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Estimating the epileptogenic zone network (EZN) is animportant part of the

diagnosis of drug-resistant focal epilepsy and has a pivotal role in treatment
and intervention. Virtual brain twins provide a modeling method for
personalized diagnosis and treatment. They integrate patient-specific brain
topography with structural connectivity from anatomical neuroimaging
such as magnetic resonance imaging, and dynamic activity from functional
recordings such as electroencephalography (EEG) and stereo-EEG (SEEG).
Seizures show rich spatial and temporal features in functional recordings,
which can be exploited to estimate the EZN. Stimulation-induced

seizures can provide important and complementary information.

Here we consider invasive SEEG stimulation and non-invasive temporal
interference stimulation as acomplementary approach. This paper offers
ahigh-resolution virtual brain twin framework for EZN diagnosis based on
stimulation-induced seizures. It provides animportant methodological

and conceptual basis to make the transition from invasive to non-invasive
diagnosis and treatment of drug-resistant focal epilepsy.

In the most complex cases of drug-resistant focal epilepsy, accurate
diagnosis requires invasive stereo-electroencephalography (SEEG)
implantation. This procedure is crucial for estimating the epilepto-
genic zone network (EZN), a key element for successful treatment',
SEEG has become one of the principal techniques for delineating
EZNs**. In the past 15 years, several data analysis methods for quan-
tifying EZNs have been proposed based on the spectral analysis of
SEEG signals*®. Beyond pure data-driven analysis approaches, several
methods linking mechanistic models and data analysis have been
developed’ ', formally exploiting causal hypotheses within an infer-
ence framework. We developed a workflow for the estimation of a
patient’s EZN using personalized whole-brain models, called the virtual
epileptic patient (VEP)"* %, The VEP workflow was evaluated retrospec-
tively using 53 patients with 187 spontaneous seizures and is now being
evaluated in an ongoing clinical trial (EPINOV) with 356 prospective
patients with epilepsy'*". The virtual brain twin concept was proposed
based on the VEP workflow and has been extended to various brain dis-
orders". Virtual brain twins are personalized, generative and adaptive

brain models based on datafrom anindividual’s brain for scientificand
clinicaluse. In this study, we introduce a high-resolution virtual brain
twin workflow, specifically designed for estimating the EZN using a
stimulation paradigm.

SEEG stimulation, involving direct electrical stimulation through
SEEG electrodes, can be used to map brain function, as well as to
provoke seizures for better EZN diagnosis, especially when sponta-
neous seizures are not obtained. SEEG-stimulation-induced seizures
(at1Hz or 50 Hz, usually with pulses of 1 ms at 1-3 mA) are an impor-
tant tool for localizing the EZN and are also associated with a better
post-surgical outcome™ . First, we propose a high-resolution person-
alized whole-brain model—avirtual brain twin—dedicated to assessing
stimulations performed through SEEG electrodes. Then, we evaluate
the capacity of our approach to translate from invasive stimulation
and recording via SEEG to non-invasive procedures using scalp-EEG
recordings and transcranial electrical stimulation techniques, nota-
bly temporal interference (TI) stimulation”. The recently developed
Tl stimulation has the capacity of reaching deeper structures than
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Fig. 1| The workflow of the virtual brain twin for estimating the EZN using
stimulation techniques. a,b, A personalized high-resolution model (a) is
based onindividual brain geometry extracted from T1-weighted MRl and
structural connectivity from tractography on diffusion-weighted MRI data (b).
High-resolution virtual brain models simulate neural source activity with
spatial resolutions of about 10 mm?. The modeling parameters are inferred
from the spontaneous SEEG recordings (b). ¢,d, We illustrate two types of
stimulation: SEEG and TI, to induce seizure activity. ¢, SEEG stimulation uses
bipolar stimulation in which two electrodes are used: one serves as the cathode
and the other as the anode. The electric current flows between two electrodes,
whichis parameterized by current amplitude, pulse width and frequency.

d, TIstimulation applies two current sources (/) simultaneously via electrically
isolated pairs of scalp electrodes (green and pink) at kliohertz frequencies
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fandf+ Af. The currents generate oscillating electric fields, which results in

an envelope amplitude that is modulated periodically at Af. The electric field
influences the brain activity that can be generated by the high-resolution
personalized whole-brain model (a). The red and blue dots represent SEEG
and scalp-EEG electrodes, respectively. e, The simulated source activity can be
mapped onto the corresponding SEEG and scalp-EEG signals, through the gain
matrices, which are constructed based on the locations of SEEG and scalp-EEG
electrodes relative to the source vertices. The red curves on the scalp-EEG
recordings are plotted using a different scale to visualize the signals following
the high-amplitude signals induced by Tl stimulation. f, By utilizing data features
extracted from SEEG and scalp-EEG signals, Bayesian inference methods can
estimate a posterior distribution of EVs, suggesting the potential EZN.

conventional transcranial direct- and alternating-current stimula-
tion (tDCS and tACS)*?*. Thus, combining the advantages of tDCS
and deep brainstimulation®, TIstimulation is non-invasive, focal and
capable of targeting deep brain structures. Tl stimulation exploits the
brain’s insensitivity to high-frequency electric fields in the kilohertz
range, as demonstrated in a recent clinical trial with patients with
epilepsy?. Tl stimulation occurs when electric fields generated by
multiple electrode pairs with slightly different frequencies interfere
atatargetlocation. Thisinterference produces an envelope modula-
tion at a lower frequency—equal to the difference between source
frequencies (normally below 150 Hz)—which effectively stimulates
the target tissue.

In summary, this study presents a workflow for estimating the
EZN using a personalized high-resolution virtual brain twin under a
stimulation paradigm. We develop a pipeline that (1) builds a personal-
ized high-resolution brain model for either SEEG or Tl stimulation; (2)
estimates the EZN from stimulation-induced seizures, and validates
it by simulated data; (3) refines the estimation of EZN by integrating
multiple recording modalities, such as by combining scalp-EEG and
SEEG; and (4) extends the pipeline to incorporate region-specific het-
erogeneity in local connectivity and support different brain atlases.
This research provides a necessary step for (1) a series of scientific
and clinical studies, such as optimization of stimulation parameters
for diagnosis and treatment; (2) moving frominvasive to non-invasive
diagnosis and treatment of drug-resistant focal epilepsy; and (3) natural
integration of multiple functional data modalities.

Results

VEP-stimulation workflow

Webuilt ahigh-resolution virtual brain twin workflow to estimate the EZN
using stimulation techniques. First, we built a virtual brain twin based
on available data before stimulation. An EZN is defined as the tissue
responsible for generating seizures and may involve distant brain areas
characterized by altered excitability'. Our model-based high-resolution
workflow using perturbation techniques for diagnostic EZN mapping
isshownin Fig.1and a detailed flowchart is shown in Supplementary
Fig. 1. First, high-resolution full-brain network models (Fig. 1a) were
established using patient-specific data from patients with epilepsy. The
structure of the model was defined by the detailed surface of the cortex
and the subcortical volumes from T1-weighted MRI. The global struc-
tural connectivity between brain regions through white matter fibers
was estimated from diffusion-weighted magnetic resonance imaging
(MRI). The cortical surface datawere generated from T1-weighted MRI,
resulting in surfaces with 20,284 vertices with a vertex area of about
10 mm? We simulated the time series on the patient’s specific structural
scaffold using the phenomenological Epileptor model*, a system of
differential equations that can describe seizure initiation, propagation
and termination, resulting in electrophysiological seizure-like events.
The spatial domain of the Epileptor is given by the high-resolution net-
work of neural populations; thus, seizures can propagate locally across
neighboring vertices of the cortex and globally through white matter
fiber connections’. The initial personalized modeling parameters can
beinferred from the spontaneous seizure recording®.
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Fig. 2| VEP diagnostic mapping for spontaneous seizures (empirical data).

a, SEEG recordings from one seizure in a 23-year-old female patient. The left axis
shows the names of the selected electrode channels. b, Posterior distribution
ofthe EVs (higher value indicates higher probability of seizure) for ten selected
regions obtained from the HMC pipeline. Each violin plot shows the distribution
ofthe entire data range using a kernel density estimate. The three bars represent
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the 25th percentile, the median and the 75th percentile, respectively. All violin
plotsin this paper follow the same format. ¢, Heatmap of the left 02 identified by
VEP (inred) shownin a preoperative T1-MRI. d, Heatmap of the left 02 identified
by VEP (inred) shownin a postoperative T1-MRI. e, The left 02 (in red) was
projected on the patient’s 3D meshes.

