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Aging clocks delineate neuron types 
vulnerable or resilient to neurodegeneration 
and identify neuroprotective interventions
 

Christian Gallrein    1,2,3,5  , David H. Meyer    1,2,5  , Yvonne Woitzat3, 
Valeria Ramirez-Ramirez1,2, Thanh Vuong-Brender    1,2, Janine Kirstein    3,4 & 
Björn Schumacher    1,2 

Different neuron types show distinct susceptibility to age-dependent 
degeneration, yet the underlying mechanisms are poorly understood. Here 
we applied aging clocks to single neuron types in Caenorhabditis elegans and 
found that distinct neurons differ in their biological age. Ciliated sensory 
neurons with high neuropeptide and protein biosynthesis gene expression 
show accelerated aging and degeneration, correlating with loss of function, 
which could be prevented by pharmacological inhibition of translation. 
We show that the C. elegans neuronal aging transcriptomes correlate 
with human brain aging patterns and anticorrelate with geroprotective 
interventions. We performed an in silico drug screen to identify potentially 
neuroprotective small molecules. We show that the natural occurring plant 
metabolite syringic acid and the piperazine derivative vanoxerine delay 
neuronal degeneration, and propose these compounds as neuroprotective 
interventions. Furthermore, we identify neurotoxins that accelerate neu
rodegeneration, indicating that distinguishing aging trajectories between 
neuron types can inform on protective interventions as well as risk factors.

Aging is the highest risk factor for neurodegenerative diseases such as 
Alzheimer’s disease or Parkinson’s disease that are triggered by the func-
tional decline of distinct neuron types. In Alzheimer’s disease, the ini-
tially degenerating brain structures are the parahippocampal gyrus and 
the olfactory bulb, followed by the degeneration of the hippocampus, 
leading to the characteristic clinical dementia symptoms1–3. Parkinson’s 
disease, in contrast, affects mostly the dopaminergic innervation of the 
midbrain and the cerebellum, resulting in the perturbation of motility 
and the induction of tremor syndromes4,5. In mice, distinct classes of 
brain cells show differences in age-related decline6, and single-cell tran-
scriptomics has identified pro-aging and pro-rejuvenating proximity 
effects of distinct cell populations7. The extent to which intrinsic aging 

susceptibility differs among individual neuron types has, however, 
remained largely unknown. To elucidate whether different neuron 
types might differ in their biological aging process, we used C. elegans 
as an experimental model with a well-characterized neuronal system of 
302 neurons of ≥128 different neuron types8 that allows assessing the 
integrity of individual neurons during the normal aging process in vivo.

Aging clocks provide predictive models of molecular signatures 
(for example, DNA methylation) that estimate an individual’s chrono-
logical age, and could identify biological age differences resulting from 
genetic or pharmacological age acceleration or deceleration9–11. Based 
on the known effects of many genetic and pharmacologic interventions 
on lifespan and thus biological age in C. elegans, we recently developed 
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(Extended Data Fig. 1g; Pearson correlation r = 0.78, P < 0.0001; for 
the top and bottom 20%). The Stochastic Clock predictions showed 
a significant correlation between the CeNGEN and Calico datasets 
(Extended Data Fig. 1c; Pearson correlation 0.82, P < 0.0001). Similarly, 
the Stochastic Clock predictions correlated significantly with BitAge 
in the Calico dataset (Extended Data Fig. 1d; Pearson correlation 0.74, 
P < 0.0001). Taken together, two independent aging clock paradigms 
using two independent single-neuron transcriptome datasets consist-
ently predict specific neuron types as younger and others as older in 
chronologically young animals.

To address potential limitations of single-cell sequencing cover-
age, we performed the same analyses on bulk RNA-sequencing data 
from CeNGEN, which offers improved transcriptomic coverage for a 
subset of 37 neurons16. BitAge predictions remained consistent between 
the pseudobulk CeNGEN dataset and the bulk RNA-sequencing dataset 
(Extended Data Fig. 1e; Pearson correlation 0.65, P < 0.0001). Similarly, 
the Stochastic Clock predictions on pseudobulk and bulk CeNGEN data-
sets were also significantly correlated (Extended Data Fig. 1f; Pearson 
correlation 0.7, P < 0.0001), reinforcing that the predicted biological 
age differences among neurons are robust across different datasets 
and sequencing approaches. While the predictions of BitAge and the 
Stochastic Clock are highly consistent, there are also some outliers that 
deviate more strongly from the correlation (Extended Data Fig. 1g).

As additional validation, we used bulk neuron transcriptomes from 
young and aged animals that were not included in the training data of 
the clocks17. We found that both clocks could differentiate between the 
young and old samples (Extended Data Fig. 1h); note that differences 
between predicted biological age and indicated chronological age 
could arise from two effects: first, the sample age is reported in days, 
giving a ±12-h uncertainty; second, the associated reported median 
lifespan of 22 days is unexpectedly high (median lifespan is typically 
between 14 and 18 days)17.

The aging transcriptome in species ranging from C. elegans to 
humans was recently shown to exhibit a gene length-dependent tran-
scriptional decline (GLTD): the longer the gene, the more sharply its 
expression tends to decrease with age18,19. GLTD is thought to result 
from the age-dependent accumulation of transcription-blocking DNA 
damage that is more likely to occur in larger genes. To test whether 
neurons predicted to be biologically older showed GLTD, we ana-
lyzed neuron-type-specific genes, which are defined as genes that are 
expressed in at least 90% of the specific neurons and in not more than 
10% of other cells. In line with GLTD, the neuron-type-specific genes 
of the 20% oldest predicted neurons are significantly shorter than 
expected by chance (P = 3.6 × 10−4), while the neuron-type-specific 
genes of the 20% youngest neurons are significantly longer 
(P = 9.28 × 10−3; Fig. 1c) and show a significantly longer median gene 
length (Fig. 1d). The median length of the neuron-type-specific genes is 
negatively correlated with the prediction age of BitAge or the Stochastic 
Clock on either CeNGEN or Calico data (Extended Data Fig. 1i–l). These 
results indicate that the clock-predicted biological age is reflected in 
the age-associated GLTD that is most prevalent in the biologically old 
predicted neurons.

Taken together, the alignment of aging clock predictions with 
the presence of GLTD in neurons predicted to be biologically old in 
chronologically young animals provides compelling evidence that 
specific neuron types undergo accelerated aging.

Neuron-specific age predictions are associated with 
neurodegeneration
To assess whether the predicted age differences are associated with 
different degrees of neuron-specific degeneration, we next chose three 
young (I2, OLL, PHC) and three old (ASI, ASJ, ASK) predicted neurons 
(Fig. 2a) and scored their degeneration over the chronological age start-
ing from the larval L4 stage onward to day 7 of adulthood. The L4 stage 
is the last larval stage before the nematodes reach sexual maturity, while 

the highly accurate binarized transcriptomic (Bit) age clock. BitAge 
predicts already in young adult animals quantitatively how genetic, 
environmental or pharmacological treatments affect lifespan10. We 
previously established that also the simulation of increasing noise 
allows the prediction of biological age regardless of organism or data 
type, allowing us to design the Stochastic Clock to detect age accelerat-
ing and decelerating interventions12.

Here, we asked whether in chronologically young animals, distinct 
neuron types might exhibit distinct biological ages in C. elegans. We 
show that individual neuron types in the late larval L4 stage, which 
directly precedes adulthood, show a distinct offset of biological age 
prediction despite sharing the same chronological age. We demon-
strate that the age prediction corresponds to neuron-type-specific 
degeneration and the decline of their specific function. Neuron types 
with an older predicted age show early neurodegeneration, while those 
with a younger predicted age are preserved. The transcriptomic differ-
ences between these biologically ‘older’ and ‘younger’ neuron types 
indicate translation as a crucial driver of neuronal aging and pharmaco-
logically reducing protein synthesis prevented the degeneration of the 
fast-aging neurons. We determined that the transcriptional patterns of 
the biological age differences are correlated with the transcriptional 
patterns of human and mouse brain aging, suggesting conserved neu-
ronal aging mechanisms. The neuronal aging patterns anticorrelated 
with geroprotective interventions enabling the identification of neu-
ronal aging modulators. Using a transcriptomic resource incorporating 
thousands of different compounds in human cell lines (CMAP)13, we 
identified and validated pharmacological compounds that protect 
the integrity of neurons in vivo. We demonstrate that the naturally 
occurring plant metabolite syringic acid and the piperazine derivative 
vanoxerine prevent neurodegeneration and propose that they could 
serve as neuroprotective interventions. In reverse, our approach can 
also identify neurotoxins that accelerate neurodegeneration. Our data 
suggest that the mechanisms underlying neuron-type-specific aging 
rates allow the identification of therapeutic interventions that could 
slow down neuronal aging and prevent neurodegeneration.

Results
To investigate whether different neuron types age differently within 
an organism, we applied our previously developed BitAge biologi-
cal age predictor10 and, as independent age predictor, our previously 
developed Stochastic Clock12 on neuron-type-specific RNA-sequencing 
data. We used the single-neuron-type data from the C. elegans Neuronal 
Gene Expression Map & Network (CeNGEN) dataset14, which comprises 
128 distinct neuron types from late L4-stage larvae. The 128 neuron age 
predictions range from ≈98 h in FLP neurons to ≈177 h in ADL neurons 
(Fig. 1a; BitAge) suggesting that different neurons might show an almost 
twofold biological age difference in chronologically young nematodes.

We independently confirmed the different age predictions of the 
neuron types in the single-neuron-type RNA-sequencing data from 
young adults in a recent cell atlas of C. elegans aging (Calico)15, which 
contains 67 of the 128 neuron types from the CeNGEN dataset. Also, the 
Calico dataset of day 1 adults exhibits the same predicted age distribu-
tion (Extended Data Fig. 1a), and the BitAge predictions on both data-
sets are significantly correlated with each other (Extended Data Fig. 1b; 
Pearson correlation 0.66, P < 0.0001).

To independently assess each neuron’s biological age, we applied 
a Stochastic Clock that does not rely on specific transcriptomic sig-
natures but instead simulates how random changes accumulate over 
time12. Despite using a fundamentally different strategy, the Sto-
chastic Clock showed substantial overlap with BitAge (Fig. 1a) and 
predicts an almost fourfold age difference between the youngest 
and oldest neurons. The predictions of the Stochastic Clock signifi-
cantly correlate with the BitAge predictions on the CeNGEN data-
set (Fig. 1b; Pearson correlation r = 0.65, P < 0.0001), which was even 
stronger within the very young or very old predicted group of neurons 
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Fig. 1 | Transcriptome-based aging clocks can predict the ages of individual 
neuron types. a, Distribution of transcriptomic age predictions. The 128 
neurons of the CeNGEN dataset were predicted with BitAge (upper) or a 
stochastic noise-based clock (lower) and sorted by their predicted age.  
The x axis shows the rank of the prediction in ascending order, and the y axis 
shows the predicted age. The 20% youngest neurons and their respective age 
predictions are outlined in blue; the 20% oldest neurons and their respective age 
predictions are displayed in orange. Neuron types appearing on the top/bottom 
of both prediction lists are indicated in bold letters. b, Predictions with BitAge 
and the Stochastic Clock on the CeNGEN dataset are highly correlated (Pearson 
correlation 0.65, P value 5.5 × 10−17). The x axis shows the BitAge predictions 
of the CeNGEN dataset, and the y axis shows the stochastic data-based clock 
predictions of the CeNGEN dataset. All 128 neurons are plotted. Color coding 
of the youngest 20% of neurons according to BitAge in blue and of the oldest 
20% in orange. The regression model fit with a 95% confidence interval (dashed, 
black lines) is shown. c, Neuron-type-specific genes in the CeNGEN dataset are 

skewed depending on gene length and age prediction. The log10 gene length 
(x axis) of the specific genes from the 20% youngest neurons (blue), and of 
the 20% oldest neurons (orange) are compared to random permutation of 
all neuron-type-specific genes with the same number of genes (gray). The 
gray curve shows the mean density across 100,000 random permutations, 
each sampling the same number of genes as in the youngest/oldest neuron 
groups; the shaded gray band indicates the 95% confidence interval across 
permutations. The two-sided permutation test compared the median log10 gene 
length. The y axis shows the probability density of the values on the x axis.  
d, Swarm plot of the median log10 length of neuron-type-specific genes 
expressed in the youngest 20% (blue) and oldest 20% (orange) neurons 
according to BitAge predictions. Each point represents a single neuron type. 
Neuron types were grouped into the youngest 20% (blue, n = 17) and  
oldest 20% (orange, n = 21) according to BitAge-predicted biological age. 
Data shown are the mean ± s.d. Welch’s two-tailed t-test was used to test for 
significant differences.
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day 7 of adulthood is in the post-fertile phase. To assess the morphologi-
cal integrity of specific neurons in vivo, we used neuron-type-specific 
transcriptional green fluorescent protein (GFP) reporters (Fig. 2a). 
Macroscopic aberrations in the neurites were classified as ‘healthy’, 

‘damaged’ or ‘severely damaged’ (Fig. 2b) as established previously20–23. 
We excluded that GFP expression levels might influence neuron integ-
rity, as GFP expression levels and neuronal integrity showed no cor-
relation as tested in ASK and ASJ neurons that exhibit the strongest 
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Fig. 2 | Predicted neuron age and degeneration onset and progression 
correlate. a, Representative fluorescence images (z-stack maximum projections) 
of the analyzed neurons grouped by prediction age—I2, OLL and PHC as 
representatives of the young neurons (blue); ASI, ASJ and ASK as representatives 
of the old neurons (orange). Scale bars, 50 µm. b, Representative fluorescence 
images (z-stack maximum projections) of nematodes expressing neuronal 
GFP markers, classified according to the severity of observed degeneration. 
Classification criteria are indicated below the images. Orange arrows indicate 
blebs; red arrowheads indicate spheric outgrowths. Nematode heads are 

outlined by a dashed line. Scale bar, 50 µm. c, Fraction plots displaying the 
fraction of nematodes expressing neuronal markers in different neurons 
categorized as ‘healthy’, ‘mildly damaged’ and ‘severely damaged’. Three 
to four cohorts were analyzed, comprising 10–30 individual nematodes, 
for every time point indicated. Data shown are the mean ± s.d. Statistical 
analysis was performed using a cumulative link model (CLM) with a logit link 
to account for the ordered categorical nature of neuronal damage scores 
(healthy < mild < severe). P values were adjusted for multiple testing using the 
Benjamini–Hochberg method.
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variance in GFP expression levels among the employed nematode 
strains (Extended Data Fig. 2a).

