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Virtual brain twins for stimulation in epilepsy
 

Huifang E. Wang    1  , Borana Dollomaja1, Paul Triebkorn    1, 
Gian Marco Duma1,2, Adam Williamson1, Julia Makhalova3,4,5, 
Jean-Didier Lemarechal1, Fabrice Bartolomei1,3 & Viktor Jirsa    1 

Estimating the epileptogenic zone network (EZN) is an important part of the 
diagnosis of drug-resistant focal epilepsy and has a pivotal role in treatment 
and intervention. Virtual brain twins provide a modeling method for 
personalized diagnosis and treatment. They integrate patient-specific brain 
topography with structural connectivity from anatomical neuroimaging 
such as magnetic resonance imaging, and dynamic activity from functional 
recordings such as electroencephalography (EEG) and stereo-EEG (SEEG). 
Seizures show rich spatial and temporal features in functional recordings, 
which can be exploited to estimate the EZN. Stimulation-induced 
seizures can provide important and complementary information. 
Here we consider invasive SEEG stimulation and non-invasive temporal 
interference stimulation as a complementary approach. This paper offers 
a high-resolution virtual brain twin framework for EZN diagnosis based on 
stimulation-induced seizures. It provides an important methodological 
and conceptual basis to make the transition from invasive to non-invasive 
diagnosis and treatment of drug-resistant focal epilepsy.

In the most complex cases of drug-resistant focal epilepsy, accurate 
diagnosis requires invasive stereo-electroencephalography (SEEG) 
implantation. This procedure is crucial for estimating the epilepto-
genic zone network (EZN), a key element for successful treatment1,2. 
SEEG has become one of the principal techniques for delineating 
EZNs3,4. In the past 15 years, several data analysis methods for quan-
tifying EZNs have been proposed based on the spectral analysis of 
SEEG signals5,6. Beyond pure data-driven analysis approaches, several 
methods linking mechanistic models and data analysis have been 
developed7–12, formally exploiting causal hypotheses within an infer-
ence framework. We developed a workflow for the estimation of a 
patient’s EZN using personalized whole-brain models, called the virtual 
epileptic patient (VEP)13–16. The VEP workflow was evaluated retrospec-
tively using 53 patients with 187 spontaneous seizures and is now being 
evaluated in an ongoing clinical trial (EPINOV) with 356 prospective 
patients with epilepsy14,15. The virtual brain twin concept was proposed 
based on the VEP workflow and has been extended to various brain dis-
orders17. Virtual brain twins are personalized, generative and adaptive 

brain models based on data from an individual’s brain for scientific and 
clinical use. In this study, we introduce a high-resolution virtual brain 
twin workflow, specifically designed for estimating the EZN using a 
stimulation paradigm.

SEEG stimulation, involving direct electrical stimulation through 
SEEG electrodes, can be used to map brain function, as well as to 
provoke seizures for better EZN diagnosis, especially when sponta-
neous seizures are not obtained. SEEG-stimulation-induced seizures 
(at 1 Hz or 50 Hz, usually with pulses of 1 ms at 1–3 mA) are an impor-
tant tool for localizing the EZN and are also associated with a better 
post-surgical outcome18–20. First, we propose a high-resolution person-
alized whole-brain model—a virtual brain twin—dedicated to assessing 
stimulations performed through SEEG electrodes. Then, we evaluate 
the capacity of our approach to translate from invasive stimulation 
and recording via SEEG to non-invasive procedures using scalp-EEG 
recordings and transcranial electrical stimulation techniques, nota-
bly temporal interference (TI) stimulation21. The recently developed 
TI stimulation has the capacity of reaching deeper structures than 
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Results
VEP-stimulation workflow
We built a high-resolution virtual brain twin workflow to estimate the EZN 
using stimulation techniques. First, we built a virtual brain twin based 
on available data before stimulation. An EZN is defined as the tissue 
responsible for generating seizures and may involve distant brain areas 
characterized by altered excitability1. Our model-based high-resolution 
workflow using perturbation techniques for diagnostic EZN mapping 
is shown in Fig. 1 and a detailed flowchart is shown in Supplementary 
Fig. 1. First, high-resolution full-brain network models (Fig. 1a) were 
established using patient-specific data from patients with epilepsy. The 
structure of the model was defined by the detailed surface of the cortex 
and the subcortical volumes from T1-weighted MRI. The global struc-
tural connectivity between brain regions through white matter fibers 
was estimated from diffusion-weighted magnetic resonance imaging 
(MRI). The cortical surface data were generated from T1-weighted MRI, 
resulting in surfaces with 20,284 vertices with a vertex area of about 
10 mm2. We simulated the time series on the patient’s specific structural 
scaffold using the phenomenological Epileptor model26, a system of 
differential equations that can describe seizure initiation, propagation 
and termination, resulting in electrophysiological seizure-like events. 
The spatial domain of the Epileptor is given by the high-resolution net-
work of neural populations; thus, seizures can propagate locally across 
neighboring vertices of the cortex and globally through white matter 
fiber connections7. The initial personalized modeling parameters can 
be inferred from the spontaneous seizure recording15.

conventional transcranial direct- and alternating-current stimula-
tion (tDCS and tACS)22,23. Thus, combining the advantages of tDCS 
and deep brain stimulation24, TI stimulation is non-invasive, focal and 
capable of targeting deep brain structures. TI stimulation exploits the 
brain’s insensitivity to high-frequency electric fields in the kilohertz 
range, as demonstrated in a recent clinical trial with patients with 
epilepsy25. TI stimulation occurs when electric fields generated by 
multiple electrode pairs with slightly different frequencies interfere 
at a target location. This interference produces an envelope modula-
tion at a lower frequency—equal to the difference between source 
frequencies (normally below 150 Hz)—which effectively stimulates 
the target tissue.

In summary, this study presents a workflow for estimating the 
EZN using a personalized high-resolution virtual brain twin under a 
stimulation paradigm. We develop a pipeline that (1) builds a personal-
ized high-resolution brain model for either SEEG or TI stimulation; (2) 
estimates the EZN from stimulation-induced seizures, and validates 
it by simulated data; (3) refines the estimation of EZN by integrating 
multiple recording modalities, such as by combining scalp-EEG and 
SEEG; and (4) extends the pipeline to incorporate region-specific het-
erogeneity in local connectivity and support different brain atlases. 
This research provides a necessary step for (1) a series of scientific 
and clinical studies, such as optimization of stimulation parameters 
for diagnosis and treatment; (2) moving from invasive to non-invasive 
diagnosis and treatment of drug-resistant focal epilepsy; and (3) natural 
integration of multiple functional data modalities.

Brain imaging data

SEEG recordingDi�usion-weighted MRIT1-weighted MRI

SEEG recording

Scalp-EEG recordingTemporal interference 

Envelope
∆f

I(f + ∆f)

I(f)

