriched in sialic acid
metabolism, N-glycan degradation, TCA cycle, glycosphingolipid,
glycerophospholipid and galactose metabolism (Fig. 1b).
Valyl-serine, creatinine and citrulline were among the 24 met-
abolic features, annotated with level 1 confidence, that were asso-
ciated with plasma levels of P-taul81. Several lysoPCs, including
lysoPC (22:6), lysoPC (18:0) and lysoPC (20:4) were negatively asso-
ciated with plasma P-taul81 levels after multiple testing correction
(Supplementary Table 1). Metabolic features associated with P-taul81
levels were enriched in several essential amino acid metabolism path-
ways including tyrosine, arginine, proline, methionine, cysteine,

glycine, serine, threonine, alanine, aspartate, asparagine and lysine
metabolism. Other pathwaysincluded ureacycle/amino group metabo-
lism, selenoamino metabolism and glutathione metabolism (Fig. 1b).

Comparing metabolites associated with AD and its

biomarkers

Metabolites were exclusively associated with AB42:Ap40 ratio with
no overlap with metabolites associated with AD or P-tau biomarkers.
Tryptophan was associated with clinical AD, P-taul81 and P-tau217,
and phenylacetylglutamine was associated with both clinical AD and
P-taul8l. Several metabolites that derive from microbial metabo-
lism of tryptophan in the gut were associated with P-taul81 and
P-tau217,including 1H-indole-3-carboxaldehyde (level 3), indoleac-
etaldehyde (level 5) and indoleacrylic acid (level 5). Indoxyl sulfate
(level 1), a bacterial co-metabolite that is a known uremic toxin®°,
was associated with P-taul81, P-tau217 and P-tau231 (Fig. 2c). Other
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Table 2 | Plasma metabolic features associated with outcomes investigated using an MWAS framework

Outcome m/z Time(s) Annotation ID ESI Delta Adduct B FDR Pesk Pathway
score ppm g-value
2631034 297 Phenylacetylglutamine 1 - 1.25 Std 0.19 0.047 Conjugation of
phenylacetate and
Clinical AD glutamine
342.2649 1091 Dodecanoyl carnitine 3 - 023 M-H -0.21 0.014 Fatty acid oxidation
204.0859 35.6 Tryptophan 3 - 049 M-HI[-1] -0.84 0.047 0.24  Tryptophan metabolism
114.0663 335 Creatinine 1 + 096 Std 113 0.016 0.32 Urea cycle/amino group
metabolism
Biomarker- 2031038 271 Valyl-serine 1 - 034 Std -0.74 0.031 Secondary metabolite,
supported dipeptide
AD
263.1034 297 Phenylacetylglutamine 1 = 1.25 Std 0.21 0.031 Conjugation of
phenylacetate and
glutamine
114.0663 33.5 Creatinine 1 + 096 Std 0.54 22x10™%  0.32 Urea cycle/amino group
metabolism
2031038 271 Valyl-serine 1 - 034 Std -0.32 0.002 Secondary metabolite,
P-tau181 . -
dipeptide
149.0455 301 Arabinose 1 - 034 Std 0.26 0.002 Pentose phosphate
pathway
114.0663 335 Creatinine 1 + 096 Std 0.53 53x10*  0.32 Urea cycle/amino group
metabolism
2291545 56.2 Leucyl-proline 1 + 073 Std 0.28 0.003 Secondary metabolite,
P-tau217 . :
dipeptide
153.0194 32.2 3,5-Dihydroxybenzoic acid 1 - 044  Std 017 0.016 Secondary metabolite,
dietary source
114.0663 33.5 Creatinine 1 + 096 Std 0.54 44x10™  0.32 Urea cycle/amino group
metabolism
P-tau231 K .
130.051 30.3 4-Hydroxyproline 1 - 0.26  Std 0.54 0.001 Glyoxylate metabolism
160.0615 36.7 2-Aminoadipic acid 1 - 002 Std 0.48 0.001 Lysine metabolism
2131497 242.2 3-Oxododecanoic acid 3 - 038 M-H -019 0.013 Fatty acid metabolism
AB42:AB40  231.0544 60.3 Pyridoxamine 5-phosphate 5 + 385 M+H-H,O0 0.08 0.011 Vitamin B6 metabolism
382.948 591 Unknown + 0.15 55x10™

m/z, mass-to-charge ratio; time, retention time; ID score, confidence in annotation based on Schymanski scale (1 being the highest and 5 the lowest); ESI, electrospray ionization; Delta ppm,
mass difference in parts per million; pcs;, correlation coefficient for metabolite measured in CSF (this was performed in a subset of participants, n=113); Adduct, predicted adduct ions; M+H,
protonation; M-H, deprotonation; Std, identity confirmed using chemical standard. See supplementary tables for complete list of features associated at FDR of 5%.

metabolites associated with all three P-tau biomarkers included
creatinine (level 1), leucyl-proline (level 1) and 2-aminoadipic acid
(level1). LysoPC (20:4) (level 3), with an arachidonic acid side chain,
and aphosphatidylcholine (16:1, 22:6) (level 3), with palmitoleic acid
and docosahexaenoic acid side chains, were associated with both
P-taul81and P-tau217 (Fig. 2c).

Co-abundance analysis of metabolites

We clustered co-abundant metabolic features using weighted gene
coexpression network analysis (WGCNA) independently on metabolic
features detected in the HILIC and C18 columns. WGCNA identified 18
and15 co-abundant metabolic modulesin the HILIC and C18 columns,
respectively (Supplementary Fig. 4). We then tested the association
of each module with clinical and biomarker-supported AD and lev-
els of the plasma biomarkers (Fig. 3a and Extended Data Fig. 1a). The
purple module was negatively associated with biomarker-supported
AD and P-taul81. The green-yellow module was negatively associated
with P-taul81, P-tau217 and P-tau231 levels, and the black module
was negatively associated with P-taul81 and P-tau217. The salmon
module was positively associated with biomarker-supported AD,
P-taul81, P-tau217 and P-tau231 levels. Enrichment analysis of the
metabolites co-abundantin the purple module found that fatty amides
(g-value =5 x107%), glycerophosphocholines (g-value = 5 x 10) and
sphingoid bases (g-value = 5 x107%) were over-represented in the

modaule (Fig. 3b). Glycerophosphocholines (g-value = 3 x 102?) were
also significantly enriched in the green-yellow module, while amino
acids and peptides were the top group over-represented in the black
(g-value =1.31 x107") and salmon modules (9.22 x 107).