In accordance with our predictions, the three young predicted 
neuron types exhibited significantly less degeneration than the old pre-
dicted neuron types at all analyzed time points (Fig. 2c). At L4 stage and 
on the first day of adulthood, I2, OLL and PHC neurons exhibited a mini-
mal degeneration only affecting 10–20% of the animals, which increased 
to ≈35% during aging. URY neurons, which were described previously 
to exhibit approximately 35% degeneration at day 7 of adulthood23, 
displayed ≈20% degeneration in L4 and young adults, which increased 
up to ≈35% on day 7 of adulthood (Extended Data Fig. 2b,c). All analyzed 
neuron types except I2 showed a significant age-dependent deteriora-
tion (Fig. 2c).

The predicted biologically older ASI, ASJ and ASK neurons were 
damaged in >45% of L4 larvae reaching up to 90% at day 7 of adult-
hood, indicative of rapid aging. To determine at which stage the rapidly 
aging neurons start to degenerate, we also examined the ASI, ASJ and 
ASK neurons in the larval L3 stage. Consistent with a fully developed 
neuronal system, those neuron types were intact in more than 90% of 
the L3 animals, suggesting that the first burst of neuronal aging occurs 
already between the L3 and L4 stage (Extended Data Fig. 2d).

To discern whether the progressive degenerative process reflects 
an age-dependent stochastic process or instead a deterministic devel-
opmental program, we analyzed whether the bleb patterns appeared 
randomly along the neurites. The positions of blebs in ASJ, ASK and 
OLL neurons in adults indeed correlated with a random distribution 
of damage sites along neurites. Only one site in OLL neurons exhibited 
nonrandom bleb clustering; it was located at the proximal pharyngeal 
bulb and prone to swelling (Extended Data Fig. 2e).

To address whether we might have underestimated the neuro-
degeneration because only the morphology of neurons that express 
GFP could be analyzed, and hence are present, we assessed neuronal 
survival in individual nematodes over a time course of 12 days dur-
ing adulthood. During aging most animals retained the young pre-
dicted I2, OLL and URY neurons, while the old predicted ASK and ASE 

neurons were progressively lost (Extended Data Fig. 2f–h), showing 
that early biological age predictions are associated with age-dependent 
neuronal attrition.

Taken together, these results validate our neuron-type-specific 
biological age predictions for identifying neurons at higher risk of 
degeneration, with potential implications for understanding selective 
neuronal vulnerability in aging and neurodegeneration.

Neuronal degeneration corresponds to neuron-specific 
functional loss
To test whether the morphological neurite degeneration corresponds 
with functional impairment, we monitored behaviors that depend 
specifically on a single neuron type. The requirement of a highly 
neuron-type-specific phenotypic outcome excluded the functional 
analysis of the ASI, ASJ, ASK, I2, OLL and PHC neurons for any of the 
following reasons: (1) some neurons, such as I2, lack well-defined func-
tional roles; (2) some functions are executed through multiple redun-
dantly operating neurons thus precluding assessment of single-neuron 
function; (3) some neurons are negative regulators of other neurons 
leading to indirect effects. In contrast, URY neurons (representing 
young predicted neurons) are strictly required for selected pathogen 
avoidance24 and ASE neurons (representing old predicted neurons) 
mediate salt sensation and memory formation25 allowing their func-
tional analysis by behavioral testing.

We tested whether the degeneration of URY neurons correlates 
with impaired avoidance behavior from pathogenic Serratia marces-
cens Db11 bacteria, which is primarily mediated by the TOL-1 receptor 
expressed in URY neurons24. URY-marked strains (GFP is expressed 
specifically in URY neurons) were exposed to either pathogenic Db11 
or nonpathogenic OP50 control bacteria. To test whether failure to 
display avoidance behavior correlated with neurodegeneration, we 
assessed the integrity of the URY neurons in animals that either avoided 
or failed to avoid the bacterial lawn (Fig. 3a).

Approximately 80% of the URY neuron-marked animals avoided 
the toxic Db11 bacterial lawn thus showing a typical pathogen avoidance 

Fig. 3 | Neurodegeneration and neuronal function loss are correlated.  
a, Schematic depiction of the experimental design to examine the correlation 
between pathogen avoidance from S. marcescens Db11 bacteria and URY neuron 
integrity. Nematodes were synchronized by L4 picking and transferred to Db11 
or OP50 bacteria. After 2 days, avoidance behavior was scored and nematodes 
classified as avoiding/not-avoiding and subjected to microscopy to analyze 
URY neuron neurite health. b, Swarm plot of the results from the pathogen 
avoidance assay from Db11 bacteria. URY neuron marker strain (URYp::GFP, 
JKM10), I2 neuron marker strain (I2p::GFP, MT21910, control neuron unrelated to 
avoidance reaction) and TOL-1 receptor mutant strain (∆tol-1, IG10, no avoidance 
from Db11) were used. Data shown are the mean ± s.d. from four independent 
cohorts of 50–75 nematodes. Two-way analysis of variance (ANOVA) + Tukey 
post hoc test were used. c, Swarm plot displaying the healthy neuron fraction 
size from nematodes subjected to Db11 pathogen or OP50 control bacteria and 
classified for evasion behavior. URY neuron marker strain (URYp::GFP, JKM10, 
mediating avoidance from S. marcescens) and I2 neuron marker strain (I2p::GFP, 
MT21910, control neuron unrelated to avoidance reaction) were used. Data are 
the mean ± s.d. of four independent cohorts of 10–20 nematodes per strain, 
condition and classification. Statistical analysis was performed using a CLM. 
P values were adjusted for multiple testing using the Benjamini–Hochberg 
method. d, Schematic depiction of the experimental design to correlate salt 
aversive conditioning and neurodegeneration of ASE neurons. Adult 1-day-old 
nematodes were conditioned by starvation in the presence or absence of 
NaCl, and thereafter subjected to a chemotaxis assay on an NaCl gradient. 
Subsequently, nematodes were classified (dwelling on high/low salt) and neurite 
integrity was analyzed using fluorescence microscopy. Orange asterisks indicate 
nematodes that failed at learning. e, Swarm plot showing the chemotaxis index 
of nematodes conditioned at 0 mM (light blue) or 20 mM (dark blue) NaCl. ASE 
neuron marker strain (ASEp::GFP, NY2067, mediating salt aversive conditioning) 
and URY neuron marker strain (URYp::GFP, JKM10, control neuron unrelated to 

salt aversive conditioning) were used. Data shown are the mean ± s.d. from five 
independent cohorts of 80–150 nematodes. Statistical analysis was performed 
using a CLM. P values were adjusted for multiple testing using the Benjamini–
Hochberg method. f, Swarm plot displaying the healthy neuron fraction size 
from nematodes after salt aversive conditioning. Nematodes were grouped 
depending on the conditioning and their subsequent preference for a high (dark 
blue) or low (light blue) salt concentration. The groups that failed to connect the 
starvation stimulus and salt concentration are indicated by orange asterisks. ASE 
neuron marker strain (ASEp::GFP, NY2067, mediating salt aversive conditioning) 
and URY neuron marker strain (URYp::GFP, JKM10, control neuron unrelated to 
salt aversive conditioning) were used. Data shown are the mean ± s.d. from five 
independent cohorts of 10–20 nematodes. Two-way ANOVA + Tukey post hoc test 
were used. g, We adapted a previously published connectome of C. elegans37. Only 
neuronal cells are shown in a largely directional information flow on the vertical 
axis, with sensory neurons (triangles) on top, interneurons (hexagons) in the 
middle and motor neurons (circles) on the bottom. The horizontal axis roughly 
shows the anatomical orientation with the head region on the left, and posterior 
neurons on the right. Chemical synapses and gap junctions are indicated as 
faded gray lines. The size of the neurons indicates the number of cells within 
this neuron type. The predicted age (BitAge based on the CeNGEN dataset) is 
color coded from blue (young) to orange (old). The oldest neurons cluster in the 
middle top part and are largely sensory neurons. h, Swarm plot showing BitAge 
predictions grouped by amphid neurons/non-amphid neurons and ciliated 
neurons/non-ciliated neurons. Each point represents a single neuron type (n = 14 
amphid, n = 114 not-amphid; n = 28 ciliated, n = 100 not-ciliated). Data shown 
are the mean ± s.d. A two-sided t-test was used. i, Swarm plot showing ciliated 
neurons’ age predictions divided into five classes depending on where their cilia 
terminate. Each point represents a single neuron type (n = 100 not-ciliated, n = 15 
exposed, n = 5 sheath, n = 3 cuticle, n = 3 subcuticle, n = 2 behind cuticle). Data 
shown are the mean ± s.d. ANOVA + Tukey post hoc test were used.
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behavior (Fig. 3b). To ascertain the specificity of the assay, we tested a 
tol-1 mutant control strain that failed to show any avoidance. A baseline 
avoidance of ≈20% was observed on nonpathogenic OP50, consistent 
with natural exploratory behavior. Nematodes that failed to avoid 
pathogenic Db11 showed significantly increased degeneration of URY 
neurons compared to those that successfully avoided the bacteria 
(Fig. 3c). As a control, we ascertained that degeneration of I2 neurons, 
which are also predicted to be biologically young (Figs. 1a and 2c) but 
are not involved in pathogen avoidance, was uncorrelated with the 
avoidance behavior, confirming that the loss of avoidance behavior 
was dependent on URY neuron degeneration (Fig. 3c).

To corroborate our findings, we tested salt aversive memory 
formation that is specifically mediated by ASE neurons25, which are 
predicted to be biologically old (Fig. 1a). Nematodes were conditioned 
to associate either low (0 mM) or high (20 mM) sodium chloride con-
centrations with starvation. Thereafter, the behavioral responses were 
tested by using a chemotaxis preference assay on a sodium chloride 
gradient and subjected to neurite imaging of either salt-sensing ASE 
neurons or salt-sensing unrelated URY neurons (Fig. 3d). The strains 
expressing GFP in either ASE or URY neurons similarly learned to move 
toward higher salt concentrations when a low salt concentration was 
associated with starvation (Fig. 3e), while nematodes conditioned to 
associate a high salt concentration with starvation moved toward lower 
salt concentrations on the salt gradient (Fig. 3e). Nevertheless, some 
individual nematodes failed to show the expected avoidance behavior 
and moved toward the salt concentration they should have learned to 
avoid (Fig. 3d,f). The neuronal health was assessed as described above 
(Fig. 2b), and the healthy neuron fraction was quantified across four 
behavioral groups: Nematodes (1) trained to avoid low salt (left) and 
found on low salt (light blue); (2) trained to avoid low salt (left) and 
found on high salt (dark blue); (3) trained to avoid high salt (right) and 
found on low salt (light blue); and (4) trained to avoid high salt (right) 
and found on high salt (dark blue). There was no significant difference 
in the healthy neuron fraction among animals conditioned on 0 mM 
NaCl, regardless of their behavioral outcome (Fig. 3f). In contrast, 
the ASE neuron-marked animals conditioned to avoid 20 mM NaCl, 
exhibited a significant increase in damaged neurons in the group that 
was moving toward the high salt concentration. As expected, URY 
neuron-marked nematodes did not show an accumulation of neuro-
degeneration in any of the groups (Fig. 3f).