Wethen developed a high-resolution virtual brain twin designed
for stimulation. First, we calculated the electric fields induced by
both stimulation methods (Fig. 1c,d). For the SEEG stimulation, two
SEEG electrodes serve as cathode and anode to generate bipolar
stimulation and electric current flow is parameterized by current
amplitude, pulse width and frequency (Fig. 1c). The perturbation
effect was applied to the vertices of the high-resolution surface
through the SEEG-to-source mapping, with perturbation strength
decaying as the distance between vertices and electrodes increased.
For Tl stimulation, we calculated the amplitude of the envelope of
theTlelectricfield projected onto the surface normal vector ateach
vertex (Fig.1d). Both types of stimulation generated an accumulation
inthe slow state variable m of the Epileptor-stimulation model (equa-
tion (1)), which represents stimulation-induced tissue changes. When
mreaches agiven threshold, the model undergoes a transition into
theseizure state. A post-SEEG implantation computed tomography
(CT)scanisusedtolocalize SEEG contacts and co-register them with
thestructural scaffold. Scalp-EEG electrodes were placed on the scalp
using the standard international 10-5 system. This high-resolution
model allows us to consider detailed electric dipoles, generated
by neural activity, for building high-fidelity forward solutions.
The source-to-sensor matrix maps the activity from the neural
sources—located at vertices of the cortical surface and subcortex—to
SEEG or scalp-EEG electrodes, taking into account their orientation
and distance.

Model inversion estimates patient-specific brain model param-
eters, especially epileptogenicity and global network scaling using
Hamiltonian Monte Carlo (HMC) sampling techniques from Bayesian
inference methods'*". The estimationis based on the structural brain
scaffold, modeled seizure dynamics and the data feature extracted
from scalp-EEG and/or SEEG seizure recordings (Fig. 1e). The model
inversion uses anon-informative prior where all the brain regions have
the same prior distribution (the prior assumptionis thatall regions are
healthy). The result is the posterior probability from which the EZN is
identified. We also introduced multimodalinference for simultaneous
SEEG and scalp-EEG to infer the EZN (Fig. 1f).

Virtual brain twins for SEEG stimulation

We used the data from a right-handed 23-year-old female patient
diagnosed with left occipital lobe epilepsy toillustrate how to use our
workflow. We first extracted the brain geometry, the structural con-
nectivity matrix and the source-to-sensor mapping using this patient’s
T1-weighted MR, diffusion-weighted MRl and post-SEEG-implantation
CT scans. We built the whole-brain neural mass model based on this
anatomicalinformation. Then we ran the HMC algorithm for three spon-
taneous seizures recorded fromthis patient (one of the three seizures
with selected electrodes is shown in Fig. 2a). We pooled the posterior
distribution from the three seizures, in which the left lateral occipital
cortex (region O2 (in the VEP atlas”)) was consistently identified as
partofthe EZN. Then we projected the left 02 onto both preoperative
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Fig. 3 | Estimating EZN from a SEEG-stimulation-induced seizure (synthetic
data). a, Top: GL'5-6 (large blue/red sphere) is the stimulated contactin the left
occipital lobe, using a bipolar pulse stimulation (50 Hz for a duration of 3.5 s with
pulse duration 1 ms). Bottom: spatial map showing the amplitude of electric field
(indicated by the color bar) at each brain vertex, induced by SEEG stimulation
from contact pair GL'5-6. b, Neural source activity inarbitrary units (a.u.) is
shown on the cortical mesh at five different time points, with values indicated

by color. The seizures are located around the left O2 region of the VEP atlas.

¢, Selected simulated SEEG time series from a SEEG-stimulation-induced seizure.

f Spatial map of EZN

Left 02

Left lingual gyrus
Left occipital pole

d, Posterior distribution of the EVs (higher value indicates higher chance for
seizure) of nine selected regions obtained from HMC sampling. Each violin plot
shows the distribution of the entire data range using a kernel density estimate.
The three bars represent the 25th percentile, the median and the 75th percentile,
respectively. Red regions indicate highest chance of being the EZN; the other
areasareingreen. e.f, The region of the highest EV posterior distributionis the
left 02inred shown in T1-MRI (e) and the 3D brain (f). The two regions (the left
lingual gyrus and the left occipital pole) are shown in yellow.

and postoperative T1-MRI slides and three-dimensional (3D) brain
meshes (inFig. 2c-e). The patient underwent resective surgery, in which
alarge portion of the left 02 was removed (in Fig. 2d), and was almost
seizure-free after surgery (surgery outcome class of Engel II’®). On the
basis of this result, we built the high-resolution whole-brain neural field
model for SEEG and Tl stimulation to test the hypothesis that the left
02 was the EZN of the patient.

To model direct electrical stimulation by SEEG electrodes in the
brain, we first mapped the contribution of SEEG stimulation current
to brain source activity. We retrieved the contribution from a pair of
electrodes, in which the perturbation is applied to the brain regions
based on the sensor-to-source mapping matrix”. Then we calculated
the effect of the bipolar pulse stimulation (50 Hzforadurationof 3.5 s
on bipolar GL'5-6 electrode leads) on each vertex of the cortex mesh
(Fig.3a). We used the Epileptor-Stimulation model at each of the 20,284
vertices. The stimulation leads to an accumulation in a state variable
mthat pushes the brain to seize (Supplementary Fig. 2). The seizures

were located around the left O2 regions (Fig. 3b and Supplementary
Video1). Fromthese simulated neural source signals, we obtained SEEG
signals (Fig. 3c) using the source-to-sensor matrix.

These synthetic SEEG recordings (Fig. 3¢) were used for model
inversion, to estimate the EZN. We obtained the left 02 with the high-
est epileptogenic values (EVs) out of all the samples according to the
posterior distribution from the HMC algorithm (Fig. 3d). The two
neighboring regions (the left lingual gyrus and the left occipital pole)
were the second group of candidates that could belong to the EZN.
The heatmap projected on the patient’s T1-MRI revealed the spatial
mapping of the EZN (sagittal, axial and coronal view images shown
in Fig. 3e). The spatial mapping of these three regions in 3D brain is
highlighted in red and yellow in Fig. 3f.

Virtual brain twins for Tl stimulation
We here demonstrate how the pipeline works for TIstimulation. First,
we began with high-resolution twin modeling for this patient based
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Fig. 4| Estimating EZN from TI-stimulation-induced seizure (synthetic

data). a, The electric field of TIstimulation by two pairs of scalp-EEG electrodes
(showninred and orange) based on the 10-5 international reference system,
using an extended scalp-EEG cap from SIMNIBS?. We applied stimulation at
1,000 Hzand 1,005 Hz through the first (PPO3, P5Sh) and second (PPOS, PO5h)
scalp electrode pairs, respectively. The electrodes PPO3, P5Sh, PPO5 and PO5Sh
are part of the extended 10-5 EEG system and correspond to intermediate scalp
locations over the parietal and parieto-occipital regions. The spatial distribution
ofthe amplitude of the Tl electric field is colored in the 3D brain. b, Seizure
dynamics were simulated using the Epileptor-Stimulation model through the TI

f Spatial map of EZN

2 Left O1
/

Left 02

stimulation. Neural activity is shown in color on the cortical mesh at six

different time points. The seizures are located around the left 02 regions of

the VEP atlas. ¢, Simulated scalp-EEG time series from TI-stimulation-induced
seizure. The y-axis shows the names of selected scalp-EEG channels. The scaled-
up time series during the seizure period is shown inred. d, Posterior distribution
of the EVs (higher value indicates higher chance for seizure) for ten selected
regions obtained from the HMC sampling. Red regions indicate highest chance
ofbeing the EZN; the others are in green. e,f, The region of the highest EV posterior
distributionis the left 02 in red shown in T1-MRI (e) and the 3D brain (f). The second
region (left O1) is showninyellow.

