nature aging

Article

https://doi.org/10.1038/s43587-026-01067-5

Aging clocks delineate neuron types
vulnerable orresilient to neurodegeneration
and identify neuroprotective interventions
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Different neuron types show distinct susceptibility to age-dependent

degeneration, yet the underlying mechanisms are poorly understood. Here
we applied aging clocks to single neuron types in Caenorhabditis elegans and
found that distinct neurons differ in their biological age. Ciliated sensory
neurons with high neuropeptide and protein biosynthesis gene expression
show accelerated aging and degeneration, correlating with loss of function,
which could be prevented by pharmacological inhibition of translation.

We show that the C. elegans neuronal aging transcriptomes correlate

with human brain aging patterns and anticorrelate with geroprotective
interventions. We performed aninsilico drug screen to identify potentially
neuroprotective small molecules. We show that the natural occurring plant
metabolite syringic acid and the piperazine derivative vanoxerine delay
neuronal degeneration, and propose these compounds as neuroprotective
interventions. Furthermore, we identify neurotoxins that accelerate neu-
rodegeneration, indicating that distinguishing aging trajectories between
neuron types caninform on protective interventions as well as risk factors.

Agingisthe highest risk factor for neurodegenerative diseases such as
Alzheimer’s disease or Parkinson’s disease that are triggered by the func-
tional decline of distinct neuron types. In Alzheimer’s disease, the ini-
tially degenerating brain structures are the parahippocampal gyrus and
the olfactory bulb, followed by the degeneration of the hippocampus,
leading to the characteristic clinical dementiasymptoms'~, Parkinson’s
disease, in contrast, affects mostly the dopaminergicinnervation of the
midbrainand the cerebellum, resultingin the perturbation of motility
and the induction of tremor syndromes*”. In mice, distinct classes of
brain cells show differencesin age-related decline®, and single-cell tran-
scriptomics has identified pro-aging and pro-rejuvenating proximity
effects of distinct cell populations’. The extent to whichintrinsic aging

susceptibility differs among individual neuron types has, however,
remained largely unknown. To elucidate whether different neuron
types might differ in their biological aging process, we used C. elegans
asanexperimental model with awell-characterized neuronal system of
302 neurons of 2128 different neuron types® that allows assessing the
integrity ofindividual neurons during the normal aging process in vivo.

Aging clocks provide predictive models of molecular signatures
(forexample, DNA methylation) that estimate anindividual’s chrono-
logical age, and could identify biological age differences resulting from
genetic or pharmacological age acceleration or deceleration’ . Based
ontheknown effects of many geneticand pharmacologic interventions
onlifespan and thus biological age in C. elegans, we recently developed
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the highly accurate binarized transcriptomic (Bit) age clock. BitAge
predicts already in young adult animals quantitatively how genetic,
environmental or pharmacological treatments affect lifespan'®. We
previously established that also the simulation of increasing noise
allows the prediction of biological age regardless of organism or data
type, allowing us to design the Stochastic Clock to detect age accelerat-
ing and decelerating interventions'.

Here, we asked whether in chronologically young animals, distinct
neuron types might exhibit distinct biological ages in C. elegans. We
show that individual neuron types in the late larval L4 stage, which
directly precedes adulthood, show a distinct offset of biological age
prediction despite sharing the same chronological age. We demon-
strate that the age prediction corresponds to neuron-type-specific
degeneration and the decline of their specific function. Neuron types
withanolder predicted age show early neurodegeneration, while those
with ayounger predicted age are preserved. The transcriptomic differ-
ences between these biologically ‘older’ and ‘younger’ neuron types
indicate translation asacrucial driver of neuronal aging and pharmaco-
logically reducing protein synthesis prevented the degeneration of the
fast-aging neurons. We determined that the transcriptional patterns of
the biological age differences are correlated with the transcriptional
patterns of human and mouse brain aging, suggesting conserved neu-
ronal aging mechanisms. The neuronal aging patterns anticorrelated
with geroprotective interventions enabling the identification of neu-
ronal aging modulators. Using a transcriptomic resource incorporating
thousands of different compounds in human cell lines (CMAP)", we
identified and validated pharmacological compounds that protect
the integrity of neurons in vivo. We demonstrate that the naturally
occurring plant metabolite syringic acid and the piperazine derivative
vanoxerine prevent neurodegeneration and propose that they could
serve as neuroprotective interventions. In reverse, our approach can
alsoidentify neurotoxins that accelerate neurodegeneration. Our data
suggest that the mechanisms underlying neuron-type-specific aging
rates allow the identification of therapeutic interventions that could
slow down neuronal aging and prevent neurodegeneration.

Results
To investigate whether different neuron types age differently within
an organism, we applied our previously developed BitAge biologi-
cal age predictor'® and, as independent age predictor, our previously
developed Stochastic Clock™ on neuron-type-specific RNA-sequencing
data. We used the single-neuron-type data fromthe C. elegans Neuronal
Gene Expression Map & Network (CeNGEN) dataset™, which comprises
128 distinct neurontypes fromlate L4-stage larvae. The 128 neuron age
predictions range from =98 hin FLP neurons to=177 hin ADL neurons
(Fig.1a; BitAge) suggesting that different neurons might show analmost
twofold biological age difference in chronologically young nematodes.

Weindependently confirmed the different age predictions of the
neuron types in the single-neuron-type RNA-sequencing data from
young adults in a recent cell atlas of C. elegans aging (Calico)”, which
contains 67 ofthe 128 neuron types from the CeNGEN dataset. Also, the
Calico dataset of day 1adults exhibits the same predicted age distribu-
tion (Extended Data Fig. 1a), and the BitAge predictions on both data-
sets are significantly correlated with each other (Extended Data Fig. 1b;
Pearson correlation 0.66, P < 0.0001).

Toindependently assess each neuron’s biological age, we applied
a Stochastic Clock that does not rely on specific transcriptomic sig-
natures but instead simulates how random changes accumulate over
time'. Despite using a fundamentally different strategy, the Sto-
chastic Clock showed substantial overlap with BitAge (Fig. 1a) and
predicts an almost fourfold age difference between the youngest
and oldest neurons. The predictions of the Stochastic Clock signifi-
cantly correlate with the BitAge predictions on the CeNGEN data-
set (Fig. 1b; Pearson correlation r=0.65, P < 0.0001), which was even
stronger within the very young or very old predicted group of neurons

(Extended Data Fig. 1g; Pearson correlation r=0.78, P< 0.0001; for
the top and bottom 20%). The Stochastic Clock predictions showed
asignificant correlation between the CeNGEN and Calico datasets
(Extended DataFig.1c; Pearson correlation 0.82, P < 0.0001). Similarly,
the Stochastic Clock predictions correlated significantly with BitAge
inthe Calico dataset (Extended Data Fig. 1d; Pearson correlation 0.74,
P<0.0001). Taken together, two independent aging clock paradigms
using two independent single-neuron transcriptome datasets consist-
ently predict specific neuron types as younger and others as older in
chronologically young animals.

To address potential limitations of single-cell sequencing cover-
age, we performed the same analyses on bulk RNA-sequencing data
from CeNGEN, which offers improved transcriptomic coverage for a
subset of 37 neurons'. BitAge predictions remained consistent between
the pseudobulk CeNGEN dataset and the bulk RNA-sequencing dataset
(Extended DataFig. 1e; Pearson correlation 0.65, P < 0.0001). Similarly,
the Stochastic Clock predictions on pseudobulk and bulk CeNGEN data-
sets were also significantly correlated (Extended Data Fig. 1f; Pearson
correlation 0.7, P< 0.0001), reinforcing that the predicted biological
age differences among neurons are robust across different datasets
and sequencing approaches. While the predictions of BitAge and the
Stochastic Clock are highly consistent, there are also some outliers that
deviate more strongly from the correlation (Extended Data Fig. 1g).

Asadditional validation, we used bulk neuron transcriptomes from
young and aged animals that were notincluded in the training data of
the clocks”. We found that both clocks could differentiate between the
young and old samples (Extended Data Fig. 1h); note that differences
between predicted biological age and indicated chronological age
could arise from two effects: first, the sample age is reported in days,
giving a £12-h uncertainty; second, the associated reported median
lifespan of 22 days is unexpectedly high (median lifespan is typically
between 14 and 18 days)”.

The aging transcriptome in species ranging from C. elegans to
humans was recently shown to exhibit agene length-dependent tran-
scriptional decline (GLTD): the longer the gene, the more sharply its
expression tends to decrease with age'®'’. GLTD is thought to result
fromthe age-dependent accumulation of transcription-blocking DNA
damage that is more likely to occur in larger genes. To test whether
neurons predicted to be biologically older showed GLTD, we ana-
lyzed neuron-type-specific genes, which are defined as genes that are
expressed in atleast 90% of the specific neurons and in not more than
10% of other cells. In line with GLTD, the neuron-type-specific genes
of the 20% oldest predicted neurons are significantly shorter than
expected by chance (P=3.6 x107*), while the neuron-type-specific
genes of the 20% youngest neurons are significantly longer
(P=9.28 x107%; Fig. 1c) and show a significantly longer median gene
length (Fig.1d). The median length of the neuron-type-specificgenesis
negatively correlated with the prediction age of BitAge or the Stochastic
Clockoneither CeNGEN or Calico data (Extended Data Fig. 1i-1). These
results indicate that the clock-predicted biological age is reflected in
the age-associated GLTD that is most prevalent in the biologically old
predicted neurons.

Taken together, the alignment of aging clock predictions with
the presence of GLTD in neurons predicted to be biologically old in
chronologically young animals provides compelling evidence that
specific neuron types undergo accelerated aging.

Neuron-specific age predictions are associated with
neurodegeneration

To assess whether the predicted age differences are associated with
different degrees of neuron-specific degeneration, we next chose three
young (12, OLL, PHC) and three old (ASI, ASJ, ASK) predicted neurons
(Fig.2a) and scored their degeneration over the chronological age start-
ing from thelarval L4 stage onward to day 7 of adulthood. The L4 stage
isthelastlarval stage before the nematodes reach sexual maturity, while
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Fig.1| Transcriptome-based aging clocks can predict the ages of individual
neurontypes. a, Distribution of transcriptomic age predictions. The 128
neurons of the CeNGEN dataset were predicted with BitAge (upper) ora
stochastic noise-based clock (lower) and sorted by their predicted age.
The x axis shows the rank of the prediction in ascending order, and the y axis
shows the predicted age. The 20% youngest neurons and their respective age
predictions are outlined in blue; the 20% oldest neurons and their respective age
predictions are displayed in orange. Neuron types appearing on the top/bottom
of both prediction lists are indicated in bold letters. b, Predictions with BitAge
and the Stochastic Clock on the CeNGEN dataset are highly correlated (Pearson
correlation 0.65, Pvalue 5.5 x 10™7). The x axis shows the BitAge predictions

of the CeNGEN dataset, and the y axis shows the stochastic data-based clock
predictions of the CeNGEN dataset. All 128 neurons are plotted. Color coding

of the youngest 20% of neurons according to BitAge in blue and of the oldest
20%in orange. The regression model fit with a 95% confidence interval (dashed,
black lines) is shown. ¢, Neuron-type-specific genes in the CeNGEN dataset are

skewed depending on gene length and age prediction. The log,, gene length
(xaxis) of the specific genes from the 20% youngest neurons (blue), and of
the 20% oldest neurons (orange) are compared to random permutation of
all neuron-type-specific genes with the same number of genes (gray). The
gray curve shows the mean density across 100,000 random permutations,
each sampling the same number of genes as in the youngest/oldest neuron
groups; the shaded gray band indicates the 95% confidence interval across
permutations. The two-sided permutation test compared the median log;, gene
length. The y axis shows the probability density of the values on the x axis.

d, Swarm plot of the median log,, length of neuron-type-specific genes
expressed in the youngest 20% (blue) and oldest 20% (orange) neurons
according to BitAge predictions. Each point represents a single neuron type.
Neuron types were grouped into the youngest 20% (blue, n =17) and

oldest 20% (orange, n = 21) according to BitAge-predicted biological age.
Data shown are the mean + s.d. Welch'’s two-tailed ¢-test was used to test for
significant differences.
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Fig. 2| Predicted neuron age and degeneration onset and progression
correlate. a, Representative fluorescence images (z-stack maximum projections)
ofthe analyzed neurons grouped by predictionage—12, OLL and PHC as
representatives of the young neurons (blue); ASI, AS] and ASK as representatives
ofthe old neurons (orange). Scale bars, 50 pm. b, Representative fluorescence
images (z-stack maximum projections) of nematodes expressing neuronal

GFP markers, classified according to the severity of observed degeneration.
Classification criteria are indicated below the images. Orange arrows indicate
blebs; red arrowheads indicate spheric outgrowths. Nematode heads are

outlined by adashed line. Scale bar, 50 pm. ¢, Fraction plots displaying the
fraction of nematodes expressing neuronal markers in different neurons
categorized as ‘healthy’, ‘mildly damaged’ and ‘severely damaged’. Three

to four cohorts were analyzed, comprising 10-30 individual nematodes,

for every time point indicated. Data shown are the mean + s.d. Statistical
analysis was performed using a cumulative link model (CLM) with alogit link
to account for the ordered categorical nature of neuronal damage scores
(healthy < mild < severe). Pvalues were adjusted for multiple testing using the
Benjamini-Hochberg method.

day 7 ofadulthoodisin the post-fertile phase. To assess the morphologi-
calintegrity of specific neuronsin vivo, we used neuron-type-specific
transcriptional green fluorescent protein (GFP) reporters (Fig. 2a).
Macroscopic aberrations in the neurites were classified as ‘healthy’,

‘damaged’ or ‘severely damaged’ (Fig. 2b) as established previously®® >,

We excluded that GFP expression levels mightinfluence neuroninteg-
rity, as GFP expression levels and neuronal integrity showed no cor-
relation as tested in ASK and AS) neurons that exhibit the strongest

Nature Aging


http://www.nature.com/nataging

Article

https://doi.org/10.1038/s43587-026-01067-5

variance in GFP expression levels among the employed nematode
strains (Extended Data Fig. 2a).