In conclusion, these results establish a direct link between neu-
ronal degeneration and functional impairment, demonstrating the 
power of transcriptome clock-predicting biologically older neurons 
(henceforth, referred to as ‘biologically old’ or ‘biologically aged’).

Ciliated sensory neurons exposed to the environment are most 
rapidly aging
To understand commonalities among the biologically young, as well 
as among the rapidly aging neuron types, we adapted a hierarchical 
whole-animal connectome for C. elegans26 with a rough anatomical 
correspondence on the x axis and directional flow of neuronal signal-
ing on the y axis and color coded it with the predicted biological age 
(Fig. 3g). The biologically oldest neurons clustered in the upper-middle 
part of the network and consist mostly of sensory neurons, while the 
youngest neurons clustered further to the right. Of the 10 oldest neu-
rons, 6 are amphid neurons (ADL, ASJ, ASK, ASG, ADF, ASI), the pri-
mary chemosensory organ, which is mostly ciliated27. The 14 amphid 
neurons of the CeNGEN dataset showed a significantly increased bio-
logical age compared to the other 114 neurons (Fig. 3h), which can be 
replicated in the Calico dataset (Extended Data Fig. 3a), and with the 
Stochastic Clock (Extended Data Fig. 3b). The sensory amphid neurons 
express a variety of neuropeptides, neurotransmitters, receptors and 
innexins to transmit the sensed cues. The numbers of expressed neu-
ropeptides and receptors were significantly higher in amphid neurons 
(Extended Data Fig. 3c,d), while the number of neurotransmitter or 

innexins was not significantly changed (Extended Data Fig. 3e,f)28. 
Moreover, the numbers of neuropeptides and receptors per neuron 
were significantly positively correlated with the predicted biologi-
cal age in the CeNGEN dataset (Extended Data Fig. 3g,h), the Calico 
dataset (Extended Data Fig. 3i,j) and the Stochastic Clock predictions 
(Extended Data Fig. 3k,l). To test whether neuropeptide release pro-
motes neuronal aging, we used unc-31 mutants defective in neuropep-
tide release and observed a mild, yet nonsignificant, reduction in ASI 
degeneration (Extended Data Fig. 3m). The number of innexins and 
number of total synapses per neuron did not show a significant cor-
relation with biological age (Extended Data Fig. 3n–s).

Amphid neurons are part of the ciliated neuron classes; com-
paring all 28 ciliated neurons with the remaining 100 neurons also 
shows a significantly increased biological age (Fig. 3h), which can be 
replicated in the Calico dataset (Extended Data Fig. 3t) and with the 
Stochastic Clock (Extended Data Fig. 3u). The ciliated neurons can be 
further divided into five distinct classes depending on where their cilia 
terminate27. Neurons with cilia exposed to the environment show the 
highest biological age (Fig. 3i), while the other ciliated neuron classes 
are not significantly different from not-ciliated neurons. A similar effect 
can be observed in the Calico dataset (Extended Data Fig. 3v) and with 
the Stochastic Clock (Extended Data Fig. 3w). These results indicate 
that the oldest neurons are functionally related and mostly consist of 
ciliated sensory neurons that have contact with the environment and 
produce neuropeptides.

Transcriptional clustering identifies translation to promote 
neuronal aging
To identify the transcriptional patterns and signatures underlying the 
biological age distinctions, we initially categorized the 128 neuron 
types into five distinct groups based on their biological age ranking 
(for example, the 25 youngest in group 1, position 26 to 50 in group 2). 
A fuzzy clustering analysis of 4 transcriptional clusters (determined by 
the standard elbow criterion to provide the best balance between clus-
ter resolution and interpretability) identified neuronal age-dependent 
gene expression trends (Fig. 4a and Extended Data Fig. 4a).

Cluster A is composed of genes that generally increased over 
biological age, and is enriched for genes involved in nucleolar func-
tions such as rRNA and tRNA processing, ribosome biogenesis and 
pre-ribosomes, as well as DNA repair (Fig. 4b; cluster A). Cluster B, 
composed of genes with highest expression in the youngest age group, 
an overall decline over the biological age time course including some 
variation and a peak in age group 4, is enriched in mRNA processing and 
ribosomal genes. Cluster C, comprising genes increasingly expressed 
over the predicted age and then sharply declining in the oldest age 
group, is enriched for cell junctions and synapse-related genes. Cluster 
D contains genes that only strongly increase in the oldest age group 
with functions in neuropeptide signaling and immune response. In sum, 
these four clusters suggest roles for translation, ribosome biogenesis 
and synaptic function in neuronal aging.

Inhibition of translation alleviates neurodegeneration in 
fast-aging neurons
Based on the enrichment of protein biosynthesis processes in the 
accelerated aging neurons, we tested whether translational activity 
contributes to neurodegeneration. To reduce protein biosynthesis, we 
treated nematodes with the translation inhibitor cycloheximide (CHX) 
at a dose that induces translation reduction but not full inhibition29. 
Here, we scored neurite degeneration in biologically older ASK and 
ASJ neurons, as well as in biologically younger I2 and OLL neurons. To 
confirm reduction of translation, we used a SUnSET assay and observed 
that CHX treatment significantly reduced overall protein synthesis 
(Extended Data Fig. 4b) with a Cohen’s h of 0.48, indicating a mild reduc-
tion of translation. Additionally, we observed reduced translation in 
individual neurons as assessed by the reduction of GFP expression in 
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the presence of CHX in three of the four tested neuron types. These 
results further corroborate our approach using CHX treatment to 
reduce translation also in the analyzed neurons (Extended Data Fig. 4c).

In the biologically young neurons, no effect of CHX treatment 
was observed (Fig. 4c). In contrast, biologically old neurons exhibited 
significantly less neurite deterioration upon CHX treatment (Fig. 4c). 
Consistently, ASE neurons that were CHX treated showed significantly 
less blebs than solvent control-treated neurons (Fig. 4d,e), and the 
nematodes showed an improved salt evasion response after they were 
conditioned to associate high salt concentrations with starvation 
(Fig. 4f), indicative of preserved neuronal health. Furthermore, we 
tested whether CHX treatment would have a lasting effect on neuronal 
integrity (Extended Data Fig. 4d,e). Even at adult day 4, ASJ and ASE 
neurons showed significantly improved health when treated with CHX 
for only 24 h beginning at the L4 stage. Chronic treatment for the whole 
duration until neurite damage scoring conferred even stronger neuro-
protection. Taken together, these results indicate that translational 
activity promotes neurodegeneration and that reduced translation 
could restore neuronal integrity.

Neuronal aging patterns in C. elegans show similarity to 
human brain aging
Next, we addressed whether the biological age-related transcriptional 
patterns of neurons in young adult C. elegans (NeuronAge) are con-
served in higher organisms. We defined NeuronAge as the transcrip-
tome changes across the predicted age, quantified by the Pearson 
correlation between the z-scored transcripts per million (TPM) values 
and the predicted ages of 128 neurons. We then compared the con-
served Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichments of NeuronAge with mouse and human brain aging data-
sets. We computed age correlations of z-score-normalized gene counts 
for all human brain regions during aging in the GTEx dataset, the Tabula 
Muris Senis (TMS) dataset and an additional mouse hypothalamus aging 
cohort (GSE157025). Similarly, we calculated the enriched pathways 
in brain datasets for several geroprotective treatments such as young 
serum injections, the platelet factor PF4, sport in humans and krill oil 
in C. elegans (for references, see the Methods). An unbiased cluster-
ing analysis revealed that the transcriptomic NeuronAge pattern of 
C. elegans and the chronological brain aging trajectories of mouse 
and humans cluster together (Fig. 5 and Extended Data Fig. 5a). We 
validated the clustering of NeuronAge by including the conserved 
pathway enrichments for NeuronAge in the Calico dataset. Both Neu-
ronAge and its Calico validation showed significant positive correla-
tions with all individual brain aging trajectories of humans and mice 
after multiple testing correction. The transcriptomic pattern of the 
geroprotective interventions formed a separate cluster that negatively 
correlates with the brain aging pattern, irrespective of the organism. 
To address potential methodological differences between aging and 
geroprotective datasets, that is, that aging patterns were derived using 

Pearson correlations with age, whereas geroprotective effects were 
analyzed using log-fold changes (logFC), we additionally computed 
logFC-based pathway enrichments for all aging datasets by comparing 
the oldest and youngest sample groups within each dataset. The result-
ing clustering (Extended Data Fig. 5b) confirmed that aging-related 
patterns remain distinct from geroprotective interventions, regardless 
of whether Pearson correlation or logFC-based methods were applied. 
These results indicate that neuronal transcriptomic aging patterns are 
conserved from nematodes to humans and that known geroprotec-
tive treatments anticorrelate with the aging datasets supporting their 
geroprotective effectiveness.

Identification of neuroprotective drugs
As the NeuronAge predictions cluster together with human neuronal 
chronological aging trajectories, we sought to identify small-molecule 
compounds that could delay neuronal aging. We used the 3,566 tran-
scriptomes from a terminally differentiated neuronal cell line of the 
CMAP resource, consisting of 2,467 different molecules13 (Fig. 6a). Based 
on their correlation with the NeuronAge signature, we identified both 
negatively correlated (potentially neuroprotective/‘anti-NeuronAge’) 
and positively correlated (potentially neurotoxic/‘pro-NeuronAge’) 
compounds (Fig. 6b). Consistent with our experimental results, the 
transcriptome changes induced by CHX were inversely related to the 
NeuronAge signature, indicating that the beneficial effect of CHX 
that we observed above is mirrored in the transcriptome. After apply-
ing multiple computational filtering steps (Methods), we ranked the 
remaining candidate compounds by their correlation with NeuronAge 
(Fig. 6b). The top anti-NeuronAge hits contain several compounds (9 of 
16) for which a protective effect in neurons has been previously docu-
mented, thus independently validating our approach (Fig. 6b). Two of 
15 ‘pro-NeuronAge’ compounds were shown to be detrimental, while 
one is potentially protective, and one was described as both harmful 
and protective. More than half of the top hits have, however, not been 
tested in neurons.

In summary, 11 of 31 compounds have documented neuropro-
tective effects, of which 9 are predicted to revert NeuronAge, that is 
‘anti-NeuronAge’, with our in silico approach. Similarly, 2 of 31 com-
pounds are known to be neurotoxic, and both are predicted correctly 
to be ‘pro-aging’, giving weight to the potential that an in silico screen 
can identify compounds that could be repurposed as either neuropro-
tective or neurotoxic agents.

Validation of neuroprotective molecule compounds
Next, we tested whether several compounds that we predicted to 
be anti-NeuronAge, that is, neuroprotective, could prevent the 
age-related functional decline of neurons. We chose two com-
pounds, which were among the most strongly anticorrelated with 
NeuronAge patterns, BRD-K13195996 and vanoxerine (Fig. 6b). 
The chemical identity of the phenolic compound BRD-K13195996 

Fig. 4 | Fuzzy clustering reveals translation dynamics as a potential driver  
of neuron aging. a, Fuzzy clustering on z-score-normalized gene expression 
values (y axis) over the predicted aging course of the 128 CeNGEN neurons 
identified four clusters. The 128 neurons were merged into five age-prediction 
bins: (1) 97–110 h, (2) 110–120 h, (3) 120–130 h, (4) 130–140 h and (5) 140–180 h 
(x axis). The number of genes within each cluster are annotated. Dashed black 
lines show the central trend. b, Pathway overrepresentation analysis of the four 
clusters shows age-related pathways. The x axis shows pathway terms, and the  
y axis indicates clusters. Circle size reflects the enrichment score, defined as the 
log2 ratio of observed-to-expected genes per pathway (log2 enrichment ratio). 
Circle color represents statistical significance as –log10(false discovery rate 
(FDR)). Only representative nonredundant pathways are shown for visualization 
(Methods). c, Fraction plots displaying the fraction of nematodes at day 1 of 
adulthood expressing GFP in different neurons categorized as ‘healthy’, ‘mildly 
damaged’ and ‘severely damaged’ that were treated with 2 mM CHX for 24 h. 
Three to four cohorts were analyzed, consisting of 10–30 individual nematodes. 

