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Lysophosphatidylcholines are associated 
with amyloidosis in early stages of 
Alzheimer’s disease
 

Vrinda Kalia1, Dolly Reyes-Dumeyer2,3, Saurabh Dubey4, Hanisha Udhani    4, 
Renu Nandakumar4, Annie J. Lee2,3, Rafael Lantigua5, Martin Medrano6, 
Diones Rivera7, Lawrence S. Honig    2,3,8, Richard Mayeux    2,3,8,9, 
Gary W. Miller    1   & Badri N. Vardarajan    2,3,8 

Circulating metabolites can identify biochemical risk factors related 
to Alzheimer’s disease (AD). We measured plasma metabolites in 1,068 
participants of Caribbean Hispanic ancestry (250 patients with AD and 818 
healthy controls) across 2 cohorts and analyzed their relationship with 
clinical AD, biomarker-supported AD and plasma biomarkers (P-tau181, 
P-tau217, P-tau231 and Aβ42:Aβ40). Amino acid metabolism pathways were 
enriched among metabolites associated with P-tau biomarkers, whereas 
sialic acid and N-glycan pathways were associated with Aβ42:Aβ40. Through 
several dimensionality reduction approaches, we identified an APOE-ε4 
dependent relationship between lysophosphatidylcholines (lysoPCs) 
carrying polyunsaturated fatty acids and biomarker-supported AD and P-tau 
biomarkers. In an independent dataset of 110 postmortem brain tissues from 
non-Hispanic white participants, lysoPCs in the brain were also associated 
with AD neuropathological features. Our results show that biomarker-based 
diagnostic criteria identified an APOE-ε4 dependent association with 
lysoPCs, which play a critical role in the transport of neuroprotective 
polyunsaturated fatty acids into the brain, and AD.

AD is a progressive neurodegenerative disorder characterized by cogni-
tive and memory decline, affecting millions of individuals worldwide. 
Despite extensive research, there are still many unanswered questions 
regarding the underlying pathogenic mechanisms of AD, hindering 
the development of effective therapeutic strategies; however, recent 
advancements in high-throughput omics technologies have provided a 
powerful platform to explore the complex molecular landscape of AD1.

Profiling the metabolome using high-resolution mass spectrom-
etry offers a comprehensive analysis of small molecules involved in cel-
lular metabolism. It provides a unique opportunity to study metabolic 
alterations associated with disease pathogenesis, thus contributing to a 
better understanding of AD at the molecular level2–5. Metabolomic stud-
ies in AD have revealed a range of altered metabolic signaling. Several 

studies have demonstrated dysregulation of energy metabolism path-
ways in AD6–8. These include altered glucose metabolism9, reduced 
glycolysis10–14, impaired mitochondrial function15–17 and decreased 
levels of metabolites such as glucose, lactate and pyruvate18. Altera-
tions in the tricarboxylic acid (TCA) cycle intermediates have also been 
observed. Studies have reported lower levels of phosphatidylcholine, 
phosphatidylethanolamine and sphingomyelins in AD19–22, suggesting 
disruptions in membrane integrity and signaling pathways as well 
as altered cholesterol metabolism. Other studies have uncovered 
alterations in amino acid metabolism in AD23. Reduced levels of certain 
amino acids, such as tryptophan24, phenylalanine25,26, tyrosine27,28 and 
branched-chain amino acids (valine, leucine and isoleucine)3,29–38 may 
reflect disruptions in neurotransmitter synthesis, neuroinflammation 

Received: 11 December 2023

Accepted: 28 October 2025

Published online: 17 December 2025

 Check for updates

A full list of affiliations appears at the end of the paper.  e-mail: gm2815@cumc.columbia.edu; bnv2103@cumc.columbia.edu

http://www.nature.com/nataging
https://doi.org/10.1038/s43587-025-01025-7
http://orcid.org/0009-0006-3587-9723
http://orcid.org/0000-0002-9703-2265
http://orcid.org/0000-0001-6519-9696
http://orcid.org/0000-0001-8984-1284
http://orcid.org/0000-0002-5560-4085
http://crossmark.crossref.org/dialog/?doi=10.1038/s43587-025-01025-7&domain=pdf
mailto:gm2815@cumc.columbia.edu
mailto:bnv2103@cumc.columbia.edu


Nature Aging | Volume 6 | January 2026 | 221–234 222

Article https://doi.org/10.1038/s43587-025-01025-7

one phenotype (clinical diagnosis of AD, biomarker-supported AD, 
plasma levels of Αβ42:Αβ40 ratio, P-tau181, P-tau217 and P-tau231). 
Of those, 93 features were annotated with level 1 to level 3 confidence 
based on Schymanski scale (Fig. 1, Table 2 and Supplementary Table 1). 
A network visualization of associated metabolic features and feature 
classes is summarized in Fig. 2a.

We identified 77 metabolic features associated (false discovery rate 
(FDR) q-value < 0.05) with both clinical AD and biomarker-supported 
AD. Metabolites associated with biomarker-supported AD were 
enriched in pathways related to amino acid metabolism and the urea 
cycle. Tryptophan metabolism and drug metabolism (other enzymes) 
pathways were enriched by metabolites associated with clinical AD. The 
top metabolites associated with clinical AD included phenylacetylglu-
tamine (q-value = 0.04, level 1 confidence in annotation), dodecanoyl 
carnitine (q-value = 0.01, level 3) and tryptophan (q-value = 0.04, level 
3). The top metabolites associated with biomarker-supported AD 
included creatinine (q-value = 0.01, level 1), valyl-serine (q-value = 0.03, 
level 1) and phenylacetylglutamine (q-value = 0.03, level 1). 143 

and protein homeostasis. Studies have also shown alterations in the 
levels of neurotransmitters such as acetylcholine, glutamate and 
γ-aminobutyric acid (GABA) in patients with AD39–43. These changes 
may contribute to cognitive dysfunction and synaptic alterations in 
the disease. Several groups have reported elevated levels of reactive 
oxygen species and oxidative damage markers, and alterations in 
antioxidant metabolites and enzymes in whole blood and brains of 
patients with AD. These findings suggest a role for altered redox status 
in AD pathogenesis44–47.

Given that metabolomics is the omics layer closest to the pheno-
type, it has the potential to uncover critical insights into the disease 
risk and progression and potentially uncover therapeutic targets; 
however, previous studies do not resolve the role of metabolites and 
metabolic pathways in different stages of the disease. By integrating 
metabolomics data with clinical diagnosis and plasma biomarker levels 
of AD, we aim to identify metabolic networks underlying the stages of 
the disease.

In this study, we investigated the associations between metabolites 
and clinical and biomarker-supported diagnosis of AD, using published 
plasma P-tau18148 and P-tau217 cutoffs for diagnosis. We also investi-
gated the associations between metabolites and P-tau181, P-tau217, 
P-tau231 and Aβ42:Aβ40 ratio. Previous studies have shown that cer-
ebrospinal fluid (CSF) and plasma P-tau181 are elevated 15–18 years49 
before onset of clinical symptoms. Our analysis of metabolomics in 
relation to clinical and plasma biomarker-based diagnosis of AD could 
shed light on early and mid-stage metabolic changes in disease.