In accordance with our predictions, the three young predicted
neuron types exhibited significantly less degeneration than the old pre-
dicted neurontypes atall analyzed time points (Fig. 2c). At L4 stage and
onthefirstday ofadulthood, 12, OLL and PHC neurons exhibited a mini-
mal degeneration only affecting10-20% of the animals, whichincreased
to =35% during aging. URY neurons, which were described previously
to exhibit approximately 35% degeneration at day 7 of adulthood?®,
displayed =20% degenerationin L4 and young adults, whichincreased
upto=35%onday 7 of adulthood (Extended DataFig. 2b,c). Allanalyzed
neurontypes except 12 showed asignificant age-dependent deteriora-
tion (Fig. 2c).

The predicted biologically older ASI, ASJ and ASK neurons were
damaged in >45% of L4 larvae reaching up to 90% at day 7 of adult-
hood, indicative of rapid aging. To determine at which stage the rapidly
aging neurons start to degenerate, we also examined the ASI, ASJ and
ASK neurons in the larval L3 stage. Consistent with a fully developed
neuronal system, those neuron types were intact in more than 90% of
theL3 animals, suggesting that the first burst of neuronal aging occurs
already between the L3 and L4 stage (Extended Data Fig. 2d).

Todiscernwhether the progressive degenerative processreflects
anage-dependent stochastic process or instead a deterministic devel-
opmental program, we analyzed whether the bleb patterns appeared
randomly along the neurites. The positions of blebs in ASJ, ASK and
OLL neurons in adults indeed correlated with a random distribution
of damage sites along neurites. Only one site in OLL neurons exhibited
nonrandombleb clustering; it was located at the proximal pharyngeal
bulb and prone to swelling (Extended Data Fig. 2e).

To address whether we might have underestimated the neuro-
degeneration because only the morphology of neurons that express
GFP could be analyzed, and hence are present, we assessed neuronal
survival in individual nematodes over a time course of 12 days dur-
ing adulthood. During aging most animals retained the young pre-
dicted 12, OLL and URY neurons, while the old predicted ASK and ASE

neurons were progressively lost (Extended Data Fig. 2f-h), showing
that early biological age predictions are associated with age-dependent
neuronal attrition.

Taken together, these results validate our neuron-type-specific
biological age predictions for identifying neurons at higher risk of
degeneration, with potentialimplications for understanding selective
neuronal vulnerability in aging and neurodegeneration.

Neuronal degeneration corresponds to neuron-specific
functional loss

To test whether the morphological neurite degeneration corresponds
with functional impairment, we monitored behaviors that depend
specifically on a single neuron type. The requirement of a highly
neuron-type-specific phenotypic outcome excluded the functional
analysis of the ASI, ASJ, ASK, 12, OLL and PHC neurons for any of the
following reasons: (1) some neurons, such as12, lack well-defined func-
tionalroles; (2) some functions are executed through multiple redun-
dantly operating neurons thus precluding assessment of single-neuron
function; (3) some neurons are negative regulators of other neurons
leading to indirect effects. In contrast, URY neurons (representing
young predicted neurons) are strictly required for selected pathogen
avoidance® and ASE neurons (representing old predicted neurons)
mediate salt sensation and memory formation® allowing their func-
tional analysis by behavioral testing.

We tested whether the degeneration of URY neurons correlates
with impaired avoidance behavior from pathogenic Serratia marces-
censDbllbacteria, whichis primarily mediated by the TOL-1receptor
expressed in URY neurons?. URY-marked strains (GFP is expressed
specifically in URY neurons) were exposed to either pathogenic Db11l
or nonpathogenic OP50 control bacteria. To test whether failure to
display avoidance behavior correlated with neurodegeneration, we
assessed theintegrity of the URY neuronsin animals thateither avoided
or failed to avoid the bacterial lawn (Fig. 3a).

Approximately 80% of the URY neuron-marked animals avoided
the toxic Dbllbacterial lawn thus showingatypical pathogenavoidance

Fig. 3| Neurodegeneration and neuronal function loss are correlated.

a, Schematic depiction of the experimental design to examine the correlation
between pathogen avoidance from S. marcescens Dbll bacteria and URY neuron
integrity. Nematodes were synchronized by L4 picking and transferred to Db11
or OP50 bacteria. After 2 days, avoidance behavior was scored and nematodes
classified as avoiding/not-avoiding and subjected to microscopy to analyze

URY neuron neurite health. b, Swarm plot of the results from the pathogen
avoidance assay from Dbl11 bacteria. URY neuron marker strain (URYp::GFP,
JKM10), 12 neuron marker strain (12p::GFP, MT21910, control neuron unrelated to
avoidance reaction) and TOL-1receptor mutant strain (Atol-1,1G10, no avoidance
from Db11) were used. Data shown are the mean + s.d. from four independent
cohorts of 50-75 nematodes. Two-way analysis of variance (ANOVA) + Tukey
post hoc test were used. ¢, Swarm plot displaying the healthy neuron fraction
size from nematodes subjected to Db11 pathogen or OP50 control bacteriaand
classified for evasion behavior. URY neuron marker strain (URYp::GFP,JKM10,
mediating avoidance from S. marcescens) and 12 neuron marker strain (12p::GFP,
MT21910, control neuron unrelated to avoidance reaction) were used. Data are
the mean + s.d. of four independent cohorts of 10-20 nematodes per strain,
condition and classification. Statistical analysis was performed using a CLM.
Pvalues were adjusted for multiple testing using the Benjamini-Hochberg
method. d, Schematic depiction of the experimental design to correlate salt
aversive conditioning and neurodegeneration of ASE neurons. Adult 1-day-old
nematodes were conditioned by starvation in the presence or absence of

NaCl, and thereafter subjected to achemotaxis assay on an NaCl gradient.
Subsequently, nematodes were classified (dwelling on high/low salt) and neurite
integrity was analyzed using fluorescence microscopy. Orange asterisks indicate
nematodes that failed at learning. e, Swarm plot showing the chemotaxis index
of nematodes conditioned at 0 mM (light blue) or 20 mM (dark blue) NaCl. ASE
neuron marker strain (ASEp::GFP, NY2067, mediating salt aversive conditioning)
and URY neuron marker strain (URYp::GFP, JKM10, control neuron unrelated to

salt aversive conditioning) were used. Data shown are the mean + s.d. from five
independent cohorts of 80-150 nematodes. Statistical analysis was performed
using a CLM. Pvalues were adjusted for multiple testing using the Benjamini-
Hochberg method. f, Swarm plot displaying the healthy neuron fraction size
from nematodes after salt aversive conditioning. Nematodes were grouped
depending on the conditioning and their subsequent preference for a high (dark
blue) or low (light blue) salt concentration. The groups that failed to connect the
starvation stimulus and salt concentration are indicated by orange asterisks. ASE
neuron marker strain (ASEp::GFP, NY2067, mediating salt aversive conditioning)
and URY neuron marker strain (URYp::GFP, JKM10, control neuron unrelated to
salt aversive conditioning) were used. Data shown are the mean + s.d. from five
independent cohorts 0f10-20 nematodes. Two-way ANOVA + Tukey post hoc test
were used. g, We adapted a previously published connectome of C. elegans®. Only
neuronal cells are shown in alargely directional information flow on the vertical
axis, with sensory neurons (triangles) on top, interneurons (hexagons) in the
middle and motor neurons (circles) on the bottom. The horizontal axis roughly
shows the anatomical orientation with the head region on the left, and posterior
neurons on the right. Chemical synapses and gap junctions are indicated as
faded gray lines. The size of the neurons indicates the number of cells within

this neuron type. The predicted age (BitAge based on the CeNGEN dataset) is
color coded from blue (young) to orange (old). The oldest neurons cluster in the
middle top part and are largely sensory neurons. h, Swarm plot showing BitAge
predictions grouped by amphid neurons/non-amphid neurons and ciliated
neurons/non-ciliated neurons. Each point represents a single neuron type (n = 14
amphid, n =114 not-amphid; n = 28 ciliated, n =100 not-ciliated). Datashown
arethe mean + s.d. A two-sided t-test was used. i, Swarm plot showing ciliated
neurons’ age predictions divided into five classes depending on where their cilia
terminate. Each point represents asingle neuron type (n =100 not-ciliated, n =15
exposed, n=5sheath, n=3cuticle, n =3 subcuticle, n = 2behind cuticle). Data
shownare the mean +s.d. ANOVA + Tukey post hoc test were used.
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behavior (Fig. 3b). To ascertain the specificity of the assay, we tested a
tol-Imutant control strain that failed to show any avoidance. A baseline
avoidance of =20% was observed on nonpathogenic OP50, consistent
with natural exploratory behavior. Nematodes that failed to avoid
pathogenic Dbll showed significantly increased degeneration of URY
neurons compared to those that successfully avoided the bacteria
(Fig.3c).Asacontrol, we ascertained that degeneration of 12 neurons,
which are also predicted to be biologically young (Figs. 1a and 2¢) but
are not involved in pathogen avoidance, was uncorrelated with the
avoidance behavior, confirming that the loss of avoidance behavior
was dependent on URY neuron degeneration (Fig. 3¢).

To corroborate our findings, we tested salt aversive memory
formation that is specifically mediated by ASE neurons®, which are
predicted tobebiologically old (Fig. 1a). Nematodes were conditioned
to associate either low (0 mM) or high (20 mM) sodium chloride con-
centrations with starvation. Thereafter, the behavioral responses were
tested by using a chemotaxis preference assay on a sodium chloride
gradient and subjected to neurite imaging of either salt-sensing ASE
neurons or salt-sensing unrelated URY neurons (Fig. 3d). The strains
expressing GFP in either ASE or URY neurons similarly learned to move
toward higher salt concentrations when a low salt concentration was
associated with starvation (Fig. 3e), while nematodes conditioned to
associate a high salt concentration with starvationmoved toward lower
salt concentrations on the salt gradient (Fig. 3e). Nevertheless, some
individual nematodes failed to show the expected avoidance behavior
and moved toward the salt concentration they should have learned to
avoid (Fig. 3d,f). The neuronal health was assessed as described above
(Fig. 2b), and the healthy neuron fraction was quantified across four
behavioral groups: Nematodes (1) trained to avoid low salt (left) and
found on low salt (light blue); (2) trained to avoid low salt (left) and
found on high salt (dark blue); (3) trained to avoid high salt (right) and
found onlow salt (light blue); and (4) trained to avoid high salt (right)
and found on high salt (dark blue). There was no significant difference
in the healthy neuron fraction among animals conditioned on 0 mM
NaCl, regardless of their behavioral outcome (Fig. 3f). In contrast,
the ASE neuron-marked animals conditioned to avoid 20 mM NacCl,
exhibited asignificantincreasein damaged neuronsin the group that
was moving toward the high salt concentration. As expected, URY
neuron-marked nematodes did not show an accumulation of neuro-
degenerationin any of the groups (Fig. 3f).

In conclusion, these results establish a direct link between neu-
ronal degeneration and functional impairment, demonstrating the
power of transcriptome clock-predicting biologically older neurons
(henceforth, referred to as ‘biologically old’ or ‘biologically aged’).