Data shown are the mean ± s.d. Ordinal regression (CLM) was used to test for 
significant differences. d, Representative fluorescence microscopy images 
(z-stack maximum projections) of ASE neurons in 1-day-old adult nematodes of 
strain NY2067 after 24-h treatment with 2 mM CHX or dimethylsulfoxide (DMSO) 
control. Gray arrows indicate morphologic aberrations along the neurites. Scale 
bar, 20 µm. e, Fraction plots displaying the fraction of nematodes expressing GFP 
in ASE neurons categorized as ‘healthy’, ‘mildly damaged’ and ‘severely damaged’ 
that were treated with 2 mM CHX for 24 h at day 1 of adulthood. Four cohorts 
were analyzed, consisting of 10–30 individual nematodes. Data shown are the 
mean ± s.d. Ordinal regression (CLM) was used to test for significant differences. 
f, Swarm plot showing the chemotaxis index of nematodes conditioned at 0 mM 
(light blue) or 20 mM (dark blue) NaCl. The ASE neuronal marker strain (NY2067, 
mediating salt aversive conditioning) was incubated with 2 mM CHX or DMSO 
control for 24 h at day 1 of adulthood. Data shown are the mean ± s.d. from eight 
independent cohorts of 20–100 nematodes. A one-tailed t-test was used to test 
for significant differences.
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is 3-hydroxy-4,5-dimethoxybenzoic acid, which is related to 
4-hydroxy-3,5-dimethoxybenzoic acid, which is also known as syrin-
gic acid. Syringic acid is a naturally occurring secondary compound 
derived from edible plants and fruits, for example, olives, walnuts and 
grapes30. A correlation between the antioxidative properties of syrin-
gic acid and reduced neurotoxicity following bisphenol A insult has 
recently been shown31, yet no clear mechanism was reported so far32. 
Vanoxerine is a potent dopamine uptake inhibitor and was tested as a 
supportive agent in cocaine-abuse medications33; moreover, vanox-
erine was observed to impede colorectal cancer stem cell functions 
by repressing G9a expression34. Vanoxerine is so far not reported to 
exhibit neuroprotective effects.

We applied both compounds to L4 stage nematodes for a 24-h 
short-term treatment. We assessed neurite degeneration in the biologi-
cally old ASJ and ASK neurons and observed a significantly reduced 
deterioration for both compounds (Fig. 6c and Extended Data Fig. 6a,b). 
In contrast, the biologically young OLL neurons, serving as con-
trols, were not significantly affected by either of the compounds 
(Extended Data Fig. 6c). This indicates that both compounds inter-
fere with the physiological degeneration process of the rapidly aging 
neurons and can restore a healthy neuron state.

Next, we assessed whether the NeuronAge compound predic-
tions could also identify neurotoxic compounds and hence serve for 
pharmacological risk assessment. We tested the compounds WAY-
100635, for which so far no adverse effects on neuron health have 
been reported, and Bay K8644 on the health of the young predicted I2 
and OLL neurons. We observed that WAY-100635 induced significant 
neurite deterioration in I2 but not in OLL neurons, while Bay K8644 
induced significant degeneration in both I2 and OLL neurons (Fig. 6c 
and Extended Data Fig. 6d,e). ASK neurons that already display neuro-
degeneration early in life were significantly further compromised by 
Bay K8644 treatment (Extended Data Fig. 6e), confirming the neuro-
toxic effect of Bay K8644.

Additionally, resveratrol, which was reported to have ambigu-
ous effects, was positively correlated with NeuronAge (Fig. 6b), and 
we observed significantly increased neuronal damage in I2, ASJ and 
ASK neurons, with a similar but nonsignificant trend observed in 
OLL neurons (Extended Data Fig. 6f,g), supporting our predicted 
detrimental impact.

Taken together, we validated the anti-NeuronAge compound 
prediction method by identifying known neuroprotectors as well as dis-
covering previously unknown neuroprotective molecules. In reverse, 
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Fig. 5 | Neuronal aging patterns are conserved across C. elegans, mice and 
humans. The normalized enrichment scores of the conserved KEGG pathways 
for the indicated aging pattern or treatment effects were used for an unbiased 

clustering analysis. The matrix is color coded according to the Pearson 
correlation between the indicated comparisons. The colors on the side indicate 
the species and whether it was an aging trajectory or a geroprotective treatment.
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the prediction of a positive correlation with NeuronAge revealed neu-
rotoxic compound properties.

Finally, we assessed whether drug-induced neuroprotection or 
degeneration preserved or compromised neuronal function, respec-
tively. We treated URY neuron-marked animals with either WAY-100635 
or syringic acid and analyzed neurodegeneration and pathogen avoid-
ance that depends on the integrity of URY neurons (Fig. 3c). First, we 
confirmed that WAY-100635 exerts a significant neurotoxic effect in 
URY neurons (Fig. 6d). As expected from the already large healthy 
fraction of URY neurons, the beneficial effect of syringic acid was slight 
but not significant (Extended Data Fig. 6h–j).

In contrast to the drug treatment assays above, the avoidance assay 
necessitated the use of live bacteria. To exclude the possibility that 
bacterial metabolism of the compounds might confound the analysis, 
we pre-incubated WAY-100635 and syringic acid with either live or dead 
Db11 bacteria before nematode exposure (Extended Data Fig. 6h–j) 
and observed no significant differences thus validating this approach.

WAY-100635 treatment severely impaired pathogen avoidance 
from Db11 bacteria compared to solvent control treatment (Fig. 6e), 
while syringic acid treatment led to a small, nonsignificant increase 
in avoidance reaction, in line with the slight improvement in the pres-
ervation of URY neurons (Fig. 6d). This observation further corrobo-
rates the functional outcome of the morphological degeneration and 
substantiates that our prediction approach can be used to identify 
neuroprotective and neurotoxic compounds (Fig. 6a,b).

In summary, our compound validation demonstrates that pre-
dicted anti-NeuronAge compounds significantly reduce neurite degen-
eration and preserve neuronal function, while predicted neurotoxic 
compounds exacerbate neuronal damage and disturb neuronal func-
tion. These results establish our in silico screening approach as an 
effective approach for identifying interventions to prevent neuro-
degeneration, as well as for identifying potential neurotoxic agents.

Discussion
Why distinct neuron types exhibit different susceptibilities to age- 
dependent degeneration and the associated neurodegenerative dis-
eases has remained largely unclear. While differences in interindividual 
aging are commonly known, differential aging of organs within the 
same organism, and aging variance between cells of the same tissue 
have only recently been observed35,36. Using the two distinct aging clock 
paradigms, we found a substantial diversity of biological age predic-
tions with specific neuron types displaying accelerated or delayed aging 
in chronologically young animals. Similar to such early detection of 
aging, epigenetic clocks in mice start advancing right after their reset-
ting at the ground-zero stage during gastrulation37 and in humans they 
detected aging during childhood38. The substantial heterogeneity in 

neuronal aging was further supported by the age-dependent decline 
of long gene expression. The reliability of the age predictions was fur-
ther evidenced by the corresponding age-dependent degeneration of 
specific neuron types. Particularly ciliated sensory neurons show an 
increased biological age, which may result from their exposure to the 
environment or could indicate that their utility is restricted to sensing 
optimal environmental conditions before entering reproductive age. 
Similarly, degeneration of the olfactory bulb, which is enriched by 
environmentally exposed, ciliated neurons, and loss of olfaction are 
among the first symptoms of Alzheimer’s disease-related degenera-
tion in humans39.

The biological age-correlated transcriptional patterns associated 
high translational loads with accelerated aging. Age-related changes 
in the translational machinery have been observed across various 
species, and downregulation of translation has been shown to extend 
lifespan upon dietary restriction, downregulation of mTOR or CHX 
treatment40,41. In C. elegans, nucleolar size that is linked to ribosome 
biogenesis inversely correlates with lifespan42, while aging is marked 
by declining protein synthesis43,44 and increased translation errors45. 
Stochiometric changes of the ribosome lead to accumulation of protein 
aggregates in the brain of old Nothobranchius furzeri46, which is in line 
with the enrichment of ribosomal proteins in the insoluble protein 
fraction of old C. elegans47. Consistently, we observed that transient 
translation inhibition by CHX treatment is sufficient to prevent the 
degeneration of the fast-aging neuron types.

The transcriptional patterns of nematode neuronal biologi-
cal age differences are significantly correlated with mouse and 
human brain chronological aging trajectories, and anticorrelated 
with known geroprotective interventions such as young plasma 
treatment or sport. This conservation shows the potential of iden-
tifying conserved mechanisms that underlie the biological aging 
differences and might determine the susceptibility of specific neuron 
types to undergo degeneration and potentially contribute to specific 
neurodegenerative diseases.

The conservation of transcriptome age trajectories allowed us 
to design an in silico compound screen using the human CMAP data-
set13. Such approaches have previously identified geroprotective com-
pounds that either induce a ‘youthful’ state as predicted through an 
age-classification approach leveraging the GTEx48 transcriptomic 
dataset49, by identifying compounds that counteract age-associated 
transcriptomic shifts using conserved aging signatures50, by mimick-
ing longevity FOXO3 overexpression51, or induce a ‘youthful’ matreo-
type52. Comparing transcriptomic data from C. elegans neurons to the 
CMAP resource, we identified known and previously unexplored neu-
roprotective small-molecule compounds. Syringic acid was described 
to reduce oxidative stress and neuroinflammation, potentially by 

Fig. 6 | Compound prediction algorithm identifying neuroprotective/
neurotoxic compounds. a, Flowchart depicting the in silico drug screening. 
We computed and correlated the conserved KEGG pathway enrichments for 
NeuronAge and all compounds from the CMAP dataset that are measured 
on the neuronal cell line NEU. To obtain a manageable list, we filtered for 
compounds that were measured at least twice, show consistent correlations 
in all measurements, have a stronger correlation at the 24-h time point 
compared to the 6-h time point, have information in PubCHEM and have at 
least an absolute correlation value of 0.25. b, The top anti-NeuronAge and 
pro-NeuronAge compounds after the filtering steps ranked according to their 
Pearson correlation. Previously published neuroprotective (blue) or neurotoxic 
(orange) compounds are indicated. Resveratrol, which has mixed evidence 
in the literature, is shown in both colors. Four compounds were selected for 
experimental validation of our predictions and are highlighted by black arrows 
and their structural formula is given. c, Fraction plots displaying the fraction 
of nematodes at day 1 of adulthood expressing neuronal volume markers in 
different neurons categorized as ‘healthy’, ‘mildly damaged’ and ‘severely 
damaged’ that were treated with 2.5 mM syringic acid (SA), 10 nM vanoxerine 
(VX), 25 nM WAY-100635 (WAY) or 250 µM (S)-(−)-Bay K8644 for 24 h. Three to 

four cohorts were analyzed, consisting of 10–25 individual nematodes. Data 
shown are the mean ± s.d. Statistical analysis was performed using a CLM with 
a logit link to account for the ordered categorical nature of neuronal damage 
scores (healthy < mild < severe). P values were adjusted for multiple testing using 
the Benjamini–Hochberg method. d, Fraction plot displaying the fraction size 
of healthy (blue), mildly damaged (orange) and severely damaged (red) URY 
neurons ( JKM10 strain) on day 2 of adulthood after 48-h compound treatment 
with 25 nM WAY-100635 (WAY), 2.5 mM SA or water control. Data shown are the 
mean + s.d. of five independent cohorts of 10–25 nematodes each. Statistical 
analysis was performed using a CLM with a logit link to account for the ordered 
categorical nature of neuronal damage scores (healthy < mild < severe). 
Pairwise comparisons between conditions were performed using the ‘emmeans’ 
package with Tukey’s adjustment for multiple testing. e, Swarm plot displaying 
the avoidance index of compound-treated JKM10 (URYp::GFP) nematodes 
(25 nM WAY-100635 (WAY), 2.5 mM SA or water control for 48 h) on day 2 of 
adulthood. Data shown are the mean ± s.d. from five independent cohorts of 
50–75 nematodes. Two-way ANOVA + Tukey post hoc test were used to test for 
significant differences.
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enhancing mitochondrial function and attenuation of acetylcholinest-
erase activity53–55. The 1,4-dialkylpiperazine derivative vanoxerine is a 
potent dopamine uptake inhibitor and was tested as a supportive agent 
in cocaine-abuse medications33. Vanoxerine was observed to impede 
colorectal cancer stem cell functions by repressing G9a expression34, 
and it was tested in clinical trials for use as an anti-arrhythmic drug56, 
but a phase III study was terminated due to the occurrence of ven-
tricular proarrhythmia57. The development of analogs overcoming 
vanoxerine’s limitations are a work in progress58. By testing syringic acid 
and vanoxerine as examples of the top-scoring compounds, we indeed 
found that they extend the integrity of fast-aging neurons indicating a 
biological age deceleration.