Results
Study participants
A total of 717 participants were included in the study, of whom 150 
(20.9%) were diagnosed with clinical AD and 567 were cognitively unim-
paired controls (Table 1). The study population had a mean ± s.d. age 
of 69.6 ± 7.6 years, the individuals with clinical AD were slightly older, 
with a mean ± s.d. age of 73.2 ± 8.3 years), compared to controls who 
had a mean ± s.d. age of 68.6 ± 7.2 years. Two-thirds of the group were 
women (65%), and this proportion was similar among patients with 
AD (67%) and controls (65%). A third of the study group had at least 
one APOE ε4 allele (38%) and this proportion was only marginally 
higher in AD (43%) compared to controls (36%). Among AD, 58% were 
biomarker positive, while 29% of controls were biomarker positive. 
The mean levels of most plasma-based AD biomarkers were higher 
in AD than in controls, including P-tau181 (3.02 ± 1.7 pg ml−1 in AD 
and 2.13 ± 1 pg ml−1 in healthy controls), P-tau217 (0.67 ± 0.56 pg ml−1 
in AD and 0.36 ± 0.24 pg ml−1 in healthy controls) and P-tau231 
(4.43 ± 2.49 pg ml−1 in AD and 3.4 ± 1.71 pg ml−1 in healthy controls). 
The mean ratio of Αβ42:Αβ40 was lower in AD cases (0.049 ± 0.01) 
compared to healthy controls (0.053 ± 0.03). A subset of the study 
population (n = 113) also had CSF metabolomic data generated 
(Extended Data Table 1). Among them, 35 were clinically diagnosed with 
AD and 78 were controls. We also used clinical, plasma metabolomics 
and biomarker data the Washington Heights, Hamilton Heights and 
Inwood Community Aging Project (WHICAP) for replication, n = 351. We 
used data available from participants of Caribbean Hispanic ethnicity, 
100 of whom were clinically diagnosed with AD and 251 were healthy 
controls (Extended Data Table 2). Further, we obtained postmortem 
brain tissue metabolomic data available in a subset of participants of 
the Religious Orders Study and Memory and Aging Project (ROSMAP) 
cohort, n = 110 (Extended Data Table 3). Of them, 71 were diagnosed 
with AD and had brain pathology information available.

Metabolome-wide association study
We detected 6,445 and 5,827 metabolic features in the HILIC+ and C18− 
columns, respectively. Restricting to metabolic features detected in 
at least 70% of all participants, 3,253 and 3,628 features were retained 
for further analysis. Overall, 442 features were associated with at least 

Table 1 | Characteristics of the study population

Healthy control 
(n = 567)

AD case (n = 150) Overall (n = 717)

Age, years

  Mean ± s.d. 68.6 ± 7.17 73.2 ± 8.26 69.6 ± 7.64

 � Median 
(min–max)

68.0 (41.0–91.0) 73.0 (50.0–103) 69.0 (41.0–103)

Sex

  Male 200 (35.3%) 50 (33.3%) 250 (34.9%)

  Female 367 (64.7%) 100 (66.7%) 467 (65.1%)

Biomarker-supported AD (plasma P-tau181 cutoff)

  <2.63 425 (75.0%) 67 (44.7%) 492 (68.6%)

  ≥2.63 114 (20.1%) 77 (51.3%) 191 (26.6%)

  Missing 28 (4.9%) 6 (4.0%) 34 (4.7%)

APOE-ε4 allele

  No ε4 358 (63.1%) 86 (57.3%) 444 (61.9%)

  At least 1 ε4 206 (36.3%) 64 (42.7%) 270 (37.7%)

  Missing 3 (0.5%) 0 (0%) 3 (0.4%)

Plasma P-tau181, pg ml−1

  Mean ± s.d. 2.13 ± 1.00 3.02 ± 1.67 2.32 ± 1.23

 � Median 
(min–max)

1.93 (0.164–8.19) 2.74 (0.380–12.5) 2.01 (0.164–12.5)

  Missing 28 (4.9%) 6 (4.0%) 34 (4.7%)

Plasma P-tau217, pg ml−1

  Mean ± s.d. 0.359 ± 0.240 0.665 ± 0.566 0.425 ± 0.360

  Median 
(min–max)

0.290 (0.013–1.96) 0.417 
(0.022–3.00)

0.311 (0.013–3.00)

  Missing 21 (3.7%) 1 (0.7%) 22 (3.1%)

Plasma P-tau231, pg ml−1

  Mean ± s.d. 3.40 ± 1.71 4.43 ± 2.49 3.62 ± 1.94

 � Median 
(min–max)

3.07 (0.038–11.8) 3.72 (0.215–14.1) 3.19 (0.038–14.1)

  Missing 40 (7.1%) 9 (6.0%) 49 (6.8%)

Plasma Aβ42:Aβ40 ratio

  Mean ± s.d. 0.0534 ± 0.0306 0.0493 ± 0.0111 0.0525 ± 0.0277

 � Median 
(min–max)

0.051 
(0.002–0.677)

0.048 
(0.017–0.085)

0.0512 
(0.002–0.677)

  Missing 33 (5.8%) 7 (4.7%) 40 (5.6%)

http://www.nature.com/nataging


Nature Aging | Volume 6 | January 2026 | 221–234 223

Article https://doi.org/10.1038/s43587-025-01025-7

metabolites with a level 1–3 confidence score for annotation were asso-
ciated (q-value < 0.05) with at least one measured plasma biomarker 
(Fig. 1 and Supplementary Table 1). The top metabolites associated 
with Αβ42:Αβ40 ratio included 3-oxododecanoic acid (q = 0.01, level 
3) and pyridoxamine 5-phosphate (q = 6.3 × 10−6, level 5). Metabolic 
features associated with Αβ42:Αβ40 ratio were enriched in sialic acid 
metabolism, N-glycan degradation, TCA cycle, glycosphingolipid, 
glycerophospholipid and galactose metabolism (Fig. 1b).

Valyl-serine, creatinine and citrulline were among the 24 met-
abolic features, annotated with level 1 confidence, that were asso-
ciated with plasma levels of P-tau181. Several lysoPCs, including 
lysoPC (22:6), lysoPC (18:0) and lysoPC (20:4) were negatively asso-
ciated with plasma P-tau181 levels after multiple testing correction 
(Supplementary Table 1). Metabolic features associated with P-tau181 
levels were enriched in several essential amino acid metabolism path-
ways including tyrosine, arginine, proline, methionine, cysteine, 

glycine, serine, threonine, alanine, aspartate, asparagine and lysine 
metabolism. Other pathways included urea cycle/amino group metabo-
lism, selenoamino metabolism and glutathione metabolism (Fig. 1b).