We thenidentified the hub metabolites that were most connected
to other metabolites in the purple, salmon, green-yellow and black
modules (Fig. 3c and Supplementary Table 2). Notably, three lysoPCs
were hub metabolites in the purple module and all of them were more
abundant in biomarker-negative participants compared to individu-
als who were defined as having biomarker-supported AD (Fig. 3d).
Phosphatidylcholines and lysoPCs were also the hub metabolites in
the green-yellow module (Fig. 3f and Supplementary Table 2) and were
also more abundantin biomarker-negative participants compared to
those with biomarker-supported AD. Creatinine was the most con-
nected metabolite in the salmon module and was higher in those with
biomarker-supported AD compared to biomarker-negative partici-
pants (Fig. 3e).

LysoPCs are associated with AD biomarkers

Both the metabolome-wide association study (MWAS) and
WGCNA detected lysoPCs to be significantly associated with
biomarker-supported AD, P-taul81, P-tau217 and P-tau231 levels.
Thus, we tested the joint association of all lysoPCs with clinical and
biomarker-supported AD by constructinglysoPC principal components
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Fig. 2| Metabolic features associated with AD and AD biomarkers. a, Network
plot showing connections between metabolites (colored by their super class
membership) and outcomes (labeled). Solid lines indicate positive associations,
and dotted lines indicate negative associations. b, Overlap in features associated
with the three P-tau biomarkers and clinical AD at FDR g-value < 0.05 for each
column, C18”and HILIC". ¢, Levels of metabolites related to the microbial
metabolism of tryptophan that were associated with all outcomes in clinical
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492 controls).d, Levels of alysoPC (20:4) and a phosphatidylcholine (16:1; 22:6)
associated with all P-tau biomarkersin clinical and biomarker-supported AD.

e, Levels of amino acid metabolites associated with P-tau biomarkers in clinical
and biomarker-supported AD. For c-e, the violin plot shows the distribution of
thelevels, the point indicates the median, the line below the point indicates the

25th percentile and the line above the point indicates the 75th percentile.

(PCs). We constructed PCs for the 47 metabolic features annotated as
lysoPCs (21 unique lysoPCs; Supplementary Table 3) detected by HILIC
and C18 columns and found that the first five PCs explained ~65% of
the variance (Supplementary Fig. 5). We tested the association of the
first five PCs together in a regression model adjusted for age and sex
(Fig. 4a). PC1 was negatively associated with biomarker-supported
AD whereas PC5 was positively associated with clinical diagnosis of
AD. We found a significant interaction between APOE ¢4 allele car-
rier status and PC4, with clinical AD (P for interaction = 0.03) and
biomarker-supported AD (P for interaction = 0.001), and performed
an analysis stratified by APOE €4 allele status. We found the same pat-
tern of APOE-e4-specificlysoPC association when we used the P-taul81,
P-tau217 and P-tau231levels asthe outcome (Fig. 4b). There was no sig-
nificantinteraction between lysoPCs and APOE €4 allele carrier status
when considering the association between each lysoPC, individually,
and clinical or biomarker-supported AD (Extended Data Fig. 2).

The stratified analysis (Fig. 4a) revealed that PC1 was protective
of biomarker-supported AD and PC5 was risk-inducing for clinical
AD only in APOE €4 noncarriers, whereas the risk conferred by PC2
and PC4 were restricted to APOE €4 carriers. We observed similar
results when biomarker-supported AD was defined using P-tau217
(Extended DataFig.3). We investigated the loadings of the lysoPCs on
PCs1,2,4and5and particularly focused onlysoPCs that have polyun-
saturated fatty acid (PUFA) side chains (Fig. 4c, Supplementary Fig. 6
and Extended DataFig. 4c). PC1 had positive loadings fromalllysoPCs,
which indicated that all lysoPCs were negatively associated with

biomarker-supported AD, particularly among APOE €4 noncarriers.
PC4 had negative loadings from lysoPCs that carry docosahexaenoic
acid (DHA; lysoPC (22:6)) and arachidonic acid (AHA; lysoPC (20:4)).

LysoPCs and polysaturated fatty acids are correlated in

plasma and CSF

We tested the correlation between lysoPC PCs 1, 2, 4 and 5 with circu-
lating PUFAs in CSF and in plasma (annotated at level 1 confidence),
stratified by APOE €4 allele status (Extended Data Figs. 4a and 5). PC1
was positively correlated with circulating levels of eicosapentaenoic
acid (EPA) and AHA, in both APOE €4 carriers and noncarriers. PC2
was negatively correlated with circulating levels of EPA in carriers and
noncarriers and negatively correlated with AHA only among carriers of
atleast one APOE €4 allele. It was positively correlated with arachidic
acid, linolenic acid (precursor to EPA and DHA) and octadecadienoic
acid only among APOE €4 noncarriers. PC4 was negatively correlated
with most measured plasma PUFAs, among carriers and noncarriers,
and negatively correlated with CSF levels of DHA. PC5 was negatively
correlated with plasma EPA and positively correlated with plasma AHA
in carriers and noncarriers and it was also negatively correlated with
linolenic acid (precursor to EPA and DHA) only among those with no
APOE-¢4 allele (Extended Data Fig. 5), in which group PC5 was associ-
ated withanincreased risk of AD. We also found that lysoPCs that carry
EPA and DHA were positively correlated with the CSF levels of their
respective PUFAs, whereas this correlation for AHA was negligible
(Extended DataFig. 5b). This indicates that lysoPCs that are known to
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Fig. 3 | Results from coexpression analysis using datafrom the HILIC column.
a, Volcano plot shows metabolic modules significantly associated with clinical
andbiomarker-supported AD, and AD biomarkers using Bonferroni adjusted
Pvalue.b, Chemical classes enriched by module member metabolic features
present at a proportion of at least 6.5%. Other, not within any of the above classes
of metabolites. c-g, The levels of the top three hub metabolites, based on

eigengene-based connectivity, of the yellow (c), purple (d), salmon (e), green-
yellow (f) and black (g) module in clinical (n = 150 cases and 567 controls) and
biomarker-supported AD (n =191 cases and 492 controls) are also shown. In plots
c-g, the violin plot shows the distribution of the levels, the point indicates the
median, the line below the pointindicates the 25th percentile and the line above
the pointindicates the 75th percentile.