Conversely, the pro-aging prediction revealed neurotoxic effects 
of compounds and could thus be highly valuable in risk assessment. 
WAY-100635 is an antagonist of the serotonin 5-HT1A receptor, acting 
both at presynaptic autoreceptors and postsynaptic sites to modulate 
serotonergic signaling and increase extracellular 5-HT levels59–61. In 
addition, WAY-100635 has an affinity for the dopamine D4 receptor, 
where it acts as a potent partial agonist at higher concentrations62,63. 
The carbon-11-labeled form of WAY-100635 ([carbonyl-¹¹C]WAY-
100635) is used as a radioligand for in vivo positron emission tomog-
raphy imaging of 5-HT1A receptors in the human brain64–66. While often 
considered safe, behavioral studies suggest context-specific effects: 
for example, it not only exacerbates depression-like phenotypes 
following mild traumatic brain injury in mice67, but also prevents 
selective serotonin reuptake inhibitor-induced sexual dysfunction 
when coadministered with fluoxetine68. WAY-100635 induced sig-
nificant neurite deterioration in I2 and URY neurons, underscoring 
the power of our approach for predicting neurotoxicity. Bay K8644 
is a potent L-type calcium channel agonist, structurally related to 
dihydropyridines such as nifedipine. By promoting prolonged open-
ing of L-type voltage-gated calcium channels, Bay K8644 enhances 
calcium influx into neurons and has been used as a research tool to 
study calcium-dependent neuronal processes69. In animal models, 
Bay K8644 has been shown to induce seizures, oxidative stress and 
excitotoxic neuronal damage70–72. Consistently, we validated the pre-
dicted neurodegenerative effect of Bay K8644 across multiple neuron 
types. Notably, our analysis predicted resveratrol to be pro-aging, 
whereas the published effects have been controversial. Our in vivo 
validation demonstrates that resveratrol does not have a protective, 
but rather detrimental impact on neuronal health. Corroborating our 
findings, a recent study found resveratrol-induced brain atrophy in 
lemurs73. These results further validate our in silico drug screen for 
both identifying neuroprotective compounds that could preserve 
neuronal function and determining the risk of neurotoxic compounds 
that accelerate neurodegeneration.

Taken together, we here define the biological basis for the dis-
tinct susceptibility of neurons to undergo age-dependent degen-
eration. We establish the utility of using aging clocks to identify 
neuron-type-specific biological aging differences and based on their 
transcriptome profiles reveal conserved aging patterns also present in 
human brain aging. We show that this approach is suitable for identify-
ing neuroprotective molecules and propose that they could be useful in 
delaying neuronal aging and protect from age-associated degeneration.

Methods
C. elegans culture
Nematodes were cultured on nematode growth medium (NGM) 
agar plates at 20 °C under standard conditions unless stated other-
wise. All age statements given in this publication consider the first 
day of adulthood as day 1. A complete strain list can be found in the 
Supplementary Information.

Special care was exerted for maintaining the cultures (specifically 
for maintaining the strains carrying extrachromosomal arrays): To 
maintain good expression levels in each population, healthy-looking 

adults with strong, but not extreme, fluorescence were passaged. 
Without this careful selection, the fluorescence signals were lost over 
the course of a few generations.

Age synchronization for experiments was achieved by L4 picking. 
For all experiments, individuals displaying a medium to strong fluores-
cence were selected (this group consists of about 85% of the fluorescent 
nematodes); individuals with neither exceptionally strong fluorescence 
(≈3–5% of the fluorescent nematodes) nor weak fluorescence (≈5–10% 
of the fluorescent nematodes) were selected for experiments or pas-
saging. The same criteria were applied when L3 larvae were selected 
for experiments.

Neurite imaging
Nematodes were synchronized by L4 picking and grown for 1 day, 4 days 
or 7 days. For imaging, nematodes were placed in a drop of 250 mM 
NaN3 on a 2% agarose pad. Imaging was performed on a Zeiss Imager.
M2 at a magnification of ×400. z-stacks of nematode heads/tails were 
acquired using 2-µm step width. Acquisition time was set between 
100 ms to 3 s per plane to achieve a good signal-to-noise ratio.

Scoring of neurite degeneration
Recorded z-stack images of neurons were analyzed manually, counting 
blebs, large spherical outgrowths, branching, breaks and necrosis on 
the dendrites of the analyzed neurons. Images were classified according 
to the degree of aberration: necrotic neurons, broken or truncated neu-
rons, neurons with ≥10 blebs or ≥3 outgrowths were scored as ‘severely 
damaged’; neurons with 5–9 blebs, or 2 outgrowths were classified as 
‘mildly damaged’; and neurons with <5 blebs or <2 outgrowths were 
classified as ‘healthy’. See Fig. 2b for exemplary images.

Ordinal regression analysis—CLM
To statistically assess neuronal damage across conditions and time 
points, we used CLMs using the ordinal package in R. A logit link 
function was applied to estimate the cumulative probabilities of 
increasing damage severity. For neuron-specific analyses of damage 
progression over time, the time point was modeled as a numeric pre-
dictor (L4 = 0, day (D) 1 = 1, D4 = 4, D7 = 7), and separate CLMs were 
fit for each neuron type. Observed neuron counts per category were 
incorporated as weights using the weights argument. P values for the 
slope term were adjusted for multiple testing across neurons using 
the Benjamini–Hochberg method. To compare damage susceptibil-
ity between neuron types, a full model including neuron identity, 
time point and their interaction was fit (score ~ neuron × age). Esti-
mated marginal means were computed using the emmeans package, 
and Tukey-adjusted P values were reported for all pairwise neuron 
contrasts. For comparisons between two conditions (for example, 
treatment versus control), we modeled the score as a function of 
the condition only (score ~ condition), again using CLMs with logit 
link and frequency weights. Multiple-testing correction across 
neurons was performed using the Benjamini–Hochberg method, 
where applicable.

Compound treatment
Standard NGM plates, seeded with OP50, were inactivated with  
500 mJ/cm2 of 251-nm UV-C light (Stratalinker 2400) and afterward 
were subjected to compound coating by dropwise addition of com-
pounds directly to the agar surface. Plates were dried for at least 1 h 
before transferring L4-stage nematodes onto them. Nematodes were 
incubated with the compounds for 24 h and then used for neurite 
imaging. The final concentration of compounds was: CHX, 2 mM; syrin-
gic acid, 2.5 mM; vanoxerine, 10 nM; WAY-100635, 25 nM; (S)-(−)-Bay 
K8644, 250 µM; resveratrol, 200 µM. Control nematodes were incu-
bated on appropriate solvent control-coated plates (either water, for 
syringic acid and WAY-100635, ≤5‰ DMSO, for CHX and vanoxerine, 
or 1‰ ethanol, for resveratrol).
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Pathogen avoidance assay
S. marcescens Db11 bacteria were inoculated into LB medium with 
kanamycin, tetracycline and streptomycin from glycerol stock and 
incubated overnight with shaking at 150 rpm at 25 °C. Control E. coli 
OP50 bacteria were grown in LB medium without antibiotics and incu-
bated overnight with shaking at 150 rpm at 37 °C. NGM plates (6 cm) 
were cast 3 days before seeding. The plates were seeded with 350 µl 
bacterial solution, generating a perfect round spot in the middle of 
the plate and allowed to dry for 2 h. For compound treatment, 2.5 mM 
syringic acid or 25 nM WAY-100635 was added before seeding and 
allowed to dry. Around 15–30 L4-stage nematodes of strains JKM10, 
IG10 and MT21910 were added directly into the bacterial lawn and 
incubated for 48 h. Nematodes were scored for their presence on or 
avoidance of the lawn. Five independent cohorts of 4–5 plates each 
were analyzed, and the position of the nematodes was checked four 
times with a 5-min interval time. The aversion index was calculated as 
the number of nematodes outside the lawn divided by total number 
of nematodes. Potential compound metabolization by the living Db11 
bacteria has been tested in prior experiments.

Testing compound metabolization
For testing compounds and pathogen avoidance from S. marcescens 
Db11, bacteria could not be inactivated with UV irradiation because 
it would negate the aversion behavior. To test whether Db11 bac-
teria would metabolize the compounds, a test treatment was per-
formed: 2.5 mM syringic acid or 25 µM WAY-100635 was incubated 
with living or dead Db11 bacteria for 2 days; afterward, bacteria 
were removed by sterile filtration and the compound-containing 
flowthrough was applied on UV-inactivated OP50. L4-stage JKM10 
nematodes were placed on these plates, and neurodegeneration was 
assessed 24 h later. There was no significant difference between the 
compounds that were pretreated with living or dead Db11 bacteria 
(Extended Data Fig. 6h–j).

Salt aversive conditioning assay
Adapted from Lim et al.25, nematodes were synchronized by L4 picking 
and grown for an additional day to their first day of adulthood, then 
nematodes were rinsed off the plates with M9 medium and washed 
twice with M9. The nematodes were split into two groups and salt-free 
conditioning medium or salt-containing conditioning medium (1 mM 
CaCl2, 1 mM MgCl2, 5 mM KPO4

2− pH 6.0, ±20 mM NaCl) was added. 
Subsequently, nematodes were incubated at 20 °C rotating at 20 rpm 
for 3 h.

Assay plates (3.5 cm; 2% (wt/vol) ager, 1 mM CaCl2, 1 mM MgSO4, 
5 mM KPO4

2− pH 6.0) were cast 2 days before the experiment. To 
establish the NaCl gradient on the assay plates, agar plugs contain-
ing 100 mM NaCl (2% (wt/vol) agar, 100 mM NaCl, 1 mM CaCl2, 1 mM 
MgSO4, 5 mM KPO4

2− pH 6.0) were placed on one side on the plate 
and incubated at 23 °C for 3 h. After the gradient was established, 
salt-agar plugs were removed and 3 µl 500 mM NaN3 was added to the 
spot where the plug was placed. An additional 3 µl 500 mM NaN3 was 
added to the opposite site of the plate, and the plates were directly 
used for the assay.

After 3 h of conditioning, excessive medium was removed, 
and nematodes were transferred onto the center of the prepared 
salt-gradient assay plates. Nematodes were allowed to crawl freely 
on the plate according to their preferences for 30 min and at 20 °C. 
Afterward, nematodes that remained on the origin, that moved toward 
high salt and those that moved toward low salt were counted, and the 
chemotaxis index was calculated as: ci = (number on high salt – number 
on low salt) / (total number – number on origin).

For CHX treatment, nematodes were synchronized by L4 picking 
and placed on an OP50-seeded NGM plate, coated with 2 mM CHX, for 
24 h. After compound incubation, the nematodes were processed as 
described above.

BitAge prediction
The BitAge clock10 was used as described previously. Briefly, each 
sample was binarized, that is, genes higher than the median expression 
value within each sample after removing genes with zero counts, were 
set to 1, and the remaining genes to 0. The BitAge coefficients for the 
576 clock genes are added up for all genes in a given sample that is 1 
after binarization. After adding the BitAge intercept, the results show 
the predicted biological age. For the Calico dataset, only single-neuron 
types were considered, that is, cells annotated as multiple neuron types 
were excluded. For neuron types with two biological replicates, the 
predicted biological ages of the replicates were averaged to obtain a 
single age prediction per neuron type.

Stochastic data-based clock
The Stochastic Clock was used as described previously12. Briefly, each 
sample was log10-transformed after the addition of one pseudo-count. 
Subsequently, the samples were min–max normalized to bring each 
sample within the range (0, 1), and then binarized as described above. 
The normalized counts were then added up for all 1,010 stochastic 
data-based clock genes. For the Calico dataset, where some neuron 
types had two biological replicates, the predicted biological ages of the 
replicates were averaged to obtain a single age prediction per neuron 
type. Note that the Stochastic Clock might result in slightly different 
genes every time a clock is trained.

Gene length analysis
First, we downloaded the differentially expressed genes for each neu-
ron type and all other cells in the CeNGEN14 dataset (https://cengen.
shinyapps.io/CengenApp/) with the statistical test ‘Wilcoxon on single 
cells’. This gives a list of genes with logFC, and percentage expression in 
the specific neuron type and all other cells. We further filtered this list 
of significant genes by requiring that the gene is expressed in at least 
90% of cells of the specific neuron type and at most 10% in all other 
cell types. In total, 39 neuron types had no genes with these require-
ments, that is, 89 neuron types were used for further analysis. Next, 
we used the such-defined marker genes of the 20% oldest (57 genes) 
and respective 20% youngest neurons (67 genes) and calculated the 
density distribution of the log10-normalized gene lengths. To calculate a 
two-sided permutation test, we calculated the median log10 gene length 
of the genes and compared it to the 100,000-permutation median. 
The permutation for the old marker genes used 57 genes, while the 
permutation for the young marker genes used 67 genes of all marker 
genes (303) of the 89 neuron types.

In a complementary analysis, we calculated the median log10 gene 
length of the marker genes for each of the neuron types individually. 
These median values were correlated with the predicted biological age 
using a Pearson correlation and visualized with a linear regression plot.

Definition of NeuronAge
To quantify transcriptomic aging patterns across neuronal cell types, 
we defined NeuronAge as the correlation between gene expression 
and predicted biological age with BitAge. TPM values for all 128 neuron 
types were obtained from the CeNGEN transcriptomic dataset, and 
each of the 18,475 genes was z-score normalized across all 128 neuron 
types. Predicted ages for the same neurons were derived using the 
BitAge clock. For every gene, we calculated the Pearson correlation 
between its z-scored TPM values and the predicted ages across all 128 
neuronal cell types. The resulting correlation coefficients represent 
the NeuronAge transcriptional signature.

Neuronal connectome mapping
We downloaded and adapted the Cytoscape file from Cook et al.26 
by adding head neurons, deleting nonneuronal cell types and color 
coding neurons by their predicted Age with BitAge on the CeNGEN  
dataset.
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Median total number of synapses calculation
The NeuroType.xlsx file was downloaded from https://www.wormatlas.
org/neuronalwiring.html. For each of the 128 neuron types, we summed 
the median total number of synapses in the head, tail and mid-body.