Comparing metabolites associated with AD and its  
biomarkers
Metabolites were exclusively associated with Αβ42:Αβ40 ratio with 
no overlap with metabolites associated with AD or P-tau biomarkers. 
Tryptophan was associated with clinical AD, P-tau181 and P-tau217, 
and phenylacetylglutamine was associated with both clinical AD and 
P-tau181. Several metabolites that derive from microbial metabo-
lism of tryptophan in the gut were associated with P-tau181 and 
P-tau217, including 1H-indole-3-carboxaldehyde (level 3), indoleac-
etaldehyde (level 5) and indoleacrylic acid (level 5). Indoxyl sulfate 
(level 1), a bacterial co-metabolite that is a known uremic toxin50, 
was associated with P-tau181, P-tau217 and P-tau231 (Fig. 2c). Other 
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Fig. 1 | Metabolic features and pathways associated with clinical AD, 
biomarker-supported AD and plasma biomarkers. a, Modified Miami plot 
shows features with positive β values above the zero line and those with negative 
β values below the zero line. The dark blue points indicate features with FDR 

q-value < 0.05 for data obtained for each column (C18 and HILIC). NS, not 
significant. b, Metabolic pathways, with Fisher’s exact test P < 0.05, enriched by 
features nominally associated with the clinical AD, biomarker-supported AD and 
plasma biomarker.
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metabolites associated with all three P-tau biomarkers included 
creatinine (level 1), leucyl-proline (level 1) and 2-aminoadipic acid 
(level 1). LysoPC (20:4) (level 3), with an arachidonic acid side chain, 
and a phosphatidylcholine (16:1, 22:6) (level 3), with palmitoleic acid 
and docosahexaenoic acid side chains, were associated with both 
P-tau181 and P-tau217 (Fig. 2c).

Co-abundance analysis of metabolites
We clustered co-abundant metabolic features using weighted gene 
coexpression network analysis (WGCNA) independently on metabolic 
features detected in the HILIC and C18 columns. WGCNA identified 18 
and 15 co-abundant metabolic modules in the HILIC and C18 columns, 
respectively (Supplementary Fig. 4). We then tested the association 
of each module with clinical and biomarker-supported AD and lev-
els of the plasma biomarkers (Fig. 3a and Extended Data Fig. 1a). The 
purple module was negatively associated with biomarker-supported 
AD and P-tau181. The green-yellow module was negatively associated 
with P-tau181, P-tau217 and P-tau231 levels, and the black module 
was negatively associated with P-tau181 and P-tau217. The salmon 
module was positively associated with biomarker-supported AD, 
P-tau181, P-tau217 and P-tau231 levels. Enrichment analysis of the 
metabolites co-abundant in the purple module found that fatty amides 
(q-value = 5 × 10−3), glycerophosphocholines (q-value = 5 × 10−3) and 
sphingoid bases (q-value = 5 × 10−3) were over-represented in the 

module (Fig. 3b). Glycerophosphocholines (q-value = 3 × 10−22) were 
also significantly enriched in the green-yellow module, while amino 
acids and peptides were the top group over-represented in the black 
(q-value = 1.31 × 10−16) and salmon modules (9.22 × 10−7).

We then identified the hub metabolites that were most connected 
to other metabolites in the purple, salmon, green-yellow and black 
modules (Fig. 3c and Supplementary Table 2). Notably, three lysoPCs 
were hub metabolites in the purple module and all of them were more 
abundant in biomarker-negative participants compared to individu-
als who were defined as having biomarker-supported AD (Fig. 3d). 
Phosphatidylcholines and lysoPCs were also the hub metabolites in 
the green-yellow module (Fig. 3f and Supplementary Table 2) and were 
also more abundant in biomarker-negative participants compared to 
those with biomarker-supported AD. Creatinine was the most con-
nected metabolite in the salmon module and was higher in those with 
biomarker-supported AD compared to biomarker-negative partici-
pants (Fig. 3e).

LysoPCs are associated with AD biomarkers
Both the metabolome-wide association study (MWAS) and 
WGCNA detected lysoPCs to be significantly associated with 
biomarker-supported AD, P-tau181, P-tau217 and P-tau231 levels. 
Thus, we tested the joint association of all lysoPCs with clinical and 
biomarker-supported AD by constructing lysoPC principal components 

Table 2 | Plasma metabolic features associated with outcomes investigated using an MWAS framework

Outcome m/z Time (s) Annotation ID 
score

ESI Delta 
ppm

Adduct β FDR 
q-value

ρCSF Pathway

Clinical AD

263.1034 29.7 Phenylacetylglutamine 1 − 1.25 Std 0.19 0.047 Conjugation of 
phenylacetate and 
glutamine

342.2649 109.1 Dodecanoyl carnitine 3 − 0.23 M–H −0.21 0.014 Fatty acid oxidation

204.0859 35.6 Tryptophan 3 − 0.49 M–H [−1] −0.84 0.047 0.24 Tryptophan metabolism

Biomarker- 
supported 
AD

114.0663 33.5 Creatinine 1 + 0.96 Std 1.13 0.016 0.32 Urea cycle/amino group 
metabolism

203.1038 27.1 Valyl-serine 1 − 0.34 Std −0.74 0.031 Secondary metabolite, 
dipeptide

263.1034 29.7 Phenylacetylglutamine 1 − 1.25 Std 0.21 0.031 Conjugation of 
phenylacetate and 
glutamine

P-tau181

114.0663 33.5 Creatinine 1 + 0.96 Std 0.54 2.2 × 10−4 0.32 Urea cycle/amino group 
metabolism

203.1038 27.1 Valyl-serine 1 − 0.34 Std -0.32 0.002 Secondary metabolite, 
dipeptide

149.0455 30.1 Arabinose 1 − 0.34 Std 0.26 0.002 Pentose phosphate 
pathway

P-tau217

114.0663 33.5 Creatinine 1 + 0.96 Std 0.53 5.3 × 10−4 0.32 Urea cycle/amino group 
metabolism

229.1545 56.2 Leucyl-proline 1 + 0.73 Std 0.28 0.003 Secondary metabolite, 
dipeptide

153.0194 32.2 3,5-Dihydroxybenzoic acid 1 − 0.44 Std 0.17 0.016 Secondary metabolite, 
dietary source

P-tau231

114.0663 33.5 Creatinine 1 + 0.96 Std 0.54 4.4 × 10−4 0.32 Urea cycle/amino group 
metabolism

130.051 30.3 4-Hydroxyproline 1 − 0.26 Std 0.54 0.001 Glyoxylate metabolism

160.0615 36.7 2-Aminoadipic acid 1 − 0.02 Std 0.48 0.001 Lysine metabolism

Aβ42:Aβ40

213.1497 242.2 3-Oxododecanoic acid 3 − 0.38 M−H −0.19 0.013 Fatty acid metabolism

231.0544 60.3 Pyridoxamine 5-phosphate 5 + 3.85 M+H−H2O 0.08 0.011 Vitamin B6 metabolism