on spontaneous seizures (Fig. 2). We calculated the Tl electric field,
which is projected onto the cortical surface by stimulating two pairs
of scalp-EEG electrodes (PPO3-P5h and PPO5-PO5h* in Fig. 4a) at
frequencies of 1,000 Hz and 1,005 Hz, respectively. The stimulation
amplitudeis determined based on the assumption that the components
ofthe field that have the greatest impact are those that are parallel to
the neurons’axons®. On the basis of the Tl electric field, the stimulation
inputis applied to the Epileptor model on each vertex of the cortical
mesh (Supplementary Fig. 3). We simulated the brain source signals
oneach vertex of the whole brain by considering both global and local
connectivity (Fig. 4b and Supplementary Video 2). We then mapped the
activities from the vertices of the cortical surface onto the scalp-EEG
signals (Fig. 4c) using the source-to-sensor mapping matrix.

We extracted the data features from these synthetic scalp-EEG
recordings (Fig.4c) asinput to the HMC modelinversion to estimate the
epileptogeniczone. Fromthe posterior distribution of EVs, we obtained
theleft 02 asfirstand the left Ol as the second candidate belonging to

the EZN (Fig. 4d). The heatmap of these two regions projected on the
patient’s TI-MRI shows the spatial mapping of the EZN (sagittal, axial
and coronal view images shown in Fig. 4e) and the 3D brain in Fig. 4f,
wheretheleft 02isinred and the left Olin yellow.

Multimodal inference

For patients with multiple seizure recordings or simultaneous multiple
modality recordings (here we used SEEG and scalp-EEG as examples), we
integrateboth modalitiesinto the modelinversionalgorithmto combine
theirinformationin the parameter estimation process and potentially
improve clinical decision-making. Here we demonstrated two cases
inwhich the EZN estimation from multimodal functional recordings
were integrated. The first case estimated the EZN from simultaneous
scalp-EEG and SEEG recordings under SEEG stimulation (Fig. 5a and
Supplementary Fig. 4a). Here we mapped the same source signals to
both the SEEG and scalp-EEG sensors. Two key added values arise from
performing simultaneous SEEG and scalp-EEG recordings. First, the
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Fig. 5| Multimodal inference for EZN estimation from simultaneous SEEG and
scalp-EEG recordings (synthetic data). a, We combined ictal recordings from
SEEG (middle top) and scalp-EEG (middle bottom) induced by SEEG stimulation
(left), using multimodal inference to obtain the distribution of EVs (right top).
Theresults were mapped in the 3D brain. In this case, we obtained the ground-
truth left 02 inred. The spatial distribution of source activity at 4,634 msis shown

atthe bottom left. b, We combined ictal recordings from SEEG (middle top) and
scalp-EEG (middle bottom) induced by Tl stimulation (left), using multimodal
inference to obtain the distribution of EVs (right top). The results were mapped
inthree dimensions. In this case, we obtained the ground-truth left 02 inred and
additional brain region as left STS posterior in yellow. The spatial distribution of
source activity at 9,980 ms is shown at the bottom left.

scalp-EEG provides awhole-brain sampling although it mainly measures
weak cortical surface signalsin contrast to the SEEG, which samples only
partial brain space with relatively strong signals from deep structures
aswell.Second, this pipeline provides away to evaluate theroles of the
scalp-EEG so that we could design a less invasive SEEG implantation in
the future. The posterior of the EVs from a simultaneous model inver-
sionshowed theleft 02 as the EZN (Fig. 5a). The second case estimated
the EZN from simultaneous scalp-EEG and SEEG recordings under TI
stimulation (Fig. 5b and Supplementary Fig.4b). The posterior of the EVs
from the multimodal modelinversionshowed the left 02 as the EZN and
theleft superior temporal sulcus (STS) posterior as asecond candidate.

To complement the cases, we utilized the multimodal modelinver-
sion module on SEEG recordings from SEEG stimulation (Fig. 5a) and
scalp-EEG recording from TI stimulation (Fig. 5b) in Supplementary
Information. The posterior of the EVs from the multimodal model
inversionshowed the left 02 asthe EZN (Supplementary Fig. 4c). Notice
that, inthis case, the SEEG and scalp-EEG data here were not simultane-
ouslyrecorded. The SEEG and TIstimulationinduced the seizures with
different initial conditions. Then results would be valid only with an
assumption that the HMC sampled all feasible initial conditions. For
comparison, inthe fourth case, we pooled the posterior distributions
of the EVs from the SEEG (in Fig. 3d under SEEG stimulation) with the
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Fig. 6 | Estimating EZN from SEEG stimulation for a second patient with

frontal lobe epilepsy (synthetic data). a, Top: PM’3-4 (large blue/red sphere) is
the stimulated contactin the left frontal lobe, using a bipolar pulse stimulation
(50 Hzfor a duration of 3 s with pulse duration 1 ms). Bottom: spatial map
showing the amplitude of electric field (shown in the color bar from low (left)

to high (right) values) at each brain vertex, induced by SEEG stimulation (from
sensor PM’3-4). b, Seizure dynamics were simulated using the Epileptor-
Stimulation model and induced through SEEG stimulation. Neural source activity
inarbitrary units (a.u.) isshown on the cortical mesh at five different time points,
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obtained from the HMC sampling when analyzing simultaneously SEEG and
scalp-EEG. SMA, supplementary motor area. e, The highest chance of being the
EZN as left F1lateral prefrontal in red mapped in the 3D brain and left F1 mesial
prefrontal cortex and left-middle frontal sulcus in yellow.

EVs from the scalp-EEG (in Fig. 4d under Tl stimulation). We obtained
the left 02 as the intersection of the two distributions to be the only
brainregioninthe EZN (Supplementary Fig. 4d).

Validation of the pipeline

To validate the pipeline, we added the results of a second patient with
left frontal lobe epilepsy. The patient underwent resective surgery
resultinginseizure freedom (surgery outcome class of Engel I’®). Eight
brainregionsincludingthe orbitofrontal, anterior cingulate, F1lateral
prefrontal, F2 rostral, superior frontal sulcus rostral, frontal pole and
F1mesial prefrontal corticesin the left hemisphere were resected. We
built the high-resolution whole-brain model for two types of perturba-
tionunder the hypothesis that the left F1lateral prefrontal cortexisthe
EZN.Tomodel direct electrical stimulation by SEEG electrodesin the
brain, we calculated the effect of the bipolar pulse perturbation (50 Hz,
foradurationof3 sonbipolar PM’3-4 electrode leads) (Fig. 6a). The sei-
zure wasinduced around the left F1lateral prefrontal cortex. Fromthe

simulated neural source signals (Fig. 6b and Supplementary Video 3),
we obtained simultaneous SEEG and scalp-EEG signals (Fig. 6¢) using
the source-to-sensor gain matrix. These synthetic SEEG and scalp-EEG
signals during the ictal period served as input for multimodal inference
to estimate the EZN. We obtained the left F1lateral prefrontal cortex
astheregionwith the highest EV from the HMC algorithm (Fig. 6d e).
Thetwo neighboring regions (the left F1 measial prefrontal cortex and
theleft-middle frontal sulcus) were identified as secondary candidates
that could belong to the EZN (Fig. 6d,e).