Fuzzy clustering
To identify transcriptional patterns associated with the predicted 
neuronal age, we ranked the 128 neuron types based on their predicted 
age and grouped them into five bins: (1) [97, 110], (2) [110, 120], (3) [120, 
130], (4) [130, 140] and (5) [140, 180]. Within each bin, we computed 
the median expression level for each gene. To make the genes compa-
rable and bring them onto the same scale, we calculated the z-score 
across the five bins for each of the 9,950 genes with nonzero standard 
deviation. Next, we used fuzzy clustering with Mfuzz (v2.58.0)74 to iden-
tify transcriptional clusters across the predicted age bins. The elbow 
method was computed with the Dmin function of Mfuzz and indicated 
an optimal number of four clusters. The genes belonging to each cluster 
were subsequently used for a pathway enrichment analysis with clus-
terprofiler (v4.9.2.002)75, with maxGSSize = 500 and the list of all 9,950 
genes as the background gene list. All significantly enriched pathways 
(adjusted P < 0.05) were identified, and redundant pathways were col-
lapsed using semantic similarity filtering. Although this procedure 
substantially reduced redundancy, the remaining number of nono-
verlapping pathways was still too large to display comprehensively 
in a single figure. For visualization purposes, we therefore selected a 
representative subset of pathways from each cluster based on (i) sta-
tistical significance, (ii) effect size and (iii) biological interpretability.

Heat map
We processed several public datasets (GTEx dataset48, the TMS dataset76 
and an additional mouse hypothalamus aging cohort (GSE157025), 
young serum injections77, platelet factor PF4 (ref. 78), sport in humans79, 
krill oil in C. elegans80) for the heat map:

1.	 TPM-normalized gene expression values for human brain tis-
sues from the GTEx v8 data81 release (that is, amygdala, anterior 
cingulate cortex, caudate basal ganglia, cerebellar hemisphere, 
cerebellum, cortex, frontal cortex, hippocampus, hypothala-
mus, nuclear accumbens basal, putamen basal ganglia,  
substantia nigra) were correlated with the chronological age  
(the midpoints of the publicly available age bins).

2.	 The mouse aging time course for hypothalamus data from 
GSE157025 was downloaded and a gene-wise correlation with 
the chronological age calculated.

3.	 Whole-brain data from the TMS (GSE132040) was downloaded 
and edgeR (v3.40.2)82 was used to calculate normalized expres-
sion values. The normalized expression values were correlated 
to the chronological age.

4.	 Differentially expressed genes for mouse hippocampus data treat-
ed with the platelet factor PF4 or saline control were downloaded 
from GSE173254. We multiplied the logFCs by −1 to always compare 
treatment versus control, instead of control versus treatment.

5.	 Differentially expressed genes for mouse hippocampus data 
treated with young serum or sham were downloaded from 
GSE234667.

6.	 C. elegans whole-nematode data treated with krill oil from 
GSE207152. We used edgeR (v3.40.2)82 to calculate normalized 
expression values and calculated z-scores for each gene over all 
samples. The z-score-normalized expression values were used 
for a regression model: 
expression = β0 + β1 × Age + β2 × Krilloil + β3 × (Age × Krilloil), 
where β0 is the intercept term, β1 is the coefficient for the Age 
variable, β2 is the coefficient for the Krilloil-treatment variable, 
and β3 is the coefficient for the interaction between Age and 
Krilloil, that is, the difference in the slope over age.

7.	 Differential expressed genes upon physical activity were down-
loaded from the supplementary data (Supplemental Table 2) 
from Berchtold et al.79.

The Pearson correlation values of all genes of (1)–(3), the logFC 
of all genes for (4) and (5) and the β3 coefficients for (6) were used to 
calculate enriched pathways analysis with fgseaMultilevel from the 
fgsea R package83 and with nPermSimple = 1,000 for all conserved 
KEGG pathways between C. elegans, mouse and humans. For (7), the 
‘anti-aging/Alzheimer’s disease’ genes were split into genes that are 
upregulated and, respectively, downregulated upon exercise. Both 
gene sets were used for an enrichment analysis with enricher from 
enrichplot v1.18.0 with maxGSSize = 500 and minGSSize = 5, and all 
genes were quantified in the supplementary data from Berchtold 
et al.79 as the background gene list. For both enrichment analyses, the 
enrichment fold change, that is, the number of observed genes per 
pathway divided by the number of expected genes per pathway, was 
calculated. Finally, the fold changes were combined, that is, pathways 
with a bigger fold-change enrichment in the downregulated genes 
were multiplied by −1.

The clustering was done on the normalized enrichment scores 
for (1)–(6) and the fold change enrichment score for (7) with the Ward 
method and a correlation distance matrix.

Heat map with logFC
For the heat map with differentialy expressed genes, we processed the 
data in the following way:

1.	 CeNGENApp (https://cengen.shinyapps.io/CengenApp/) was 
used to find differentially expressed genes between the ten oldest 
predicted CeNGEN neurons (according to BitAge) and the ten 
youngest predicted neurons. The differentialy expressed genes 
were calculated with the ‘Pseudobulk:Wilcoxon’ statistical test.

2.	 Raw gene expression values for human brain tissues from the 
GTEx v8 data81 release (that is, amygdala, anterior cingulate cor-
tex, caudate basal ganglia, cerebellar hemisphere, cerebellum, 
cortex, frontal cortex, hippocampus, hypothalamus, nuclear 
accumbens basal, putamen basal ganglia, substantia nigra) 
were normalized with edgeR and differentially expressed genes 
calculated between old (≥70 years) and young (≤40 years).

3.	 The whole-brain data from the TMS (GSE132040) were normal-
ized with edgeR (v3.40.2)82, and differentially expressed genes 
were calculated between old (≥21 months) and young (1 month) 
mice.

4.	 The mouse aging time course data for the hypothalamus  
from GSE157025 were normalized with edgeR (v3.40.2)82, and 
differentially expressed genes were calculated between old  
(24 months) and young (5 day) mice.

The enriched pathways were computed as described above.

CMAP
The CMAP resource uses the L1000 array, which measures 978 land-
mark transcripts, which can be used to infer most of the remaining 
transcriptome with high accuracy13. Here we used all available L1000 
datasets for a human differentiated neuronal cell line. We downloaded 
the aggregated level 5 L1000 Connectivity Map13 data from GSE92742 
and performed pathway enrichment analysis with fgseaMultilevel from 
the fgsea R package83 with nPermSimple = 1,000 and the conserved 
KEGG pathways between human and C. elegans for each of the samples 
in the level 5 dataset. To compare it to the NeuronAge pattern, we first 
calculated the z-score of each gene that has at least some gene counts 
across the 128 neurons of the CeNGEN dataset. We correlated these 
z-score-normalized genes with the biological age prediction from 
BitAge. The resulting Pearson correlation values for all genes were 
used for a pathway enrichment analysis with fgseaMultilevel and the 
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conserved KEGG pathways between human and C. elegans. To identify 
whether any compound might revert the NeuronAge gene expression 
pattern on the pathway level, we correlated the normalized enrichment 
scores of the NeuronAge KEGG pathway enrichment analysis with all 
the normalized enrichment scores that we calculated from the CMAP 
dataset. Next, we filtered for only compounds that were tested in the 
neuronal cell line (‘NEU’). Compounds had to be tested at least twice, 
with all measurements resulting in correlations in the same direction. 
Additionally, we filtered for compounds that were measured at 24 h 
and 6 h and took only those compounds that showed a stronger cor-
relation into the same direction at the 24-h time point compared to the 
6-h time point. Lastly, we filtered out those compounds that had no 
information available at PubCHEM and used a correlation threshold 
of 0.25 (respective −0.25).

The assignment of known protective or detrimental compounds 
is based on literature reports: The glycogen synthase kinase 3 (GSK3) 
inhibitor AR-A014418 was shown to inhibit beta-amyloid-induced 
neurodegeneration84; the selective serotonin reuptake inhibitor fluox-
etine protects against neurotoxicity and neurodegeneration85; the 
PPAR-alpha activator gemfibrozil exhibits neuroprotective effects via 
upregulating pro-survival factors and suppressing inflammation86; 
the kinase inhibitor sorafenib protects against neurodegeneration 
in C. elegans87; the selective aryl hydrocarbon receptor modulator 
3,3’-diindolylmethane is neuroprotective and promotes brain-derived 
neurotrophic factor88; the insulin-sensitizing agent rosiglitazone 
exhibits neuroprotective effects in the eye and the brain89; the p38 
MAPK inhibitor SB202190 was shown to reduce hippocampal apop-
tosis and rescue spatial learning as well as memory deficits in rats90; 
dibutyryl-cAMP-Na (dBcAMP) elevates cAMP levels and protects 
against neurodegeneration in stab wound or kainic acid injuries91; 
and the catecholamine-O-methyltransferase inhibitor tolcapone was 
shown to improve cognitive function92.

Bay K8644 is described to be neurotoxic70; and amiodarone 
induces neuronal apoptosis93 and is known to induce adverse neuro-
logical effects94. Tacedinaline/CI-994 is a class I histone deacetylase 
inhibitor, correlates positively with NeuronAge, and was shown to 
promote functional recovery following spinal cord injury95, and to 
enhance synaptic and structural neuroplasticity96. Likewise, resveratrol 
is potentially neuroprotective due to a hormetic response97, while there 
is evidence that it could lead to impaired brain integrity73.

Correlation of neurodegeneration and GFP expression
To test whether GFP expression induces neuronal aberrations, we cor-
related GFP expression intensity and blebbing. In brief, fluorescence 
images of PY6457 (ASK neurons) and OE3010 (ASJ neurons) nematodes 
at the first day of adulthood were recorded using an epifluorescence 
microscope. PY6457 and OE3010 were selected because they carry the 
neuron-type-specific GFP marker as an extrachromosomal array that 
has a strongly varying expressivity between individuals. Blebbing was 
observed as the major degeneration hallmark in ASJ and ASK neurons 
and, therefore, used as single correlation criterion. Four cohorts of 
10–20 nematodes per strain were accumulated in single plots and the 
correlation was analyzed by Pearson’s correlation.

Analysis of stochasticity of neuron damage
To test if bleb appearance is fully random or linked to development of 
conserved structures along neurites, bleb distance from neurite start 
(at the site of the mouth) was measured using Fiji for every bleb on 
each neurite analyzed from three cohorts of 10–20 individual nema-
todes each. Relative positions of blebs were calculated by dividing 
the observed bleb’s position (for example, 55 µm) by the total length 
of the analyzed neurite (for example, 98 µm). Relative positions were 
displayed as a histogram using 12 bins, and data from three cohorts 
were aggregated. A Pearson correlation versus 100 random data tracks 
was done using GraphPad Prism 10.

To calculate 100 tracks of a random damage distribution, a Python 
script was used with the following assumptions: (1) a random number 
of blebs (in 8–20) can appear, matching observed biological variability; 
(2) new blebs appear primarily at random but are slightly more likely 
to occur near previously formed blebs, reflecting spatial clustering 
seen in vivo; (3) already established blebs increase chances of blebs 
in their vicinity; (4) blebs cannot appear at the same position; (5) the 
proximal 10% of the neurite corresponds to the ciliary region, where 
structural complexity and imaging artifacts reduce the detectability 
of blebs, and this was modeled by suppressing bleb placement in this 
region; (5) neurite lengths were randomly sampled within the empiri-
cally observed range (80–100 µm).

All simulation parameters, including neurite length distributions, 
bleb counts, clustering strength and the extent of the protected proxi-
mal region, were derived directly from empirical measurements of ASJ, 
ASK and OLL neurons imaged in vivo. For each simulated neurite, bleb 
positions were generated iteratively and normalized to neurite length 
to match the experimental measurements. The resulting 100 simulated 
tracks were aggregated and compared to the observed data.

Neuron survival
Nematodes of strains JKM10 (URY neurons), OH1422 (OLL neurons), 
NY2067 (ASE neurons), MT21910 (I2 neurons) and PY6457 (ASK neu-
rons) were synchronized by L4 picking. Only nematodes that showed a 
easily visible fluorescence under a dissecting microscope were selected 
and singled onto OP50-seeded NGM plates.

The presence of the neurons was scored daily. Nematodes were 
passaged every second day to a fresh plate. Individuals were tracked 
over the course of 12 days or until they died, or until all GFP-marked 
neurons disappeared.

Neuron loss was analyzed according to Kaplan–Meier using the 
accumulated data from three cohorts of each of the 12 individuals 
(totaling 36 nematodes per strain), and significant differences were 
assessed by a log-rank test.

Additionally, the first day a neuron degenerated in every single 
individual was scored and plotted as a histogram showing the incidence 
of first neuron death.