Nature Aging | Volume 6 | January 2026 | 221-234

226


http://www.nature.com/nataging

Article

https://doi.org/10.1038/s43587-025-01025-7

a Biomarker-
supported AD

Biomarker- Clinical Clinical
supported AD AD AD

Biomarker-
supported AD

Clinical C

o
=]
o
Q
&)
o
Q
R
o
o

A 22:6-LysoPC_a3

Overall No &4 allele 21edallele Overall No g4 allele

21e4allele

22:6-LysoPC_a2
22:6-LysoPC_al

P=0.0137 P=0.0208
—— ——

PC5

P=0.0151
—_——

pPC4

PC3

P=0.0275
——

PC2 T

£=0,0051 P=0.0013
- -

PC1 —— - -

—-

[ase]

22:5-LysoPC_a2
22:5-LysoPC_al
22:4-LysoPC_al

I -llll a

20:5-LysoPC_al
20:4-LysoPC_a3
20:4-LysoPC_a2
20:4-LysoPC_al
20:3-LysoPC_al

20:1-LysoPC_al

(0740)

p-18:0-LysoPC_a2
p-18:0-LysoPC_al
18:4-LysoPC_al
18:3-LysoPC_al
18:2-LysoPC_a4
18:2-LysoPC_a3
18:2-LysoPC_a2
18:2-LysoPC_al
18:1-LysoPC_a3

8L0

0.8 10 1214 0.8 10 1214 0.8 10 1214

Odds ratio

0.8 10 1214 0.8 10 1214

0.8 10 1214

18:1-LysoPC_a2
18:1-LysoPC_al
18:0-LysoPC_Std
18:0-LysoPC_a6

b P-tau181

P-tau181 P-tau181 P-tau217 P-tau217 P-tau217 P-tau231 P-tau231

P-tau231 18:0-LysoPC_a5

Overall No g4 allele | | 14 allele Overall No g4 allele | | 14 allele Overall No £4 allele

18:0-LysoPC_a4

21¢e4 allele
18:0-LysoPC_a3

P=0.0166 P=0.0065
- ——

PC5 g

P=0.0278 £=0.0249 P=00335 £=0.0017 Pz3x10" P=0.0233
- - - —— -

PC4 -

PC3 o - o - .

pPC2 . - - - - - - -

P=5x10" P=7x10" P=0.0166 P=0.0089 P=0.0033
. ) . . .

18:0-LysoPC_a2
18:0-LysoPC_al

17:0-LysoPC_al ]

o]

p-16:0-LysoPC_a3
p-16:0-LysoPC_a2
p-16:0-LysoPC_al
16:1-LysoPC_a2
16:1-LysoPC_al
16:0-LysoPC_a6
16:0-LysoPC_a5
16:0-LysoPC_a4
16:0-LysoPC_a3
16:0-LysoPC_a2
B 16:0-LysoPC_al

P=0.001
——

-
910

15:0-LysoPC_a2
15:0-LysoPC_al

—
- 14:0-LysoPC_a2 ] Il
10:0-LysoPC_al i il i ]

oL p1q | SLO

H O H L O L P O P P 0 P P 0O PP 0O PP O PP O PLSHLO®
0'0 0'0 0'0 0'0 ,09 0'0 09 0'0 09 0'0 09 0'0 09 0'0 ,09 0'0 ,0g> 0'0

Estimate
Fig. 4 |Lysophosphatidylcholines associated with clinical AD and biomarker-
supported AD. a, The odds ratio (point) and 95% Cl (lines around the point) of
PC1-5inrelation to biomarker-supported AD (n =191 cases and 492 controls) and
clinical AD (n =150 cases and 567 controls) estimated using logistic regression

SRS N OND? P O Y e O
0_0,00,0.0, Q O 070" 09 Q70707070 [SREe)

0
<0

Loadings

adjusted for age and sex. b, The results from analysis stratified by APOE €4 allele
status. ¢, The loadings of lysoPCs (all adducts detected, adduct number indicated
by ‘a’ followed by adduct number for the lysoPC) on the four PCs (PC1, PC2, PC4
and PC5) significantly associated with biomarker-positive status or clinical AD.

transport long-chain PUFAs into the central nervous system®' might
play arolein AD biology in an APOE €4-dependent way.

Replication of LysoPCs association with AD biomarkers in the
WHICAP cohort

To validate and generalize our findings, we examined the association
between lysoPCs and clinical and biomarker-supported AD in partici-
pants of Caribbean Hispanic ethnicity in the WHICAP cohort that reside
innorthern Manhattan, New York and have different exposure profiles
from the Genetic Studies of Alzheimer’s disease in Caribbean Hispan-
ics (EFIGA) residents in the Dominican Republic. We used identical
methods and parameters for high-resolution mass spectrometry-based
metabolomics data in 351 plasma samples to identify and test asso-
ciation of lysoPCs with clinical AD and biomarker-supported AD. We
detected 45 metabolic features annotated as lysoPCs (25 unique, and
20 features were overlapping with the EFIGA cohort) that were used to
generate PCs. We then tested the association of the first five PCs with
clinicaland biomarker-supported AD, stratified by APOE €4 allele car-
rier status (Extended DataFig. 6). PC3 had asignificantinteraction with
APOE ¢4 allele carrier status (P for interaction = 0.04). We found that
PC1, with positive loadings fromall lysoPCs investigated, was negatively
associated with biomarker-supported AD and this effect was only seen
among those withno APOE-¢e4 allele, similar to our finding in the EFIGA
cohort.PC3, with large negative loadings from lysoPCs with AHA, was
negatively associated with clinical AD among those with no APOE-e4
allele. PC5, with positive loadings from lysoPC with DHA, was negatively
associated with biomarker-supported AD among APOE-g4 noncarri-
ers. We examined the similarity of the loadings on PCs 1-5 for the 37

lysoPCs detected in both the cohorts, EFIGA and WHICAP, and found
that loadings on PC1 were highly correlated (spearman rho=0.92,
P<2.2x107%; Supplementary Fig. 7).