We alsoillustrated the results of this patient with Tl stimulation
in Extended Data Fig. 1. First, we used high-resolution modeling to
simulate TIstimulation. We calculated the Tl electric field, whichis pro-
jected onto the cortical surface by stimulating two pairs of scalp-EEG
electrodes (FPz-AF3 and AFz-Fplin Extended DataFig.1a) at frequen-
ciesof 1,000 Hzand 1,005 Hz, respectively. The brain source signals on
each vertex of the whole brain is shown in Extended Data Fig. 1b and
Supplementary Video 4. We then mapped the neural activity fromthe
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cortical surface onto the SEEG and scalp-EEG electrodes (Extended Data
Fig.1c) using the source-to-sensor mapping matrix. We extracted the
data features from simultaneous synthetic ictal SEEG and scalp-EEG
recordings (Extended Data Fig. 1c), which served as the input to the
multimodalinference to estimate the EZN. We obtained the left-middle
frontal cortex as the region with highest EVs from all samples (Extended
Data Fig.1d,e). The left F1lateral prefrontal and left orbitofrontal sul-
cus were identified as the second candidates belonging to the EZN
(Extended DataFig.1d,e).

We next demonstrated the role of heterogeneity of local connec-
tivity. Here, local connectivity refers to how neuronal populations at
different vertices are connected within aspecific area or neighborhood.
We introduced such heterogeneity in local connectivity under the
hypothesis that within the EZN, local connectivity increases due to syn-
apticremodeling™ or the loss of inhibitory synapses®. Extended Data
Fig.2illustratesbothsource-level and sensor-level SEEG and EEG signals
whenlocal connectivity withinthe EZNis two to five times higher than
that in other brain regions. Compared with the results obtained with
homogeneous local connectivity (Fig. 6), only minor differences were
observed during seizure periods. However, the neighborhood of the
EZN showed a lower mean distribution of EVs from model inference,
making it easier to identify the EZN.

Another application of the proposed pipeline is to test and miti-
gate false-positive stimulation results (non-habitual seizures being
triggered) through a carefully designed protocol and optimized simu-
lation and stimulation parameters. Here we systematically evaluated
the effects of stimulation in terms of stimulation locations in two set-
tings. (1) Within-electrode stimulation (PM’): stimulating all pairs of
electrodeleads within the same electrode usingidentical stimulation
parameters (Supplementary Fig. 5). (2) Distributed cortical stimula-
tion: stimulating ten additional SEEG bipolar pairs implanted in ten
different cortical regions (Supplementary Fig. 6). Our simulations
demonstrated that stimulation does not induce seizures in healthy
regions. The theoretical basis for this lies in the seizure threshold
of each region, which is directly related to its epileptogenicity. The
EZN has a lower seizure threshold compared with healthy regions.
This parameterization ensures that weak stimuli—based on clinically
applied stimulation parameters—can trigger seizures in the EZN but
notin healthy tissue.

The choice of atlas is an important topic in neuroscience stud-
ies, specifically for whole-brain network studies, and should be
aligned with the specific research objectives. We selected the VEP
atlas?’ becauseit is purposefully designed for epileptology, consider-
ing both anatomical and functional features within each structure,
particularly in relation to EZN and surgical applications. Moreover,
we extended our pipeline to be easily adaptable to other atlases,
using the Desikan—Killiany (DK) atlas®?* as an example. We demon-
strated thisapplication using the DK atlas while maintaining the same
simulation parameters as those used for the VEP atlas, including the
stimulation electric field in Supplementary Fig. 7. The simulation of
source activity and SEEG and scalp-EEG remains similar, particularly
in terms of spatiotemporal patterns. This is because the primary
difference arises from variations in the size of the EZN and struc-
tural connectivity (Supplementary Fig. 7a—c). The forward solution
remains unchanged owingto the high-resolution stimulation at the
source level. However, the estimated EZN is larger in the DK atlas
because its brain regions are more extensive compared with those
in the VEP atlas. As an example, we examined a case where the EZN
networkin the superior frontal gyrusis substantially larger in the DK
atlasthaninthe VEP atlas. Inthe VEP atlas, the superior frontal gyrus
issubdivided into five distinct structures.

A detailed quantitative comparison of SEEG and TI stimulation
effects—characterized by spatial distribution and activation ampli-
tude—is provided in Supplementary Information section ‘Quantifica-
tion of SEEG and Tl stimulation effects’ and Supplementary Fig. 8.

Discussion

The first application of this pipeline can help us to answer a crucial
diagnostic question: how toinfer the underlying EZNs from stimulated
seizures? To answer this question, it is necessary to investigate the
following problems, illustrated in Supplementary Fig. 9. First, what
is the proper range of stimulation parameters to induce seizures for
diagnosis? Currently, no standardized stimulation protocols exist®.
The French guidelines suggest parameters for both low-frequency
(1Hz) and high-frequency (50 Hz) stimulation with specified ranges on
pulse width, pulse intensity and stimulation duration®. Our personal-
ized whole-brain model has the ability to predict the stimulation effect
for individual patients given specified stimulation parameters and
shouldbe validated in future empirical studies. On the patient-specific
level, among the proper range of stimulation parameters, then what
arethe optimal stimulation parameters for inducing seizures for diag-
nosis? Second, what is the relationship between the EZN triggered by
stimulation and the one occurring during spontaneous seizures? More
specifically, we want to investigate whether the EZN estimated from
stimulation-induced seizures equals the EZN of spontaneous seizures.
It could be possible that stimulation forces seizures in brain regions
that would not be epileptogenic otherwise, or that stimulation uncovers
only asubset of epileptogenic regions. Even for spontaneous seizures,
the limited observations of recordings of spontaneous seizures may
also tell only part of the story. Third, how many seizures induced by
SEEG stimulation are sufficient for identifying the fullunderlying EZN?
We caninvestigate this question by systematically evaluating the EZNs
on SEEG-stimulation-induced seizures generated by virtual brain twin
models with given EZNs. The proposed VEP-stimulation pipeline with
high-resolution modeling provides areasonable framework to address
all these questions.

The diagnostic pipeline for TIstimulation can provide atheoretical
basis for non-invasive diagnosis and treatment of epilepsy. TIstimula-
tionis agood candidate for both diagnosis and treatment in epilepsy
within the non-invasive stimulation family. Other non-invasive stimula-
tion techniques, such as tDCS*, are mostly used for treatment only in
epilepsy. The key feature of Tl stimulation s that it enables a focal stim-
ulation that canreach deep brain structures non-invasively?-*°, such as
the hippocampus, which quite oftenisinvolvedin the EZN in temporal
lobe epilepsy. Tl stimulation has evoked seizure-like events in the
mouse hippocampus that have been experimentally well controlled”
and strategies exist to replicate high-suprathreshold electric-field
valuesinhumans®. Our study presentsapipeline for predicting the use
of Tlindiagnosing the EZN in human epilepsy, and lays the foundation
for optimizing Tl-stimulation strategies. This framework can be further
extended to build high-resolution, patient-specific models for future
therapeuticinterventions.

To achieve non-invasive diagnosis and treatment with Tl in the
future, we need to optimize the workflow using purely non-invasive
data. Akey nextstep, directly building on this work, is to systematically
estimate the EZN from scalp-EEG signals within a cohort of patients.
In the presented example, we obtained a good estimate of the EZN
from non-invasive scalp-EEG signals, with localization in superficial
cortical gray matter. Future studies should assess the robustness of
the VEP across different epilepsy types and EZN locations. In addi-
tion, the required spatial resolution (number of scalp-EEG recording
channels) foraccurately identifying the underlying EZN needs further
investigation. Another future directionis to develop a non-invasive VEP
using high-resolution magnetoencephalography (MEG) data. We have
obtained preliminary results with*Na MRI*’ and now need to develop
methods for VEP estimation and reconstruction from high-resolution
EEG and MEG data. A further question is how precisely the EZN can be
identified using interictal spikes or network features from EEG and
MEG—potentially allowing seizure-inducing stimulation to be avoided.