SUnSET assay
Wild-type nematodes were synchronized by L4 picking (≈75 nematodes 
per cohort and condition) and placed on OP50-seeded NGM plates 
coated with 2 mM CHX or DMSO as control. After 24 h, plates were 
rinsed with S-Basal, and nematodes were collected in 1.5-ml tubes. 
Nematodes were washed once with S-Basal. Freshly grown OP50 bac-
teria were pelleted by centrifugation (20 min at 4,000 rpm at 12 °C) 
and resuspended in 0.1 Vol. S-Basal.

Nematodes were resuspended with 200 µl of the concentrated 
bacteria. Puromycin was added to a final concentration of 500 µg 
ml−1 and topped up to 1 ml with S-Basal. CHX-treated samples were 
supplemented with 2 mM CHX additionally. Puromycin labeling was 
performed for 3 h, and nematodes were rotating at 20 rpm on a spin 
wheel at 20 °C.

Afterward, nematodes were washed thrice with S-Basal to remove 
residual puromycin. Finally, nematodes were resuspended in 30 µl 
4xSDS-Sample buffer, boiled at 95 °C for 5 min and then stored at 
−20 °C.

Frozen samples were thawed and boiled at 95 °C for 5 min. In total, 
15 µl of lysate was loaded on a 12% SDS–PAGE and run at 30 mA for 2 h. 
Western blot transfer onto a nitrocellulose membrane was performed 
using Trans-blot Turbo (Bio-Rad) according to the manufacturer’s 
specifications (running at 2.0 A for 10 min).

Membrane was rinsed with TBS-T, Ponceau stain was applied, 
and imaging was performed. Ponceau staining was washed out three 
times with TBS-T. Membrane was blocked for 2 h in TBS-T + 5% (wt/
vol) milk powder. Primary antibody incubation was done with 4G11 
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anti-puromycin antibody from mouse (1:1,000 dilution) in TBS-T + 2.5% 
(wt/vol) milk powder at 4 °C with shaking overnight. Afterward, mem-
brane was washed three times with TBS-T and incubated with horserad-
ish peroxidase-conjugated anti-mouse antibody (1:5,000 dilution) for 
2 h. Blot was developed using ECL solution (Pierce) in an Amersham 
Imager 600. The acquisition time was ≈2 min.

Fluorimetry on CHX-treated nematodes
Nematodes of strains JKM10 (URY neurons), OH1422 (OLL neurons), 
NY2067 (ASE neurons) and PY6457 (ASK neurons) were synchronized 
by L4 picking. Three cohorts per strain and condition (totaling 28–52 
nematodes) were used for epifluorescence microscopy. Nematodes 
were prescreened to find the highest fluorescence intensity per strain; 
imaging settings were adjusted to not overexpose the nematode with 
the strongest fluorescence per strain. Imaging was performed on L4 lar-
vae; the remaining L4 larvae from synchronization were subjected onto 
OP50-seeded NGM plates coated with 2 mM CHX or DMSO control and 
imaged after 24 h. Imaging settings were kept constant within strains. 
Imaging settings were kept constant between cohorts. Background 
fluorescence was subtracted. The mean ± s.d. was displayed as a swarm 
plot, and ANOVA + Tukey post hoc test were performed.

Longitudinal CHX treatment
Three cohorts of nematodes expressing GFP in ASE, ASJ, ASK or OLL 
neurons have been treated with 2 mM CHX for either 24 h or 96 h start-
ing from stage L4 onward. Neurite imaging was performed on day 4 of 
adulthood. Damage classification in ‘healthy’, ‘damaged’ and ‘severely 
damaged’ neurons was done as described in the main text. Ordinal 
regression (CLM) was used to test for significant differences (using 
Python 3.12 library: statsmodels: 0.14.3).

Statistics and reproducibility
All data are presented as the mean ± s.d. Number of cohorts (ℕ), indi-
viduals (n) and technical replicates (N) are stated in the figures and their 
respective figure legends. The applied statistical tests are mentioned in 
the figure legends, and the respective P values are directly reported in 
the diagrams. All statistics are two sided unless stated otherwise. Data 
normality was assessed by the Shapiro–Wilk test. Independent t-tests 
were calculated with Python’s SciPy98 v1.5.1 stats.ttest_ind function. 
One-way ANOVA’s were calculated with Python’s pingouin99 v0.3.6 
ANOVA function and the parameter ss_type = 2. Cohen’s h100 as a meas-
ure of effect size was calculated by hand with Python’s NumPy101 v1.18.5. 
Plots were generated with Python’s Seaborn102 v.0.11.0, matplotlib103 
v.3.3.0 or GraphPad Prism 10. Scatterplots showing a linear regres-
sion model fit are shown with a 95% confidence interval. No statistical 
method was used to predetermine sample size. Sample sizes were 
determined based on established practices in the field and on empiri-
cal considerations. Group sizes of 10–30 animals were used for neurite 
degeneration scoring, and for chemotaxis assays 50–100 animals were 
used to balance practical feasibility and the ability to detect mean-
ingful biological effects. No method of randomization was used to 
assign nematodes to experimental groups. Researchers were blinded 
during data analysis (folders/images were listed and assigned random 
alphanumeric IDs before analysis; after analysis, files were named back 
accordingly). If nematodes were damaged during handling, results 
from them were censored; whole-nematode cohorts were excluded if 
less than 80% of the desired animals survived until analysis day, or if 
nematodes were growing slowly (delayed by at least a day compared to 
usual growth rate of the respective strain) or were apparently sick (slow 
movements, begging, lethargic; this affected one cohort of MT21910 
L4s in Fig. 2c and one subgroup of JKM10 in Fig. 6e).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The unfiltered TPM counts and the Cell Marker list was downloaded 
from the CENGEN dataset, assessed at https://cengen.shinyapps.io/
CengenApp/. The bulk CeNGEN dataset was downloaded via https://
cengen.org/storage/Barrett_et_al_2022_CeNGEN_bulk_RNAseq_data.
tsv. The Calico dataset was downloaded from https://c.elegans.aging.
atlas.research.calicolabs.com/data/. The neuron-specific information 
was assessed at https://www.wormatlas.org/. The gene length informa-
tion was downloaded from https://wormbase.org/. The CMAP data 
were downloaded from GSE92742. Data for the heat map were down-
loaded from the Gene Expression Omnibus under accession numbers 
GSE157025, GSE132040, GSE173254, GSE234667 and GSE207152, from 
the supplementary data from ref. 79 or the GTEx v8 database via https://
gtexportal.org/home/downloads/adult-gtex/bulk_tissue_expression/. 
Raw values and summaries of all statistics used are included in the 
Extended Data. Source data are provided with this paper. All data 
supporting the findings of the study are also available from the cor-
responding author upon request.

Code availability
All scripts and code used are available on GitHub via https://github.
com/Meyer-DH/NeuronAging/.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Correlations between BitAge and StochasticClock.  
a) Distribution of transcriptomic age predictions. The 67 neurons of the 
Calico day 1 dataset were predicted with BitAge and sorted by their predicted 
age. The x-axis shows the rank of the prediction is ascending order, the y-axis 
the predicted age. b) BitAge predictions on the CeNGEN and the Calico day 
1 dataset are highly correlated (Pearson correlation 0.66, p-value 1.2e-09). 
The x-axis shows the BitAge predictions of the CeNGEN dataset, the y-axis 
BitAge predictions of the Calico day 1 dataset. 67 neurons are plotted. The 
regression model fit with a 95% confidence interval (shadowed area) is shown. 
c) Stochastic Clock predictions on the CeNGEN and the Calico day 1 dataset are 
highly correlated (Pearson correlation 0.82, p-value 3.2e-17). The x-axis shows 
the Stochastic Clock predictions of the CeNGEN dataset, the y-axis BitAge 
predictions of the Calico day 1 dataset. 67 neurons are plotted. The regression 
model fit with a 95% confidence interval (shadowed area) is shown. d) Age 
prediction of BitAge and the Stochastic Clock on Calico Day 1 data. The x-axis 
shows the predictions by BitAge, the y-axis the prediction by the stochastic clock. 
There is a strong correlation (Pearson correlation 0.74, p-value 7.8e-13). e) Age 
prediction of BitAge on CeNGEN bulk data vs CeNGEN pseudobulk. There is a 
strong correlation (Pearson correlation 0.65, p-value 2.2e-5). f) Age prediction 
of the Stochastic Clock on CeNGEN bulk data vs CeNGEN pseudobulk. There is a 
strong correlation (Pearson correlation 0.7, p-value 1.7e-6). g) Predictions with 
BitAge and the Stochastic Clock on the CeNGEN dataset are highly correlated. 

The x-axis shows the BitAge predictions of the CeNGEN dataset, the y-axis 
stochastic data-based clock predictions of the CeNGEN dataset. All 128 neurons 
are plotted, the 20% youngest and oldest according to BitAge are coloured in 
blue, the 20% youngest and oldest according to the StochasticClock are coloured 
in red, overlap between both violet. The remaining neurons are indicated in grey. 
The regression model fit with a 95% confidence interval (dashed, black lines) is 
shown. The five neurons the farthest away from the regression line (both, above 
and below) are indicated. h) BitAge (blue) and StochasticClock (red) predictions 
on an independent dataset of neuronal RNA from adult day 1 and adult day 8 old 
nematodes. i) Correlation of median gene length and predicted age of individual 
neuron types. BitAge clock used on the CeNGEN dataset. Linear fit (orange 
line) with 95% confidence interval (dashed, orange lines) is shown. Exemplary, 
young predicted neurons I2, OLL, and PHC (blue); and old predicted neurons 
ASI, ASJ, and ASK (orange) are indicated. j) Correlation of median gene length 
and predicted age of individual neuron types. Stochastic clock used on the 
CeNGEN dataset. Linear fit (orange line) with 95% confidence interval (dashed, 
orange lines) is shown. k) Correlation of median gene length and predicted age of 
individual neuron types. BitAge clock used on the day 1 Calico dataset. Linear fit 
(orange line) with 95% confidence interval (dashed, orange lines) is shown.  
l) Correlation of median gene length and predicted age of individual neuron 
types. Stochastic clock used on the day 1 Calico dataset. Linear fit (orange line) 
with 95% confidence interval (dashed, orange lines) is shown.
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Extended Data Fig. 2 | Neurite damage appearance and neuron survival 
analysis. a) Correlation of neuronal GFP expression in ASK neurons (left) or 
ASJ neurons (right) and scored blebs (major hallmark of neurodegeneration 
in these strains). Classification to the fraction of ‘healthy’ (blue), ‘mildly 
damaged’ (orange), or ‘severely damaged’ (red) neurons is indicated. Linear 
regression (black line) and confidence band (grey lines) are displayed, and 
no significant correlation was found. Displayed are the pooled data of four 
independent cohorts of 12 – 25 adult day 1 old nematodes each. b) Fraction 
plot of neuronal integrity of URY neurons upon aging. Four to five cohorts of 
12 – 25 JKM10 nematodes expressing GFP in URY neurons have been recorded 
and neurodegeneration was assessed and neurons categorized as ‘healthy’ 
(blue), ‘mildly damaged’ (orange), and ‘severely damaged’ (red). Kruskal-Wallis 
test was performed, and no significant differences was observed. c) Z-Stack 
Maximum projection after background subtraction (Fiji – rolling ball radius 
25) of fluorescence microscopic recording of representative JKM10 nematode 
expressing GFP in URY neurons. Scale bar indicates 20 µm. d) Fraction plot of 
neuronal integrity of ASI, ASJ, and ASK neurons at young ages (L3 and L4 stage). 
Three to four cohorts of 8 – 27 JKM10 nematodes expressing GFP in either ASI, 
ASJ, or ASK neurons have been recorded, neurodegeneration was assessed, 
and neurons categorized as ‘healthy’ (blue), ‘mildly damaged’ (orange), and 