Ciliated sensory neurons exposed to the environment are most
rapidly aging

To understand commonalities among the biologically young, as well
as among the rapidly aging neuron types, we adapted a hierarchical
whole-animal connectome for C. elegans® with a rough anatomical
correspondence on the x axis and directional flow of neuronal signal-
ing on the y axis and color coded it with the predicted biological age
(Fig.3g). Thebiologically oldest neurons clustered in the upper-middle
part of the network and consist mostly of sensory neurons, while the
youngest neurons clustered further to the right. Of the 10 oldest neu-
rons, 6 are amphid neurons (ADL, ASJ, ASK, ASG, ADF, ASI), the pri-
mary chemosensory organ, which is mostly ciliated””. The 14 amphid
neurons of the CeNGEN dataset showed a significantly increased bio-
logical age compared to the other 114 neurons (Fig. 3h), which can be
replicated in the Calico dataset (Extended Data Fig. 3a), and with the
Stochastic Clock (Extended DataFig.3b). The sensory amphid neurons
express a variety of neuropeptides, neurotransmitters, receptors and
innexins to transmit the sensed cues. The numbers of expressed neu-
ropeptides and receptors were significantly higher inamphid neurons
(Extended Data Fig. 3¢,d), while the number of neurotransmitter or

innexins was not significantly changed (Extended Data Fig. 3e,f)*.
Moreover, the numbers of neuropeptides and receptors per neuron
were significantly positively correlated with the predicted biologi-
cal age in the CeNGEN dataset (Extended Data Fig. 3g,h), the Calico
dataset (Extended Data Fig. 3i,j) and the Stochastic Clock predictions
(Extended Data Fig. 3k,1). To test whether neuropeptide release pro-
motes neuronal aging, we used unc-31 mutants defective in neuropep-
tide release and observed a mild, yet nonsignificant, reduction in ASI
degeneration (Extended Data Fig. 3m). The number of innexins and
number of total synapses per neuron did not show a significant cor-
relation with biological age (Extended Data Fig. 3n-s).

Amphid neurons are part of the ciliated neuron classes; com-
paring all 28 ciliated neurons with the remaining 100 neurons also
shows a significantly increased biological age (Fig. 3h), which can be
replicated in the Calico dataset (Extended Data Fig. 3t) and with the
Stochastic Clock (Extended Data Fig. 3u). The ciliated neurons can be
further dividedinto five distinct classes depending on where their cilia
terminate”. Neurons with cilia exposed to the environment show the
highest biological age (Fig. 3i), while the other ciliated neuron classes
arenotsignificantly different fromnot-ciliated neurons. A similar effect
canbeobservedin the Calico dataset (Extended Data Fig. 3v) and with
the Stochastic Clock (Extended Data Fig. 3w). These results indicate
that the oldest neurons are functionally related and mostly consist of
ciliated sensory neurons that have contact with the environment and
produce neuropeptides.

Transcriptional clustering identifies translation to promote
neuronal aging

Toidentify the transcriptional patterns and signatures underlying the
biological age distinctions, we initially categorized the 128 neuron
types into five distinct groups based on their biological age ranking
(forexample, the 25youngestingroup 1, position 26 to 50 ingroup 2).
Afuzzy clustering analysis of 4 transcriptional clusters (determined by
the standard elbow criterion to provide the best balance between clus-
ter resolution and interpretability) identified neuronal age-dependent
gene expression trends (Fig. 4a and Extended Data Fig. 4a).

Cluster A is composed of genes that generally increased over
biological age, and is enriched for genes involved in nucleolar func-
tions such as rRNA and tRNA processing, ribosome biogenesis and
pre-ribosomes, as well as DNA repair (Fig. 4b; cluster A). Cluster B,
composed of genes with highest expressioninthe youngest age group,
anoverall decline over the biological age time course including some
variationand a peakinage group 4, is enriched in mRNA processing and
ribosomal genes. Cluster C, comprising genes increasingly expressed
over the predicted age and then sharply declining in the oldest age
group, isenriched for cell junctions and synapse-related genes. Cluster
D contains genes that only strongly increase in the oldest age group
withfunctionsinneuropeptide signalingandimmune response.Insum,
these four clusters suggest roles for translation, ribosome biogenesis
and synaptic function in neuronal aging.

Inhibition of translation alleviates neurodegenerationin
fast-aging neurons

Based on the enrichment of protein biosynthesis processes in the
accelerated aging neurons, we tested whether translational activity
contributes to neurodegeneration. To reduce protein biosynthesis, we
treated nematodes with the translation inhibitor cycloheximide (CHX)
ata dose thatinduces translation reduction but not full inhibition®.
Here, we scored neurite degeneration in biologically older ASK and
ASJ neurons, as well as in biologically younger 12 and OLL neurons. To
confirmreduction oftranslation, we used aSUnSET assay and observed
that CHX treatment significantly reduced overall protein synthesis
(Extended DataFig.4b) witha Cohen’s h 0f 0.48, indicating amild reduc-
tion of translation. Additionally, we observed reduced translation in
individual neurons as assessed by the reduction of GFP expression in
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the presence of CHX in three of the four tested neuron types. These
results further corroborate our approach using CHX treatment to
reducetranslationalsointhe analyzed neurons (Extended Data Fig. 4c).

In the biologically young neurons, no effect of CHX treatment
was observed (Fig. 4c).In contrast, biologically old neurons exhibited
significantly less neurite deterioration upon CHX treatment (Fig. 4c).
Consistently, ASE neurons that were CHX treated showed significantly
less blebs than solvent control-treated neurons (Fig. 4d,e), and the
nematodes showed animproved salt evasion response after they were
conditioned to associate high salt concentrations with starvation
(Fig. 4f), indicative of preserved neuronal health. Furthermore, we
tested whether CHX treatment would have alasting effect on neuronal
integrity (Extended Data Fig. 4d,e). Even at adult day 4, ASJ and ASE
neurons showed significantly improved healthwhen treated with CHX
foronly 24 hbeginning at the L4 stage. Chronic treatment for the whole
duration until neurite damage scoring conferred even stronger neuro-
protection. Taken together, these results indicate that translational
activity promotes neurodegeneration and that reduced translation
couldrestore neuronal integrity.

Neuronal aging patterns in C. elegans show similarity to
human brain aging

Next, we addressed whether the biological age-related transcriptional
patterns of neurons in young adult C. elegans (NeuronAge) are con-
served in higher organisms. We defined NeuronAge as the transcrip-
tome changes across the predicted age, quantified by the Pearson
correlation between the z-scored transcripts per million (TPM) values
and the predicted ages of 128 neurons. We then compared the con-
served Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichments of NeuronAge with mouse and human brain aging data-
sets. We computed age correlations of z-score-normalized gene counts
forallhumanbrainregions during aging inthe GTEx dataset, the Tabula
Muris Senis (TMS) dataset and an additional mouse hypothalamus aging
cohort (GSE157025). Similarly, we calculated the enriched pathways
inbrain datasets for several geroprotective treatments such as young
serum injections, the platelet factor PF4, sportin humans and krill oil
in C. elegans (for references, see the Methods). An unbiased cluster-
ing analysis revealed that the transcriptomic NeuronAge pattern of
C. elegans and the chronological brain aging trajectories of mouse
and humans cluster together (Fig. 5 and Extended Data Fig. 5a). We
validated the clustering of NeuronAge by including the conserved
pathway enrichments for NeuronAge in the Calico dataset. Both Neu-
ronAge and its Calico validation showed significant positive correla-
tions with all individual brain aging trajectories of humans and mice
after multiple testing correction. The transcriptomic pattern of the
geroprotectiveinterventions formed aseparate cluster that negatively
correlates with the brain aging pattern, irrespective of the organism.
To address potential methodological differences between aging and
geroprotective datasets, thatis, that aging patterns were derived using

Pearson correlations with age, whereas geroprotective effects were
analyzed using log-fold changes (logFC), we additionally computed
logFC-based pathway enrichments for all aging datasets by comparing
the oldest and youngest sample groups within each dataset. The result-
ing clustering (Extended Data Fig. 5b) confirmed that aging-related
patterns remain distinct from geroprotective interventions, regardless
of whether Pearson correlation or logFC-based methods were applied.
Theseresultsindicate that neuronal transcriptomic aging patterns are
conserved from nematodes to humans and that known geroprotec-
tive treatments anticorrelate with the aging datasets supporting their
geroprotective effectiveness.

Identification of neuroprotective drugs

As the NeuronAge predictions cluster together with human neuronal
chronological aging trajectories, we sought to identify small-molecule
compounds that could delay neuronal aging. We used the 3,566 tran-
scriptomes from a terminally differentiated neuronal cell line of the
CMAP resource, consisting of 2,467 different molecules” (Fig. 6a). Based
ontheir correlation with the NeuronAge signature, we identified both
negatively correlated (potentially neuroprotective/‘anti-NeuronAge’)
and positively correlated (potentially neurotoxic/‘pro-NeuronAge’)
compounds (Fig. 6b). Consistent with our experimental results, the
transcriptome changes induced by CHX were inversely related to the
NeuronAge signature, indicating that the beneficial effect of CHX
thatwe observed above is mirrored in the transcriptome. After apply-
ing multiple computational filtering steps (Methods), we ranked the
remaining candidate compounds by their correlation with NeuronAge
(Fig. 6b). The top anti-NeuronAge hits contain several compounds (9 of
16) for which a protective effectin neurons has been previously docu-
mented, thusindependently validating our approach (Fig. 6b). Two of
15 ‘pro-NeuronAge’ compounds were shown to be detrimental, while
oneis potentially protective, and one was described as both harmful
and protective. More than half of the top hits have, however, not been
tested in neurons.

In summary, 11 of 31 compounds have documented neuropro-
tective effects, of which 9 are predicted to revert NeuronAge, that is
‘anti-NeuronAge’, with our in silico approach. Similarly, 2 of 31 com-
pounds are known to be neurotoxic, and both are predicted correctly
tobe ‘pro-aging’, giving weight to the potential thataninsilico screen
canidentify compounds that could be repurposed as either neuropro-
tective or neurotoxic agents.

Validation of neuroprotective molecule compounds

Next, we tested whether several compounds that we predicted to
be anti-NeuronAge, that is, neuroprotective, could prevent the
age-related functional decline of neurons. We chose two com-
pounds, which were among the most strongly anticorrelated with
NeuronAge patterns, BRD-K13195996 and vanoxerine (Fig. 6b).
The chemical identity of the phenolic compound BRD-K13195996

Fig. 4 | Fuzzy clustering reveals translation dynamics as a potential driver

of neuron aging. a, Fuzzy clustering on z-score-normalized gene expression
values (y axis) over the predicted aging course of the 128 CeNGEN neurons
identified four clusters. The 128 neurons were merged into five age-prediction
bins: (1) 97-110 h, (2) 110-120 h, (3) 120-130 h, (4) 130-140 h and (5) 140-180 h
(xaxis). The number of genes within each cluster are annotated. Dashed black
lines show the central trend. b, Pathway overrepresentation analysis of the four
clusters shows age-related pathways. The x axis shows pathway terms, and the
yaxisindicates clusters. Circle size reflects the enrichment score, defined as the
log, ratio of observed-to-expected genes per pathway (log, enrichment ratio).
Circle color represents statistical significance as -log,,(false discovery rate
(FDR)). Only representative nonredundant pathways are shown for visualization
(Methods). ¢, Fraction plots displaying the fraction of nematodes at day 1 of
adulthood expressing GFP in different neurons categorized as ‘healthy’, ‘mildly
damaged’ and ‘severely damaged’ that were treated with2 mM CHX for 24 h.
Three to four cohorts were analyzed, consisting of 10-30 individual nematodes.

Datashown are the mean + s.d. Ordinal regression (CLM) was used to test for
significant differences. d, Representative fluorescence microscopy images
(z-stack maximum projections) of ASE neuronsin 1-day-old adult nematodes of
strain NY2067 after 24-h treatment with 2 mM CHX or dimethylsulfoxide (DMSO)
control. Gray arrows indicate morphologic aberrations along the neurites. Scale
bar, 20 pm. e, Fraction plots displaying the fraction of nematodes expressing GFP
in ASE neurons categorized as ‘healthy’, ‘mildly damaged’ and ‘severely damaged’
that were treated with 2 mM CHX for 24 h at day 1 of adulthood. Four cohorts
were analyzed, consisting of 10-30 individual nematodes. Data shown are the
mean t s.d. Ordinal regression (CLM) was used to test for significant differences.
f, Swarm plot showing the chemotaxis index of nematodes conditioned at 0 mM
(light blue) or 20 mM (dark blue) NaCl. The ASE neuronal marker strain (NY2067,
mediating salt aversive conditioning) was incubated with 2 mM CHX or DMSO
control for 24 h at day 1 of adulthood. Data shown are the mean + s.d. from eight
independent cohorts 0f20-100 nematodes. A one-tailed ¢-test was used to test
for significant differences.
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is 3-hydroxy-4,5-dimethoxybenzoic acid, which is related to
4-hydroxy-3,5-dimethoxybenzoic acid, which is also known as syrin-
gic acid. Syringic acid is a naturally occurring secondary compound
derived from edible plants and fruits, for example, olives, walnuts and
grapes®. A correlation between the antioxidative properties of syrin-
gic acid and reduced neurotoxicity following bisphenol A insult has
recently been shown®, yet no clear mechanism was reported so far®.
Vanoxerine is a potent dopamine uptake inhibitor and was tested as a
supportive agent in cocaine-abuse medications*; moreover, vanox-
erine was observed to impede colorectal cancer stem cell functions
by repressing G9a expression®*. Vanoxerine is so far not reported to
exhibit neuroprotective effects.

We applied both compounds to L4 stage nematodes for a 24-h
short-term treatment. We assessed neurite degenerationin the biologi-
cally old ASJ and ASK neurons and observed a significantly reduced
deteriorationfor bothcompounds (Fig. 6c and Extended Data Fig. 6a,b).
In contrast, the biologically young OLL neurons, serving as con-
trols, were not significantly affected by either of the compounds
(Extended Data Fig. 6¢). This indicates that both compounds inter-
fere with the physiological degeneration process of the rapidly aging
neurons and canrestore a healthy neuron state.