382.948 59.1 Unknown + 0.15 5.5 × 10−4

m/z, mass-to-charge ratio; time, retention time; ID score, confidence in annotation based on Schymanski scale (1 being the highest and 5 the lowest); ESI, electrospray ionization; Delta ppm, 
mass difference in parts per million; ρCSF, correlation coefficient for metabolite measured in CSF (this was performed in a subset of participants, n = 113); Adduct, predicted adduct ions; M+H, 
protonation; M–H, deprotonation; Std, identity confirmed using chemical standard. See supplementary tables for complete list of features associated at FDR of 5%.
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(PCs). We constructed PCs for the 47 metabolic features annotated as 
lysoPCs (21 unique lysoPCs; Supplementary Table 3) detected by HILIC 
and C18 columns and found that the first five PCs explained ~65% of 
the variance (Supplementary Fig. 5). We tested the association of the 
first five PCs together in a regression model adjusted for age and sex 
(Fig. 4a). PC1 was negatively associated with biomarker-supported 
AD whereas PC5 was positively associated with clinical diagnosis of 
AD. We found a significant interaction between APOE ε4 allele car-
rier status and PC4, with clinical AD (P for interaction = 0.03) and 
biomarker-supported AD (P for interaction = 0.001), and performed 
an analysis stratified by APOE ε4 allele status. We found the same pat-
tern of APOE-ε4-specific lysoPC association when we used the P-tau181, 
P-tau217 and P-tau231 levels as the outcome (Fig. 4b). There was no sig-
nificant interaction between lysoPCs and APOE ε4 allele carrier status 
when considering the association between each lysoPC, individually, 
and clinical or biomarker-supported AD (Extended Data Fig. 2).

The stratified analysis (Fig. 4a) revealed that PC1 was protective 
of biomarker-supported AD and PC5 was risk-inducing for clinical 
AD only in APOE ε4 noncarriers, whereas the risk conferred by PC2 
and PC4 were restricted to APOE ε4 carriers. We observed similar 
results when biomarker-supported AD was defined using P-tau217 
(Extended Data Fig. 3). We investigated the loadings of the lysoPCs on 
PCs 1, 2, 4 and 5 and particularly focused on lysoPCs that have polyun-
saturated fatty acid (PUFA) side chains (Fig. 4c, Supplementary Fig. 6 
and Extended Data Fig. 4c). PC1 had positive loadings from all lysoPCs, 
which indicated that all lysoPCs were negatively associated with 

biomarker-supported AD, particularly among APOE ε4 noncarriers. 
PC4 had negative loadings from lysoPCs that carry docosahexaenoic 
acid (DHA; lysoPC (22:6)) and arachidonic acid (AHA; lysoPC (20:4)).

LysoPCs and polysaturated fatty acids are correlated in  
plasma and CSF
We tested the correlation between lysoPC PCs 1, 2, 4 and 5 with circu-
lating PUFAs in CSF and in plasma (annotated at level 1 confidence), 
stratified by APOE ε4 allele status (Extended Data Figs. 4a and 5). PC1 
was positively correlated with circulating levels of eicosapentaenoic 
acid (EPA) and AHA, in both APOE ε4 carriers and noncarriers. PC2 
was negatively correlated with circulating levels of EPA in carriers and 
noncarriers and negatively correlated with AHA only among carriers of 
at least one APOE ε4 allele. It was positively correlated with arachidic 
acid, linolenic acid (precursor to EPA and DHA) and octadecadienoic 
acid only among APOE ε4 noncarriers. PC4 was negatively correlated 
with most measured plasma PUFAs, among carriers and noncarriers, 
and negatively correlated with CSF levels of DHA. PC5 was negatively 
correlated with plasma EPA and positively correlated with plasma AHA 
in carriers and noncarriers and it was also negatively correlated with 
linolenic acid (precursor to EPA and DHA) only among those with no 
APOE-ε4 allele (Extended Data Fig. 5), in which group PC5 was associ-
ated with an increased risk of AD. We also found that lysoPCs that carry 
EPA and DHA were positively correlated with the CSF levels of their 
respective PUFAs, whereas this correlation for AHA was negligible 
(Extended Data Fig. 5b). This indicates that lysoPCs that are known to 
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Fig. 2 | Metabolic features associated with AD and AD biomarkers. a, Network 
plot showing connections between metabolites (colored by their super class 
membership) and outcomes (labeled). Solid lines indicate positive associations, 
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with the three P-tau biomarkers and clinical AD at FDR q-value < 0.05 for each 
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transport long-chain PUFAs into the central nervous system51 might 
play a role in AD biology in an APOE ε4-dependent way.

Replication of LysoPCs association with AD biomarkers in the 
WHICAP cohort
To validate and generalize our findings, we examined the association 
between lysoPCs and clinical and biomarker-supported AD in partici-
pants of Caribbean Hispanic ethnicity in the WHICAP cohort that reside 
in northern Manhattan, New York and have different exposure profiles 
from the Genetic Studies of Alzheimer’s disease in Caribbean Hispan-
ics (EFIGA) residents in the Dominican Republic. We used identical 
methods and parameters for high-resolution mass spectrometry-based 
metabolomics data in 351 plasma samples to identify and test asso-
ciation of lysoPCs with clinical AD and biomarker-supported AD. We 
detected 45 metabolic features annotated as lysoPCs (25 unique, and 
20 features were overlapping with the EFIGA cohort) that were used to 
generate PCs. We then tested the association of the first five PCs with 
clinical and biomarker-supported AD, stratified by APOE ε4 allele car-
rier status (Extended Data Fig. 6). PC3 had a significant interaction with 
APOE ε4 allele carrier status (P for interaction = 0.04). We found that 
PC1, with positive loadings from all lysoPCs investigated, was negatively 
associated with biomarker-supported AD and this effect was only seen 
among those with no APOE-ε4 allele, similar to our finding in the EFIGA 
cohort. PC3, with large negative loadings from lysoPCs with AHA, was 
negatively associated with clinical AD among those with no APOE-ε4 
allele. PC5, with positive loadings from lysoPC with DHA, was negatively 
associated with biomarker-supported AD among APOE-ε4 noncarri-
ers. We examined the similarity of the loadings on PCs 1–5 for the 37 

lysoPCs detected in both the cohorts, EFIGA and WHICAP, and found 
that loadings on PC1 were highly correlated (spearman rho = 0.92, 
P < 2.2 × 10−16; Supplementary Fig. 7).

LysoPC replication in the ROSMAP cohort
To further validate our results and determine the effect of lysoPCs on 
disease stage, we examined the association between lysoPCs and AD 
pathology in the ROSMAP cohort. We used the metabolomics data 
derived from 110 brain samples in the ROSMAP cohort, collected post-
mortem, to test the association between lysoPCs and phosphatidyl-
cholines with pathological definition of AD, amyloid burden, tangle 
density and global pathology. There were 14 lysoPCs and 13 phos-
phatidylcholines measured in the ROSMAP cohort. We constructed 
PCs from the lysoPCs and tested the association of the first five PCs 
with AD pathology (Extended Data Fig. 7). We identified that PC3 was 
negatively associated with increased tangle density, global pathology 
and a pathological diagnosis of AD. Of the lysoPCs carrying PUFAs, we 
only detected AHA in the ROSMAP cohort. PC3 had positive loadings 
from AHA, although not an important contributor to PC3. Three PCs 
were negatively associated with amyloid burden and tau tangles imply-
ing that lysoPCs and PCs were reduced in the postmortem AD brains 
(Supplementary Table 4). These findings are consistent with plasma 
lysoPCs observation in the EFIGA cohort.