High-resolution 
personalized models  

for stimulations

SEEG stimulation 
EZN estimation

Model
inversion

Bipolar electrical 
stimulation

Personalization from 
patient-specific data

Stimulation Simulation

a

b

c

d

e f

Time

Time

C
ha

nn
el

s
C

ha
nn

el
s

Br
ai

n 
re

gi
on

s

EZ

Posterior of
EVs 

0 1

Time

C
ha

nn
el

s

Fig. 1 | The workflow of the virtual brain twin for estimating the EZN using 
stimulation techniques. a,b, A personalized high-resolution model (a) is  
based on individual brain geometry extracted from T1-weighted MRI and 
structural connectivity from tractography on diffusion-weighted MRI data (b). 
High-resolution virtual brain models simulate neural source activity with  
spatial resolutions of about 10 mm2. The modeling parameters are inferred  
from the spontaneous SEEG recordings (b). c,d, We illustrate two types of 
stimulation: SEEG and TI, to induce seizure activity. c, SEEG stimulation uses 
bipolar stimulation in which two electrodes are used: one serves as the cathode 
and the other as the anode. The electric current flows between two electrodes, 
which is parameterized by current amplitude, pulse width and frequency.  
d, TI stimulation applies two current sources (I) simultaneously via electrically 
isolated pairs of scalp electrodes (green and pink) at kliohertz frequencies 

f and f + Δf. The currents generate oscillating electric fields, which results in 
an envelope amplitude that is modulated periodically at Δf. The electric field 
influences the brain activity that can be generated by the high-resolution 
personalized whole-brain model (a). The red and blue dots represent SEEG 
and scalp-EEG electrodes, respectively. e, The simulated source activity can be 
mapped onto the corresponding SEEG and scalp-EEG signals, through the gain 
matrices, which are constructed based on the locations of SEEG and scalp-EEG 
electrodes relative to the source vertices. The red curves on the scalp-EEG 
recordings are plotted using a different scale to visualize the signals following 
the high-amplitude signals induced by TI stimulation. f, By utilizing data features 
extracted from SEEG and scalp-EEG signals, Bayesian inference methods can 
estimate a posterior distribution of EVs, suggesting the potential EZN.
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We then developed a high-resolution virtual brain twin designed 
for stimulation. First, we calculated the electric fields induced by 
both stimulation methods (Fig. 1c,d). For the SEEG stimulation, two 
SEEG electrodes serve as cathode and anode to generate bipolar 
stimulation and electric current flow is parameterized by current 
amplitude, pulse width and frequency (Fig. 1c). The perturbation 
effect was applied to the vertices of the high-resolution surface 
through the SEEG-to-source mapping, with perturbation strength 
decaying as the distance between vertices and electrodes increased. 
For TI stimulation, we calculated the amplitude of the envelope of 
the TI electric field projected onto the surface normal vector at each 
vertex (Fig. 1d). Both types of stimulation generated an accumulation 
in the slow state variable m of the Epileptor-stimulation model (equa-
tion (1)), which represents stimulation-induced tissue changes. When 
m reaches a given threshold, the model undergoes a transition into 
the seizure state. A post-SEEG implantation computed tomography 
(CT) scan is used to localize SEEG contacts and co-register them with 
the structural scaffold. Scalp-EEG electrodes were placed on the scalp 
using the standard international 10-5 system. This high-resolution 
model allows us to consider detailed electric dipoles, generated 
by neural activity, for building high-fidelity forward solutions.  
The source-to-sensor matrix maps the activity from the neural 
sources—located at vertices of the cortical surface and subcortex—to 
SEEG or scalp-EEG electrodes, taking into account their orientation 
and distance.

Model inversion estimates patient-specific brain model param-
eters, especially epileptogenicity and global network scaling using 
Hamiltonian Monte Carlo (HMC) sampling techniques from Bayesian 
inference methods10,15. The estimation is based on the structural brain 
scaffold, modeled seizure dynamics and the data feature extracted 
from scalp-EEG and/or SEEG seizure recordings (Fig. 1e). The model 
inversion uses a non-informative prior where all the brain regions have 
the same prior distribution (the prior assumption is that all regions are 
healthy). The result is the posterior probability from which the EZN is 
identified. We also introduced multimodal inference for simultaneous 
SEEG and scalp-EEG to infer the EZN (Fig. 1f).

Virtual brain twins for SEEG stimulation
We used the data from a right-handed 23-year-old female patient 
diagnosed with left occipital lobe epilepsy to illustrate how to use our 
workflow. We first extracted the brain geometry, the structural con-
nectivity matrix and the source-to-sensor mapping using this patient’s 
T1-weighted MRI, diffusion-weighted MRI and post-SEEG-implantation 
CT scans. We built the whole-brain neural mass model based on this 
anatomical information. Then we ran the HMC algorithm for three spon-
taneous seizures recorded from this patient (one of the three seizures 
with selected electrodes is shown in Fig. 2a). We pooled the posterior 
distribution from the three seizures, in which the left lateral occipital 
cortex (region O2 (in the VEP atlas27)) was consistently identified as 
part of the EZN. Then we projected the left O2 onto both preoperative 
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Fig. 2 | VEP diagnostic mapping for spontaneous seizures (empirical data).  
a, SEEG recordings from one seizure in a 23-year-old female patient. The left axis 
shows the names of the selected electrode channels. b, Posterior distribution 
of the EVs (higher value indicates higher probability of seizure) for ten selected 
regions obtained from the HMC pipeline. Each violin plot shows the distribution 
of the entire data range using a kernel density estimate. The three bars represent 

the 25th percentile, the median and the 75th percentile, respectively. All violin 
plots in this paper follow the same format. c, Heatmap of the left O2 identified by 
VEP (in red) shown in a preoperative T1-MRI. d, Heatmap of the left O2 identified 
by VEP (in red) shown in a postoperative T1-MRI. e, The left O2 (in red) was 
projected on the patient’s 3D meshes.
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and postoperative T1-MRI slides and three-dimensional (3D) brain 
meshes (in Fig. 2c–e). The patient underwent resective surgery, in which 
a large portion of the left O2 was removed (in Fig. 2d), and was almost 
seizure-free after surgery (surgery outcome class of Engel II28). On the 
basis of this result, we built the high-resolution whole-brain neural field 
model for SEEG and TI stimulation to test the hypothesis that the left 
O2 was the EZN of the patient.

To model direct electrical stimulation by SEEG electrodes in the 
brain, we first mapped the contribution of SEEG stimulation current 
to brain source activity. We retrieved the contribution from a pair of 
electrodes, in which the perturbation is applied to the brain regions 
based on the sensor-to-source mapping matrix15. Then we calculated 
the effect of the bipolar pulse stimulation (50 Hz for a duration of 3.5 s 
on bipolar GL’5-6 electrode leads) on each vertex of the cortex mesh 
(Fig. 3a). We used the Epileptor-Stimulation model at each of the 20,284 
vertices. The stimulation leads to an accumulation in a state variable 
m that pushes the brain to seize (Supplementary Fig. 2). The seizures 

were located around the left O2 regions (Fig. 3b and Supplementary 
Video 1). From these simulated neural source signals, we obtained SEEG 
signals (Fig. 3c) using the source-to-sensor matrix.

These synthetic SEEG recordings (Fig. 3c) were used for model 
inversion, to estimate the EZN. We obtained the left O2 with the high-
est epileptogenic values (EVs) out of all the samples according to the 
posterior distribution from the HMC algorithm (Fig. 3d). The two 
neighboring regions (the left lingual gyrus and the left occipital pole) 
were the second group of candidates that could belong to the EZN. 
The heatmap projected on the patient’s T1-MRI revealed the spatial 
mapping of the EZN (sagittal, axial and coronal view images shown 
in Fig. 3e). The spatial mapping of these three regions in 3D brain is 
highlighted in red and yellow in Fig. 3f.