‘severely damaged’ (red). Ordinal regression (cumulative link model) has been 
used to test for significant differences between ages. e) Stochastic appearance 
of neuronal damage. The top panel shows a representative epi fluorescent 
image of ASK neurons. Scale bar is 20 µm. Blebs that were counted as damaged 
sites are indicated by violet arrows, which also depict how damage position is 
mirrored in the histograms below. The three bottom panels show histograms 
of the neuronal damage distribution at day 1 (green line) and day 4 (blue line) of 
the indicated neurons (ASK, ASJ, and OLL). Three cohorts of 10 – 25 individuals 
have been analysed per strain and age. Grey lines are 100 examples of randomly 
distributed damage along neurites. Damage site was measured as distance from 
the mouth and binned into 12 damage-site-bins. Pearson correlation has been 
calculated for every pair of “neuron vs. random distribution” and the average is 
indicated. f) Z-Stack Maximum projection after background subtraction (Fiji – 
rolling ball radius 25) of fluorescence microscopic recording of representative 
NY2067 nematode expressing GFP in ASE neurons. Scale bar indicates 20 µm. g) 
Neuron survival was assessed using Kaplan-Mayer. Presence of green fluorescent 
neuron bodies was scored daily. Mantel-Cox test was done to test for significant 
differences. Shown are the aggregated plots of three independent cohorts of 
each 12 nematodes per strain. h) Histogram showing the relative frequency of the 
first day of neuron loss. Three cohorts of each 12 nematodes per strain.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Correlations between CENGEN and Calico datasets. 
a) Amphid neurons are predicted to be significantly older than non-amphid 
neurons in the Calico day 1 dataset. Two-sided t-test p-value: 5.6e-08. b) Amphid 
neurons are predicted to be significantly older than non-amphid neurons in the 
CeNGEN dataset with a stochastic data-based clock. Two-sided t-test p-value: 
7.2e-22. c) Amphid neurons express significantly more neuropeptides than 
non-amphid neurons. Two-sided t-test p-value: 5.95e-12. d) Amphid neurons 
express significantly more receptor genes than non-amphid neurons. Two-sided 
t-test p-value:8.45e-09. e) The number of neurotransmitters is not significantly 
different in amphid and non-amphid neurons. Two-sided t-test p-value: 0.94. 
f) The number of innexins is not significantly different in amphid and non-
amphid neurons. Two-sided t-test p-value: 0.05. g) The number of expressed 
neuropeptides (y-axis) is significantly correlated (Pearson correlation 0.26, 
p-value 3e-03) with the predicted age by BitAge in the CeNGEN dataset. The 
regression model fit with a 95% confidence interval (shadowed area) is shown. 
h) The number of expressed receptor genes (y-axis) is significantly correlated 
(Pearson correlation 0.22, p-value 1.2e-02) with the predicted age by BitAge in 
the CeNGEN dataset. The regression model fit with a 95% confidence interval 
(shadowed area) is shown. i) The number of expressed neuropeptides (y-axis) 
is significantly correlated (Pearson correlation 0.36, p-value 2.9e-03) with the 
predicted age by BitAge in the Calico day 1 dataset. The regression model fit with 
a 95% confidence interval (shadowed area) is shown. j) The number of expressed 
receptor genes (y-axis) is significantly correlated (Pearson correlation 0.44, 
p-value 2.4e-04) with the predicted age by BitAge in the Calico day 1 dataset. 
The regression model fit with a 95% confidence interval (shadowed area) is 
shown. k) The number of expressed neuropeptides (y-axis) is significantly 
correlated (Pearson correlation 0.43, p-value 4.8e-07) with the predicted age 
by a stochastic data-based clock in the CeNGEN dataset. The regression model 
fit with a 95% confidence interval (shadowed area) is shown. l) The number of 
expressed receptor genes (y-axis) is significantly correlated (Pearson correlation 
0.39, p-value 6.9e-06) with the predicted age by a stochastic data-based clock 
in the CeNGEN dataset. The regression model fit with a 95% confidence interval 
(shadowed area) is shown. m) Fraction-plot displaying the fraction of nematodes 
expressing neuronal volume markers in the ASI neuron categorized as ‘healthy’, 
‘mildly damaged’, and ‘severely damaged’. Three to four cohorts were analysed, 
comprised of 10 – 30 individual nematodes, for every timepoint indicated. 

Kruskal-Wallis-test was employed to test for significant differences. n) The 
number of expressed innexin genes (y-axis) is significantly anti-correlated 
(Pearson correlation -0.19, p-value 3.7e-02) with the predicted age by BitAge in 
the CeNGEN dataset. The regression model fit with a 95% confidence interval 
(shadowed area) is shown. o) The number of expressed innexin genes (y-axis) 
is not-significantly anti-correlated (Pearson correlation -0.2, p-value 0.9e-01) 
with the predicted age by BitAge in the Calico day 1 dataset. The regression 
model fit with a 95% confidence interval (shadowed area) is shown. p) The 
number of expressed innexin genes (y-axis) is not-significantly anti-correlated 
(Pearson correlation -0.12, p-value 1.9e-01) with the predicted age by a stochastic 
data-based clock in the CeNGEN dataset. The regression model fit with a 95% 
confidence interval (shadowed area) is shown. q) The number of total synapses 
(y-axis) is not-significantly anti-correlated (Pearson correlation -0.04, p-value 
6.6e-01) with the predicted age by BitAge in the CeNGEN dataset. The regression 
model fit with a 95% confidence interval (shadowed area) is shown. r) The 
number of total synapses (y-axis) is not-significantly anti-correlated (Pearson 
correlation -0.21, p-value 1.0e-01) with the predicted age by BitAge in the Calico 
day 1 dataset. The regression model fit with a 95% confidence interval (shadowed 
area) is shown. s) The number of total synapses (y-axis) is not-significantly 
anti-correlated (Pearson correlation -0.07, p-value 4.6e-01) with the predicted 
age by a stochastic data-based clock in the CeNGEN dataset. The regression 
model fit with a 95% confidence interval (shadowed area) is shown. t) Ciliated 
neurons are predicted to be significantly older than non-ciliated neurons in the 
Calico day 1 dataset. Two-sided t-test p-value: 4.4e-05. u) Ciliated neurons are 
predicted to be significantly older than non-ciliated neurons in the CeNGEN 
dataset with a stochastic data-based clock. Two-sided t-test p-value: 2.29e-14. v) 
Ciliated neurons are divided into 5 classes depending on where its cilia terminate. 
Neurons with exposed cilia are significantly older than non-ciliated neurons or 
neurons which cilia terminate in the cuticle or behind the cuticle in the Calico 
day 1 dataset (one-way ANOVA p-value: 2.68e-08, with a post-hoc Tukey test). w) 
Ciliated neurons are divided into 5 classes depending on where its cilia terminate. 
Neurons with exposed cilia are significantly older than non-ciliated neurons or 
neurons which cilia terminate in the cuticle or behind the cuticle in the CeNGEN 
dataset with a stochastic data-based clock (one-way ANOVA p-value: 6.6e-18, with 
a post-hoc Tukey test).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | CHX is reducing translation in nematodes. a) Output of 
the Dmin function of the Mfuzz R package. Soft clustering for cluster numbers 
ranging from 2-12 (x-axis) were calculated with Dmin. For each cluster number, 
Dmin calculates the distance between the centroids of the clusters (centroid 
distance) and reports the minimum centroid distance across 3 repetitions 
(y-axis). The optimal cluster number is estimated from the “elbow” of the plot 
(indicated by an orange arrow on the dashed line), that is the cluster number 
which shows a sharp decline in the minimum centroid distance (cluster 
Number=4). b) SUnSET assay to test translation efficacy upon cycloheximide 
treatment. Left side: Westernblot detecting puromycin labelled proteins, 
ponceau staining as loading control, left side: densitometric quantification 
normalized to total protein according to ponceau signal. Four independent 
cohorts of each ≈ 35 nematodes tested. One-tailed t-test to test for significance. 
Lysed nematodes were day 1 of adulthood, 2 mM CHX treatment since L4 stage 

and while puromycin labelling. c) Fluorescence quantification to assess GFP 
synthesis in selected neurons as proxy for translation. Three independent 
cohorts, total 28 – 52 nematodes analysed per strain and condition. One-way 
ANOVA + Tukey post hoc test. d) Schematic depiction of experimental procedure 
to test the effect of either short-term or chronic CHX treatment on the neuron 
integrity. e) Fraction plots of neuronal integrity of ASK, ASJ, ASE, and OLL 
neurons treated with 2 mM CHX for either 24 h or 96 h starting from L4 stage 
on. Three cohorts of 4 – 20 nematodes expressing GFP in either ASK, ASJ, ASE, 
or OLL neurons have been recorded, neurodegeneration was assessed, and 
neurons categorized as ‘healthy’ (blue), ‘mildly damaged’ (orange), and ‘severely 
damaged’ (red). Ordinal regression (cumulative link model) has been used to 
test for significant differences between CHX and solvent control treatment. 
To test for significant differences a cumulative link model was built, pairwise 
comparison was corrected according to Bonferroni.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Clustering of enrichment scores for pathway and 
gene expression level clustering analysis. a) The normalized enrichment 
scores of the conserved KEGG pathways for the indicated aging pattern were 
used for an unbiased clustering analysis (the same as Fig. 5, but focusing 
on the aging pattern). The matrix is color-coded according to the Pearson 
correlation between the indicated comparisons. The colors on the side indicate 
the species. b) Unbiased clustering analysis of conserved KEGG pathway 
enrichments for aging patterns (C. elegans NeuronAge, mouse, human) and 

geroprotective interventions. Both Pearson correlation-based and log-fold 
change (logFC)-based pathway enrichments are shown for each aging dataset 
to assess the impact of preprocessing methodology. Despite differences in 
computational approach, aging datasets cluster together, while geroprotective 
interventions form a separate cluster, reinforcing the robustness of the observed 
transcriptomic relationships. The colors on the side indicate the species and 
whether it was an aging trajectory or a geroprotective treatment.
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Extended Data Fig. 6 | Components identified by in silico screen validation. 
a) Z-stack fluorescence images of GFP expression in ASK, OLL, ASJ neurons 
after 24 h treatment with water control, 2.5 mM syringic acid (SA). Maximum 
projections after background subtraction (Fiji – rolling ball radius 80). Scale 
bars indicate 20 µm. b) Z-stack fluorescence images of GFP expression in ASK, 
OLL, ASJ neurons after 24 h treatment with 10 nM vanoxerine (VX). Maximum 
projections after background subtraction (Fiji – rolling ball radius 80). Scale 
bars indicate 20 µm. c) Fraction-plots displaying the fraction of nematodes 
expressing GFP in the OLL or ASK neurons categorized as ‘healthy’, ‘mildly 
damaged’, and ‘severely damaged’ that were treated with 2.5 mM syringic 
acid (SA), 10 nM vanoxerine (VX), or 250 µM Bay K8644 for 24 h. Three to 
four cohorts were analysed, consisting of 10 – 25 individual nematodes each. 
Statistical analysis was performed using a cumulative link model with a logit 
link to account for the ordered categorical nature of neuronal damage scores 
(Healthy < Mild < Severe). Multiple test adjusted (Benjamini Hochberg) p-values 
are shown. d) Z-stack fluorescence images of GFP expression in I2 neurons 
after 24 h treatment with 25 nM WAY-100635 (WAY). Maximum projections 
after background subtraction (Fiji – rolling ball radius 80). Scale bars indicate 
20 µm. e) Z-stack fluorescence images of GFP expression in ASK, OLL, and I2 
neurons after 24 h treatment with 250 µM Bay K8644. Maximum projections 
after background subtraction (Fiji – rolling ball radius 80). Scale bars indicate 
20 µm. f) Z-stack fluorescence images of GFP expression in ASK, OLL, ASJ, 
and I2 neurons after 24 h treatment with 1‰ ethanol, or 200 µM resveratrol. 
Maximum projections after background subtraction (Fiji – rolling ball radius 
80). g) Fraction-plots displaying the fraction of nematodes expressing GFP in 
the OLL, I2, ASJ, or ASK neurons categorized as ‘healthy’, ‘mildly damaged’, and 

‘severely damaged’ that were treated with 200 µM resveratrol for 24 h. Four 
cohorts were analysed, consisting of 12 – 25 individual nematodes. Statistical 
analysis was performed using a cumulative link model with a logit link to account 
for the ordered categorical nature of neuronal damage scores (Healthy < Mild 
< Severe). Multiple test adjusted (Benjamini Hochberg) p-values are shown. 
h) Schema of experimental strategy to test whether Serratia marcescens Db11 
bacteria metabolise syringic acid or WAY-100635. Db11 bacteria are grown and 
on half is inactivated by UV-C irradiation (500 mJ/cm^2), the other half is still 
alive. Compounds are added separately and incubated 48 h with dead or alive 
bacteria. Subsequently, solution is passed trough a 22 µm syringe filter to remove 
bacteria. The compound containing solution is afterwards added onto a lawn of 
UV-C inactivated OP50 bacteria. After drying, L4 stage nematodes are added and 
after 24 h neurodegeneration is assessed using fluorescence microscopy. i) Scan 
of UV-C inactivation test. Serratia marcescens Db11 bacteria were inactivated by 
UV-C irradiation (500 mJ/cm^2), streaked-out onto an NGM plate, and growth was 
documented after 24 h. Left side shows bacteria before inactivation, right side is 
bacteria after inactivation. j) Fraction-plot displaying the fraction of nematodes 
expressing GFP in the URY neurons categorized as ‘healthy’, ‘mildly damaged’, 
and ‘severely damaged’ that were treated with 2.5 mM syringic acid (SA) or 25 nM 
WAY-100635 (WAY), after compounds were pretreated with living or dead Db11 
bacteria for 48 h, for 24 h. Three cohorts were analysed, consisting of 10 – 25 
individual nematodes. Statistical analysis was performed using a cumulative link 
model with a logit link to account for the ordered categorical nature of neuronal 
damage scores (Healthy < Mild < Severe). Pairwise comparisons between 
conditions were performed using estimated marginal means (emmeans) with 
Tukey’s adjustment for multiple testing.
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