Virtual brain twins have the capability to integrate multimodal neu-
roimaging data, including anatomical recordings, such as T1-weighted
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MR, diffusion-weighted MRIand CT; as well as functional ones, such as
scalp-EEG, MEG, SEEG, subdural grid, positron emission tomography
and functional MRI. In this work, we extend this integration by design-
ingamultimodalinference version of the HMC algorithm for simultane-
ous functional recordings of SEEG and scalp-EEG*’, and can be further
extended to other combinations, including MEG and scalp-EEG*, and
SEEG and MEG*. Across functional recordings, the main distinction
lies in the forward solution. The usage of this multimodal inference
is also valid in cases where different recordings start with the same
brain states, or when the sampling algorithms can cover all possible
initial conditions.

We extended this pipeline by incorporating the capability to model
heterogeneous local connectivity in a brain region-specific manner.
Three key elements must be taken into account: (1) the specific EZN
associated with different types of epilepsy, (2) the type of neural models
applied, and (3) personalization. In virtual brain twins, local connectiv-
ity should be derived from the anatomical information, rather than
from functional connectivity and effective connectivity*’. Anatomical
connectivity varies across different EZNs depending on the type of
epilepsy. For example, increased local connectivity within the EZN may
result from enhanced excitatory synapse formation driven by axonal
sprouting*** or from the loss of inhibitory synapses®. Conversely, neu-
ronal loss, axonal damage and synaptic pruning may reduce anatomical
connectivity, although the exact mechanisms remain unclear*. The
choice of the neural activity model also hasanimportantrolein repre-
senting the heterogeneity of local connectivity. Our resultsindicate that
incorporatinglocal connectivity heterogeneity does not substantially
alter brain activity or seizure propagation when using the Epileptor
model in this pipeline. The Epileptor, as a phenomenological model,
and its excitability parameter x, already account for the coexistence
of increased excitatory connectivity and decreased inhibitory con-
nectivity, which reflects the hyperexcitability of epileptogenic tissue.
However, region-specificlocal connectivity may play amoreimportant
roleinbiophysical models*”**, Currently, personalized measurements of
local connectivity are not feasible in routine clinical practice. However,
advancementsin neuroimaging techniques may provide suchinforma-
tion forresearch purposesand, in the future, for clinical applications®.

The current pipeline has several limitations. Model-based
approaches are usually computationally expensive and parameter
sensitive, which may pose challenges for real time use in clinical rou-
tine, such as the optimization of stimulation parameters. The current
pipeline does not consider the dynamics of the epileptic disorders over
long timescales nor the long-term effects of the stimulation. Ongoing
systematic evaluations and studies will also improve the current pipe-
linein the following ways. High-resolution modeling of the subcortical
structure and a more realistic forward resolution may improve the
whole-brain modeling. The introduction of regional variations (such
as cell density and receptor density)*** may provide a fundamental
way to improve the current pipeline.

The virtual brain twin concept in stimulation here can be extended
to other brain disorders: Parkinson’s disease® and schizophrenia.
Studies have demonstrated the safety of Tlin human participants®**,
and explored its application in brain disorders, such as epilepsy**,
Alzheimer’s disease’®, Parkinson’s disease® and essential tremor>®,
For broader applications across different brain disorders, selecting an
appropriate neural mass model and key parametersis akey challenge.
Furthermore, as the choice of the right atlas matters, the pipelineillus-
trates the application to different atlases. The proposed pipeline can
be adapted for alternative stimulation techniques, such as deep brain
stimulation®” and other non-invasive modalities such as tDCS* and
tACS?. These stimulation methods are commonly used for therapeutic
interventions, and akey challenge lies in refining and adapting the mod-
elstoaccount for both excitatory and inhibitory effects. Furthermore,
incorporating neuromodulation into the modeling process is crucial
for accurately capturing these effects.

Methods

Patient data

We used the data from two patients who underwent a standard pre-
surgical protocol at La Timone Hospital in Marseille. The first patient
isa23-year-old female diagnosed with left occipital lobe epilepsy. She
underwentresective surgery and was nearly seizure-free after surgery,
with an Engel Class Il outcome. The second patient is a 19-year-old
male with left frontal lobe epilepsy. He underwent resective surgery
resulting in complete seizure freedom and an Engel Class I outcome.
Informed written consent was obtained in compliance with the ethical
requirements of the Declaration of Helsinki and the study protocol was
approved by the local Ethics Committee (Comité de Protection des Per-
sonnes sud Méditerranée1). Each patient underwent acomprehensive
presurgical assessment, which included medical history, neuropsycho-
logical assessment, neurological examination, fluorodeoxyglucose
positron emission tomography, high-resolution 3 T MRI, long-term
scalp-EEG and invasive SEEG recordings. They received non-invasive
T1-weighted imaging (MPRAGE sequence, repetition time 1.9 s, echo
time 2.19 ms, voxelsize 1.0 x 1.0 x 1.0 mm?) and diffusion-weighted MRI
images (withan angular gradient set of 64 directions, repetition time
10.7 s, echo time 95 ms, voxel size 1.95 x 1.95 x 2.0 mm?, b-weighting of
1,000 s mm™.) Theimages were acquired onaSiemens Magnetom Verio
3 TMR-scanner. The patients had invasive SEEG recordings obtained by
implanting multiple-depthelectrodes, each containing10-18 contacts
2 mm long and separated by 1.5 mm or 5 mm gaps. The SEEG signals
were acquired on a 128 channel Deltamed/Natus system. After the
electrodeimplantation, acranial CT scanwas performed to obtain the
location of the implanted electrodes.

Data processing
To constructtheindividual brainnetwork models, we first preprocessed
the T1-MRIand diffusion-weighted MRI data. Volumetric segmentation
and cortical surface reconstruction were from the patient-specific
T1-MRI data using the recon-all pipeline of the FreeSurfer software
package http://surfer.nmr.mgh.harvard.edu. The cortical surface was
parcellated according to the VEP atlas?, the code for whichis available
athttps://github.com/HuifangWang/VEP_atlas_shared.git. The reasons
for choosing the VEP atlas are as follows. (1) The VEP atlasis specifically
designed for epileptology, incorporating anatomical and functional
features of each brain structure, particularly inrelation to the EZN and
surgical applications. (2) The geometric features and sizes of the brain
regions are well suited for both clinical applications and modeling,
including model inversion. (3) Brain regions can be automatically
labeled and personalized from T1-MRI scans using geometric and
neuroanatomical information. (4) The VEP atlas has been clinically
evaluated in a retrospective study including 53 patients, and is cur-
rently being assessed in another prospective trial with 356 patients,
ensuring its clinical suitability and reliability''°. A brief summary of
the steps to obtain the VEP atlas goes as follows. T1-weighted images
are processed using FreeSurfer to remove non-brain tissue®, segment
subcortical gray matter structures®, normalize intensity® and generate
cortical surfaces®. These surfaces are inflated, registered to aspherical
template and corrected for topology®**. The cortex is then subdivided
into regions based on gyral and sulcal structures®, forming the basis for
constructing the VEP atlas. This constructioninvolves splitting, merg-
ingand renaming operations to both cortical and subcortical regions.
Cortical regions are divided based on the triangulated surface mesh,
while subcortical regions are split directly on voxels. Nonlinear splits
are applied in specific areas with high curvature, such as the callosal
sulcus, whereas the superior frontal gyrusis split using acombination
of linear and specialized methods based on cortical surface geometry?.
We used the MRtrix software package to process the
diffusion-weighted MRI*®, employing the iterative algorithm described
inref. 67 to estimate the response functions and subsequently used
constrained spherical deconvolution®® to derive the fiber orientation
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distribution functions. The iFOD2 algorithm®® was used to sample
15 milliontracts. The structural connectome was constructed by assign-
ing and counting the streamlines to and from each VEP brain region.
The diagonal entries of the connectome matrix were set to zero to
exclude self-connections within areas and the matrix was normalized
so that the maximum value was equal to one. We obtained the location
of the SEEG contacts from post-implantation CT scans using GARDEL
(Graphical user interface for Automatic Registration and Depth Elec-
trodes Localization), whichis part of the EpiTools software package’’.
Thenwe co-registered the contact positions from the CT scanspace to
the T1-MRI scan space for this patient.