Virtual brain twins for TI stimulation
We here demonstrate how the pipeline works for TI stimulation. First, 
we began with high-resolution twin modeling for this patient based 
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Fig. 3 | Estimating EZN from a SEEG-stimulation-induced seizure (synthetic 
data). a, Top: GL’5-6 (large blue/red sphere) is the stimulated contact in the left 
occipital lobe, using a bipolar pulse stimulation (50 Hz for a duration of 3.5 s with 
pulse duration 1 ms). Bottom: spatial map showing the amplitude of electric field 
(indicated by the color bar) at each brain vertex, induced by SEEG stimulation 
from contact pair GL’5-6. b, Neural source activity in arbitrary units (a.u.) is  
shown on the cortical mesh at five different time points, with values indicated  
by color. The seizures are located around the left O2 region of the VEP atlas.  
c, Selected simulated SEEG time series from a SEEG-stimulation-induced seizure. 

d, Posterior distribution of the EVs (higher value indicates higher chance for 
seizure) of nine selected regions obtained from HMC sampling. Each violin plot 
shows the distribution of the entire data range using a kernel density estimate. 
The three bars represent the 25th percentile, the median and the 75th percentile, 
respectively. Red regions indicate highest chance of being the EZN; the other 
areas are in green. e,f, The region of the highest EV posterior distribution is the 
left O2 in red shown in T1-MRI (e) and the 3D brain (f). The two regions (the left 
lingual gyrus and the left occipital pole) are shown in yellow.
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on spontaneous seizures (Fig. 2). We calculated the TI electric field, 
which is projected onto the cortical surface by stimulating two pairs 
of scalp-EEG electrodes (PPO3–P5h and PPO5–PO5h29 in Fig. 4a) at 
frequencies of 1,000 Hz and 1,005 Hz, respectively. The stimulation 
amplitude is determined based on the assumption that the components 
of the field that have the greatest impact are those that are parallel to 
the neurons’ axons30. On the basis of the TI electric field, the stimulation 
input is applied to the Epileptor model on each vertex of the cortical 
mesh (Supplementary Fig. 3). We simulated the brain source signals 
on each vertex of the whole brain by considering both global and local 
connectivity (Fig. 4b and Supplementary Video 2). We then mapped the 
activities from the vertices of the cortical surface onto the scalp-EEG 
signals (Fig. 4c) using the source-to-sensor mapping matrix.

We extracted the data features from these synthetic scalp-EEG 
recordings (Fig. 4c) as input to the HMC model inversion to estimate the 
epileptogenic zone. From the posterior distribution of EVs, we obtained 
the left O2 as first and the left O1 as the second candidate belonging to 

the EZN (Fig. 4d). The heatmap of these two regions projected on the 
patient’s T1-MRI shows the spatial mapping of the EZN (sagittal, axial 
and coronal view images shown in Fig. 4e) and the 3D brain in Fig. 4f, 
where the left O2 is in red and the left O1 in yellow.

Multimodal inference
For patients with multiple seizure recordings or simultaneous multiple 
modality recordings (here we used SEEG and scalp-EEG as examples), we 
integrate both modalities into the model inversion algorithm to combine 
their information in the parameter estimation process and potentially 
improve clinical decision-making. Here we demonstrated two cases 
in which the EZN estimation from multimodal functional recordings 
were integrated. The first case estimated the EZN from simultaneous 
scalp-EEG and SEEG recordings under SEEG stimulation (Fig. 5a and 
Supplementary Fig. 4a). Here we mapped the same source signals to 
both the SEEG and scalp-EEG sensors. Two key added values arise from 
performing simultaneous SEEG and scalp-EEG recordings. First, the 
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Fig. 4 | Estimating EZN from TI-stimulation-induced seizure (synthetic 
data). a, The electric field of TI stimulation by two pairs of scalp-EEG electrodes 
(shown in red and orange) based on the 10-5 international reference system, 
using an extended scalp-EEG cap from SIMNIBS29. We applied stimulation at 
1,000 Hz and 1,005 Hz through the first (PPO3, P5h) and second (PPO5, PO5h) 
scalp electrode pairs, respectively. The electrodes PPO3, P5h, PPO5 and PO5h 
are part of the extended 10–5 EEG system and correspond to intermediate scalp 
locations over the parietal and parieto-occipital regions. The spatial distribution 
of the amplitude of the TI electric field is colored in the 3D brain. b, Seizure 
dynamics were simulated using the Epileptor-Stimulation model through the TI 

stimulation. Neural activity is shown in color on the cortical mesh at six  
different time points. The seizures are located around the left O2 regions of 
the VEP atlas. c, Simulated scalp-EEG time series from TI-stimulation-induced 
seizure. The y-axis shows the names of selected scalp-EEG channels. The scaled-
up time series during the seizure period is shown in red. d, Posterior distribution 
of the EVs (higher value indicates higher chance for seizure) for ten selected 
regions obtained from the HMC sampling. Red regions indicate highest chance  
of being the EZN; the others are in green. e,f, The region of the highest EV posterior 
distribution is the left O2 in red shown in T1-MRI (e) and the 3D brain (f). The second 
region (left O1) is shown in yellow.
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scalp-EEG provides a whole-brain sampling although it mainly measures 
weak cortical surface signals in contrast to the SEEG, which samples only 
partial brain space with relatively strong signals from deep structures 
as well. Second, this pipeline provides a way to evaluate the roles of the 
scalp-EEG so that we could design a less invasive SEEG implantation in 
the future. The posterior of the EVs from a simultaneous model inver-
sion showed the left O2 as the EZN (Fig. 5a). The second case estimated 
the EZN from simultaneous scalp-EEG and SEEG recordings under TI 
stimulation (Fig. 5b and Supplementary Fig. 4b). The posterior of the EVs 
from the multimodal model inversion showed the left O2 as the EZN and 
the left superior temporal sulcus (STS) posterior as a second candidate.

To complement the cases, we utilized the multimodal model inver-
sion module on SEEG recordings from SEEG stimulation (Fig. 5a) and 
scalp-EEG recording from TI stimulation (Fig. 5b) in Supplementary 
Information. The posterior of the EVs from the multimodal model 
inversion showed the left O2 as the EZN (Supplementary Fig. 4c). Notice 
that, in this case, the SEEG and scalp-EEG data here were not simultane-
ously recorded. The SEEG and TI stimulation induced the seizures with 
different initial conditions. Then results would be valid only with an 
assumption that the HMC sampled all feasible initial conditions. For 
comparison, in the fourth case, we pooled the posterior distributions 
of the EVs from the SEEG (in Fig. 3d under SEEG stimulation) with the 
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Fig. 5 | Multimodal inference for EZN estimation from simultaneous SEEG and 
scalp-EEG recordings (synthetic data). a, We combined ictal recordings from 
SEEG (middle top) and scalp-EEG (middle bottom) induced by SEEG stimulation 
(left), using multimodal inference to obtain the distribution of EVs (right top). 
The results were mapped in the 3D brain. In this case, we obtained the ground-
truth left O2 in red. The spatial distribution of source activity at 4,634 ms is shown 

at the bottom left. b, We combined ictal recordings from SEEG (middle top) and 
scalp-EEG (middle bottom) induced by TI stimulation (left), using multimodal 
inference to obtain the distribution of EVs (right top). The results were mapped 
in three dimensions. In this case, we obtained the ground-truth left O2 in red and 
additional brain region as left STS posterior in yellow. The spatial distribution of 
source activity at 9,980 ms is shown at the bottom left.
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EVs from the scalp-EEG (in Fig. 4d under TI stimulation). We obtained 
the left O2 as the intersection of the two distributions to be the only 
brain region in the EZN (Supplementary Fig. 4d).

Validation of the pipeline
To validate the pipeline, we added the results of a second patient with 
left frontal lobe epilepsy. The patient underwent resective surgery 
resulting in seizure freedom (surgery outcome class of Engel I28). Eight 
brain regions including the orbitofrontal, anterior cingulate, F1 lateral 
prefrontal, F2 rostral, superior frontal sulcus rostral, frontal pole and 
F1 mesial prefrontal cortices in the left hemisphere were resected. We 
built the high-resolution whole-brain model for two types of perturba-
tion under the hypothesis that the left F1 lateral prefrontal cortex is the 
EZN. To model direct electrical stimulation by SEEG electrodes in the 
brain, we calculated the effect of the bipolar pulse perturbation (50 Hz, 
for a duration of 3 s on bipolar PM’3-4 electrode leads) (Fig. 6a). The sei-
zure was induced around the left F1 lateral prefrontal cortex. From the 

simulated neural source signals (Fig. 6b and Supplementary Video 3), 
we obtained simultaneous SEEG and scalp-EEG signals (Fig. 6c) using 
the source-to-sensor gain matrix. These synthetic SEEG and scalp-EEG 
signals during the ictal period served as input for multimodal inference 
to estimate the EZN. We obtained the left F1 lateral prefrontal cortex 
as the region with the highest EV from the HMC algorithm (Fig. 6d,e). 
The two neighboring regions (the left F1 measial prefrontal cortex and 
the left-middle frontal sulcus) were identified as secondary candidates 
that could belong to the EZN (Fig. 6d,e).