Discussion
We investigated the association of metabolites with plasma biomark-
ers and clinical diagnoses in a cohort of Caribbean Hispanic individu-
als to identify metabolic pathways associated with hallmarks of AD 
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pathology. Specifically, we compared metabolic pathways enriched in 
clinical AD and biomarker-based diagnosis of AD. As plasma biomarkers 
change several years before clinical symptoms49, comparing clinical and 
biomarker-based diagnosis could clarify pathways that precede clinical 
manifestation of disease, potentially identifying early interventions. 
Two of the most notable findings in our study were that metabolite 
profiles differed when a clinical diagnosis was used versus a validated 
plasma biomarker-based diagnosis and that lysoPCs, which have been 
previously associated with AD51,52, have an APOE ε4 dependent risk of 
AD in our unbiased approach in a Hispanic population. This finding was 
replicated in a separate cohort of Caribbean Hispanic and non-Hispanic 
white individuals and in plasma and postmortem brain tissue.

LysoPCs were associated with quantitative levels of plasma 
P-tau181, P-tau217 and with biomarker-supported AD (defined by 
P-tau181). Co-abundance analysis revealed associations between 
P-tau181 and P-tau217 and metabolic modules that harbor several 
lysoPCs as hub metabolites, potentially suggesting an important 
role in disease pathogenesis. Several studies have reported lower 
levels of lysoPCs in the brains, CSF and plasma of patients wth AD53–64. 
These changes often involve a decrease in levels of lysoPC species, 
particularly those that bind anti-inflammatory PUFAs, in patients 
with AD. Some lysoPC species have been implicated in promoting 
neurotoxicity and inflammation65–67. They can induce oxidative stress, 
impair mitochondrial function and activate immune cells, leading to 
neuronal damage and death. LysoPCs are also involved in dysregula-
tion of lipid metabolism. The breakdown of phosphatidylcholine, 
a major lipid component of cell membranes, can generate lysoPCs. 
Disruptions in enzymes involved in this process, such as phospho-
lipase A2 (PLA2), have been observed in AD and may contribute to 
altered lysoPC levels68–70. Further validation in the frontal cortex 
from postmortem brain tissue in ROSMAP strengthens the biologi-
cal relevance of the lysoPCs in AD etiology. Further research using 
animal models should explore this possible mechanism behind the 
observed association.

We observed a differential effect of lysoPCs within APOE ε4 car-
riers and noncarriers. The risk conferred by lysoPCs was restricted to 
APOE ε4 carriers, whereas the protective effects were significant within 
APOE ε4 noncarriers. We previously showed significant differences in 
metabolic profiles in a small multiethnic AD cohort and these differ-
ences remained when the analysis was restricted to APOE ε4 carriers71. 
APOE ε4 carriers tend to exhibit higher levels of specific lysoPC species, 
including DHA and AHA in CSF, plasma and brain tissue compared to 
noncarriers72–75. Elevated levels of certain lysoPCs in APOE ε4 carriers 
have been linked to increased Aβ deposition, tau phosphorylation 
and neuroinflammation. In our study, we observed distinct patterns 
of lysoPC alterations in APOE ε4 carriers compared to noncarriers.

We also found that metabolism of tryptophan (an essential amino 
acid) was associated with clinical and plasma P-tau231. Urea cycle/
amino group metabolism was associated with biomarker-supported 
AD and all P-tau biomarkers. Tyrosine metabolism was associated with 
biomarker-supported AD, P-tau181 and P-tau217. Limited research 
has focused on measuring tyrosine levels specifically in the brains 
of patients with AD but administering tyrosine orally can enhance 
memory and cognitive function76. Tryptophan is an essential amino 
acid and a precursor for the synthesis of serotonin, a neurotransmitter 
involved in mood regulation and cognition. Alterations in tryptophan 
metabolism may impact serotonin availability in the brain and contrib-
ute to AD pathophysiology, particularly Aβ pathology24. Aβ accumula-
tion can disrupt tryptophan metabolism, leading to altered levels of 
tryptophan and its metabolites. Conversely, tryptophan metabolites, 
such as kynurenic acid, can affect Aβ aggregation and clearance, poten-
tially influencing disease progression77,78. Of note, tryptophan levels 
in plasma were associated with clinical diagnosis of AD and were also 
mildly correlated with CSF levels (correlation of 0.24; Table 2). Several 
microbial metabolites of tryptophan were also associated with P-tau 

biomarkers and indole was a hub metabolite in a module associated 
with P-tau181 and P-tau217.

Heparan sulfate and chondroitin sulfate degradation processes 
were associated with P-tau217 and P-tau231. Heparan sulfate and chon-
droitin sulfate are types of glycosaminoglycans (GAGs), or sulfated 
carbohydrates, that are found in the extracellular matrix of cells. GAGs 
have been reported in accumulation and clearance of Aβ79–81 and aggre-
gation of tau protein82,83. GAGs can interact with various inflammatory 
molecules, including cytokines and chemokines, and modulate neu-
roinflammatory processes in AD84,85. Chondroitin sulfate and heparan 
sulfate chains present on proteoglycans can act as binding sites for 
inflammatory molecules, contributing to the activation of immune cells 
and the generation of a proinflammatory environment in the brain86. 
The Aβ42:Aβ40 ratio was associated with sialic acid metabolism and 
N-glycan degradation, pathways that have previously been associated 
with Aβ production, clearance and aggregation87–90.

Taken together these results suggest that it is essential to combine 
biochemical analysis with biomarkers of disease to achieve a better 
understanding of the metabolic heterogeneity in AD pathogenesis 
and enable identification of biological mechanisms of the disease. 
Specifically, identification of metabolic pathways associated with 
plasma biomarkers might indicate biological mechanisms underlying 
AD pathology at different stages of the disease.

There are some limitations of the analysis presented here. First, the 
untargeted metabolomics analysis identified several features that were 
eventually excluded from analyses and interpretation because of sam-
ple missingness or lack of reliable annotation. Excluding metabolites 
missing in 30% of the sample could potentially remove features that are 
not expressed or have very low levels in AD cases, affecting power of dis-
covery. Second, pathway and functional analyses using methods such 
as MetaboAnalyst rely on reference databases for metabolite annota-
tion, the accuracy and comprehensiveness of which may be affected by 
the coverage and quality of these databases. Third, in a limited resource 
environment, the diagnosis of AD based on P-tau181 might not be 
precise. Further investigation, specifically with longitudinal measures 
of biomarkers and metabolic assessments, are needed to disentangle 
the metabolic cascades in the different stages of disease progression.