Next, we assessed whether the NeuronAge compound predic-
tions could also identify neurotoxic compounds and hence serve for
pharmacological risk assessment. We tested the compounds WAY-
100635, for which so far no adverse effects on neuron health have
beenreported,and Bay K8644 on the health of the young predicted 12
and OLL neurons. We observed that WAY-100635 induced significant
neurite deterioration in 12 but not in OLL neurons, while Bay K8644
induced significant degenerationin both 12 and OLL neurons (Fig. 6¢
and Extended DataFig. 6d,e). ASK neurons that already display neuro-
degeneration early in life were significantly further compromised by
Bay K8644 treatment (Extended Data Fig. 6e), confirming the neuro-
toxic effect of Bay K8644.

Additionally, resveratrol, which was reported to have ambigu-
ous effects, was positively correlated with NeuronAge (Fig. 6b), and
we observed significantly increased neuronal damage in 12, AS) and
ASK neurons, with a similar but nonsignificant trend observed in
OLL neurons (Extended Data Fig. 6f,g), supporting our predicted
detrimental impact.

Taken together, we validated the anti-NeuronAge compound
prediction method by identifying known neuroprotectors as well as dis-
covering previously unknown neuroprotective molecules. Inreverse,
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the prediction of a positive correlation with NeuronAge revealed neu-
rotoxic compound properties.

Finally, we assessed whether drug-induced neuroprotection or
degeneration preserved or compromised neuronal function, respec-
tively. We treated URY neuron-marked animals with either WAY-100635
orsyringicacid and analyzed neurodegeneration and pathogen avoid-
ance that depends on the integrity of URY neurons (Fig. 3c). First, we
confirmed that WAY-100635 exerts a significant neurotoxic effect in
URY neurons (Fig. 6d). As expected from the already large healthy
fraction of URY neurons, the beneficial effect of syringic acid was slight
but not significant (Extended Data Fig. 6h-j).

Incontrasttothe drugtreatmentassays above, the avoidance assay
necessitated the use of live bacteria. To exclude the possibility that
bacterial metabolism of the compounds might confound the analysis,
we pre-incubated WAY-100635 and syringic acid with either live or dead
Db11 bacteria before nematode exposure (Extended Data Fig. 6h-j)
and observed no significant differences thus validating this approach.

WAY-100635 treatment severely impaired pathogen avoidance
from Dbll bacteria compared to solvent control treatment (Fig. 6e),
while syringic acid treatment led to a small, nonsignificant increase
inavoidancereaction, in line with the slightimprovement in the pres-
ervation of URY neurons (Fig. 6d). This observation further corrobo-
rates the functional outcome of the morphological degeneration and
substantiates that our prediction approach can be used to identify
neuroprotective and neurotoxic compounds (Fig. 6a,b).

In summary, our compound validation demonstrates that pre-
dicted anti-NeuronAge compounds significantly reduce neurite degen-
eration and preserve neuronal function, while predicted neurotoxic
compounds exacerbate neuronal damage and disturb neuronal func-
tion. These results establish our in silico screening approach as an
effective approach for identifying interventions to prevent neuro-
degeneration, as well as for identifying potential neurotoxic agents.

Discussion

Why distinct neuron types exhibit different susceptibilities to age-
dependent degeneration and the associated neurodegenerative dis-
eases hasremained largely unclear. While differences ininterindividual
aging are commonly known, differential aging of organs within the
same organism, and aging variance between cells of the same tissue
have only recently been observed®?. Using the two distinct aging clock
paradigms, we found a substantial diversity of biological age predic-
tions with specific neurontypes displaying accelerated or delayed aging
in chronologically young animals. Similar to such early detection of
aging, epigenetic clocksin mice start advancing right after their reset-
ting at the ground-zero stage during gastrulation”’ and in humans they
detected aging during childhood®®. The substantial heterogeneity in

neuronal aging was further supported by the age-dependent decline
oflong gene expression. The reliability of the age predictions was fur-
therevidenced by the corresponding age-dependent degeneration of
specific neuron types. Particularly ciliated sensory neurons show an
increased biological age, which may result from their exposure to the
environment or could indicate that their utility is restricted to sensing
optimal environmental conditions before entering reproductive age.
Similarly, degeneration of the olfactory bulb, which is enriched by
environmentally exposed, ciliated neurons, and loss of olfaction are
among the first symptoms of Alzheimer’s disease-related degenera-
tionin humans®.

Thebiological age-correlated transcriptional patterns associated
high translational loads with accelerated aging. Age-related changes
in the translational machinery have been observed across various
species, and downregulation of translation has been shown to extend
lifespan upon dietary restriction, downregulation of mTOR or CHX
treatment***. In C. elegans, nucleolar size that is linked to ribosome
biogenesis inversely correlates with lifespan*?, while aging is marked
by declining protein synthesis**** and increased translation errors®.
Stochiometric changes of the ribosome lead to accumulation of protein
aggregatesin the brain of old Nothobranchius furzeri*®, whichisin line
with the enrichment of ribosomal proteins in the insoluble protein
fraction of old C. elegans”. Consistently, we observed that transient
translation inhibition by CHX treatment is sufficient to prevent the
degeneration of the fast-aging neuron types.

The transcriptional patterns of nematode neuronal biologi-
cal age differences are significantly correlated with mouse and
human brain chronological aging trajectories, and anticorrelated
with known geroprotective interventions such as young plasma
treatment or sport. This conservation shows the potential of iden-
tifying conserved mechanisms that underlie the biological aging
differences and might determine the susceptibility of specific neuron
typestoundergo degeneration and potentially contribute to specific
neurodegenerative diseases.

The conservation of transcriptome age trajectories allowed us
to design anin silico compound screen using the human CMAP data-
set. Suchapproaches have previously identified geroprotective com-
pounds that either induce a ‘youthful’ state as predicted through an
age-classification approach leveraging the GTEx*® transcriptomic
dataset”, by identifying compounds that counteract age-associated
transcriptomic shifts using conserved aging signatures®’, by mimick-
ing longevity FOXO3 overexpression®, or induce a ‘youthful’ matreo-
type*’. Comparing transcriptomic data from C. elegans neurons to the
CMAP resource, weidentified known and previously unexplored neu-
roprotective small-molecule compounds. Syringic acid was described
to reduce oxidative stress and neuroinflammation, potentially by

Fig. 6| Compound prediction algorithmidentifying neuroprotective/
neurotoxic compounds. a, Flowchart depicting the in silico drug screening.
We computed and correlated the conserved KEGG pathway enrichments for
NeuronAge and all compounds from the CMAP dataset that are measured
onthe neuronal cell line NEU. To obtain a manageable list, we filtered for
compounds that were measured at least twice, show consistent correlations
inallmeasurements, have a stronger correlation at the 24-h time point
compared to the 6-h time point, have informationin PubCHEM and have at
least an absolute correlation value of 0.25. b, The top anti-NeuronAge and
pro-NeuronAge compounds after the filtering steps ranked according to their
Pearson correlation. Previously published neuroprotective (blue) or neurotoxic
(orange) compounds are indicated. Resveratrol, which has mixed evidence
intheliterature, isshownin both colors. Four compounds were selected for
experimental validation of our predictions and are highlighted by black arrows
and their structural formulais given. ¢, Fraction plots displaying the fraction
of nematodes at day 1 of adulthood expressing neuronal volume markers in
different neurons categorized as ‘healthy’, ‘mildly damaged’ and ‘severely
damaged’ that were treated with 2.5 mM syringic acid (SA), 10 nM vanoxerine
(VX), 25 nM WAY-100635 (WAY) or 250 uM (S)-(-)-Bay K8644 for 24 h. Three to

four cohorts were analyzed, consisting of 10-25 individual nematodes. Data
shown are the mean + s.d. Statistical analysis was performed using a CLM with
alogitlink to account for the ordered categorical nature of neuronal damage
scores (healthy < mild < severe). Pvalues were adjusted for multiple testing using
the Benjamini-Hochberg method. d, Fraction plot displaying the fraction size
of healthy (blue), mildly damaged (orange) and severely damaged (red) URY
neurons (JKM10 strain) on day 2 of adulthood after 48-h compound treatment
with 25 nM WAY-100635 (WAY), 2.5 mM SA or water control. Data shown are the
mean +s.d. of fiveindependent cohorts of 10-25 nematodes each. Statistical
analysis was performed using a CLM with alogit link to account for the ordered
categorical nature of neuronal damage scores (healthy < mild < severe).
Pairwise comparisons between conditions were performed using the ‘emmeans’
package with Tukey’s adjustment for multiple testing. e, Swarm plot displaying
the avoidance index of compound-treated JKM10 (URYp::GFP) nematodes

(25 nM WAY-100635 (WAY), 2.5 mM SA or water control for 48 h) on day 2 of
adulthood. Data shown are the mean * s.d. from five independent cohorts of
50-75 nematodes. Two-way ANOVA + Tukey post hoc test were used to test for
significant differences.
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enhancing mitochondrial function and attenuation of acetylcholinest-
eraseactivity>°. The 1,4-dialkylpiperazine derivative vanoxerineisa
potent dopamine uptake inhibitor and was tested asasupportive agent
in cocaine-abuse medications®. Vanoxerine was observed to impede
colorectal cancer stem cell functions by repressing G9a expression®*,
and it was tested in clinical trials for use as an anti-arrhythmic drug>®,
but a phase Il study was terminated due to the occurrence of ven-
tricular proarrhythmia®. The development of analogs overcoming
vanoxerine’s limitations are aworkin progress*®. By testing syringic acid
and vanoxerine as examples of the top-scoring compounds, we indeed
found that they extend the integrity of fast-aging neuronsindicating a
biological age deceleration.

Conversely, the pro-aging prediction revealed neurotoxic effects
of compounds and could thus be highly valuable in risk assessment.
WAY-100635 is an antagonist of the serotonin 5-HT,, receptor, acting
both at presynaptic autoreceptors and postsynaptic sites to modulate
serotonergic signaling and increase extracellular 5-HT levels*® . In
addition, WAY-100635 has an affinity for the dopamine D, receptor,
where it acts as a potent partial agonist at higher concentrations®>®,
The carbon-11-labeled form of WAY-100635 ([carbonyl-11C]WAY-
100635) is used as aradioligand for in vivo positron emission tomog-
raphy imaging of 5-HT, receptorsin the human brain®*~*®. While often
considered safe, behavioral studies suggest context-specific effects:
for example, it not only exacerbates depression-like phenotypes
following mild traumatic brain injury in mice®, but also prevents
selective serotonin reuptake inhibitor-induced sexual dysfunction
when coadministered with fluoxetine®®. WAY-100635 induced sig-
nificant neurite deterioration in 12 and URY neurons, underscoring
the power of our approach for predicting neurotoxicity. Bay K8644
is a potent L-type calcium channel agonist, structurally related to
dihydropyridines such as nifedipine. By promoting prolonged open-
ing of L-type voltage-gated calcium channels, Bay K8644 enhances
calcium influx into neurons and has been used as a research tool to
study calcium-dependent neuronal processes®. In animal models,
Bay K8644 has been shown to induce seizures, oxidative stress and
excitotoxic neuronal damage’®~’%. Consistently, we validated the pre-
dicted neurodegenerative effect of Bay K8644 across multiple neuron
types. Notably, our analysis predicted resveratrol to be pro-aging,
whereas the published effects have been controversial. Our in vivo
validation demonstrates that resveratrol does not have a protective,
butrather detrimentalimpact on neuronal health. Corroborating our
findings, a recent study found resveratrol-induced brain atrophy in
lemurs”. These results further validate our in silico drug screen for
both identifying neuroprotective compounds that could preserve
neuronal function and determining the risk of neurotoxic compounds
that accelerate neurodegeneration.

Taken together, we here define the biological basis for the dis-
tinct susceptibility of neurons to undergo age-dependent degen-
eration. We establish the utility of using aging clocks to identify
neuron-type-specific biological aging differences and based on their
transcriptome profiles reveal conserved aging patterns also presentin
human brain aging. We show that this approachis suitable for identify-
ing neuroprotective molecules and propose that they could be usefulin
delaying neuronal aging and protect from age-associated degeneration.

Methods
C. elegans culture
Nematodes were cultured on nematode growth medium (NGM)
agar plates at 20 °C under standard conditions unless stated other-
wise. All age statements given in this publication consider the first
day of adulthood as day 1. A complete strain list can be found in the
Supplementary Information.

Special care was exerted for maintaining the cultures (specifically
for maintaining the strains carrying extrachromosomal arrays): To
maintain good expression levels in each population, healthy-looking

adults with strong, but not extreme, fluorescence were passaged.
Without this careful selection, the fluorescence signals were lost over
the course of afew generations.

Age synchronization for experiments was achieved by L4 picking.
Forallexperiments, individuals displaying amedium to strong fluores-
cencewere selected (this group consists of about 85% of the fluorescent
nematodes); individuals with neither exceptionally strong fluorescence
(=3-5% of the fluorescent nematodes) nor weak fluorescence (=5-10%
of the fluorescent nematodes) were selected for experiments or pas-
saging. The same criteria were applied when L3 larvae were selected
for experiments.