High-resolution simulation of the Epileptor-Stimulation model
We modeled epileptic seizures on a patient-specific high-resolution
brain model. There is no consensus about the precise biophysical
mechanism ofion exchanges that leads to seizure onset. Previous stud-
ies have demonstrated anincrease in excitability, spike frequency and
oscillation power” 7 when an external perturbation was applied. Exper-
imental studies have linked seizure onset to specific changes in ion
dynamics suchas extracellular potassiumor intracellular chloride™ .
We hypothesized that exposure of repetitive stimulation/pertubation
generates aslow accumulation effect, which can push the systemtothe
seizure state when a seizure threshold is reached.

We model this accumulation effect phenomenologically via the
parameter m, whichinfluences the oscillatory dynamicsin the seizure
onset state in the Epileptor model”®”’. We render m time dependent,
m=m(t), and introduce an exponentially decaying memory kernel of
length rthrough a linear ordinary differential equation, which slowly
builds up when an external stimulusis applied until the seizure thresh-
oldisreached. Inthe absence of astimulus, m(t) slowly returns back to
baseline. His the Heaviside function. When mis greater than the seizure
threshold my,..,, the Hfunction equals 1, which kicks the system into
the seizure-like state. Otherwise, the H function equals O.

The pial surfaces of both hemispheres define the spatial domain
along which the network activity can unfold. Neural dynamics are gov-
erned by an extension of the original Epileptor model*®. The extended
Epileptor-Stimulation model includes a stimulation-accumulating
state variable mthat can destabilize the system and produce aseizure.
Theneural activity atevery vertexi=1, ..., Nof the networkis governed
by the following equations:

Xi = Yi = i) = Zi + lexe + Istim

N L
+Vie _215( 8i, )JH(X j,01c) + Vgc 121 Wi iH(X;, Ogc)
j= =
(o))

yi = C_dx,? =Ji
2 = r(4(x; — Xo + nH(mM; — Mynesn)) — 2;) + f2(2)
mi = r(lstim - mi)
where:
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The state variables x and y describe the activity of neural populations
on a fast timescale and can model fast discharges. The oscillation

of the slow permittivity variable z drives the system autonomously
between ictal and interictal states. The parameter x, indicates the
degree of excitability and directly controls the dynamics of the neural
populationto produce seizures or not. As m(t) playsanimportantrole
in the model with stimulation, Supplementary Fig. 10 demonstrates
how the system behavior changes as m varies. As m increases from 0
to 1.5, whichis below the threshold (m,..s, = 1.8), the oscillation in the
upstate changes from stable spiral to a spiral with limit cycles (Supple-
mentary Fig.10a-d). Higher values of m correspond to larger ranges of
limit cyclesinboth dimensions, x and z. When m = 2.0, which exceeds
Myesn = 1.8, m directly influences z, pushing the system into the seiz-
ing state. The variable m(¢) is directly related to the excitability of the
corresponding tissues. Tissue excitability in epileptogenic networks
arises from a combination of factors, including ion channel dysfunc-
tion, animbalance between excitation and inhibition, and altered ion
homeostasis. However, care must be taken not to overinterpretitsrole,
asweare working witha phenomenological model. There are two slow
variables, z(t) and m(t). While z drives the gradual changes underly-
ing seizure initiation and termination, m increases by accumulating
the stimulation effects through the influence of the electric field. As
m increases, the stability of the system changes. Once m reaches the
threshold value my,.,, it directly pushes zinto astate that prepares the
system to transition into a seizure state.

Each vertex i is locally connected to its neighbors through local
connectivity and globally connected to other parts of the brain through
global connectivity. Local connections, scaled by y,., are described
by a translationally invariant Laplacian coupling kernel S(g; ;) where
g;;denotes the geodesic distance along the cortical mesh between
vertices i and,j. The cortical mesh incorporates personalized geo-
metric features of the cortical surface derived from an individual’s
TI-MRI. Global connections, scaled by y,., along white matter fibers,
arerepresented by the connectome matrix, where W, ,denotes the con-
nection strength between brain areas kand [. Each vertex i is assigned
toabrainareak=1, ..., L according to a cortical parcellation. For this
study, we used the VEP parcellation. The average neural activity X; of
all vertices belongingto arealis coupled throughout the network and
projected uniformly to all vertices of area k. The default parameters of
thesystemarel,,=3.1,c=1,d=5,r=1,a=1,n=1, My, =1.8, ), = 0.1,
Yi.=0.8, 0,.=-1,and 6. = - 1. The time-varying input /;, describes
the perturbation signal in each time step depending on stimulation
parameters. To accomplish this, we computed the generated electric
field from the two types of perturbation (1) an invasive SEEG stimula-
tion and (2) a non-invasive Tl stimulation. These are described in two
separate subsections below.

Calculation of the electric field of SEEG stimulation

The SEEG stimulation is applied to a pair of neighboring sensors, in
whichoneactsasacathodeand the other oneasananode. This gener-
ates abipolar pulse perturbation in the area where the electrodes are
located. The parameters used clinically are restricted to frequencies of
either1Hzor 50 Hz, weak amplitudes ranging from 0.1 mAto3 mA, and
pulse widths of 0.5-3 ms. In this paper, we used a frequency of 50 Hz,
an amplitude of 3 mA, a pulse width of 2 ms, and a stimulation dura-
tion of 3.5 sand 3 s. The stimulus signal, ¢, is awaveform represented
here as a biphasic pulse train of electrical current. The electric-field
strength at each vertex depends on the distance between vertices
and the stimulated pair of bipolar electrode leads. Shorter distances
resultin higher field strengths. To simplify, we identified the maximal
field strength within each brain region and uniformly applied it to all
vertices within that region, as shown at the bottom of Figs. 3a and 6a.
We defined the /;,, at each vertex as ¢ x electric-field strength at this
vertex, with anexample shownin Supplementary Fig. 2. Please note that
the effects of the stimuli on brain signals are dependent on multiple
factors, including the nonlinearity of local dynamics, local and global
connections, and the stimulation current.
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Calculation of the electric field of the Tl stimulation
Non-invasive stimulation with Tlis arecent method that aims tomimic
deep brain stimulation’s capabilities to be both focal and subcorti-
cal without being invasive. This is done using the assumption that
higher kilohertz stimulation frequencies have anignorable effect on
neuronal activity”*°. To obtain the distribution of the Tl field in the
gray matter, we started by computing the electric-field distribution
from the simulation of tDCS via SimNIBS®°. First, we reprocessed the
individual T1-weighted MRI via the SIimNIBS process ‘mri2mesh’, which
resulted in the segmentation into five head tissues: white and gray
matters, cerebrospinal fluid, skull and scalp. This process creates the
tetrahedral meshes necessary for the finite element method for the
simulation of the electric-field distribution. We computed the tDCS
field for each pair of electrodes positioned based on the location of
the co-registered 128 electrodes scalp-EEG cap, using the 10-5 system.
Circular electrodes with adiameter of 10 mm and a thickness of 5 mm
were directly applied on the head. Then, we projected these electric
fields onto the resampled Freesurfer surface (20,484 vertices). We
extracted the amplitude of the electric field at each vertex of the
cortex surface. These fields derived from the coupled electrodes
pairs were projected onto the normal of the cortical surface, then
modulated by multiplying them with two sinusoids with frequencies
0f1,000 Hzand 1,005 Hz, respectively, for 1s. Two oscillatory electric
fields, which were linearly summed, provided an interference field.
To obtain a correct representation of the high-frequency activity,
the sampling rate was 30 kHz. We extracted the 5 Hz peak envelope
by using spline interpolation. Finally, we included this envelope in
the virtual brain model as the source of external simulation for the
cortex vertices (20,484).