We also illustrated the results of this patient with TI stimulation 
in Extended Data Fig. 1. First, we used high-resolution modeling to 
simulate TI stimulation. We calculated the TI electric field, which is pro-
jected onto the cortical surface by stimulating two pairs of scalp-EEG 
electrodes (FPz–AF3 and AFz–Fp1 in Extended Data Fig. 1a) at frequen-
cies of 1,000 Hz and 1,005 Hz, respectively. The brain source signals on 
each vertex of the whole brain is shown in Extended Data Fig. 1b and 
Supplementary Video 4. We then mapped the neural activity from the 
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Fig. 6 | Estimating EZN from SEEG stimulation for a second patient with 
frontal lobe epilepsy (synthetic data). a, Top: PM’3-4 (large blue/red sphere) is 
the stimulated contact in the left frontal lobe, using a bipolar pulse stimulation 
(50 Hz for a duration of 3 s with pulse duration 1 ms). Bottom: spatial map 
showing the amplitude of electric field (shown in the color bar from low (left) 
to high (right) values) at each brain vertex, induced by SEEG stimulation (from 
sensor PM’3-4). b, Seizure dynamics were simulated using the Epileptor-
Stimulation model and induced through SEEG stimulation. Neural source activity 
in arbitrary units (a.u.) is shown on the cortical mesh at five different time points, 

with values indicated by color. c, Selected simulated SEEG time series (top) and 
EEG time series (bottom) from SEEG-stimulation-induced seizure. The scaled-up 
time series during the seizure period are shown in red. d, Posterior distribution of 
EVs (higher value indicates higher chance for seizure) for eight selected regions 
obtained from the HMC sampling when analyzing simultaneously SEEG and 
scalp-EEG. SMA, supplementary motor area. e, The highest chance of being the 
EZN as left F1 lateral prefrontal in red mapped in the 3D brain and left F1 mesial 
prefrontal cortex and left-middle frontal sulcus in yellow.
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cortical surface onto the SEEG and scalp-EEG electrodes (Extended Data 
Fig. 1c) using the source-to-sensor mapping matrix. We extracted the 
data features from simultaneous synthetic ictal SEEG and scalp-EEG 
recordings (Extended Data Fig. 1c), which served as the input to the 
multimodal inference to estimate the EZN. We obtained the left-middle 
frontal cortex as the region with highest EVs from all samples (Extended 
Data Fig. 1d,e). The left F1 lateral prefrontal and left orbitofrontal sul-
cus were identified as the second candidates belonging to the EZN 
(Extended Data Fig. 1d,e).

We next demonstrated the role of heterogeneity of local connec-
tivity. Here, local connectivity refers to how neuronal populations at 
different vertices are connected within a specific area or neighborhood. 
We introduced such heterogeneity in local connectivity under the 
hypothesis that within the EZN, local connectivity increases due to syn-
aptic remodeling31 or the loss of inhibitory synapses32. Extended Data 
Fig. 2 illustrates both source-level and sensor-level SEEG and EEG signals 
when local connectivity within the EZN is two to five times higher than 
that in other brain regions. Compared with the results obtained with 
homogeneous local connectivity (Fig. 6), only minor differences were 
observed during seizure periods. However, the neighborhood of the 
EZN showed a lower mean distribution of EVs from model inference, 
making it easier to identify the EZN.

Another application of the proposed pipeline is to test and miti-
gate false-positive stimulation results (non-habitual seizures being 
triggered) through a carefully designed protocol and optimized simu-
lation and stimulation parameters. Here we systematically evaluated 
the effects of stimulation in terms of stimulation locations in two set-
tings. (1) Within-electrode stimulation (PM’): stimulating all pairs of 
electrode leads within the same electrode using identical stimulation 
parameters (Supplementary Fig. 5). (2) Distributed cortical stimula-
tion: stimulating ten additional SEEG bipolar pairs implanted in ten 
different cortical regions (Supplementary Fig. 6). Our simulations 
demonstrated that stimulation does not induce seizures in healthy 
regions. The theoretical basis for this lies in the seizure threshold 
of each region, which is directly related to its epileptogenicity. The 
EZN has a lower seizure threshold compared with healthy regions. 
This parameterization ensures that weak stimuli—based on clinically 
applied stimulation parameters—can trigger seizures in the EZN but 
not in healthy tissue.

The choice of atlas is an important topic in neuroscience stud-
ies, specifically for whole-brain network studies, and should be 
aligned with the specific research objectives. We selected the VEP 
atlas27 because it is purposefully designed for epileptology, consider-
ing both anatomical and functional features within each structure, 
particularly in relation to EZN and surgical applications. Moreover, 
we extended our pipeline to be easily adaptable to other atlases, 
using the Desikan–Killiany (DK) atlas33,34 as an example. We demon-
strated this application using the DK atlas while maintaining the same 
simulation parameters as those used for the VEP atlas, including the 
stimulation electric field in Supplementary Fig. 7. The simulation of 
source activity and SEEG and scalp-EEG remains similar, particularly 
in terms of spatiotemporal patterns. This is because the primary 
difference arises from variations in the size of the EZN and struc-
tural connectivity (Supplementary Fig. 7a–c). The forward solution 
remains unchanged owing to the high-resolution stimulation at the 
source level. However, the estimated EZN is larger in the DK atlas 
because its brain regions are more extensive compared with those 
in the VEP atlas. As an example, we examined a case where the EZN 
network in the superior frontal gyrus is substantially larger in the DK 
atlas than in the VEP atlas. In the VEP atlas, the superior frontal gyrus 
is subdivided into five distinct structures.

A detailed quantitative comparison of SEEG and TI stimulation 
effects—characterized by spatial distribution and activation ampli-
tude—is provided in Supplementary Information section ‘Quantifica-
tion of SEEG and TI stimulation effects’ and Supplementary Fig. 8.

Discussion
The first application of this pipeline can help us to answer a crucial 
diagnostic question: how to infer the underlying EZNs from stimulated 
seizures? To answer this question, it is necessary to investigate the 
following problems, illustrated in Supplementary Fig. 9. First, what 
is the proper range of stimulation parameters to induce seizures for 
diagnosis? Currently, no standardized stimulation protocols exist20. 
The French guidelines suggest parameters for both low-frequency 
(1 Hz) and high-frequency (50 Hz) stimulation with specified ranges on 
pulse width, pulse intensity and stimulation duration3. Our personal-
ized whole-brain model has the ability to predict the stimulation effect 
for individual patients given specified stimulation parameters and 
should be validated in future empirical studies. On the patient-specific 
level, among the proper range of stimulation parameters, then what 
are the optimal stimulation parameters for inducing seizures for diag-
nosis? Second, what is the relationship between the EZN triggered by 
stimulation and the one occurring during spontaneous seizures? More 
specifically, we want to investigate whether the EZN estimated from 
stimulation-induced seizures equals the EZN of spontaneous seizures. 
It could be possible that stimulation forces seizures in brain regions 
that would not be epileptogenic otherwise, or that stimulation uncovers 
only a subset of epileptogenic regions. Even for spontaneous seizures, 
the limited observations of recordings of spontaneous seizures may 
also tell only part of the story. Third, how many seizures induced by 
SEEG stimulation are sufficient for identifying the full underlying EZN? 
We can investigate this question by systematically evaluating the EZNs 
on SEEG-stimulation-induced seizures generated by virtual brain twin 
models with given EZNs. The proposed VEP-stimulation pipeline with 
high-resolution modeling provides a reasonable framework to address 
all these questions.