Neurite imaging

Nematodes were synchronized by L4 picking and grown for1day, 4 days
or 7 days. For imaging, nematodes were placed in a drop of 250 mM
NaN, on a 2% agarose pad. Imaging was performed on a Zeiss Imager.
M2 at amagnification of x400. z-stacks of nematode heads/tails were
acquired using 2-um step width. Acquisition time was set between
100 msto 3 s per plane to achieve a good signal-to-noise ratio.

Scoring of neurite degeneration

Recorded z-stack images of neurons were analyzed manually, counting
blebs, large spherical outgrowths, branching, breaks and necrosis on
thedendrites of the analyzed neurons. Images were classified according
tothe degree of aberration: necrotic neurons, broken or truncated neu-
rons, neurons with >10 blebs or >3 outgrowths were scored as ‘severely
damaged’; neurons with 5-9 blebs, or 2 outgrowths were classified as
‘mildly damaged’; and neurons with <5 blebs or <2 outgrowths were
classified as ‘healthy’. See Fig. 2b for exemplary images.

Ordinal regression analysis—CLM

To statistically assess neuronal damage across conditions and time
points, we used CLMs using the ordinal package in R. A logit link
function was applied to estimate the cumulative probabilities of
increasing damage severity. For neuron-specific analyses of damage
progression over time, the time point was modeled as a numeric pre-
dictor (L4 =0, day (D)1=1,D4 =4,D7 =7), and separate CLMs were
fitfor each neurontype. Observed neuron counts per category were
incorporated as weights using the weights argument. Pvalues for the
slope term were adjusted for multiple testing across neurons using
the Benjamini-Hochberg method. To compare damage susceptibil-
ity between neuron types, a full model including neuron identity,
time point and their interaction was fit (score ~ neuron x age). Esti-
mated marginal means were computed using the emmeans package,
and Tukey-adjusted P values were reported for all pairwise neuron
contrasts. For comparisons between two conditions (for example,
treatment versus control), we modeled the score as a function of
the condition only (score ~ condition), again using CLMs with logit
link and frequency weights. Multiple-testing correction across
neurons was performed using the Benjamini-Hochberg method,
where applicable.

Compound treatment

Standard NGM plates, seeded with OP50, were inactivated with
500 mJ/cm? of 251-nm UV-C light (Stratalinker 2400) and afterward
were subjected to compound coating by dropwise addition of com-
pounds directly to the agar surface. Plates were dried for at least 1 h
before transferring L4-stage nematodes onto them. Nematodes were
incubated with the compounds for 24 h and then used for neurite
imaging. The final concentration of compounds was: CHX, 2 mM; syrin-
gic acid, 2.5 mM; vanoxerine, 10 nM; WAY-100635, 25 nM; (S)-(-)-Bay
K8644, 250 puM; resveratrol, 200 pM. Control nematodes were incu-
bated on appropriate solvent control-coated plates (either water, for
syringic acid and WAY-100635, <5%. DMSO, for CHX and vanoxerine,
or 1%e ethanol, for resveratrol).
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Pathogen avoidance assay

S. marcescens Dbll bacteria were inoculated into LB medium with
kanamycin, tetracycline and streptomycin from glycerol stock and
incubated overnight with shaking at 150 rpm at 25 °C. Control £. coli
OP50bacteriawere grownin LB mediumwithout antibioticsandincu-
bated overnight with shaking at 150 rpm at 37 °C. NGM plates (6 cm)
were cast 3 days before seeding. The plates were seeded with 350 pl
bacterial solution, generating a perfect round spot in the middle of
the plate and allowed to dry for 2 h. For compound treatment, 2.5 mM
syringic acid or 25 nM WAY-100635 was added before seeding and
allowed to dry. Around 15-30 L4-stage nematodes of strains JKM10,
1G10 and MT21910 were added directly into the bacterial lawn and
incubated for 48 h. Nematodes were scored for their presence on or
avoidance of the lawn. Five independent cohorts of 4-5 plates each
were analyzed, and the position of the nematodes was checked four
times with a 5-min interval time. The aversion index was calculated as
the number of nematodes outside the lawn divided by total number
of nematodes. Potential compound metabolization by the living Db11l
bacteria has been tested in prior experiments.

Testing compound metabolization

Fortesting compounds and pathogen avoidance from S. marcescens
Dbll, bacteria could not be inactivated with UV irradiation because
it would negate the aversion behavior. To test whether Db11 bac-
teria would metabolize the compounds, a test treatment was per-
formed: 2.5 mM syringic acid or 25 pM WAY-100635 was incubated
with living or dead Db11 bacteria for 2 days; afterward, bacteria
were removed by sterile filtration and the compound-containing
flowthrough was applied on UV-inactivated OP50. L4-stage JKM10
nematodes were placed on these plates, and neurodegeneration was
assessed 24 h later. There was no significant difference between the
compounds that were pretreated with living or dead Db11 bacteria
(Extended Data Fig. 6h-j).

Salt aversive conditioning assay

Adapted from Lim et al.”>, nematodes were synchronized by L4 picking
and grown for an additional day to their first day of adulthood, then
nematodes were rinsed off the plates with M9 medium and washed
twice withM9. The nematodes were splitinto two groups and salt-free
conditioning medium or salt-containing conditioning medium (1 mM
CaCl,, 1mM MgCl,, 5mM KPO,> pH 6.0, +20 mM NaCl) was added.
Subsequently, nematodes were incubated at 20 °C rotating at 20 rpm
for3h.

Assay plates (3.5 cm; 2% (wt/vol) ager, 1 mM CacCl,, 1 mM MgSO,,
5mM KPO,* pH 6.0) were cast 2 days before the experiment. To
establish the NaCl gradient on the assay plates, agar plugs contain-
ing 100 mM NaCl (2% (wt/vol) agar, 100 mM NaCl, 1 mM CacCl,, 1 mM
MgS0,, 5 mM KPO,* pH 6.0) were placed on one side on the plate
and incubated at 23 °C for 3 h. After the gradient was established,
salt-agar plugs were removed and 3 pl 500 mM NaN; was added to the
spot where the plug was placed. An additional 3 ul 500 mM NaN, was
added to the opposite site of the plate, and the plates were directly
used for the assay.

After 3 h of conditioning, excessive medium was removed,
and nematodes were transferred onto the center of the prepared
salt-gradient assay plates. Nematodes were allowed to crawl freely
on the plate according to their preferences for 30 min and at 20 °C.
Afterward, nematodes that remained on the origin, that moved toward
high salt and those that moved toward low salt were counted, and the
chemotaxisindex was calculated as: ¢; = (number on high salt - number
onlowsalt) / (total number - number on origin).

For CHX treatment, nematodes were synchronized by L4 picking
and placed onan OP50-seeded NGM plate, coated with2 mM CHX, for
24 h. After compound incubation, the nematodes were processed as
described above.

BitAge prediction

The BitAge clock' was used as described previously. Briefly, each
sample was binarized, that is, genes higher than the median expression
value within each sample after removing genes with zero counts, were
set to1, and the remaining genes to 0. The BitAge coefficients for the
576 clock genes are added up for all genes in a given sample that is 1
after binarization. After adding the BitAge intercept, the results show
the predicted biological age. For the Calico dataset, only single-neuron
types were considered, thatis, cellsannotated as multiple neuron types
were excluded. For neuron types with two biological replicates, the
predicted biological ages of the replicates were averaged to obtain a
single age prediction per neuron type.

Stochastic data-based clock

The Stochastic Clock was used as described previously'. Briefly, each
sample waslog,,-transformed after the addition of one pseudo-count.
Subsequently, the samples were min-max normalized to bring each
sample withintherange (0,1), and then binarized as described above.
The normalized counts were then added up for all 1,010 stochastic
data-based clock genes. For the Calico dataset, where some neuron
types had two biological replicates, the predicted biological ages of the
replicates were averaged to obtain asingle age prediction per neuron
type. Note that the Stochastic Clock might result in slightly different
genes every time a clock is trained.

Gene length analysis

First, we downloaded the differentially expressed genes for each neu-
ron type and all other cells in the CeNGEN" dataset (https://cengen.
shinyapps.io/CengenApp/) with the statistical test ‘Wilcoxon onsingle
cells’. This gives alist of genes with logFC, and percentage expressionin
the specific neurontype and all other cells. We further filtered this list
of significant genes by requiring that the gene is expressed in at least
90% of cells of the specific neuron type and at most 10% in all other
cell types. In total, 39 neuron types had no genes with these require-
ments, that is, 89 neuron types were used for further analysis. Next,
we used the such-defined marker genes of the 20% oldest (57 genes)
and respective 20% youngest neurons (67 genes) and calculated the
density distribution of the log,,-normalized gene lengths. To calculate a
two-sided permutation test, we calculated the medianlog,, gene length
of the genes and compared it to the 100,000-permutation median.
The permutation for the old marker genes used 57 genes, while the
permutation for the young marker genes used 67 genes of all marker
genes (303) of the 89 neuron types.

Inacomplementary analysis, we calculated the median log,, gene
length of the marker genes for each of the neuron types individually.
These median values were correlated with the predicted biological age
using a Pearson correlationand visualized with alinear regression plot.

Definition of NeuronAge

To quantify transcriptomic aging patterns across neuronal cell types,
we defined NeuronAge as the correlation between gene expression
and predicted biological age with BitAge. TPM values for all 128 neuron
types were obtained from the CeNGEN transcriptomic dataset, and
each of the 18,475 genes was z-score normalized across all 128 neuron
types. Predicted ages for the same neurons were derived using the
BitAge clock. For every gene, we calculated the Pearson correlation
betweenits z-scored TPM values and the predicted ages across all 128
neuronal cell types. The resulting correlation coefficients represent
the NeuronAge transcriptional signature.

Neuronal connectome mapping

We downloaded and adapted the Cytoscape file from Cook et a
by adding head neurons, deleting nonneuronal cell types and color
coding neurons by their predicted Age with BitAge on the CeNGEN
dataset.

126
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Median total number of synapses calculation
TheNeuroType.xlIsx file was downloaded from https://www.wormatlas.
org/neuronalwiring.html. Foreach ofthe 128 neurontypes, we summed
the median total number of synapses in the head, tail and mid-body.

Fuzzy clustering

To identify transcriptional patterns associated with the predicted
neuronal age, weranked the 128 neuron types based on their predicted
ageand grouped theminto five bins: (1) [97,110], (2) [110,120], (3) [120,
130], (4) [130, 140] and (5) [140, 180]. Within each bin, we computed
the median expression level for each gene. To make the genes compa-
rable and bring them onto the same scale, we calculated the z-score
across the five bins for each of the 9,950 genes with nonzero standard
deviation. Next, we used fuzzy clustering with Mfuzz (v2.58.0)" toiden-
tify transcriptional clusters across the predicted age bins. The elbow
method was computed with the Dmin function of Mfuzz and indicated
anoptimal number of four clusters. The genes belonging to each cluster
were subsequently used for a pathway enrichment analysis with clus-
terprofiler (v4.9.2.002)”, with maxGSSize = 500 and the list of all 9,950
genes asthe background gene list. All significantly enriched pathways
(adjusted P < 0.05) were identified, and redundant pathways were col-
lapsed using semantic similarity filtering. Although this procedure
substantially reduced redundancy, the remaining number of nono-
verlapping pathways was still too large to display comprehensively
in asingle figure. For visualization purposes, we therefore selected a
representative subset of pathways from each cluster based on (i) sta-
tistical significance, (ii) effect size and (iii) biological interpretability.

Heat map

We processed several public datasets (GTEx dataset*®, the TMS dataset”
and an additional mouse hypothalamus aging cohort (GSE157025),
youngseruminjections’’, platelet factor PF4 (ref. 78), sportin humans”,
krill oil in C. elegans®) for the heat map:

1. TPM-normalized gene expression values for human brain tis-
sues from the GTEx v8 data® release (that is, amygdala, anterior
cingulate cortex, caudate basal ganglia, cerebellar hemisphere,
cerebellum, cortex, frontal cortex, hippocampus, hypothala-
mus, nuclear accumbens basal, putamen basal ganglia,
substantia nigra) were correlated with the chronological age
(the midpoints of the publicly available age bins).

2. The mouse aging time course for hypothalamus data from
GSE157025 was downloaded and a gene-wise correlation with
the chronological age calculated.

3. Whole-brain data from the TMS (GSE132040) was downloaded
and edgeR (v3.40.2)%? was used to calculate normalized expres-
sion values. The normalized expression values were correlated
to the chronological age.

4. Differentially expressed genes for mouse hippocampus data treat-
ed with the platelet factor PF4 or saline control were downloaded
from GSE173254. We multiplied the logFCs by —1to always compare
treatment versus control, instead of control versus treatment.

5. Differentially expressed genes for mouse hippocampus data
treated with young serum or sham were downloaded from
GSE234667.