In summary, we show that several lysoPCs are robustly asso-
ciated with early amyloidosis in AD as measured by P-tau181 and 
P-tau217. Given that lysoPCs play an important role in the transport 
of long-chain PUFAs into the brain, our findings show that changes in 
fatty acid metabolism in the brain occur early in AD and suggest that 
levels of lysoPCs/PUFAs in circulation may influence disease onset or 
progression. This study demonstrates the utility of high-resolution 
mass spectrometry-based untargeted metabolomics to reveal bio-
chemical differences in participants with aberrant plasma biomarker 
profiles and to identify metabolic perturbations in different stages 
of the disease. Furthermore, it may be possible to use metabolomic 
profiling to monitor these critical biochemical processes during 
therapeutic interventions

Methods
The Estudio Familiar de Influencia Genetica en Alzheimer 
cohort
This cohort has been recruiting individuals of Caribbean Hispanic 
ancestry with suspected sporadic or familial AD and healthy controls, 
similar in age, through advertisements in local newspapers and radio 
stations, and through clinical referrals in the Dominican Republic 
and in the Washington Heights neighborhood of New York City48. 
Participants in this study provided informed consent under protocols 
approved by the Columbia University Irving Medical Center Institu-
tional Review Board, and the National Health Bioethics Committee of 
the Dominican Republic. They underwent medical and neurological 
history, detailed examinations, neuropsychological testing and col-
lection of blood for plasma and DNA processing. CSF was collected in 
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a subgroup of participants. The clinical diagnosis of AD was based on 
the National Institute on Aging and Alzheimer’s Association (NIA-AA) 
criteria91. All clinical diagnoses were determined in a consensus confer-
ence attended by a neurologist, a neuropsychologist and an internist 
with expertise in dementia and geriatrics. In brief, individuals with 
clinical AD must have had a history of progressive cognitive decline 
in the absence of other brain disorders (including conditions such as 
rare epilepsies and malignant neoplasms of the nervous system) and 
objective evidence of a decline in memory and in at least two other 
cognitive domains such as verbal fluency or executive function. If 
patients presented with a history of comorbidities such as cerebrovas-
cular disease, stroke-related dementia and neurological disorders, a 
diagnosis of AD was not assigned. For this study only participants with 
a clinical diagnosis of AD were included. Healthy controls showed no 
evidence of cognitive decline or signs of other neurodegenerative 
diseases. For the analyses in this manuscript, only biological samples 
and data from individuals recruited between 1 January 2018 and 30 
April 2022, were considered.

The Washington Heights, Inwood Columbia Aging Project
This project has been recruiting participants from the Washington 
Heights neighborhood for over two decades in a community aging 
study. All participants provided informed consent under protocols 
approved by the Columbia University Irving Medical Center Institu-
tional Review Board. Within the cohort there are individuals who are 
non-Hispanic white (24%), African American (28%), Caribbean Hispanic 
(48%) from the Dominican Republic and Puerto Rico, and 68% are 
women. During each assessment, participants receive the neuropsy-
chological test battery, medical interview and are re-consented for 
sharing of genetic information and autopsy. Blood is drawn, barcoded 
and brought to our laboratory within 2 h of collection. All the medical, 
neurological, psychiatric and neuropsychological data collected are 
reviewed at a weekly consensus conference. Diagnosis of AD is based 
on accepted criteria91.

Sample collection
Blood was collected in dipotassium ethylenediaminetetraacetic acid 
(K2EDTA) tubes by standard venipuncture and transported to a labora-
tory for centrifugation, preparation of plasma and storage at −80 ˚°C 
within 2 h of collection. CSF was obtained by standard aseptic tech-
nique, distributed into aliquots of 400 µl each in polypropylene tubes, 
frozen and stored at −80 °C (ref. 48).

Plasma and CSF metabolomics data generation
Plasma and CSF metabolites were extracted using internal 
standards-fortified acetonitrile and the extracts were injected on 
two chromatographic columns: a hydrophilic interaction column 
(HILIC) under positive ionization (HILIC+) and a C18 column under nega-
tive ionization (C18−), coupled to a Thermo Orbitrap HFX Q-Exactive 
mass spectrometer, scanning for molecules within 85–1,250 kDa. The 
methodological details have been previously published92,93. Samples 
were randomized to ensure equal representation of cases–controls 
and male–female sex across the batches. This was performed using a 
randomization algorithm. For each sample, triplicate injections were 
performed sequentially for each sample, alternating between the 
HILIC and C18 columns. This produced three technical replicates per 
sample per column. The untargeted mass spectral data were processed 
through a computational pipeline that leverages open source feature 
detection and peak alignment software, apLCMS94 and xMSanalyzer95. 
The feature tables were generated containing information on the 
mass-to-charge (m/z) ratio, retention time and median summarized 
abundance/intensity of each ion for each sample. The extraction pipe-
line adequately dealt with drift over samples run and we did observe 
any evidence of drift in intensity (Supplementary Fig. 1). Correction for 
batch effects was performed using ComBat, which uses an empirical 

Bayesian framework to adjust for known batches in which the samples 
were run96. Each of these ions are referred to as metabolic features. 
For the analysis, metabolic features detected in at least 70% of all the 
samples were retained, leaving 3,253 features from the HILIC+ col-
umn and 3,628 features from the C18− column for plasma samples. 
Metabolic features missing in 70% of the participants did not show 
any differential missingness by case status (Supplementary Fig. 2). 
Zero-intensity values were considered below the detection limit of 
the instrument and were imputed with half the minimum intensity 
observed for each metabolic feature. The intensity of each metabolic 
feature was log10-transformed, quantile normalized and autoscaled 
for normalization and standardization. Principal-component analysis 
identified 29 individuals (Supplementary Fig. 3) as outliers, who were 
excluded from association analysis.

Metabolite annotation
Annotations were assigned in two stages: first, using an internal refer-
ence library curated using authentic chemical standards run using the 
same method and instrument, and second by matching features unas-
signed in the first step to the Human Metabolome Database (HMDB) 
using the R package xMSannotator (v.1.3.2)95. This uses a multistage 
clustering algorithm that uses metabolic pathway associations, inten-
sity profiles, retention time, mass defect and isotope/adduct patterns 
to assign putative annotations to metabolic features. When a feature 
had multiple matches, we used the following rules to assign an anno-
tation: first, we screened features based on the confidence score 
assigned by xMSannotator, and the annotation with the highest score 
was used. Second, if all annotations had the same score, we chose the 
annotation with the lowest difference in expected and observed mass 
(delta parts per million (ppm)). Finally, if all features had the same 
score and delta ppm, we indicated the identity as ‘multiple matches’ 
as we could not decipher a unique putative annotation. If a feature 
did not match any database entries, it was denoted as ‘unknown’ (33% 
from HILIC+ column and 40% from C18− column). The confidence in 
annotation was based on criteria defined by Schymanski et al.97, where 
level 1 corresponds to a confirmed structure identified through MS/
MS and/or comparison to an authentic standard; level 2 to a probable 
structure identified through spectral matches to a database; level 3 
to a putative identification with a speculative structure; level 4 to 
an unequivocal molecular formula but with insufficient evidence 
to propose a structure; and level 5 to an exact mass but not enough 
information to assign a formula. Of the 3,253 features retained for 
analysis from the HILIC column, 2,165 (66%) were annotated, 100 
at level 1 confidence (4.6 % of annotated), 970 at level 3 confidence 
(45% of annotated) and 1,095 at level 5 (50% of annotated). Of the 
3,628 retained from the C18 column, 2,187 (60%) were annotated, 151 
at level 1 (6.9% of annotated), 1,189 at level 3 (54%) and 847 at level 5 
confidence (39%).