The diagnostic pipeline for TI stimulation can provide a theoretical 
basis for non-invasive diagnosis and treatment of epilepsy. TI stimula-
tion is a good candidate for both diagnosis and treatment in epilepsy 
within the non-invasive stimulation family. Other non-invasive stimula-
tion techniques, such as tDCS35, are mostly used for treatment only in 
epilepsy. The key feature of TI stimulation is that it enables a focal stim-
ulation that can reach deep brain structures non-invasively21,36, such as 
the hippocampus, which quite often is involved in the EZN in temporal 
lobe epilepsy. TI stimulation has evoked seizure-like events in the 
mouse hippocampus that have been experimentally well controlled37 
and strategies exist to replicate high-suprathreshold electric-field 
values in humans38. Our study presents a pipeline for predicting the use 
of TI in diagnosing the EZN in human epilepsy, and lays the foundation 
for optimizing TI-stimulation strategies. This framework can be further 
extended to build high-resolution, patient-specific models for future 
therapeutic interventions.

To achieve non-invasive diagnosis and treatment with TI in the 
future, we need to optimize the workflow using purely non-invasive 
data. A key next step, directly building on this work, is to systematically 
estimate the EZN from scalp-EEG signals within a cohort of patients. 
In the presented example, we obtained a good estimate of the EZN 
from non-invasive scalp-EEG signals, with localization in superficial 
cortical gray matter. Future studies should assess the robustness of 
the VEP across different epilepsy types and EZN locations. In addi-
tion, the required spatial resolution (number of scalp-EEG recording 
channels) for accurately identifying the underlying EZN needs further 
investigation. Another future direction is to develop a non-invasive VEP 
using high-resolution magnetoencephalography (MEG) data. We have 
obtained preliminary results with 23Na MRI39 and now need to develop 
methods for VEP estimation and reconstruction from high-resolution 
EEG and MEG data. A further question is how precisely the EZN can be 
identified using interictal spikes or network features from EEG and 
MEG—potentially allowing seizure-inducing stimulation to be avoided.

Virtual brain twins have the capability to integrate multimodal neu-
roimaging data, including anatomical recordings, such as T1-weighted 
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MRI, diffusion-weighted MRI and CT; as well as functional ones, such as 
scalp-EEG, MEG, SEEG, subdural grid, positron emission tomography 
and functional MRI. In this work, we extend this integration by design-
ing a multimodal inference version of the HMC algorithm for simultane-
ous functional recordings of SEEG and scalp-EEG40, and can be further 
extended to other combinations, including MEG and scalp-EEG41, and 
SEEG and MEG42. Across functional recordings, the main distinction 
lies in the forward solution. The usage of this multimodal inference 
is also valid in cases where different recordings start with the same 
brain states, or when the sampling algorithms can cover all possible 
initial conditions.

We extended this pipeline by incorporating the capability to model 
heterogeneous local connectivity in a brain region-specific manner. 
Three key elements must be taken into account: (1) the specific EZN 
associated with different types of epilepsy, (2) the type of neural models 
applied, and (3) personalization. In virtual brain twins, local connectiv-
ity should be derived from the anatomical information, rather than 
from functional connectivity and effective connectivity43. Anatomical 
connectivity varies across different EZNs depending on the type of 
epilepsy. For example, increased local connectivity within the EZN may 
result from enhanced excitatory synapse formation driven by axonal 
sprouting44,45 or from the loss of inhibitory synapses32. Conversely, neu-
ronal loss, axonal damage and synaptic pruning may reduce anatomical 
connectivity, although the exact mechanisms remain unclear46. The 
choice of the neural activity model also has an important role in repre-
senting the heterogeneity of local connectivity. Our results indicate that 
incorporating local connectivity heterogeneity does not substantially 
alter brain activity or seizure propagation when using the Epileptor 
model in this pipeline. The Epileptor, as a phenomenological model, 
and its excitability parameter x0 already account for the coexistence 
of increased excitatory connectivity and decreased inhibitory con-
nectivity, which reflects the hyperexcitability of epileptogenic tissue. 
However, region-specific local connectivity may play a more important 
role in biophysical models47,48. Currently, personalized measurements of 
local connectivity are not feasible in routine clinical practice. However, 
advancements in neuroimaging techniques may provide such informa-
tion for research purposes and, in the future, for clinical applications49.

The current pipeline has several limitations. Model-based 
approaches are usually computationally expensive and parameter 
sensitive, which may pose challenges for real time use in clinical rou-
tine, such as the optimization of stimulation parameters. The current 
pipeline does not consider the dynamics of the epileptic disorders over 
long timescales nor the long-term effects of the stimulation. Ongoing 
systematic evaluations and studies will also improve the current pipe-
line in the following ways. High-resolution modeling of the subcortical 
structure and a more realistic forward resolution may improve the 
whole-brain modeling. The introduction of regional variations (such 
as cell density and receptor density)50,51 may provide a fundamental 
way to improve the current pipeline.

The virtual brain twin concept in stimulation here can be extended 
to other brain disorders: Parkinson’s disease52 and schizophrenia17. 
Studies have demonstrated the safety of TI in human participants53,54, 
and explored its application in brain disorders, such as epilepsy24,55, 
Alzheimer’s disease56, Parkinson’s disease57 and essential tremor58. 
For broader applications across different brain disorders, selecting an 
appropriate neural mass model and key parameters is a key challenge. 
Furthermore, as the choice of the right atlas matters, the pipeline illus-
trates the application to different atlases. The proposed pipeline can 
be adapted for alternative stimulation techniques, such as deep brain 
stimulation59 and other non-invasive modalities such as tDCS35 and 
tACS23. These stimulation methods are commonly used for therapeutic 
interventions, and a key challenge lies in refining and adapting the mod-
els to account for both excitatory and inhibitory effects. Furthermore, 
incorporating neuromodulation into the modeling process is crucial 
for accurately capturing these effects.

Methods
Patient data
We used the data from two patients who underwent a standard pre-
surgical protocol at La Timone Hospital in Marseille. The first patient 
is a 23-year-old female diagnosed with left occipital lobe epilepsy. She 
underwent resective surgery and was nearly seizure-free after surgery, 
with an Engel Class II outcome. The second patient is a 19-year-old 
male with left frontal lobe epilepsy. He underwent resective surgery 
resulting in complete seizure freedom and an Engel Class I outcome. 
Informed written consent was obtained in compliance with the ethical 
requirements of the Declaration of Helsinki and the study protocol was 
approved by the local Ethics Committee (Comité de Protection des Per-
sonnes sud Méditerranée 1). Each patient underwent a comprehensive 
presurgical assessment, which included medical history, neuropsycho-
logical assessment, neurological examination, fluorodeoxyglucose 
positron emission tomography, high-resolution 3 T MRI, long-term 
scalp-EEG and invasive SEEG recordings. They received non-invasive 
T1-weighted imaging (MPRAGE sequence, repetition time 1.9 s, echo 
time 2.19 ms, voxel size 1.0 × 1.0 × 1.0 mm3) and diffusion-weighted MRI 
images (with an angular gradient set of 64 directions, repetition time 
10.7 s, echo time 95 ms, voxel size 1.95 × 1.95 × 2.0 mm3, b-weighting of 
1,000 s mm−2.) The images were acquired on a Siemens Magnetom Verio 
3 T MR-scanner. The patients had invasive SEEG recordings obtained by 
implanting multiple-depth electrodes, each containing 10–18 contacts 
2 mm long and separated by 1.5 mm or 5 mm gaps. The SEEG signals 
were acquired on a 128 channel Deltamed/Natus system. After the 
electrode implantation, a cranial CT scan was performed to obtain the 
location of the implanted electrodes.