6. C.eleganswhole-nematode data treated with krill oil from
GSE207152. We used edgeR (v3.40.2)* to calculate normalized
expression values and calculated z-scores for each gene over all
samples. The z-score-normalized expression values were used
for aregression model:
expression = fy + B; x Age + B, x Krilloil + 85 x (Age x Krilloil),
where B, is the intercept term, B, is the coefficient for the Age
variable, B, is the coefficient for the Krilloil-treatment variable,
and Bsis the coefficient for the interaction between Age and
Krilloil, that is, the difference in the slope over age.

7. Differential expressed genes upon physical activity were down-
loaded from the supplementary data (Supplemental Table 2)
from Berchtold et al.”.

The Pearson correlation values of all genes of (1)-(3), the logFC
of all genes for (4) and (5) and the B; coefficients for (6) were used to
calculate enriched pathways analysis with fgseaMultilevel from the
fgsea R package®® and with nPermSimple =1,000 for all conserved
KEGG pathways between C. elegans, mouse and humans. For (7), the
‘anti-aging/Alzheimer’s disease’ genes were split into genes that are
upregulated and, respectively, downregulated upon exercise. Both
gene sets were used for an enrichment analysis with enricher from
enrichplot v1.18.0 with maxGSSize = 500 and minGSSize =5, and all
genes were quantified in the supplementary data from Berchtold
etal.”” asthe background genelist. For both enrichment analyses, the
enrichment fold change, that is, the number of observed genes per
pathway divided by the number of expected genes per pathway, was
calculated. Finally, the fold changes were combined, that is, pathways
with a bigger fold-change enrichment in the downregulated genes
were multiplied by —1.

The clustering was done on the normalized enrichment scores
for (1)-(6) and the fold change enrichment score for (7) with the Ward
method and a correlation distance matrix.

Heat map with logFC
For the heat map with differentialy expressed genes, we processed the
datainthe following way:

1. CeNGENApp (https://cengen.shinyapps.io/CengenApp/) was
used to find differentially expressed genes between the ten oldest
predicted CeNGEN neurons (according to BitAge) and the ten
youngest predicted neurons. The differentialy expressed genes
were calculated with the ‘Pseudobulk:Wilcoxon’ statistical test.

2. Raw gene expression values for human brain tissues from the
GTEx v8 data® release (that is, amygdala, anterior cingulate cor-
tex, caudate basal ganglia, cerebellar hemisphere, cerebellum,
cortex, frontal cortex, hippocampus, hypothalamus, nuclear
accumbens basal, putamen basal ganglia, substantia nigra)
were normalized with edgeR and differentially expressed genes
calculated between old (=70 years) and young (<40 years).

3. Thewhole-brain data from the TMS (GSE132040) were normal-
ized with edgeR (v3.40.2)*?, and differentially expressed genes
were calculated between old (=21 months) and young (1 month)
mice.

4. The mouse aging time course data for the hypothalamus
from GSE157025 were normalized with edgeR (v3.40.2)%?, and
differentially expressed genes were calculated between old
(24 months) and young (5 day) mice.

The enriched pathways were computed as described above.

CMAP

The CMAP resource uses the L1000 array, which measures 978 land-
mark transcripts, which can be used to infer most of the remaining
transcriptome with high accuracy”. Here we used all available L1000
datasets for ahuman differentiated neuronal cell line. We downloaded
theaggregated level 5L1000 Connectivity Map' data from GSE92742
and performed pathway enrichment analysis with fgseaMultilevel from
the fgsea R package® with nPermSimple =1,000 and the conserved
KEGG pathways between human and C. elegans for each of the samples
inthelevel 5dataset. Tocompare it to the NeuronAge pattern, we first
calculated the z-score of each gene that has at least some gene counts
across the 128 neurons of the CeNGEN dataset. We correlated these
z-score-normalized genes with the biological age prediction from
BitAge. The resulting Pearson correlation values for all genes were
used for a pathway enrichment analysis with fgseaMultilevel and the
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conserved KEGG pathways between human and C. elegans. Toidentify
whether any compound might revert the NeuronAge gene expression
patternonthe pathway level, we correlated the normalized enrichment
scores of the NeuronAge KEGG pathway enrichment analysis with all
the normalized enrichment scores that we calculated from the CMAP
dataset. Next, we filtered for only compounds that were tested in the
neuronal cell line (‘NEU’). Compounds had to be tested at least twice,
with allmeasurementsresultingin correlations in the same direction.
Additionally, we filtered for compounds that were measured at 24 h
and 6 h and took only those compounds that showed a stronger cor-
relationinto the same direction at the 24-h time point compared to the
6-h time point. Lastly, we filtered out those compounds that had no
information available at PubCHEM and used a correlation threshold
of 0.25 (respective —0.25).

The assignment of known protective or detrimental compounds
isbased on literature reports: The glycogen synthase kinase 3 (GSK3)
inhibitor AR-A014418 was shown to inhibit beta-amyloid-induced
neurodegeneration®; the selective serotonin reuptake inhibitor fluox-
etine protects against neurotoxicity and neurodegeneration®; the
PPAR-alphaactivator gemfibrozil exhibits neuroprotective effects via
upregulating pro-survival factors and suppressing inflammation®;
the kinase inhibitor sorafenib protects against neurodegeneration
in C. elegans®’; the selective aryl hydrocarbon receptor modulator
3,3’-diindolylmethaneis neuroprotective and promotes brain-derived
neurotrophic factor®; the insulin-sensitizing agent rosiglitazone
exhibits neuroprotective effects in the eye and the brain®’; the p38
MAPK inhibitor SB202190 was shown to reduce hippocampal apop-
tosis and rescue spatial learning as well as memory deficits in rats’;
dibutyryl-cAMP-Na (dBcAMP) elevates cAMP levels and protects
against neurodegeneration in stab wound or kainic acid injuries”;
and the catecholamine-O-methyltransferase inhibitor tolcapone was
shown to improve cognitive function®.

Bay K8644 is described to be neurotoxic’’; and amiodarone
induces neuronal apoptosis’ and is known to induce adverse neuro-
logical effects’. Tacedinaline/Cl-994 is a class | histone deacetylase
inhibitor, correlates positively with NeuronAge, and was shown to
promote functional recovery following spinal cord injury®, and to
enhance synaptic and structural neuroplasticity®. Likewise, resveratrol
is potentially neuroprotective due toahormetic response”, while there
is evidence that it could lead to impaired brain integrity”.

Correlation of neurodegeneration and GFP expression

To test whether GFP expressioninduces neuronal aberrations, we cor-
related GFP expression intensity and blebbing. In brief, fluorescence
images of PY6457 (ASK neurons) and OE3010 (AS] neurons) nematodes
at the first day of adulthood were recorded using an epifluorescence
microscope. PY6457 and OE3010 were selected because they carry the
neuron-type-specific GFP marker as an extrachromosomal array that
hasastrongly varying expressivity between individuals. Blebbing was
observed as the major degeneration hallmarkin ASJ and ASK neurons
and, therefore, used as single correlation criterion. Four cohorts of
10-20 nematodes per strain were accumulated insingle plots and the
correlation was analyzed by Pearson’s correlation.

Analysis of stochasticity of neuron damage

Totestif blebappearanceis fully random or linked to development of
conserved structures along neurites, bleb distance from neurite start
(at the site of the mouth) was measured using Fiji for every bleb on
each neurite analyzed from three cohorts of 10-20 individual nema-
todes each. Relative positions of blebs were calculated by dividing
the observed bleb’s position (for example, 55 um) by the total length
of the analyzed neurite (for example, 98 pum). Relative positions were
displayed as a histogram using 12 bins, and data from three cohorts
were aggregated. A Pearson correlation versus 100 random data tracks
was done using GraphPad Prism 10.

To calculate 100 tracks of arandom damage distribution, aPython
script was used with the following assumptions: (1) arandom number
ofblebs (in 8-20) can appear, matching observed biological variability;
(2) new blebs appear primarily at random but are slightly more likely
to occur near previously formed blebs, reflecting spatial clustering
seen in vivo; (3) already established blebs increase chances of blebs
in their vicinity; (4) blebs cannot appear at the same position; (5) the
proximal 10% of the neurite corresponds to the ciliary region, where
structural complexity and imaging artifacts reduce the detectability
of blebs, and this was modeled by suppressing bleb placement in this
region; (5) neurite lengths were randomly sampled within the empiri-
cally observed range (80-100 um).

Allsimulation parameters, including neurite length distributions,
bleb counts, clustering strength and the extent of the protected proxi-
malregion, were derived directly from empirical measurements of AS},
ASKand OLL neuronsimaged in vivo. Foreach simulated neurite, bleb
positions were generated iteratively and normalized to neurite length
to match the experimental measurements. The resulting 100 simulated
tracks were aggregated and compared to the observed data.

Neuron survival

Nematodes of strains JKM10 (URY neurons), OH1422 (OLL neurons),
NY2067 (ASE neurons), MT21910 (12 neurons) and PY6457 (ASK neu-
rons) were synchronized by L4 picking. Only nematodes that showed a
easily visible fluorescence under a dissecting microscope were selected
and singled onto OP50-seeded NGM plates.

The presence of the neurons was scored daily. Nematodes were
passaged every second day to a fresh plate. Individuals were tracked
over the course of 12 days or until they died, or until all GFP-marked
neurons disappeared.

Neuron loss was analyzed according to Kaplan-Meier using the
accumulated data from three cohorts of each of the 12 individuals
(totaling 36 nematodes per strain), and significant differences were
assessed by alog-rank test.

Additionally, the first day a neuron degenerated in every single
individual was scored and plotted as a histogram showing the incidence
of first neuron death.

SUNnSET assay

Wild-type nematodes were synchronized by L4 picking (=75 nematodes
per cohort and condition) and placed on OP50-seeded NGM plates
coated with 2 mM CHX or DMSO as control. After 24 h, plates were
rinsed with S-Basal, and nematodes were collected in 1.5-ml tubes.
Nematodes were washed once with S-Basal. Freshly grown OP50 bac-
teria were pelleted by centrifugation (20 min at 4,000 rpm at 12 °C)
and resuspended in 0.1 Vol. S-Basal.

Nematodes were resuspended with 200 pl of the concentrated
bacteria. Puromycin was added to a final concentration of 500 pg
ml™ and topped up to 1 ml with S-Basal. CHX-treated samples were
supplemented with 2 mM CHX additionally. Puromycin labeling was
performed for 3 h, and nematodes were rotating at 20 rpm on a spin
wheelat20 °C.

Afterward, nematodes were washed thrice with S-Basal to remove
residual puromycin. Finally, nematodes were resuspended in 30 pl
4xSDS-Sample buffer, boiled at 95 °C for 5 min and then stored at
-20°C.

Frozen samples were thawed and boiled at 95 °C for 5 min. Intotal,
15 plof lysate wasloaded on a12% SDS-PAGE and runat 30 mA for 2 h.
Western blot transfer onto a nitrocellulose membrane was performed
using Trans-blot Turbo (Bio-Rad) according to the manufacturer’s
specifications (running at 2.0 A for 10 min).

Membrane was rinsed with TBS-T, Ponceau stain was applied,
and imaging was performed. Ponceau staining was washed out three
times with TBS-T. Membrane was blocked for 2 h in TBS-T + 5% (wt/
vol) milk powder. Primary antibody incubation was done with 4G11
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anti-puromycinantibody from mouse (1:1,000 dilution) in TBS-T +2.5%
(wt/vol) milk powder at4 °C with shaking overnight. Afterward, mem-
brane was washed three times with TBS-T and incubated with horserad-
ish peroxidase-conjugated anti-mouse antibody (1:5,000 dilution) for
2 h. Blot was developed using ECL solution (Pierce) in an Amersham
Imager 600. The acquisition time was =2 min.

Fluorimetry on CHX-treated nematodes

Nematodes of strains JKM10 (URY neurons), OH1422 (OLL neurons),
NY2067 (ASE neurons) and PY6457 (ASK neurons) were synchronized
by L4 picking. Three cohorts per strain and condition (totaling 28-52
nematodes) were used for epifluorescence microscopy. Nematodes
were prescreened to find the highest fluorescence intensity per strain;
imaging settings were adjusted to not overexpose the nematode with
the strongest fluorescence per strain. Imaging was performed on L4 lar-
vae; theremaining L4 larvae from synchronization were subjected onto
OP50-seeded NGM plates coated with2 mM CHX or DMSO controland
imaged after 24 h.Imaging settings were kept constant within strains.
Imaging settings were kept constant between cohorts. Background
fluorescence was subtracted. The mean * s.d. was displayed asaswarm
plot,and ANOVA + Tukey post hoc test were performed.

Longitudinal CHX treatment

Three cohorts of nematodes expressing GFP in ASE, ASJ, ASK or OLL
neurons have been treated with2 mM CHX for either 24 h or 96 hstart-
ing fromstage L4 onward. Neuriteimaging was performed on day 4 of
adulthood. Damage classificationin ‘healthy’, ‘damaged’ and ‘severely
damaged’ neurons was done as described in the main text. Ordinal
regression (CLM) was used to test for significant differences (using
Python 3.12 library: statsmodels: 0.14.3).