Forexample, for patient 1, we targeted the highest Tl stimulation
effect on the left 02 in the VEP atlas®. We used the optimization pro-
cess in SimNIBS to identify the best 4 electrodes configurations (10-5
scalp-EEG montage), which maximized the electric field in the left 02.
This procedure allowed us to identify, in our case, PPO3-PPOS5 and
P5h-POS5h (ref.29) as the best electrode couple for the left 02 stimula-
tion. Thus obtained electric-field strengths ranged up to 0.48 Vm™at
the cortical target sites, consistent with previously published empirical
andsimulation studies®**. These field strengths are probably too weak
to induce seizures in biological tissue. Nonetheless, future advance-
ments in multipolar TI-using more than two electrode pairs—could
enable the generation of stronger, more focal electric fields at target
locations while maintaining low applied electric currents®*®., For our
demonstration cases, we rescaled the amplitude of the stimulus signal
tobeabletoinduceseizuresinthe phenomenological Epileptor model
and useditasaninputtothe/, parameter. A simulated time series of
one selected vertex from the EZN is shown in Supplementary Fig. 3.

Forward solution for SEEG signals

The forward solution for the SEEG signals maps the neural activity
from the sources to the sensors (SEEG contacts), represented by a
source-to-sensor matrix (gain matrix). As sources for our model,
we used the vertices of the pial surface for the cortical regions, and
each subcortial region as a single node as in the neural mass model
(NMM). Surfaces are represented as triangular meshes. For the NMM,
we defined the mappingg;, from the source brainregionjto the sensor
kas the sum of the inverse of the squared Euclidean distance d;, from
vertexitosensor k, weighted by the area a;of the vertex onthe surface.

Nj
_ 42
8jk = Z;)al/ diy
i=

Here vertex i belongs to regionj which has N; vertices in total. The
area q; of vertex i was obtained by summing up one-third of the area
ofallthe neighboring triangles. Vertices belonging to the same brain
region were summed to obtain the gain for asingle region of our brain

network model. The resulting gain matrix has dimensions M x N, with
Mbeing the number of regions and N the number of sensors.

Matrix multiplication of the simulated source activity with the
gain matrix yielded the simulated SEEG signals, that is, SEEG,(¢) = ;
g;x;(0), where x;(¢) is the time series of the source-level signals. This
distance-based approach and the summation of all the vertices within
eachregionneglect the orientation of the underlying current dipoles.
Pyramidal neurons, which are oriented normal to the cortical sur-
face, are assumed to be the physiological source of any electric signal
recorded with SEEG, scalp-EEG or MEG®. The direction of the dipolar
momentum associated with the NMM at typical spatial resolutions
0f 10-20 cm?in virtual brain networks of 100-200 nodes?. However,
approaches that use high-resolution representations of the network,
allowing for the computation of a surface orthogonal, have this abil-
ity. To solve the forward problem, we followed the analytical solution
proposed inref. 83 for electric fields in an unbounded homogeneous
medium. This choice of forward model assumes no boundary effects
of changes of conductivity at tissue boundaries. A previous study has
shown that the error of an unbounded homogeneous conductivity
model compared with a more accurate finite element method model
withchangesin conductivity is relatively small for electric fields gener-
ated by dipoles deep in the brain and electrodes close to the source®*.
Therefore, we can estimate the gain matrix elements g;, approach by

gik = a;/(410)Q - (ry — r)/(Irg — ri*)

where r,and r; are the position vectors of sensor k and source vertex
i, respectively. |v| represents the L2 norm of a vector v. Qis the dipole
orientation vector and o is the electric conductivity. As we assume
constant conductivity across the brain, it becomes merely a scaling
factor, whichwesettoo=1.

Forward solution for scalp-EEG signals

To compute the forward solution of scalp-EEG signals, we first recon-
structed three individual surfaces (inner skull, outer skull and head)
ofthe patient based onboundary element models using Brainstorm®,
Then in Brainstorm, we co-registered the scalp-EEG electrodes posi-
tions (of the Hydrocel E1128 channels electrode cap) onto the head
surface, according to the fiducial points of the patient’s TI-MRI. We
applied a slight manual correction to better orient the scalp-EEG
cap to the individual anatomy. Finally, we derived an scalp-EEG for-
ward model using a 3-shell boundary element model (conductivity,
0.33Sm™, 0.165Sm™, 0.33 S m7; ratio, 1/20)* and the OpenMEEG
method implemented in Brainstorm®”®, to provide a realistic head
model. Thenwe obtained again value for each dipole (20,484 vertices),
with the constrained direction normal to the cortex surface, for each
scalp-EEG electrode. Finally, the gain matrix derived from the head
modelwas multiplied by the simulated time series of the brain sources
toobtain the scalp-EEG activity, thatis, EEG/(6) = 3, j‘ffx () where g‘fﬁ
from the source signal on brain region to the EEG signal on channel L.

Calculation of the SEEG and scalp-EEG data features

We extracted the data features from the SEEG and scalp-EEG signal
to be the input of the model inversion modules. The SEEG data were
re-referenced using abipolar montage, which was obtained using the
difference between two neighboring contacts on one electrode. The
two-dimensional Epileptor model, introduced below, is suitable for
fitting the envelope of the seizure time series. Ideally, the envelope
follows aslightly smoothed rectangular function from the onset until
the offset of the seizure. To get a well-formed target that our model
should fit, we extracted the bipolarized SEEG signal from 10 s before
the seizure onset until 10 s after the seizure offset. We identified the
outlier time points that were greater than two times the standard devia-
tion of the extracted signal and replaced them with the mean of the
extracted signal. The signal was then high-pass filtered with a cut-off at
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10 Hz to remove slow signal drifts. The envelope was calculated using a
sliding-window approach withawindow length of 100 time points. The
signalinside the window was squared, averaged and log-transformed.
From the resulting envelope, we again identified and removed outli-
ers, as described above. Finally, the envelope was smoothed using a
lowpass filter with a cut-off of 0.05 Hz. The mean across the first few
seconds of the envelope was used to calculate a baseline, which was
thensubtracted from the envelope. The same procedure was used for
the EEG data, the only difference being that we used absolute values for
the gain matrix, to get the accumulated effect on each EEG electrode
throughout the entire seizure.

The HMC modelinversion
By taking advantage of timescale separation and using averaging meth-
ods, the Epileptor can be reduced to a two-dimensional system®’:

)Z; = II—X?—ZX'I.Z—Z,'

N 3)
z; = (/1) (4(3(:' - X0) =2z +KY G j(x;— xi))
=

where 7, scales the length of the seizure. The external input is defined
as/;=3.1.We used the two-dimensional Epileptor for the model inver-
sion, thatis, the parameter estimate of the model, from the scalp-EEG
and SEEG recordings.

For the individual SEEG model inversion, the forward solution is:
SEEG,(t) = %,g;,x(t). For the individual scalp-EEG modelinversion, the
forward solution is: EEG,(¢) = ng‘fij(t).

Forthe multimodal modelinversion, we projected the same source
signalsto the scalp-EEG and SEEG at the same time while we calculated
the likelihood according to the HMC algorithm, that is, SEEG,(¢) =
2.8,/(0); EEG() = 3,85 x (0).