Data processing
To construct the individual brain network models, we first preprocessed 
the T1-MRI and diffusion-weighted MRI data. Volumetric segmentation 
and cortical surface reconstruction were from the patient-specific 
T1-MRI data using the recon-all pipeline of the FreeSurfer software 
package http://surfer.nmr.mgh.harvard.edu. The cortical surface was 
parcellated according to the VEP atlas27, the code for which is available 
at https://github.com/HuifangWang/VEP_atlas_shared.git. The reasons 
for choosing the VEP atlas are as follows. (1) The VEP atlas is specifically 
designed for epileptology, incorporating anatomical and functional 
features of each brain structure, particularly in relation to the EZN and 
surgical applications. (2) The geometric features and sizes of the brain 
regions are well suited for both clinical applications and modeling, 
including model inversion. (3) Brain regions can be automatically 
labeled and personalized from T1-MRI scans using geometric and 
neuroanatomical information. (4) The VEP atlas has been clinically 
evaluated in a retrospective study including 53 patients, and is cur-
rently being assessed in another prospective trial with 356 patients, 
ensuring its clinical suitability and reliability14–16. A brief summary of 
the steps to obtain the VEP atlas goes as follows. T1-weighted images 
are processed using FreeSurfer to remove non-brain tissue60, segment 
subcortical gray matter structures61, normalize intensity62 and generate 
cortical surfaces63. These surfaces are inflated, registered to a spherical 
template and corrected for topology61,64. The cortex is then subdivided 
into regions based on gyral and sulcal structures65, forming the basis for 
constructing the VEP atlas. This construction involves splitting, merg-
ing and renaming operations to both cortical and subcortical regions. 
Cortical regions are divided based on the triangulated surface mesh, 
while subcortical regions are split directly on voxels. Nonlinear splits 
are applied in specific areas with high curvature, such as the callosal 
sulcus, whereas the superior frontal gyrus is split using a combination 
of linear and specialized methods based on cortical surface geometry27.

We used the MRtrix software package to process the 
diffusion-weighted MRI66, employing the iterative algorithm described 
in ref. 67 to estimate the response functions and subsequently used 
constrained spherical deconvolution68 to derive the fiber orientation 
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distribution functions. The iFOD2 algorithm69 was used to sample 
15 million tracts. The structural connectome was constructed by assign-
ing and counting the streamlines to and from each VEP brain region. 
The diagonal entries of the connectome matrix were set to zero to 
exclude self-connections within areas and the matrix was normalized 
so that the maximum value was equal to one. We obtained the location 
of the SEEG contacts from post-implantation CT scans using GARDEL 
(Graphical user interface for Automatic Registration and Depth Elec-
trodes Localization), which is part of the EpiTools software package70. 
Then we co-registered the contact positions from the CT scan space to 
the T1-MRI scan space for this patient.

High-resolution simulation of the Epileptor-Stimulation model
We modeled epileptic seizures on a patient-specific high-resolution 
brain model. There is no consensus about the precise biophysical 
mechanism of ion exchanges that leads to seizure onset. Previous stud-
ies have demonstrated an increase in excitability, spike frequency and 
oscillation power71–74 when an external perturbation was applied. Exper-
imental studies have linked seizure onset to specific changes in ion 
dynamics such as extracellular potassium or intracellular chloride75–77. 
We hypothesized that exposure of repetitive stimulation/pertubation 
generates a slow accumulation effect, which can push the system to the 
seizure state when a seizure threshold is reached.

We model this accumulation effect phenomenologically via the 
parameter m, which influences the oscillatory dynamics in the seizure 
onset state in the Epileptor model78,79. We render m time dependent, 
m = m(t), and introduce an exponentially decaying memory kernel of 
length r through a linear ordinary differential equation, which slowly 
builds up when an external stimulus is applied until the seizure thresh-
old is reached. In the absence of a stimulus, m(t) slowly returns back to 
baseline. H is the Heaviside function. When m is greater than the seizure 
threshold mthresh, the H function equals 1, which kicks the system into 
the seizure-like state. Otherwise, the H function equals 0.

The pial surfaces of both hemispheres define the spatial domain 
along which the network activity can unfold. Neural dynamics are gov-
erned by an extension of the original Epileptor model26. The extended 
Epileptor-Stimulation model includes a stimulation-accumulating 
state variable m that can destabilize the system and produce a seizure. 
The neural activity at every vertex i = 1, …, N of the network is governed 
by the following equations:

̇xi = yi − f1(xi) − zi + Iext + Istim

+γlc
N
∑
j=1

S( gi, j)H(x j,θlc) + γgc
L
∑
l=1

Wk,lH(Xl,θgc)

̇yi = c − dx2i − yi
̇zi = r(4(xi − x0 + nH(mi −mthresh)) − zi) + f2(zi)

ṁi = r(Istim −mi)

(1)

where:

f1(xi) = {
ax3i − bx2i if xi < 0

−(mi + 0.6(zi − 4)2)xi if xi ≥ 0

f2(zi) = {
−0.1z7i if zi < 0

0 if zi ≥ 0

H(x,θ) = {
1 if x ≥ θ

0, if x < θ

S(x) = 1
2
e−|x|

(2)

The state variables x and y describe the activity of neural populations 
on a fast timescale and can model fast discharges. The oscillation 

of the slow permittivity variable z drives the system autonomously 
between ictal and interictal states. The parameter x0 indicates the 
degree of excitability and directly controls the dynamics of the neural 
population to produce seizures or not. As m(t) plays an important role 
in the model with stimulation, Supplementary Fig. 10 demonstrates 
how the system behavior changes as m varies. As m increases from 0 
to 1.5, which is below the threshold (mthresh = 1.8), the oscillation in the 
upstate changes from stable spiral to a spiral with limit cycles (Supple-
mentary Fig. 10a–d). Higher values of m correspond to larger ranges of 
limit cycles in both dimensions, x and z. When m = 2.0, which exceeds 
mthresh = 1.8, m directly influences z, pushing the system into the seiz-
ing state. The variable m(t) is directly related to the excitability of the 
corresponding tissues. Tissue excitability in epileptogenic networks 
arises from a combination of factors, including ion channel dysfunc-
tion, an imbalance between excitation and inhibition, and altered ion 
homeostasis. However, care must be taken not to overinterpret its role, 
as we are working with a phenomenological model. There are two slow 
variables, z(t) and m(t). While z drives the gradual changes underly-
ing seizure initiation and termination, m increases by accumulating 
the stimulation effects through the influence of the electric field. As 
m increases, the stability of the system changes. Once m reaches the 
threshold value mthresh, it directly pushes z into a state that prepares the 
system to transition into a seizure state.

Each vertex i is locally connected to its neighbors through local 
connectivity and globally connected to other parts of the brain through 
global connectivity. Local connections, scaled by γlc, are described 
by a translationally invariant Laplacian coupling kernel S(gi, j) where 
gi, j denotes the geodesic distance along the cortical mesh between 
vertices i and j. The cortical mesh incorporates personalized geo-
metric features of the cortical surface derived from an individual’s 
T1-MRI. Global connections, scaled by γgc, along white matter fibers, 
are represented by the connectome matrix, where Wk,l denotes the con-
nection strength between brain areas k and l. Each vertex i is assigned 
to a brain area k = 1, …, L according to a cortical parcellation. For this 
study, we used the VEP parcellation. The average neural activity Xl of 
all vertices belonging to area l is coupled throughout the network and 
projected uniformly to all vertices of area k. The default parameters of 
the system are Iext = 3.1, c = 1, d = 5, r = 1, a = 1, n = 1, mthresh = 1.8, γgc = 0.1, 
γlc = 0.8, θgc = −1, and θlc = − 1. The time-varying input Istim describes 
the perturbation signal in each time step depending on stimulation 
parameters. To accomplish this, we computed the generated electric 
field from the two types of perturbation (1) an invasive SEEG stimula-
tion and (2) a non-invasive TI stimulation. These are described in two 
separate subsections below.