Statistics and reproducibility

All data are presented as the mean + s.d. Number of cohorts (N), indi-
viduals (n) and technical replicates (N) are stated in the figures and their
respective figure legends. The applied statistical tests are mentioned in
thefigure legends, and the respective Pvalues are directly reportedin
the diagrams. All statistics are two sided unless stated otherwise. Data
normality was assessed by the Shapiro-Wilk test. Independent ¢-tests
were calculated with Python’s SciPy® v1.5.1 stats.ttest_ind function.
One-way ANOVA’s were calculated with Python’s pingouin® v0.3.6
ANOVA function and the parameter ss_type = 2. Cohen’s h'°° as a meas-
ure of effect size was calculated by hand with Python’s NumPy'*' v1.18.5.
Plots were generated with Python’s Seaborn'°*v.0.11.0, matplotlib'®
v.3.3.0 or GraphPad Prism 10. Scatterplots showing a linear regres-
sion model fit are shown with a 95% confidence interval. No statistical
method was used to predetermine sample size. Sample sizes were
determined based on established practicesin the field and on empiri-
cal considerations. Group sizes of 10-30 animals were used for neurite
degeneration scoring, and for chemotaxis assays 50-100 animals were
used to balance practical feasibility and the ability to detect mean-
ingful biological effects. No method of randomization was used to
assign nematodes to experimental groups. Researchers were blinded
during dataanalysis (folders/images were listed and assigned random
alphanumericIDs before analysis; after analysis, files were named back
accordingly). If nematodes were damaged during handling, results
from them were censored; whole-nematode cohorts were excluded if
less than 80% of the desired animals survived until analysis day, or if
nematodes were growing slowly (delayed by atleast aday compared to
usual growthrate of the respective strain) or were apparently sick (slow
movements, begging, lethargic; this affected one cohort of MT21910
L4sinFig.2c and one subgroup of JKM10 in Fig. 6e).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The unfiltered TPM counts and the Cell Marker list was downloaded
from the CENGEN dataset, assessed at https://cengen.shinyapps.io/
CengenApp/. The bulk CeNGEN dataset was downloaded via https://
cengen.org/storage/Barrett_et_al_2022_CeNGEN_bulk_RNAseq_data.
tsv. The Calico dataset was downloaded from https://c.elegans.aging.
atlas.research.calicolabs.com/data/. The neuron-specific information
was assessed at https://www.wormatlas.org/. The gene length informa-
tion was downloaded from https://wormbase.org/. The CMAP data
were downloaded from GSE92742. Data for the heat map were down-
loaded from the Gene Expression Omnibus under accession numbers
GSE157025, GSE132040, GSE173254, GSE234667 and GSE207152, from
the supplementary datafromref. 79 or the GTEx v8 database via https://
gtexportal.org/home/downloads/adult-gtex/bulk_tissue_expression/.
Raw values and summaries of all statistics used are included in the
Extended Data. Source data are provided with this paper. All data
supporting the findings of the study are also available from the cor-
responding author upon request.

Code availability
All scripts and code used are available on GitHub via https://github.
com/Meyer-DH/NeuronAging/.
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Extended Data Fig. 1| Correlations between BitAge and StochasticClock.
a) Distribution of transcriptomic age predictions. The 67 neurons of the
Calico day1dataset were predicted with BitAge and sorted by their predicted
age. The x-axis shows the rank of the prediction is ascending order, the y-axis
the predicted age. b) BitAge predictions on the CeNGEN and the Calico day
1datasetare highly correlated (Pearson correlation 0.66, p-value 1.2e-09).
The x-axis shows the BitAge predictions of the CeNGEN dataset, the y-axis
BitAge predictions of the Calico day 1dataset. 67 neurons are plotted. The
regression model fit with a 95% confidence interval (shadowed area) is shown.
c) Stochastic Clock predictions on the CeNGEN and the Calico day 1 dataset are
highly correlated (Pearson correlation 0.82, p-value 3.2e-17). The x-axis shows
the Stochastic Clock predictions of the CeNGEN dataset, the y-axis BitAge
predictions of the Calico day 1 dataset. 67 neurons are plotted. The regression
model fit with a 95% confidence interval (shadowed area) is shown. d) Age
prediction of BitAge and the Stochastic Clock on Calico Day 1data. The x-axis

shows the predictions by BitAge, the y-axis the prediction by the stochastic clock.

Thereis astrong correlation (Pearson correlation 0.74, p-value 7.8e-13). e) Age
prediction of BitAge on CeNGEN bulk data vs CeNGEN pseudobulk. Thereisa
strong correlation (Pearson correlation 0.65, p-value 2.2e-5). f) Age prediction
ofthe Stochastic Clock on CeNGEN bulk data vs CeNGEN pseudobulk. Thereisa
strong correlation (Pearson correlation 0.7, p-value 1.7e-6). g) Predictions with
BitAge and the Stochastic Clock on the CeNGEN dataset are highly correlated.

The x-axis shows the BitAge predictions of the CeNGEN dataset, the y-axis
stochastic data-based clock predictions of the CeNGEN dataset. All 128 neurons
are plotted, the 20% youngest and oldest according to BitAge are coloured in
blue, the 20% youngest and oldest according to the StochasticClock are coloured
inred, overlap betweenboth violet. The remaining neurons are indicated in grey.
The regression model fit with a 95% confidence interval (dashed, black lines) is
shown. The five neurons the farthest away from the regression line (both, above
and below) are indicated. h) BitAge (blue) and StochasticClock (red) predictions
onanindependent dataset of neuronal RNA from adult day 1 and adult day 8 old
nematodes. i) Correlation of median gene length and predicted age of individual
neuron types. BitAge clock used on the CeNGEN dataset. Linear fit (orange

line) with 95% confidence interval (dashed, orange lines) is shown. Exemplary,
young predicted neurons 12, OLL, and PHC (blue); and old predicted neurons
ASI, ASJ, and ASK (orange) are indicated. j) Correlation of median gene length
and predicted age of individual neuron types. Stochastic clock used on the
CeNGEN dataset. Linear fit (orange line) with 95% confidence interval (dashed,
orange lines) is shown. k) Correlation of median gene length and predicted age of
individual neuron types. BitAge clock used on the day 1 Calico dataset. Linear fit
(orange line) with 95% confidence interval (dashed, orange lines) is shown.

1) Correlation of median gene length and predicted age of individual neuron
types. Stochastic clock used on the day 1 Calico dataset. Linear fit (orange line)
with 95% confidence interval (dashed, orange lines) is shown.
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Extended Data Fig. 2| Neurite damage appearance and neuron survival
analysis. a) Correlation of neuronal GFP expression in ASK neurons (left) or
ASJ neurons (right) and scored blebs (major hallmark of neurodegeneration
inthese strains). Classification to the fraction of ‘healthy’ (blue), ‘mildly
damaged’ (orange), or ‘severely damaged’ (red) neurons s indicated. Linear
regression (blackline) and confidence band (grey lines) are displayed, and

no significant correlation was found. Displayed are the pooled data of four
independent cohorts of 12 - 25 adult day 1 old nematodes each. b) Fraction
plot of neuronal integrity of URY neurons upon aging. Four to five cohorts of
12 - 25JKM10 nematodes expressing GFP in URY neurons have been recorded
and neurodegeneration was assessed and neurons categorized as ‘healthy’
(blue), ‘mildly damaged’ (orange), and ‘severely damaged’ (red). Kruskal-Wallis
test was performed, and no significant differences was observed. ¢) Z-Stack
Maximum projection after background subtraction (Fiji - rolling ball radius
25) of fluorescence microscopic recording of representative JKM10 nematode
expressing GFP in URY neurons. Scale bar indicates 20 pm. d) Fraction plot of

neuronalintegrity of ASI, ASJ, and ASK neurons at young ages (L3 and L4 stage).

Three to four cohorts of 8 - 27 JKM10 nematodes expressing GFP in either ASI,
ASJ, or ASK neurons have been recorded, neurodegeneration was assessed,
and neurons categorized as ‘healthy’ (blue), ‘mildly damaged’ (orange), and

‘severely damaged’ (red). Ordinal regression (cumulative link model) has been
used to test for significant differences between ages. e) Stochastic appearance
of neuronal damage. The top panel shows a representative epi fluorescent

image of ASK neurons. Scale bar is 20 pm. Blebs that were counted as damaged
sites are indicated by violet arrows, which also depict how damage positionis
mirrored in the histograms below. The three bottom panels show histograms

of the neuronal damage distribution at day 1 (greenline) and day 4 (blue line) of
theindicated neurons (ASK, ASJ, and OLL). Three cohorts of 10 - 25 individuals
have been analysed per strain and age. Grey lines are 100 examples of randomly
distributed damage along neurites. Damage site was measured as distance from
the mouth and binned into 12 damage-site-bins. Pearson correlation has been
calculated for every pair of “neuron vs. random distribution” and the average is
indicated.f) Z-Stack Maximum projection after background subtraction (Fiji -
rolling ball radius 25) of fluorescence microscopic recording of representative
NY2067 nematode expressing GFP in ASE neurons. Scale bar indicates 20 pm. g)
Neuron survival was assessed using Kaplan-Mayer. Presence of green fluorescent
neuronbodies was scored daily. Mantel-Cox test was done to test for significant
differences. Shown are the aggregated plots of three independent cohorts of
each 12 nematodes per strain. h) Histogram showing the relative frequency of the
first day of neuronloss. Three cohorts of each 12 nematodes per strain.
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Extended Data Fig. 3| Correlations between CENGEN and Calico datasets.

a) Amphid neurons are predicted to be significantly older than non-amphid
neurons inthe Calico day 1dataset. Two-sided t-test p-value: 5.6e-08.b) Amphid
neurons are predicted to be significantly older than non-amphid neuronsin the
CeNGEN dataset with a stochastic data-based clock. Two-sided t-test p-value:
7.2e-22.c) Amphid neurons express significantly more neuropeptides than
non-amphid neurons. Two-sided t-test p-value: 5.95e-12. d) Amphid neurons
express significantly more receptor genes than non-amphid neurons. Two-sided
t-test p-value:8.45e-09. e) The number of neurotransmitters is not significantly
differentin amphid and non-amphid neurons. Two-sided t-test p-value: 0.94.

f) The number of innexins is not significantly different inamphid and non-
amphid neurons. Two-sided t-test p-value: 0.05. g) The number of expressed
neuropeptides (y-axis) is significantly correlated (Pearson correlation 0.26,
p-value 3e-03) with the predicted age by BitAge in the CeNGEN dataset. The
regression model fit with a 95% confidence interval (shadowed area) is shown.

h) The number of expressed receptor genes (y-axis) is significantly correlated
(Pearson correlation 0.22, p-value 1.2e-02) with the predicted age by BitAge in
the CeNGEN dataset. The regression model fit with a 95% confidence interval
(shadowed area) is shown. i) The number of expressed neuropeptides (y-axis)

is significantly correlated (Pearson correlation 0.36, p-value 2.9e-03) with the
predicted age by BitAge in the Calico day 1 dataset. The regression model fit with
a95% confidence interval (shadowed area) is shown. j) The number of expressed
receptor genes (y-axis) is significantly correlated (Pearson correlation 0.44,
p-value 2.4e-04) with the predicted age by BitAge in the Calico day 1 dataset.

The regression model fit with a 95% confidence interval (shadowed area) is
shown. k) The number of expressed neuropeptides (y-axis) is significantly
correlated (Pearson correlation 0.43, p-value 4.8e-07) with the predicted age

by astochastic data-based clock in the CeNGEN dataset. The regression model
fit with a 95% confidence interval (shadowed area) is shown. 1) The number of
expressed receptor genes (y-axis) is significantly correlated (Pearson correlation
0.39, p-value 6.9e-06) with the predicted age by a stochastic data-based clock
inthe CeNGEN dataset. The regression model fit with a 95% confidence interval
(shadowed area) is shown. m) Fraction-plot displaying the fraction of nematodes
expressing neuronal volume markers in the ASI neuron categorized as ‘healthy’,
‘mildly damaged’, and ‘severely damaged’. Three to four cohorts were analysed,
comprised of 10 - 30 individual nematodes, for every timepoint indicated.