LysoPC replication in the ROSMAP cohort

To further validate our results and determine the effect of lysoPCs on
disease stage, we examined the association between lysoPCs and AD
pathology in the ROSMAP cohort. We used the metabolomics data
derived from110 brain samples in the ROSMAP cohort, collected post-
mortem, to test the association between lysoPCs and phosphatidyl-
cholines with pathological definition of AD, amyloid burden, tangle
density and global pathology. There were 14 lysoPCs and 13 phos-
phatidylcholines measured in the ROSMAP cohort. We constructed
PCs from the lysoPCs and tested the association of the first five PCs
with AD pathology (Extended Data Fig. 7). We identified that PC3 was
negatively associated with increased tangle density, global pathology
and a pathological diagnosis of AD. Of the lysoPCs carrying PUFAs, we
only detected AHA in the ROSMAP cohort. PC3 had positive loadings
from AHA, although not an important contributor to PC3. Three PCs
were negatively associated with amyloid burden and tau tangles imply-
ing that lysoPCs and PCs were reduced in the postmortem AD brains
(Supplementary Table 4). These findings are consistent with plasma
lysoPCs observation in the EFIGA cohort.

Discussion

We investigated the association of metabolites with plasmabiomark-
ers and clinical diagnoses in a cohort of Caribbean Hispanic individu-
als to identify metabolic pathways associated with hallmarks of AD
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pathology. Specifically, we compared metabolic pathways enriched in
clinical AD and biomarker-based diagnosis of AD. As plasma biomarkers
change several years before clinical symptoms*’, comparing clinical and
biomarker-based diagnosis could clarify pathways that precede clinical
manifestation of disease, potentially identifying early interventions.
Two of the most notable findings in our study were that metabolite
profiles differed when a clinical diagnosis was used versus a validated
plasmabiomarker-based diagnosis and that lysoPCs, which have been
previously associated with AD**?, have an APOE €4 dependent risk of
ADinourunbiased approachinaHispanic population. This finding was
replicated in aseparate cohort of Caribbean Hispanic and non-Hispanic
white individuals and in plasma and postmortem brain tissue.

LysoPCs were associated with quantitative levels of plasma
P-taul8l, P-tau217 and with biomarker-supported AD (defined by
P-taul81). Co-abundance analysis revealed associations between
P-taul81 and P-tau217 and metabolic modules that harbor several
lysoPCs as hub metabolites, potentially suggesting an important
role in disease pathogenesis. Several studies have reported lower
levels of lysoPCs in the brains, CSF and plasma of patients wth AD¥¢*,
These changes often involve a decrease in levels of lysoPC species,
particularly those that bind anti-inflammatory PUFAs, in patients
with AD. Some lysoPC species have been implicated in promoting
neurotoxicity and inflammation® %, They can induce oxidative stress,
impair mitochondrial function and activate immune cells, leading to
neuronal damage and death. LysoPCs are also involved in dysregula-
tion of lipid metabolism. The breakdown of phosphatidylcholine,
a major lipid component of cell membranes, can generate lysoPCs.
Disruptions in enzymes involved in this process, such as phospho-
lipase A2 (PLA2), have been observed in AD and may contribute to
altered lysoPC levels®®7°, Further validation in the frontal cortex
from postmortem brain tissue in ROSMAP strengthens the biologi-
cal relevance of the lysoPCs in AD etiology. Further research using
animal models should explore this possible mechanism behind the
observed association.

We observed a differential effect of lysoPCs within APOE €4 car-
riers and noncarriers. The risk conferred by lysoPCs was restricted to
APOE 4 carriers, whereas the protective effects were significant within
APOE g4 noncarriers. We previously showed significant differencesin
metabolic profiles in a small multiethnic AD cohort and these differ-
ences remained when the analysis was restricted to APOE €4 carriers’’.
APOE €4 carriers tend to exhibit higher levels of specific lysoPC species,
including DHA and AHA in CSF, plasma and brain tissue compared to
noncarriers’>”. Elevated levels of certain lysoPCs in APOE €4 carriers
have been linked to increased AP deposition, tau phosphorylation
and neuroinflammation. In our study, we observed distinct patterns
of lysoPC alterations in APOE €4 carriers compared to noncarriers.

We also found that metabolism of tryptophan (an essential amino
acid) was associated with clinical and plasma P-tau231. Urea cycle/
amino group metabolism was associated with biomarker-supported
AD and all P-tau biomarkers. Tyrosine metabolism was associated with
biomarker-supported AD, P-taul81 and P-tau217. Limited research
has focused on measuring tyrosine levels specifically in the brains
of patients with AD but administering tyrosine orally can enhance
memory and cognitive function’. Tryptophan is an essential amino
acid and a precursor for the synthesis of serotonin, a neurotransmitter
involved in mood regulation and cognition. Alterationsin tryptophan
metabolism mayimpact serotoninavailability in the brain and contrib-
ute to AD pathophysiology, particularly Ap pathology**. AB accumula-
tion can disrupt tryptophan metabolism, leading to altered levels of
tryptophan and its metabolites. Conversely, tryptophan metabolites,
suchaskynurenicacid, canaffect AB aggregation and clearance, poten-
tially influencing disease progression””’%, Of note, tryptophan levels
in plasma were associated with clinical diagnosis of AD and were also
mildly correlated with CSF levels (correlation of 0.24; Table 2). Several
microbial metabolites of tryptophan were also associated with P-tau

biomarkers and indole was a hub metabolite in a module associated
with P-taul81and P-tau217.

Heparan sulfate and chondroitin sulfate degradation processes
were associated with P-tau217 and P-tau231. Heparan sulfate and chon-
droitin sulfate are types of glycosaminoglycans (GAGs), or sulfated
carbohydrates, thatare found in the extracellular matrix of cells. GAGs
havebeenreportedinaccumulationand clearance of AB”’~* and aggre-
gation of tau protein®**, GAGs caninteract with various inflammatory
molecules, including cytokines and chemokines, and modulate neu-
roinflammatory processes in AD***. Chondroitin sulfate and heparan
sulfate chains present on proteoglycans can act as binding sites for
inflammatory molecules, contributing to the activation ofimmune cells
and the generation of a proinflammatory environment in the brain®’.
The AB42:AB40 ratio was associated with sialic acid metabolism and
N-glycan degradation, pathways that have previously been associated
with AB production, clearance and aggregation®°,

Takentogether these results suggest that it is essential to combine
biochemical analysis with biomarkers of disease to achieve a better
understanding of the metabolic heterogeneity in AD pathogenesis
and enable identification of biological mechanisms of the disease.
Specifically, identification of metabolic pathways associated with
plasmabiomarkers mightindicate biological mechanisms underlying
AD pathology at different stages of the disease.