Calculation of the electric field of SEEG stimulation
The SEEG stimulation is applied to a pair of neighboring sensors, in 
which one acts as a cathode and the other one as an anode. This gener-
ates a bipolar pulse perturbation in the area where the electrodes are 
located. The parameters used clinically are restricted to frequencies of 
either 1 Hz or 50 Hz, weak amplitudes ranging from 0.1 mA to 3 mA, and 
pulse widths of 0.5–3 ms. In this paper, we used a frequency of 50 Hz, 
an amplitude of 3 mA, a pulse width of 2 ms, and a stimulation dura-
tion of 3.5 s and 3 s. The stimulus signal, ψ, is a waveform represented 
here as a biphasic pulse train of electrical current. The electric-field 
strength at each vertex depends on the distance between vertices 
and the stimulated pair of bipolar electrode leads. Shorter distances 
result in higher field strengths. To simplify, we identified the maximal 
field strength within each brain region and uniformly applied it to all 
vertices within that region, as shown at the bottom of Figs. 3a and 6a. 
We defined the Istim at each vertex as ψ × electric-field strength at this 
vertex, with an example shown in Supplementary Fig. 2. Please note that 
the effects of the stimuli on brain signals are dependent on multiple 
factors, including the nonlinearity of local dynamics, local and global 
connections, and the stimulation current.
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Calculation of the electric field of the TI stimulation
Non-invasive stimulation with TI is a recent method that aims to mimic 
deep brain stimulation’s capabilities to be both focal and subcorti-
cal without being invasive. This is done using the assumption that 
higher kilohertz stimulation frequencies have an ignorable effect on 
neuronal activity21,36. To obtain the distribution of the TI field in the 
gray matter, we started by computing the electric-field distribution 
from the simulation of tDCS via SimNIBS80. First, we reprocessed the 
individual T1-weighted MRI via the SimNIBS process ‘mri2mesh’, which 
resulted in the segmentation into five head tissues: white and gray 
matters, cerebrospinal fluid, skull and scalp. This process creates the 
tetrahedral meshes necessary for the finite element method for the 
simulation of the electric-field distribution. We computed the tDCS 
field for each pair of electrodes positioned based on the location of 
the co-registered 128 electrodes scalp-EEG cap, using the 10-5 system. 
Circular electrodes with a diameter of 10 mm and a thickness of 5 mm 
were directly applied on the head. Then, we projected these electric 
fields onto the resampled Freesurfer surface (20,484 vertices). We 
extracted the amplitude of the electric field at each vertex of the 
cortex surface. These fields derived from the coupled electrodes 
pairs were projected onto the normal of the cortical surface, then 
modulated by multiplying them with two sinusoids with frequencies 
of 1,000 Hz and 1,005 Hz, respectively, for 1 s. Two oscillatory electric 
fields, which were linearly summed, provided an interference field. 
To obtain a correct representation of the high-frequency activity, 
the sampling rate was 30 kHz. We extracted the 5 Hz peak envelope 
by using spline interpolation. Finally, we included this envelope in 
the virtual brain model as the source of external simulation for the 
cortex vertices (20,484).

For example, for patient 1, we targeted the highest TI stimulation 
effect on the left O2 in the VEP atlas27. We used the optimization pro-
cess in SimNIBS to identify the best 4 electrodes configurations (10-5 
scalp-EEG montage), which maximized the electric field in the left O2. 
This procedure allowed us to identify, in our case, PPO3–PPO5 and 
P5h–PO5h (ref. 29) as the best electrode couple for the left O2 stimula-
tion. Thus obtained electric-field strengths ranged up to 0.48 V m−1 at 
the cortical target sites, consistent with previously published empirical 
and simulation studies24,54. These field strengths are probably too weak 
to induce seizures in biological tissue. Nonetheless, future advance-
ments in multipolar TI—using more than two electrode pairs—could 
enable the generation of stronger, more focal electric fields at target 
locations while maintaining low applied electric currents38,81. For our 
demonstration cases, we rescaled the amplitude of the stimulus signal 
to be able to induce seizures in the phenomenological Epileptor model 
and used it as an input to the Istim parameter. A simulated time series of 
one selected vertex from the EZN is shown in Supplementary Fig. 3.

Forward solution for SEEG signals
The forward solution for the SEEG signals maps the neural activity 
from the sources to the sensors (SEEG contacts), represented by a 
source-to-sensor matrix (gain matrix). As sources for our model, 
we used the vertices of the pial surface for the cortical regions, and 
each subcortial region as a single node as in the neural mass model 
(NMM). Surfaces are represented as triangular meshes. For the NMM, 
we defined the mapping gj,k from the source brain region j to the sensor 
k as the sum of the inverse of the squared Euclidean distance di,k from 
vertex i to sensor k, weighted by the area ai of the vertex on the surface.

g j,k =
N j

∑
i=0

ai/d 2
i,k

Here vertex i belongs to region j which has Nj vertices in total. The 
area ai of vertex i was obtained by summing up one-third of the area 
of all the neighboring triangles. Vertices belonging to the same brain 
region were summed to obtain the gain for a single region of our brain 

network model. The resulting gain matrix has dimensions M × N, with 
M being the number of regions and N the number of sensors.

Matrix multiplication of the simulated source activity with the 
gain matrix yielded the simulated SEEG signals, that is, SEEGk(t) = ∑j

gj,kxj(t), where xj(t) is the time series of the source-level signals. This 
distance-based approach and the summation of all the vertices within 
each region neglect the orientation of the underlying current dipoles. 
Pyramidal neurons, which are oriented normal to the cortical sur-
face, are assumed to be the physiological source of any electric signal 
recorded with SEEG, scalp-EEG or MEG82. The direction of the dipolar 
momentum associated with the NMM at typical spatial resolutions 
of 10–20 cm2 in virtual brain networks of 100–200 nodes27. However, 
approaches that use high-resolution representations of the network, 
allowing for the computation of a surface orthogonal, have this abil-
ity. To solve the forward problem, we followed the analytical solution 
proposed in ref. 83 for electric fields in an unbounded homogeneous 
medium. This choice of forward model assumes no boundary effects 
of changes of conductivity at tissue boundaries. A previous study has 
shown that the error of an unbounded homogeneous conductivity 
model compared with a more accurate finite element method model 
with changes in conductivity is relatively small for electric fields gener-
ated by dipoles deep in the brain and electrodes close to the source84. 
Therefore, we can estimate the gain matrix elements gi,k approach by

gi,k = ai/(4πσ)Q ⋅ (rk − ri)/(|rk − ri|3)

where rk and ri are the position vectors of sensor k and source vertex 
i, respectively. ∣v∣ represents the L2 norm of a vector v. Q is the dipole 
orientation vector and σ is the electric conductivity. As we assume 
constant conductivity across the brain, it becomes merely a scaling 
factor, which we set to σ = 1.

Forward solution for scalp-EEG signals
To compute the forward solution of scalp-EEG signals, we first recon-
structed three individual surfaces (inner skull, outer skull and head) 
of the patient based on boundary element models using Brainstorm85. 
Then in Brainstorm, we co-registered the scalp-EEG electrodes posi-
tions (of the Hydrocel E1 128 channels electrode cap) onto the head 
surface, according to the fiducial points of the patient’s T1-MRI. We 
applied a slight manual correction to better orient the scalp-EEG 
cap to the individual anatomy. Finally, we derived an scalp-EEG for-
ward model using a 3-shell boundary element model (conductivity, 
0.33 S m−1, 0.165 S m−1, 0.33 S m−1; ratio, 1/20)86 and the OpenMEEG 
method implemented in Brainstorm87,88, to provide a realistic head 
model. Then we obtained a gain value for each dipole (20,484 vertices), 
with the constrained direction normal to the cortex surface, for each 
scalp-EEG electrode. Finally, the gain matrix derived from the head  
model was multiplied by the simulated time series of the brain sources 
to obtain the scalp-EEG activity, that is, EEGl(t) = ∑jg

EEG
j,l x j(t), where gEEGj,l  

from the source signal on brain region j to the EEG signal on channel l.