Kruskal-Wallis-test was employed to test for significant differences. n) The
number of expressed innexin genes (y-axis) is significantly anti-correlated
(Pearson correlation -0.19, p-value 3.7e-02) with the predicted age by BitAge in
the CeNGEN dataset. The regression model fit with a 95% confidence interval
(shadowed area) is shown. 0) The number of expressed innexin genes (y-axis)

is not-significantly anti-correlated (Pearson correlation-0.2, p-value 0.9e-01)
with the predicted age by BitAge in the Calico day 1 dataset. The regression
model fit with a95% confidence interval (shadowed area) is shown. p) The
number of expressed innexin genes (y-axis) is not-significantly anti-correlated
(Pearson correlation -0.12, p-value 1.9e-01) with the predicted age by a stochastic
data-based clockin the CeNGEN dataset. The regression model fit with a 95%
confidence interval (shadowed area) is shown. q) The number of total synapses
(y-axis) is not-significantly anti-correlated (Pearson correlation -0.04, p-value
6.6e-01) with the predicted age by BitAge in the CeNGEN dataset. The regression
model fit with a 95% confidence interval (shadowed area) is shown.r) The
number of total synapses (y-axis) is not-significantly anti-correlated (Pearson
correlation -0.21, p-value 1.0e-01) with the predicted age by BitAge in the Calico
day1dataset. The regression model fit with a 95% confidence interval (shadowed
area) is shown. s) The number of total synapses (y-axis) is not-significantly
anti-correlated (Pearson correlation -0.07, p-value 4.6e-01) with the predicted
age by a stochastic data-based clock in the CeNGEN dataset. The regression
model fit with a 95% confidence interval (shadowed area) is shown. t) Ciliated
neurons are predicted to be significantly older than non-ciliated neuronsin the
Calico day1dataset. Two-sided t-test p-value: 4.4e-05. u) Ciliated neurons are
predicted to be significantly older than non-ciliated neurons in the CeNGEN
dataset with a stochastic data-based clock. Two-sided t-test p-value: 2.29e-14. v)
Ciliated neurons are divided into 5 classes depending on where its cilia terminate.
Neurons with exposed cilia are significantly older than non-ciliated neurons or
neurons which ciliaterminate in the cuticle or behind the cuticle in the Calico
day1dataset (one-way ANOVA p-value: 2.68e-08, with a post-hoc Tukey test). w)
Ciliated neurons are divided into 5 classes depending on where its cilia terminate.
Neurons with exposed cilia are significantly older than non-ciliated neurons or
neurons which cilia terminate in the cuticle or behind the cuticle in the CeNGEN
dataset with a stochastic data-based clock (one-way ANOVA p-value: 6.6e-18, with
apost-hoc Tukey test).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4| CHX is reducing translation in nematodes. a) Output of
the Dmin function of the Mfuzz R package. Soft clustering for cluster numbers
ranging from 2-12 (x-axis) were calculated with Dmin. For each cluster number,
Dmin calculates the distance between the centroids of the clusters (centroid
distance) and reports the minimum centroid distance across 3 repetitions
(y-axis). The optimal cluster number is estimated from the “elbow” of the plot
(indicated by an orange arrow on the dashed line), that is the cluster number
which shows a sharp decline in the minimum centroid distance (cluster
Number=4).b) SUnSET assay to test translation efficacy upon cycloheximide
treatment. Left side: Westernblot detecting puromycin labelled proteins,
ponceau staining as loading control, left side: densitometric quantification
normalized to total protein according to ponceau signal. Four independent
cohorts of each =35 nematodes tested. One-tailed t-test to test for significance.
Lysed nematodes were day 1of adulthood, 2 mM CHX treatment since L4 stage

and while puromycin labelling. ¢) Fluorescence quantification to assess GFP
synthesis in selected neurons as proxy for translation. Three independent
cohorts, total 28 - 52 nematodes analysed per strain and condition. One-way
ANOVA + Tukey post hoc test. d) Schematic depiction of experimental procedure
to test the effect of either short-term or chronic CHX treatment on the neuron
integrity. e) Fraction plots of neuronal integrity of ASK, ASJ, ASE,and OLL
neurons treated with2 mM CHX for either 24 hor 96 h starting from L4 stage

on. Three cohorts of 4 - 20 nematodes expressing GFP in either ASK, ASJ, ASE,

or OLL neurons have been recorded, neurodegeneration was assessed, and
neurons categorized as ‘healthy’ (blue), ‘mildly damaged’ (orange), and ‘severely
damaged’ (red). Ordinal regression (cumulative link model) has been used to
test for significant differences between CHX and solvent control treatment.

To test for significant differences a cumulative link model was built, pairwise
comparison was corrected according to Bonferroni.

Nature Aging


http://www.nature.com/nataging

Article

https://doi.org/10.1038/s43587-026-01067-5

- Hypothalamus (GSE157025)

Whole Brain (TMS)

Neuronge (CeNGEN) Species c
NeuronAge (Calico)
i o
- Nucleus accumbens basal ganglia (GTEx) . H. sapiens =
putamen basal ganglia (GTER) I C. elegans 1 %
Caudate basal ganglia (GTEX) B M. musculus =
Cerebellum (GTEX) []
()
Cerebellar hemisphere (GTEX) c
Hippocampus (GTEx) Trajectory I 19
= Amygdala (GTEx) . A in l’
Anterior cingulate cortex ba24 (GTEx) g g 8
Frontal cortex bag (GTEX) o
Cortex (GTEx)
Hypothalamus (GTEx)
Substantia nigra (GTEx)
RN EEEE
feEd gk EEEEEE
g§8 3z £ 232333 3°¢
s 3 f 3882 ;558°¢
3 £ 85585 8 EEEEs
E£ 8333385 8<5§8¢8 §3
b H £ 22 P s B B
H §E: 3 R 7
H 25 3 2 e
2 & 8 8 S
g H
s £
2 <
H
\&
0!
=Y d\oﬂ
o
xS

— PF4 vs Saline (GSE173254)

= Young Serum vs. Sham (GSE234667)

— Krilloil WT (GSE207152)

— Sport (PMID30927700)

.— Hypothalamus (GTEX)

— Substantia nigra (GTEx)

Nucleus accumbens basal ganglia (GTEx)
Putamen basal ganglia (GTEX)

= Cerebellum (GTEx)

Anterior cingulate cortex ba24 (GTEx)
Frontal cortex ba9 (GTEx)

Cortex (GTEx)

Substantia nigra (GTEx) Correlation
Cortex (GTEXx) Correlation

Caudate basal ganglia (GTEx)
Hypothalamus (GTEx) Correlation
Hippocampus (GTEx)

Amygdala (GTEX)

Caudate basal ganglia (GTEx) Correlation
Cerebellum (GTEx) Correlation
Cerebellar hemisphere (GTEx) Correlation
NeuronAge (CeNGEN 10)

Hippocampus (GTEx) Correlation
Amygdala (GTEx) Correlation

Frontal cortex ba9 (GTEx) Correlation

Hypothalamus (GSE157025) Correlation
Hypothalamus (GSE157025)
NeuronAge (Calico) Correlation
NeuronAge (CeNGEN) Correlation

Putamen basal ganglia (GTEx) Correlation
Cerebellar hemisphere (GTEX)

Brain DEG (TMS)

Whole Brain (TMS) Correlation

ed‘.eso@d e NS RRR R R R X RESEREXRES55655555@85555%05
g pebSddddddiidoodiedifiossco959589995dgs
x( N RKEEE LR GG G T I8 00CEEOEEEREET .
ReS800000000s 900000 plpgpppebpppelsye Species
LNNS PSS ER Q50080 8086669566608mbo6660Q58 ) =
PPPEESS5IF8L00508800050000090000 580 M H. sapiens S
CC s 5 e e xR EREQRRRORXXRXREITRXE g 1®
pEcEfE 008 OO 2000 Iii08, 8500088  MCelgans pig
c CLLEETTS T <] 3 ®©
£92-5575858 0oFog<ooofooooze§80a05aE B M. musculus £
Snz52%038C 0 >~ a c 3<% < c
NP5 5288 T ©OxXQ0f OCEPGSVLSOYT LS 0 d8S8L = 08
es=HpT30c £E 5L0ET ©55052353F0L£52558 S o
> = = = =
N4 ncao 2O 0% CT£2eEg00B8LoccT . c
¥ E $E 3L $OSF &é@z§§§5;g§2%&% L Trajectory 19
as ES § € 3% S5 E O C3Tf5csw 06 < -
o} = 3] 3 T @ < 8 o ®®m® O . =
3 g& § 08 g3z 288528883 = B Aging s
k) 2 = T 0 ® [} i
5 « & 2 T o & EE2 2w M Geroprotective o
2 kS
2 3 & s 8 L38 S E
° > ¢ c > I}
E 3 B ST ES
z o o = 3o
Qo o
= ©
L »
c 3
< o
o
=3
z

Extended Data Fig. 5| See next page for caption.
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Extended DataFig. 5| Clustering of enrichment scores for pathway and

gene expression level clustering analysis. a) The normalized enrichment
scores of the conserved KEGG pathways for the indicated aging pattern were
used for an unbiased clustering analysis (the same as Fig. 5, but focusing
ontheaging pattern). The matrix is color-coded according to the Pearson
correlation between the indicated comparisons. The colors on the side indicate
the species. b) Unbiased clustering analysis of conserved KEGG pathway
enrichments for aging patterns (C. elegans NeuronAge, mouse, human) and

geroprotective interventions. Both Pearson correlation-based and log-fold
change (logFC)-based pathway enrichments are shown for each aging dataset

to assess the impact of preprocessing methodology. Despite differencesin
computational approach, aging datasets cluster together, while geroprotective
interventions form a separate cluster, reinforcing the robustness of the observed
transcriptomic relationships. The colors on the side indicate the species and
whether it was anaging trajectory or a geroprotective treatment.
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Extended Data Fig. 6| Components identified by insilico screen validation.
a) Z-stack fluorescence images of GFP expression in ASK, OLL, AS] neurons
after 24 htreatment with water control, 2.5 mM syringic acid (SA). Maximum
projections after background subtraction (Fiji - rolling ball radius 80). Scale
barsindicate 20 um. b) Z-stack fluorescence images of GFP expressionin ASK,
OLL, AS) neurons after 24 h treatment with 10 nM vanoxerine (VX). Maximum
projections after background subtraction (Fiji - rolling ball radius 80). Scale
barsindicate 20 um. ¢) Fraction-plots displaying the fraction of nematodes
expressing GFPinthe OLL or ASK neurons categorized as ‘healthy’, ‘mildly
damaged’, and ‘severely damaged’ that were treated with 2.5 mM syringic

acid (SA), 10 nM vanoxerine (VX), or 250 uM Bay K8644 for 24 h. Three to

four cohorts were analysed, consisting of 10 - 25 individual nematodes each.
Statistical analysis was performed using a cumulative link model with a logit
link to account for the ordered categorical nature of neuronal damage scores
(Healthy <Mild < Severe). Multiple test adjusted (Benjamini Hochberg) p-values
are shown. d) Z-stack fluorescence images of GFP expressionin I2 neurons
after 24 htreatment with 25 nM WAY-100635 (WAY). Maximum projections
after background subtraction (Fiji - rolling ball radius 80). Scale bars indicate
20 pm. e) Z-stack fluorescence images of GFP expressionin ASK, OLL, and 12
neurons after 24 h treatment with 250 pM Bay K8644. Maximum projections
after background subtraction (Fiji - rolling ball radius 80). Scale bars indicate
20 pm. f) Z-stack fluorescence images of GFP expressionin ASK, OLL, AS),

and 12 neurons after 24 h treatment with 1%. ethanol, or 200 uM resveratrol.
Maximum projections after background subtraction (Fiji - rolling ball radius
80). g) Fraction-plots displaying the fraction of nematodes expressing GFP in
the OLL, 12, AS}, or ASK neurons categorized as ‘healthy’, ‘mildly damaged’, and

‘severely damaged’ that were treated with 200 uM resveratrol for 24 h. Four
cohorts were analysed, consisting of 12 - 25 individual nematodes. Statistical
analysis was performed using a cumulative link model with a logit link to account
for the ordered categorical nature of neuronal damage scores (Healthy < Mild
<Severe). Multiple test adjusted (Benjamini Hochberg) p-values are shown.

h) Schema of experimental strategy to test whether Serratia marcescens Dbl11
bacteria metabolise syringic acid or WAY-100635. Db11 bacteria are grown and
on halfisinactivated by UV-Cirradiation (500 mJ/cm"2), the other halfis still
alive. Compounds are added separately and incubated 48 h with dead or alive
bacteria. Subsequently, solution is passed trough a 22 um syringe filter to remove
bacteria. The compound containing solution is afterwards added onto alawn of
UV-Cinactivated OP50 bacteria. After drying, L4 stage nematodes are added and
after 24 hneurodegeneration is assessed using fluorescence microscopy. i) Scan
of UV-Cinactivation test. Serratia marcescens Dbll bacteria were inactivated by
UV-Cirradiation (500 mj/cm~2), streaked-out onto an NGM plate, and growth was
documented after 24 h. Left side shows bacteria before inactivation, right side is
bacteria after inactivation. j) Fraction-plot displaying the fraction of nematodes
expressing GFP in the URY neurons categorized as ‘healthy’,‘mildly damaged’,
and ‘severely damaged’ that were treated with 2.5 mM syringic acid (SA) or 25 nM
WAY-100635 (WAY), after compounds were pretreated with living or dead Db11
bacteria for 48 h, for 24 h. Three cohorts were analysed, consisting of 10 - 25
individual nematodes. Statistical analysis was performed using a cumulative link
model with alogitlink to account for the ordered categorical nature of neuronal
damage scores (Healthy < Mild < Severe). Pairwise comparisons between
conditions were performed using estimated marginal means (emmeans) with
Tukey’s adjustment for multiple testing.
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Data exclusions  If nematodes were damaged during handling, results from them were censored; whole nematode cohorts were excluded if less than 80% of
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