There are some limitations of the analysis presented here. First, the
untargeted metabolomics analysisidentified several features that were
eventually excluded from analyses and interpretation because of sam-
ple missingness or lack of reliable annotation. Excluding metabolites
missingin 30% of the sample could potentially remove features that are
notexpressed or have very low levelsin AD cases, affecting power of dis-
covery.Second, pathway and functional analyses using methods such
as MetaboAnalyst rely on reference databases for metabolite annota-
tion, the accuracy and comprehensiveness of which may be affected by
the coverage and quality of these databases. Third, inalimited resource
environment, the diagnosis of AD based on P-taul81 might not be
precise. Further investigation, specifically with longitudinal measures
of biomarkers and metabolic assessments, are needed to disentangle
the metabolic cascades in the different stages of disease progression.

In summary, we show that several lysoPCs are robustly asso-
ciated with early amyloidosis in AD as measured by P-taul81 and
P-tau217. Given that lysoPCs play an important role in the transport
of long-chain PUFAs into the brain, our findings show that changes in
fatty acid metabolism in the brain occur early in AD and suggest that
levels of lysoPCs/PUFAs in circulation may influence disease onset or
progression. This study demonstrates the utility of high-resolution
mass spectrometry-based untargeted metabolomics to reveal bio-
chemical differences in participants with aberrant plasma biomarker
profiles and to identify metabolic perturbations in different stages
of the disease. Furthermore, it may be possible to use metabolomic
profiling to monitor these critical biochemical processes during
therapeutic interventions

Methods

The Estudio Familiar de Influencia Genetica en Alzheimer
cohort

This cohort has been recruiting individuals of Caribbean Hispanic
ancestry with suspected sporadic or familial AD and healthy controls,
similarinage, through advertisements inlocal newspapers and radio
stations, and through clinical referrals in the Dominican Republic
and in the Washington Heights neighborhood of New York City*®.
Participantsin this study provided informed consent under protocols
approved by the Columbia University Irving Medical Center Institu-
tional Review Board, and the National Health Bioethics Committee of
the Dominican Republic. They underwent medical and neurological
history, detailed examinations, neuropsychological testing and col-
lection of blood for plasma and DNA processing. CSF was collected in
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asubgroup of participants. The clinical diagnosis of AD was based on
the National Institute on Aging and Alzheimer’s Association (NIA-AA)
criteria®. All clinical diagnoses were determined in a consensus confer-
enceattended by aneurologist, aneuropsychologist and aninternist
with expertise in dementia and geriatrics. In brief, individuals with
clinical AD must have had a history of progressive cognitive decline
inthe absence of other braindisorders (including conditions such as
rare epilepsies and malignant neoplasms of the nervous system) and
objective evidence of a decline in memory and in at least two other
cognitive domains such as verbal fluency or executive function. If
patients presented with a history of comorbidities such as cerebrovas-
cular disease, stroke-related dementia and neurological disorders, a
diagnosis of AD was not assigned. For this study only participants with
aclinical diagnosis of AD were included. Healthy controls showed no
evidence of cognitive decline or signs of other neurodegenerative
diseases. For the analysesin this manuscript, only biological samples
and data from individuals recruited between 1 January 2018 and 30
April 2022, were considered.

The Washington Heights, Inwood Columbia Aging Project

This project has been recruiting participants from the Washington
Heights neighborhood for over two decades in a community aging
study. All participants provided informed consent under protocols
approved by the Columbia University Irving Medical Center Institu-
tional Review Board. Within the cohort there are individuals who are
non-Hispanic white (24%), African American (28%), Caribbean Hispanic
(48%) from the Dominican Republic and Puerto Rico, and 68% are
women. During each assessment, participants receive the neuropsy-
chological test battery, medical interview and are re-consented for
sharing of geneticinformation and autopsy. Blood is drawn, barcoded
andbrought to ourlaboratory within2 hof collection. All the medical,
neurological, psychiatric and neuropsychological data collected are
reviewed at a weekly consensus conference. Diagnosis of AD is based
onaccepted criteria®.

Sample collection

Blood was collected in dipotassium ethylenediaminetetraacetic acid
(K2EDTA) tubes by standard venipuncture and transported to alabora-
tory for centrifugation, preparation of plasma and storage at —80 *°C
within 2 h of collection. CSF was obtained by standard aseptic tech-
nique, distributed into aliquots of 400 pleachin polypropylene tubes,
frozen and stored at —80 °C (ref. 48).

Plasma and CSF metabolomics data generation

Plasma and CSF metabolites were extracted using internal
standards-fortified acetonitrile and the extracts were injected on
two chromatographic columns: a hydrophilic interaction column
(HILIC) under positiveionization (HILIC*) and a C18 column under nega-
tive ionization (C18"), coupled to a Thermo Orbitrap HFX Q-Exactive
mass spectrometer, scanning for molecules within 85-1,250 kDa. The
methodological details have been previously published®**. Samples
were randomized to ensure equal representation of cases—-controls
and male-female sex across the batches. This was performed using a
randomization algorithm. For each sample, triplicate injections were
performed sequentially for each sample, alternating between the
HILIC and C18 columns. This produced three technical replicates per
sample per column. The untargeted mass spectral data were processed
through a computational pipeline that leverages opensource feature
detectionand peak alignment software, apLCMS®* and xMSanalyzer®.
The feature tables were generated containing information on the
mass-to-charge (m/z) ratio, retention time and median summarized
abundance/intensity of eachion for each sample. The extraction pipe-
line adequately dealt with drift over samples run and we did observe
any evidence of driftin intensity (Supplementary Fig.1). Correction for
batch effects was performed using ComBat, which uses an empirical

Bayesian framework to adjust for knownbatchesin whichthe samples
were run’®. Each of these ions are referred to as metabolic features.
For the analysis, metabolic features detected in at least 70% of all the
samples were retained, leaving 3,253 features from the HILIC" col-
umn and 3,628 features from the C18™ column for plasma samples.
Metabolic features missing in 70% of the participants did not show
any differential missingness by case status (Supplementary Fig. 2).
Zero-intensity values were considered below the detection limit of
the instrument and were imputed with half the minimum intensity
observed for each metabolic feature. The intensity of each metabolic
feature was log,,-transformed, quantile normalized and autoscaled
for normalization and standardization. Principal-component analysis
identified 29 individuals (Supplementary Fig. 3) as outliers, who were
excluded from association analysis.