Calculation of the SEEG and scalp-EEG data features
We extracted the data features from the SEEG and scalp-EEG signal 
to be the input of the model inversion modules. The SEEG data were 
re-referenced using a bipolar montage, which was obtained using the 
difference between two neighboring contacts on one electrode. The 
two-dimensional Epileptor model, introduced below, is suitable for 
fitting the envelope of the seizure time series. Ideally, the envelope 
follows a slightly smoothed rectangular function from the onset until 
the offset of the seizure. To get a well-formed target that our model 
should fit, we extracted the bipolarized SEEG signal from 10 s before 
the seizure onset until 10 s after the seizure offset. We identified the 
outlier time points that were greater than two times the standard devia-
tion of the extracted signal and replaced them with the mean of the 
extracted signal. The signal was then high-pass filtered with a cut-off at 
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10 Hz to remove slow signal drifts. The envelope was calculated using a 
sliding-window approach with a window length of 100 time points. The 
signal inside the window was squared, averaged and log-transformed. 
From the resulting envelope, we again identified and removed outli-
ers, as described above. Finally, the envelope was smoothed using a 
lowpass filter with a cut-off of 0.05 Hz. The mean across the first few 
seconds of the envelope was used to calculate a baseline, which was 
then subtracted from the envelope. The same procedure was used for 
the EEG data, the only difference being that we used absolute values for 
the gain matrix, to get the accumulated effect on each EEG electrode 
throughout the entire seizure.

The HMC model inversion
By taking advantage of timescale separation and using averaging meth-
ods, the Epileptor can be reduced to a two-dimensional system89:

̇xi = I1 − x3i − 2x2i − zi

̇zi = (1/τ0) (4(xi − xi,0) − zi + K
N
∑
j=1

Ci, j(x j − xi))
(3)

where τ0 scales the length of the seizure. The external input is defined 
as I1 = 3.1. We used the two-dimensional Epileptor for the model inver-
sion, that is, the parameter estimate of the model, from the scalp-EEG 
and SEEG recordings.

For the individual SEEG model inversion, the forward solution is: 
SEEGk(t) = ∑jgj,kxj(t). For the individual scalp-EEG model inversion, the 
forward solution is: EEGl(t) = ∑jg

EEG
j,l x j(t).

For the multimodal model inversion, we projected the same source 
signals to the scalp-EEG and SEEG at the same time while we calculated 
the likelihood according to the HMC algorithm, that is, SEEGk(t) =  
∑jgj,kxj(t); EEGl(t) = ∑jg

EEG
j,l x j(t).

For the model inversion, we applied the No-U-Turn Sampler 
(NUTS), an adaptive variant of the HMC algorithm to sample the pos-
terior density of the model parameters. The performance of the HMC 
is highly sensitive to the step size and number of steps in the leapfrog 
integrator for updating the position and momentum variables in a 
Hamiltonian dynamic simulation90. We used NUTS, which is imple-
mented in Stan and extends HMC with adaptive tuning of both the step 
size and the number of steps in a leapfrog integration to sample effi-
ciently from the posterior distributions90,91. To overcome the ineffi-
ciency in the exploration of the posterior distribution of the model 
parameters, we used a reparameterization of the model parameters 
based on the map function from the model configuration space to the 
observed measurements10. Our reparameterization-based approach 
reduces the computation time by providing more effective sample 
sizes and removing divergences by exploring the posterior distribu-
tions of the linear combinations of regional parameters that represent 
the eigenvectors obtained from the singular value decomposition of 
the gain matrix. We denote the matrix of the eigenvectors of GTG as V 
and the new parameters as x∗i,0 = VTxi,0 and zi(t0)

∗ = VTzi(t0). We ran the 
model inversion on both empirical and simulated seizures with 16 
chains starting from 8 optimized initial conditions. The eight optimized 
initial conditions are the output of MAP estimation algorithm15. We ran 
the MAP estimation algorithm 50 times and selected the best 8 results 
in terms of the likelihood. We assessed model identifiability based on 
an analysis of posterior samples, which demonstrated that the sampler 
explores all the modes in the parameter space efficiently. The analysis 
includes trace plots (evolution of parameter estimates from draws over 
the iterations), pair plots (to identify collinearity between variables) 
and autocorrelation plots (to measure the degree of correlation 
between draws of samples). Sampling convergence of the algorithms 
was assessed by estimating the potential scale reduction factor and 
calculating the effective sample size based on the samples of the pos-
terior distributions, providing estimates of the efficient run times of 
the algorithm.

Calculation of the EVs
Using the HMC model inversion algorithm, we obtained the estimated 
source time series, and based on these, we calculated brain 
region-specific EVs. We checked the source time series (variable x of 
the two-dimensional Epileptor in equation (3)) of region i for values 
above a threshold of 0. The first occurrence of such a value is consid-
ered to be the onset of the seizure ti in that region. We define 
t0 = min(ti), i = 1,… , 162 . Brain regions with no estimated seizure  
(no values above 0) are assigned an onset value ti = 200. The EVi for 
brain region i is calculated as EVi = −log(((ti − t0) + 1)/20). Then we nor-
malized the EV vector to [0, 1] for each sample and plotted the distribu-
tion of EVs.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this work are available via Code Ocean: the compute 
capsules can be accessed via https://doi.org/10.24433/CO.3316132.v1 
(ref. 92; part 1) and https://doi.org/10.24433/CO.2143670.v1 (ref. 93;  
part 2). These data include a patient’s preprocessed anatomical infor-
mation and high-resolution functional simulation data, which can be 
used for relevant calculations and simulations presented in this paper. 
The patient raw datasets cannot be made publicly available due to 
the data protection concerns regarding potentially identifying and 
sensitive patient information. Interested researchers may access the 
datasets by contacting the corresponding authors and F.B. (Fabrice.
BARTOLOMEI@ap-hm.fr). Source data for Figs. 2–6 and Extended Data 
Figs. 1 and 2 are available with this paper.

Code availability
The code used in this work is available via Code Ocean: part 1, 
https://doi.org/10.24433/CO.3316132.v1 (ref. 92); part 2, https://doi.
org/10.24433/CO.2143670.v1 (ref. 93); The codes are also available via 
GitHub at https://github.com/HuifangWang/VBT_INS_Stimulation.git.
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Extended Data Fig. 1 | Estimating EZN from TI stimulation for a second 
patient with frontal lobe epilepsy (synthetic data). a The electric field of TI 
stimulation by two pairs of scalp-EEG electrodes (shown in red and orange). We 
applied a frequency of 1000 and 1005 Hz for the first and second electrode pairs, 
respectively. The Spatial distribution of the peak activity of the TI envelope is 
colored on the 3D brain. b Seizure dynamics were simulated using the Epileptor-
Stimulation model through the TI stimulation. Neural activity is shown on the 

cortical mesh at 4 different time points. c Selected synthetic SEEG time-series 
(top) and scalp-EEG time-series (bottom) from TI stimulation-induced seizure. 
The scaled-up time series during the seizure period are shown in red. d Posterior 
distribution of the EV (higher value indicates higher chance for seizure) for 8 
selected regions the same as Fig. 6d. e The highest chance of being the EZN as 
left-middle-frontal-sulcus in red mapped in 3D brain and left-F1-lateral-prefrontal 
and left-orbito-frontal-cortex in yellow.
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Extended Data Fig. 2 | The effect of increasing local connectivity within EZNs 
under SEEG stimulation as shown in Fig. 6. a Snapshot of source activity 
(corresponding videos available in the Supplementary Information) at two 
specified time instants for comparison when the local connectivity within EZN 
γEZlc  is r times the local connectivity γlc of other brain regions with r = 2, 3, 4, 5.  

b. When γEZlc = 2γlc, selected simulated SEEG time-series (top) and EEG time-series 
(middle) from SEEG stimulation-induced seizure. The scaled-up time series 
during the seizure period are shown in red. Posterior distribution of EVs (bottom) 
from the HMC sampling are shown when analyzing simultaneously SEEG and 
scalp-EEG. c Same as b, but under the condition γEZlc = 5γlc.
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