Blood-based biomarker analyses
The methods have been previously described in detail48. In brief, blood 
samples were obtained through standard venipuncture using K2EDTA 
tubes. Plasma was isolated via centrifugation at 2000g for 15 min at 4 °C 
within 2 h of collection and aliquoted into polypropylene tubes, frozen 
and stored at −80 °C. Plasma biomarker assessments were carried out 
utilizing the Quanterix Simoa single molecule array technology HD-X 
platform. Samples were diluted and assayed in duplicate following 
package insert protocols using the following Quanterix kits: Simoa 
Neurology 3-Plex A (N3PA, cat. no. 101995) for Aβ42 and Aβ40, Simoa 
P-tau181 Advantage V2 (cat. no. 103714) for phosphorylated-tau181, 
ALZpath Simoa P-tau217 v.2 (cat. no. 104371) for phosphorylated-tau217 
and Simoa P-tau231 (cat. no. 102292) for phosphorylated-tau231. Mean 
coefficients of variation were ≤5%. The ratio of Aβ42:Aβ40 was also 
computed. Biomarker levels were log10-transformed and autoscaled 
before statistical analysis.

http://www.nature.com/nataging


Nature Aging | Volume 6 | January 2026 | 221–234 230

Article https://doi.org/10.1038/s43587-025-01025-7

Biomarker-supported AD
A previous analysis in the EFIGA cohort48 found that plasma 
P-tau181 and the P-tau181:Aβ42 ratio were the most discriminatory 
biomarkers between patients with AD and healthy controls. This 
was determined using established laboratory CSF cutoff points 
in a subset of individuals of the EFIGA cohort with CSF biomarker 
data available. Then, using plasma biomarker data available in the 
same individuals with CSF biomarkers, they determined the clas-
sification performance and optimal cutoff points for each plasma 
biomarker. Elevated P-tau181 is highly correlated with AD98–101 
and decreased plasma Aβ42 is correlated with AD; however, due 
to extracerebral sources of Aβ42, it is not as reliable a measure in 
plasma as P-tau181, so we chose P-tau181 over P-tau181:Aβ42 ratio 
to identify AD pathology in this cohort. In this analysis, participants 
with plasma P-tau181 < 2.63 pg ml−1 were considered biomarker 
status negative (BM− or healthy controls) and those with plasma 
P-tau181 ≥ 2.63 pg ml−1 were considered to have biomarker-supported 
AD (BM+). We use ‘biomarker-supported AD’ throughout the manu-
script and individuals having biomarker-supported AD were con-
sidered as biomarker positive. To test whether our findings were 
robust to P-tau isoforms, we also used a cutoff with plasma P-tau217, 
where levels <0.39 pg ml−1 were considered healthy controls and 
those with plasma P-tau217 ≥ 0.39 pg ml−1 were considered as BM+. 
This cutoff was chosen using the same approach as that described 
for P-tau181 above.

Statistics and reproducibility
We used two approaches to find circulating metabolic features asso-
ciated with outcomes of interest (1) a MWAS framework with correc-
tion for multiple comparisons by controlling the FDR at 5%; and (2) a 
co-abundance analysis to find modules of metabolic features associ-
ated with outcomes, providing a means of unsupervised dimensionality 
reduction based on correlation between the metabolic features. Both 
analyses were conducted separately for data from each column. All 
analyses were conducted in R (v.4.4.1).

Metabolome-wide association study
An MWAS was conducted using multiple linear models, adjusted for age 
and sex. The analyses were conducted separately for data from each 
column. We corrected for multiple comparisons using an FDR of 5% and 
q-values were estimated using the Benjamini–Hochberg method102.

Network plot
To visualize the significant associations, we constructed a network plot 
for all outcomes and their significantly associated features. Restricting 
the results to features with a q-value < 0.05 and to those with annota-
tions assigned, we used RefMet103 to obtain metabolite classes. We 
then plotted the network with nodes representing the outcome and 
metabolic features, colored by metabolite class, and edges represent-
ing the direction of association using the igraph package (v.1.2.11) in R.

Metabolite co-abundance analysis
Co-abundance modular analysis was conducted using weighted gene 
correlation network analysis104 using the WGCNA R package (v.1.69). 
Using normalized intensity values for each metabolic feature from 
each sample, we first constructed a metabolic feature co-abundance 
network using pairwise Pearson correlations between each metabolic 
feature. We used a soft threshold of 4 for the HILIC+ data and 3 for the 
C18− data, which were chosen based on saturation of the R2 at 0.9. This 
correlation network, where the nodes were metabolic features and 
edges were the scaled correlation coefficients, was used to create the 
topological overlap matrix, which provides a measure of similarity 
between a given pair of metabolic features in the network. This simi-
larity matrix was used to create a dendrogram to assign metabolic fea-
tures into modules based on their co-abundance pattern. We used the 

following parameters: minimum module size of 30, merge cutHeight of 
0.25, an unsigned network, and a reassign threshold of 0. After network 
and dendrogram construction, modules were defined using the modu-
leEigengenes function in WGCNA. The module eigengene is a quantita-
tive representation of a module derived from a principal-component 
analysis (PCA) as the first PC, constructed using only those metabolic 
features that were part of the module. Association analyses were con-
ducted to find modules associated with outcomes in linear regression 
models, adjusted for age and sex. We used the Bonferroni method to 
correct for multiple comparisons.

Pathway analysis
To determine the biological relevance of the metabolic features associ-
ated with AD and biomarkers, we conducted pathway analysis using the 
R package MetaboAnalystR105 (v.4.0.0). We used the MWAS results from 
both columns and applied a nominal P value cutoff of 0.01 to determine 
metabolic pathway enrichment using the mummichog algorithm and 
the human MFN reference database106. We present results for pathways 
with a Fisher’s exact test P value < 0.05.

Chemical class enrichment
This approach was used to determine the different chemical classes 
represented by metabolic feature members of WGCNA modules signifi-
cantly associated with outcomes. All metabolites in WGCNA modules 
that were associated with AD and biomarkers were used as inputs for 
the enrichment analysis. The main chemical classes enriched were 
determined using the Enrichment Analysis module in MetaboAnalyst 
(v.5.0) using HMDB IDs as input type and metabolites as feature type 
for features with an annotation confidence score ≤ 3.