Metabolite annotation

Annotations were assigned in two stages: first, using an internal refer-
encelibrary curated using authentic chemical standards run using the
same method and instrument, and second by matching features unas-
signedin the first step to the Human Metabolome Database (HMDB)
using the R package xMSannotator (v.1.3.2)”. This uses a multistage
clustering algorithm that uses metabolic pathway associations, inten-
sity profiles, retention time, mass defect and isotope/adduct patterns
to assign putative annotations to metabolic features. When afeature
had multiple matches, we used the following rules to assign an anno-
tation: first, we screened features based on the confidence score
assigned by xMSannotator, and the annotation with the highest score
was used. Second, if allannotations had the same score, we chose the
annotation with the lowest difference in expected and observed mass
(delta parts per million (ppm)). Finally, if all features had the same
scoreand delta ppm, we indicated the identity as ‘multiple matches’
as we could not decipher a unique putative annotation. If a feature
did not match any database entries, it was denoted as ‘unknown’ (33%
from HILIC* column and 40% from C18™ column). The confidence in
annotation was based on criteria defined by Schymanski et al.””, where
level1corresponds to aconfirmed structure identified through MS/
MS and/or comparisonto an authentic standard; level 2to a probable
structure identified through spectral matches to a database; level 3
to a putative identification with a speculative structure; level 4 to
an unequivocal molecular formula but with insufficient evidence
to propose a structure; and level 5 to an exact mass but not enough
information to assign a formula. Of the 3,253 features retained for
analysis from the HILIC column, 2,165 (66%) were annotated, 100
atlevel 1 confidence (4.6 % of annotated), 970 at level 3 confidence
(45% of annotated) and 1,095 at level 5 (50% of annotated). Of the
3,628 retained from the C18 column, 2,187 (60%) were annotated, 151
atlevel1(6.9% of annotated), 1,189 at level 3 (54%) and 847 at level 5
confidence (39%).

Blood-based biomarker analyses

The methods have been previously described in detail*®. In brief, blood
samples were obtained through standard venipuncture using K2EDTA
tubes. Plasmawasisolated via centrifugation at2000g for15minat4 °C
within 2 hof collection and aliquoted into polypropylene tubes, frozen
andstored at —80 °C. Plasmabiomarker assessments were carried out
utilizing the Quanterix Simoa single molecule array technology HD-X
platform. Samples were diluted and assayed in duplicate following
package insert protocols using the following Quanterix kits: Simoa
Neurology 3-Plex A (N3PA, cat. no.101995) for AB42 and A340, Simoa
P-taul81 Advantage V2 (cat. no.103714) for phosphorylated-taul8l,
ALZpath SimoaP-tau217v.2 (cat.no.104371) for phosphorylated-tau217
and Simoa P-tau231 (cat.no.102292) for phosphorylated-tau231. Mean
coefficients of variation were <5%. The ratio of AB42:AB40 was also
computed. Biomarker levels were log;,-transformed and autoscaled
before statistical analysis.
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Biomarker-supported AD

A previous analysis in the EFIGA cohort*® found that plasma
P-taul81 and the P-taul81:Af342 ratio were the most discriminatory
biomarkers between patients with AD and healthy controls. This
was determined using established laboratory CSF cutoff points
in a subset of individuals of the EFIGA cohort with CSF biomarker
data available. Then, using plasma biomarker data available in the
same individuals with CSF biomarkers, they determined the clas-
sification performance and optimal cutoff points for each plasma
biomarker. Elevated P-taul8l is highly correlated with AD%!
and decreased plasma AB42 is correlated with AD; however, due
to extracerebral sources of AB42, it is not as reliable a measure in
plasma as P-taul81, so we chose P-taul81 over P-taul81:Af342 ratio
toidentify AD pathology in this cohort. In this analysis, participants
with plasma P-taul81 < 2.63 pg ml™ were considered biomarker
status negative (BM~ or healthy controls) and those with plasma
P-taul81 > 2.63 pg ml™ were considered to have biomarker-supported
AD (BM"). We use ‘biomarker-supported AD’ throughout the manu-
script and individuals having biomarker-supported AD were con-
sidered as biomarker positive. To test whether our findings were
robust to P-tauisoforms, we also used a cutoff with plasma P-tau217,
where levels <0.39 pg ml™ were considered healthy controls and
those with plasma P-tau217 > 0.39 pg ml™ were considered as BM*.
This cutoff was chosen using the same approach as that described
for P-taul81above.

Statistics and reproducibility

We used two approaches to find circulating metabolic features asso-
ciated with outcomes of interest (1) a MWAS framework with correc-
tion for multiple comparisons by controlling the FDR at 5%; and (2) a
co-abundance analysis to find modules of metabolic features associ-
ated with outcomes, providing ameans of unsupervised dimensionality
reductionbased on correlation between the metabolic features. Both
analyses were conducted separately for data from each column. All
analyses were conducted inR (v.4.4.1).

Metabolome-wide association study

AnMWAS was conducted using multiple linear models, adjusted for age
and sex. The analyses were conducted separately for data from each
column. We corrected for multiple comparisons using an FDR of 5% and
g-values were estimated using the Benjamini-Hochberg method'®.

Network plot

Tovisualize the significant associations, we constructed a network plot
forall outcomes and their significantly associated features. Restricting
the results to features with a g-value < 0.05 and to those with annota-
tions assigned, we used RefMet'® to obtain metabolite classes. We
then plotted the network with nodes representing the outcome and
metabolic features, colored by metabolite class, and edges represent-
ingthe direction of association using the igraph package (v.1.2.11) inR.