For the model inversion, we applied the No-U-Turn Sampler
(NUTS), an adaptive variant of the HMC algorithm to sample the pos-
terior density of the model parameters. The performance of the HMC
is highly sensitive to the step size and number of steps in the leapfrog
integrator for updating the position and momentum variables in a
Hamiltonian dynamic simulation®. We used NUTS, which is imple-
mentedin Stan and extends HMC with adaptive tuning of both the step
size and the number of steps in a leapfrog integration to sample effi-
ciently from the posterior distributions’*”’. To overcome the ineffi-
ciency in the exploration of the posterior distribution of the model
parameters, we used a reparameterization of the model parameters
based onthe map function from the model configuration space to the
observed measurements'’. Our reparameterization-based approach
reduces the computation time by providing more effective sample
sizes and removing divergences by exploring the posterior distribu-
tions of the linear combinations of regional parameters that represent
the eigenvectors obtained from the singular value decomposition of
the gain matrix. We denote the matrix of the eigenvectors of G'G as V
and the new parameters as X, = Vix;oand zi(ty)" = V7z(ty). Weran the
model inversion on both empirical and simulated seizures with 16
chainsstarting from 8 optimized initial conditions. The eight optimized
initial conditions are the output of MAP estimation algorithm®. We ran
the MAP estimation algorithm 50 times and selected the best 8 results
interms of the likelihood. We assessed model identifiability based on
ananalysis of posterior samples, which demonstrated that the sampler
exploresallthe modesinthe parameter space efficiently. The analysis
includestrace plots (evolution of parameter estimates from draws over
the iterations), pair plots (to identify collinearity between variables)
and autocorrelation plots (to measure the degree of correlation
between draws of samples). Sampling convergence of the algorithms
was assessed by estimating the potential scale reduction factor and
calculating the effective sample size based on the samples of the pos-
terior distributions, providing estimates of the efficient run times of
the algorithm.

Calculation of the EVs

Using the HMC model inversion algorithm, we obtained the estimated
source time series, and based on these, we calculated brain
region-specific EVs. We checked the source time series (variable x of
the two-dimensional Epileptor in equation (3)) of region i for values
above a threshold of 0. The first occurrence of such a value is consid-
ered to be the onset of the seizure ¢; in that region. We define
to = min(t),i =1,...,162 . Brain regions with no estimated seizure
(no values above 0) are assigned an onset value ¢;=200. The EV, for
brainregioniis calculated as EV; = —log(((¢; - ¢,) + 1)/20). Then we nor-
malized the EVvectorto [0, 1] for each sample and plotted the distribu-
tion of EVs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data used in this work are available via Code Ocean: the compute
capsules can be accessed via https://doi.org/10.24433/C0.3316132.v1
(ref. 92; part 1) and https://doi.org/10.24433/C0.2143670.v1 (ref. 93;
part2). These datainclude a patient’s preprocessed anatomical infor-
mation and high-resolution functional simulation data, which can be
used for relevant calculations and simulations presented in this paper.
The patient raw datasets cannot be made publicly available due to
the data protection concerns regarding potentially identifying and
sensitive patient information. Interested researchers may access the
datasets by contacting the corresponding authors and F.B. (Fabrice.
BARTOLOMEI@ap-hm.fr). Source data for Figs.2-6 and Extended Data
Figs.1and 2 are available with this paper.

Code availability

The code used in this work is available via Code Ocean: part 1,
https://doi.org/10.24433/C0.3316132.v1 (ref. 92); part 2, https://doi.
org/10.24433/C0.2143670.v1 (ref. 93); The codes are also available via
GitHub at https://github.com/HuifangWang/VBT_INS_Stimulation.git.
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Extended Data Fig. 1| Estimating EZN from Tl stimulation for asecond
patient with frontal lobe epilepsy (synthetic data). a The electric field of TI
stimulation by two pairs of scalp-EEG electrodes (shown in red and orange). We
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Reporting on sex and gender We studied two patients:
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free post-surgery, with an Engel Class Il outcome.
2) A 19-year-old male diagnosed with left frontal lobe epilepsy. He underwent resective surgery resulting in complete seizure
freedom, with an Engel Class | outcome.

Population characteristics We have two patients: a 23-year-old female with occipital lobe epilepsy and a 19-year-old male with frontal lobe epilepsy.
One had a surgical outcome classified as Engel Class I, and the other as Engel Class II.

Recruitment We used two epilepsy patients with drug resistant focal epilepsy who underwent a standard presurgical protocol at La
Timone hospital in Marseille. We selected these two patients to validate our workflow. Future scientific studies should
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Ethics oversight Informed written consent was obtained for all patients in compliance with the ethical requirements of the Declaration of
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Sample size This is a methodology and concept paper. We selected two patients with drug-resistant focal epilepsy. These two patients have different
diagnoses and surgical outcomes. For each patient, the dataset includes both anatomical and functional data from multiple recordings, such
as T1-weighted MRI, CT, diffusion-weighted MRI, and multiple stereo-EEG sessions. Since this is a methodology and proof-of-concept paper
for personalized medicine, we believe that an in-depth analysis of two patients is sufficient to demonstrate the feasibility of our approach.

Data exclusions  No data were excluded from the analyses

Replication The results are replicable if the same parameters were used on the same datasets.The results are replicable when the same parameters are
applied to the same datasets. Since this study focuses on personalized virtual brain twins, replication is expected during the construction of
virtual twins or the identification of the epileptogenic zone networks in similar cases.

Randomization  Because this study focuses on personalized medicine using patient-specific data, randomization is not necessary.

Blinding The VEP analysis is independent of the patients' clinical hypothesis and surgery outcomes. Blinding was not applicable in this context for
several reasons. First, the study is retrospective and all clinical interventions had already been completed prior to analysis. Second, the Virtual
Epileptic Patient (VEP) analysis is computational and data-driven, conducted independently of clinical outcomes or hypotheses. Finally, since
the methodology relies on objective modeling of individualized brain dynamics rather than subjective interpretation, the lack of blinding does
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>
Q
—
(e
(D
1®)
(@)
=
S
c
-
(D
©
O
=
>
(@)
w
[
3
=
Q
<




Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
n/a | Involved in the study n/a | Involved in the study
|:| Antibodies |Z |:| ChiIP-seq
|:| Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology and archaeology |:| MRI-based neuroimaging

|:| Animals and other organisms
Clinical data

|:| Dual use research of concern

>
Q
Y
(e
)
1®)
o
=
o
S
_
(D
©
o
=
>
(@}
w
[
3
3
Q
<

X OX XXX

Clinical data
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All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Itis nota clinical trial. The clinical data is being used for a research study.

Study protocol The goal of the study is to develop and evaluate the VEP high-resolution workflow for stimulation. VEP is a personalized workflow, so
we selected two patients with drug-resistant focal epilepsy, each with different diagnoses and surgical outcomes. Using these
patients' data, we built personalized whole-brain models. These models can predict the effects of stimulation and can be further

used to better estimate epileptic networks.

Data collection For each patient, the dataset includes both anatomical and functional data from multiple recordings, such as T1-weighted MRI, CT,
diffusion-weighted MRI, and multiple stereo-EEG sessions.

Outcomes The VEP models can predict the effects of stimulation and can be further used to better estimate epileptic networks.

Magnetic resonance imaging

Experimental design

Design type No functional MRI data was recorded, only structural and diffusion weighted images.
Design specifications Not used.

Behavioral performance measures  Not used.

Acquisition
Imaging type(s) presurgical T1 weighted MRI, presurgical diffusion weighted MRI, post SEEG implantation CT scan
Field strength 3 Tesla
Sequence & imaging parameters MPRAGE sequence, repetition time = 1.9 or 2.3 s, echo time = 2.19 or 2.98 ms, voxel size 1.0 mm3, FoV full head
CT scans FoV full head, voxel size around 0.4mm * 0.4mm * 0.6mm
Area of acquisition Whole brain scan
Diffusion MRI X Used [ ] Not used

Parameters Either single shell, b-values = [0,1000], 64 directions or multi-shell, b-values = [0, 1400, 1800], 200 directions, no cardiac gating used

Preprocessing

Preprocessing software Freesurfer v6, FSL v6, MRtrix 0.3.16

Normalization No spatial normalization was used in this study as all processing, modeling and inference is done in the imaging space of each
individual patient.
Only a linear registration was performed to align between patient specific T1, diffusion and CT images.




Normalization template Not used.

Noise and artifact removal T1 weighted was processed using the recon-all pipeline from Freesurfer.
Diffusion weighted MRI was processed using the functionality of the MRtrix software package.

Volume censoring No volume censoring performed.

Statistical modeling & inference
Model type and settings Not used.
Effect(s) tested Not used.
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Statistic type for inference Not used.
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