Construction of plasma lysoPC principal components and 
stratified analysis by APOE ε4 status
Based on the findings described, we performed a PCA using fea-
tures that were annotated as lysoPCs from both columns (41 
from HILIC+ and 6 from C18−). As PCs 1–5 explained ~65% of the 
variance in the data, we used the first five PCs in logistic regres-
sion models to find the association with clinical diagnosis of AD 
and biomarker-supported AD, adjusted for age and sex. We tested 
for the presence of an interaction between the combinations of 
the lysoPCs and the presence of at least one APOE ε4 allele and 
performed a stratified analysis as there was a significant interac-
tion term between APOE ε4 allele and PC4 for both clinical (P value 
for interaction = 0.03) and biomarker-supported AD (P value for 
interaction = 0.001).

Correlation between plasma and CSF metabolites
Among people with both plasma and CSF metabolomics data available 
(n = 113), plasma metabolites with level 1 confidence that were signifi-
cantly associated with any outcome were tested for their correlation 
with the same metabolite identified in CSF using spearman correlation.

Association between lysoPCs and blood-based biomarkers in 
Caribbean Hispanic participants of a different cohort
To provide validation of our findings, we used plasma metabolomics 
data and plasma biomarkers levels available in participants of Carib-
bean Hispanic ethnicity in the WHICAP cohort. The metabolomic 
and biomarker data were generated using the same methods as in the 
study samples of the EFIGA cohort, as described above. We identified 
45 metabolites annotated as lysoPCs (39 from HILIC+ and 6 from C18− 
columns) and computed PCs as described above. We tested association 
of the first five PCs (explained ~60% of the variance) with clinical and 
biomarker-supported AD, adjusted for sex and age. This analysis was 
also conducted stratified by APOE ε4 allele carrier status as we found 
a significant interaction between PC3 and biomarker-supported AD 
(P value for interaction = 0.04).
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Association between lysoPCs and other metabolites, and  
brain pathology in the ROSMAP cohort
To provide external validation of our findings with lysoPCs, we obtained 
data from the ROSMAP cohort and examined associations between 
lysoPCs in brain samples and brain pathology5. We also investigated 
plasma metabolomics data in ROSMAP published recently107 but could 
not identify any lysoPCs in the dataset. We computed PCs with all brain 
lysoPCs identified, as described above. We tested association of the 
first five PCs with amyloid, tangles, total global pathology, clinical 
and pathological diagnosis of AD, adjusted for sex and age at death. 
We also analyzed the relationship between all metabolites measured 
in brain tissue and brain pathology using linear regression, adjusted 
for sex and age at death.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All intermediate and final results are included in the text and the sup-
plementary materials of the paper. The metabolomics and phenotype 
data from the EFIGA and WHICAP cohorts are deposited in the Synapse 
AD knowledge portal and can be accessed at https://www.synapse.org/
Synapse:syn70083418/wiki/635413. The ROSMAP dataset (https://
www.synapse.org/Synapse:syn10235595) can be accessed through 
Synapse and the Rush Alzheimer’s Disease Center by submitting a data 
request at https://www.radc.rush.edu/requests/data.htm.

Code availability
We used standard packages implemented in R for association, coexpres-
sion and PCAs. R code used for the analyses in this study is available from 
the corresponding authors upon request. Interested researchers are 
encouraged to contact the corresponding authors with a brief descrip-
tion of the intended use. Access will be provided for noncommercial 
purposes and solely for reproducing the results presented in this article.
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Extended Data Fig. 1 | Results from coexpression analysis using data from 
the C18 column. In a, the volcano plot shows metabolic modules significantly 
associated with clinical AD, biomarker-supported AD and AD biomarkers using 
Bonferroni adjusted p value. In b, the chemical classes enriched by module 

member metabolic features present at a proportion of at least 6.5%. The levels 
of the top three hub metabolites, based on eigengene-based connectivity, of the 
yellow (c), brown (d), salmon (e), green-yellow (f), and cyan (g) module in clinical 
and biomarker-supported AD, are also shown.
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Extended Data Fig. 2 | Associations between individual lysoPCs and AD and 
biomarkers. The * indicates FDR q-value < 0.05 and the # indicates an FDR 
q-value for interaction with APOE ε4 carrier < 0.05. There was no significant 

interaction with APOE ε4 in the relationship between clinical AD or biomarker-
supported AD and any of the individual lysoPCs (all adducts detected, adduct 
number indicated by a*).
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Extended Data Fig. 3 | Lysophosphatidylcholines (lysoPCs) are associated 
with clinical AD and biomarker-supported AD (defined by either P-tau181 or 
P-tau217). The odds ratio (point) and confidence interval (whiskers) of PC1–5 
in relation to clinical AD and biomarker-supported AD, defined as P-tau181 

supported AD or P-tau217 supported AD, stratified by APOE ε4 allele status. An 
* indicates p value < 0.05. Similar trends in association are seen between lysoPC 
constructs and P-tau181 or P-tau217 supported AD within each APOE ε4 strata.
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Extended Data Fig. 4 | Correlation of lysoPCs with polyunsaturated fatty acids 
in plasma and CSF. In a, the correlation between plasma lysoPC profiles and fatty 
acids in CSF (top panel) and plasma. In b, the correlation between lysoPCs that 

carry fatty acids of interest (DHA, EPA, AHA) and the levels of these fatty acids 
measured in CSF. In c, the characteristics of fatty acids associated with circulating 
lysoPCs. * indicates p value < 0.05.
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Extended Data Fig. 5 | Correlation of lysoPCs with polyunsaturated fatty acids in plasma stratified by APOE ε4 allele status.
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Extended Data Fig. 6 | Lysophosphatidylcholines (lysoPCs) constructs 
associated with clinical AD and biomarker-supported AD in the WHICAP 
cohort. In a, the odds ratio (point) and confidence interval (whiskers) of PC1–5 in 
relation to biomarker-supported AD and clinical AD. In b, the results from 

analysis stratified by APOE 4 allele status. In c, the loadings of lysoPCs (all 
adducts detected, adduct number indicated by a*) on the four PCs (PC1, PC2, PC3, 
and PC5) significantly associated with biomarkers positive status or clinical AD.
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Extended Data Fig. 7 | Brain lysoPC association in ROSMAP cohort. In a, the 
first five principal components explained over 95% of the variance. In b, PC3 was 
nominally associated with pathological definition of AD, tau tangles, general 

pathology and neurofibrillary tangles. In c, lysoPCs detected in the ROSMAP 
cohort. EPA and DHA carrying lysoPCs were not detected but lysoPC.a.20.4, 
which carries AHA, was measured.
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Extended Data Table 1 | Characteristics of the study population with CSF and plasma metabolomics data
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Extended Data Table 2 | Characteristics of the WHICAP population
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Extended Data Table 3 | Characteristics of the ROSMAP population
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