Metabolite co-abundance analysis

Co-abundance modular analysis was conducted using weighted gene
correlation network analysis'®* using the WGCNA R package (v.1.69).
Using normalized intensity values for each metabolic feature from
each sample, we first constructed a metabolic feature co-abundance
network using pairwise Pearson correlations between each metabolic
feature. We used a soft threshold of 4 for the HILIC" data and 3 for the
C18 data, which were chosen based on saturation of the R*at 0.9. This
correlation network, where the nodes were metabolic features and
edges were the scaled correlation coefficients, was used to create the
topological overlap matrix, which provides a measure of similarity
between a given pair of metabolic features in the network. This simi-
larity matrix was used to create adendrogram to assign metabolic fea-
tures into modules based on their co-abundance pattern. We used the

following parameters: minimum module size of 30, merge cutHeight of
0.25,an unsigned network, and a reassign threshold of 0. After network
and dendrogram construction, modules were defined using the modu-
leEigengenes functionin WGCNA. The module eigengeneis a quantita-
tive representation of amodule derived from a principal-component
analysis (PCA) as the first PC, constructed using only those metabolic
features that were part of the module. Association analyses were con-
ducted tofind modules associated with outcomes in linear regression
models, adjusted for age and sex. We used the Bonferroni method to
correct for multiple comparisons.

Pathway analysis

To determine the biological relevance of the metabolic features associ-
ated with AD and biomarkers, we conducted pathway analysis using the
Rpackage MetaboAnalystR'” (v.4.0.0). We used the MWAS results from
both columns and applied anominal Pvalue cutoff of 0.01to determine
metabolic pathway enrichment using the mummichogalgorithmand
the human MFN reference database'*®. We present results for pathways
with a Fisher’s exact test Pvalue < 0.05.

Chemical class enrichment

This approach was used to determine the different chemical classes
represented by metabolic feature members of WGCNA modules signifi-
cantly associated with outcomes. Allmetabolites in WGCNA modules
that were associated with AD and biomarkers were used as inputs for
the enrichment analysis. The main chemical classes enriched were
determined using the Enrichment Analysis module in MetaboAnalyst
(v.5.0) using HMDB IDs as input type and metabolites as feature type
for features with an annotation confidence score < 3.

Construction of plasma lysoPC principal components and
stratified analysis by APOE 4 status

Based on the findings described, we performed a PCA using fea-
tures that were annotated as lysoPCs from both columns (41
from HILIC* and 6 from C187). As PCs 1-5 explained ~65% of the
variance in the data, we used the first five PCs in logistic regres-
sion models to find the association with clinical diagnosis of AD
and biomarker-supported AD, adjusted for age and sex. We tested
for the presence of an interaction between the combinations of
the lysoPCs and the presence of at least one APOE €4 allele and
performed a stratified analysis as there was a significant interac-
tion term between APOE €4 allele and PC4 for both clinical (P value
for interaction = 0.03) and biomarker-supported AD (P value for
interaction = 0.001).

Correlation between plasma and CSF metabolites

Among people with both plasma and CSF metabolomics dataavailable
(n=113), plasma metabolites with level 1 confidence that were signifi-
cantly associated with any outcome were tested for their correlation
with the same metabolite identified in CSF using spearman correlation.

Association between lysoPCs and blood-based biomarkers in
Caribbean Hispanic participants of a different cohort

To provide validation of our findings, we used plasma metabolomics
dataand plasmabiomarkers levels available in participants of Carib-
bean Hispanic ethnicity in the WHICAP cohort. The metabolomic
and biomarker datawere generated using the same methods asinthe
study samples of the EFIGA cohort, as described above. We identified
45 metabolites annotated as lysoPCs (39 from HILIC" and 6 from C18~
columns) and computed PCs as described above. We tested association
of the first five PCs (explained ~60% of the variance) with clinical and
biomarker-supported AD, adjusted for sex and age. This analysis was
also conducted stratified by APOE €4 allele carrier status as we found
asignificant interaction between PC3 and biomarker-supported AD
(Pvalue for interaction = 0.04).
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Association between lysoPCs and other metabolites, and

brain pathology in the ROSMAP cohort

To provide external validation of our findings with lysoPCs, we obtained
data from the ROSMAP cohort and examined associations between
lysoPCs in brain samples and brain pathology’. We also investigated
plasma metabolomics datain ROSMAP published recently'” but could
notidentify any lysoPCsinthe dataset. We computed PCs withall brain
lysoPCs identified, as described above. We tested association of the
first five PCs with amyloid, tangles, total global pathology, clinical
and pathological diagnosis of AD, adjusted for sex and age at death.
We also analyzed the relationship between all metabolites measured
in brain tissue and brain pathology using linear regression, adjusted
for sex and age at death.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Allintermediate and final results are included in the text and the sup-
plementary materials of the paper. The metabolomics and phenotype
datafrom the EFIGA and WHICAP cohorts are deposited in the Synapse
AD knowledge portal and canbe accessed at https://www.synapse.org/
Synapse:syn70083418/wiki/635413. The ROSMAP dataset (https://
www.synapse.org/Synapse:syn10235595) can be accessed through
Synapse and the Rush Alzheimer’s Disease Center by submitting adata
request at https://www.radc.rush.edu/requests/data.htm.

Code availability

We used standard packages implemented in R for association, coexpres-
sionand PCAs. R code used for the analysesin this study is available from
the corresponding authors upon request. Interested researchers are
encouraged to contact the corresponding authors with abrief descrip-
tion of the intended use. Access will be provided for noncommercial
purposesand solely for reproducing the results presented in this article.
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Extended Data Fig. 1| Results from coexpression analysis using datafrom
the C18 column. In a, the volcano plot shows metabolic modules significantly
associated with clinical AD, biomarker-supported AD and AD biomarkers using
Bonferroni adjusted p value. Inb, the chemical classes enriched by module

member metabolic features present at a proportion of at least 6.5%. The levels

ofthe top three hub metabolites, based on eigengene-based connectivity, of the
yellow (c), brown (d), salmon (e), green-yellow (f), and cyan (g) module in clinical
and biomarker-supported AD, are also shown.
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relation to biomarker-supported AD and clinical AD. In b, the results from
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Extended Data Table 1| Characteristics of the study population with CSF and plasma metabolomics data

Heal(thz cgo)ntrol AEH =(:3ass)e (ﬂ\ﬁr%l)

Age at diagnosis or last visit
(years)

Mean (SD) 68.0 (7.47) 70.2 (7.73) 68.7 (7.58)

Median [Min, Max] 68.0 [45.0, 86.0] 71.0 [56.0, 83.0] 68.0 [45.0, 86.0]
Sex

Men 32 (41.0%) 8 (22.9%) 40 (35.4%)

Women 46 (59.0%) 27 (77.1%) 73 (64.6%)

Plasma P-tau181 cut-off
<2.63
>2.63
Missing

Plasma P-tau181
Mean (SD)
Median [Min, Max]
Missing

Plasma P-tau217
Mean (SD)
Median [Min, Max]
Missing

Plasma P-tau231
Mean (SD)
Median [Min, Max]
Missing

Plasma Ab42/Ab40
Mean (SD)
Median [Min, Max]
Missing

48 (61.5%)
12 (15.4%)
18 (23.1%)

2.26 (1.36)
1.91[0.998, 7.84]
18 (23.1%)

0.339 (0.200)
0.263[0.115, 1.04]
14 (17.9%)

3.68 (2.20)
3.23[0.779, 10.0]
20 (25.6%)

0.0507 (0.00946)
0.0518 [0.0215, 0.0775]
18 (23.1%)

16 (45.7%)
16 (45.7%)
3 (8.6%)

2.96 (1.49)
2.58 [1.06, 7.65]
3 (8.6%)

0.518 (0.431)
0.352[0.141, 2.42]
0 (0%)

3.94 (2.02)
3.38 [0.657, 9.50]
4 (11.4%)

0.0447 (0.0133)
0.0457 [0.0174, 0.0854]
3 (8.6%)

64 (56.6%)
28 (24.8%)
21 (18.6%)

2.51 (1.43)
2.02[0.998, 7.84]
21 (18.6%)

0.402 (0.312)
0.304 [0.115, 2.42]
14 (12.4%)

3.77 (2.13)
3.26 [0.657, 10.0]
24 (21.2%)

0.0486 (0.0113)
0.0497 [0.0174, 0.0854]
21 (18.6%)
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Extended Data Table 2 | Characteristics of the WHICAP population

ey w05t Reseh

Age at diagnosis or last visit
(years)

Mean (SD) 80.7 (6.42) 85.0 (6.10) 81.9 (6.61)

Median [Min, Max] 80.0 [68.0, 98.0] 85.0[71.0, 103] 81.0[68.0, 103]
Sex

Men 72 (28.7%) 27 (27.0%) 99 (28.2%)

Women 179 (71.3%) 73 (73.0%) 252 (71.8%)
APOE-¢e4 allele

no e4 210 (83.7%) 65 (65.0%) 275 (78.3%)

Atleast 1 e4 40 (15.9%) 35 (35.0%) 75 (21.4%)

Missing 1(0.4%) 0 (0%) 1(0.3%)
Biomarker supported AD

Plasma P-tau181 <2.63 137 (54.6%) 42 (42.0%) 179 (51.0%)

Plasma P-tau181 =2.63 114 (45.4%) 58 (58.0%) 172 (49.0%)
Plasma P-tau181

Mean (SD) 3.23 (2.88) 3.57 (2.30) 3.33 (2.73)

Median [Min, Max] 2.46 [0.713, 30.3] 2.89[0.902, 13.8] 2.56 [0.713, 30.3]
Plasma Ab42/Ab40

Mean (SD) 0.0435 (0.0105) 0.0462 (0.0510) 0.0443 (0.0286)

Median [Min, Max]

0.0428 [0.0112, 0.113]

0.0420 [0.0153, 0.545]  0.0427 [0.0112, 0.545]
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Extended Data Table 3 | Characteristics of the ROSMAP population

Healthy control AD case Overall
(N=39) (N=71) (N=110)
Age at death
Mean (SD) 88.2 (5.41) 91.7 (5.75) 90.4 (5.86)
Median [Min, Max] 89.4 [76.5, 99.6] 92.1 [78.4, 104] 91.0 [76.5, 104]
Sex
Women 24 (61.5%) 55 (77.5%) 79 (71.8%)
Men 15 (38.5%) 16 (22.5%) 31 (28.2%)

Brain tangles

Mean (SD)

Median [Min, Max]
Brain amyloid

Mean (SD)

Median [Min, Max]
Brain general pathology

Mean (SD)

Median [Min, Max]
Brain neurofibrillary tangles

Mean (SD)

Median [Min, Max]

2.44 (1.95)
2.41[0.000113, 7.95]

1.19 (2.06)
0.443 [0, 8.76]

0.191 (0.204)
0.130 [0.00318, 0.918]

0.270 (0.316)
0.166 [0.00953, 1.60]

9.00 (8.82)
6.04[0.217, 42.3]

6.75 (3.40)
6.36 [0.423, 18.7]

1.07 (0.520)
1.01[0.173, 2.44]

0.858 (0.838)
0.619 [0, 4.09]

6.67 (7.82)
3.91[0.000113, 42.3]

4.78 (4.00)
4.66 [0, 18.7]

0.758 (0.606)
0.665 [0.00318, 2.44]

0.649 (0.752)
0.365 [0, 4.09]
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wiki/635413. The ROSMAP dataset can be accessed through the Rush Alzheimer’s Disease Center by submitting a data request at https://www.radc.rush.edu/
requests/data.htm.
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Recruitment The Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohort has been recruiting individuals of Caribbean Hispanic

ancestry with suspected sporadic or familial AD and healthy controls, similar in age, through advertisements in local
newspapers and radio stations, and through clinical referrals in the Dominican Republic and in the Washington Heights
neighborhood of New York City.

Ethics oversight Participants in this study provided informed consent under protocols approved by the Columbia University Irving Medical
Center Institutional Review Board, and the National Health Bioethics Committee of the Dominican Republic (CONABIOS).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Samples were chosen with existing plasma biomarkers and availability of serum for metabolomics. Sample demographics reflect the larger
study population in case-control, age and sex distributions.
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