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Deep-learning-based variational Monte Carlo has emerged as a highly
accurate method for solving the many-electron Schrodinger

equation. Despite favorable scaling with the number of electrons, O(ny*),
the practical value of deep-learning-based variational Monte Carlo is limited
by the high cost of optimizing the neural network weights for every system
studied. Recent research has proposed optimizing a single neural network
across multiple systems, reducing the cost per system. Here we extend this
approachto solids, which require numerous calculations across different
geometries, boundary conditions and supercell sizes. We demonstrate that
optimization of a single ansatz across these variations significantly reduces
optimization steps. Furthermore, we successfully transfer a network trained

on2 x 2 x2supercells of LiH, to 3 x 3 x 3 supercells, reducing the number of
optimization steps required to simulate the large system by a factor of 50
compared with previous work.

Many interesting material properties, such as magnetism and super-
conductivity, depend on the material’s electronic structure as given
by the ground-state wavefunction. The wavefunction mayin principle
be found by solving the time-independent Schrédinger equation, but
doing sowith sufficient accuracy is challenging because the computa-
tional cost grows dramatically with the number of particles. The chal-
lengeis particularly pronouncedin solid state physics, where accurate
calculations for periodic systems require the use of large supercells—
and, consequently, many particles—to minimize finite-size effects.

Over the past few decades, density functional theory (DFT) has
emerged as the primary workhorse of solid-state physics. When using
local or semi-local exchange-correlation functionals, DFT calculations
have afavorablescaling of ©(ng) or better, where n,, is the number of
electronsinthe system,and anaccuracy thatis often sufficient to help
guide and predict experiments"”. However, the choice of functional is
inpracticeanuncontrolled approximation, and DFT sometimes yields
quantitatively or even qualitatively wrong results, especially for
strongly correlated materials®*.

Another approach, known as variational Monte Carlo (VMC), uses
anexplicit parameterized representation of the full many-body wave-
function and optimizes the parameters using the variational principle.
This method has afavorable scaling of ©O(n,>~*)(refs. 5,6) but s limited

inaccuracy by the expressivity of the ansatz used. Recently, deep neural
networks have been used as wavefunction ansatze®®and used to study
alarge variety of systemsincluding small molecules®*'°, periodic model
systems described by lattice Hamiltonians”"'*, the homogeneous
electron gas'* and Fermiliquids'®". Due to their flexibility and expres-
sive power, deep-learning-based VMC (DL-VMC) approaches provide
the best current estimates for the ground-state energies of several
small molecules”® In DL-VMC, the wavefunction ansatz g, is repre-
sented asaneural network, with the variational parameters 6 being the
network weights and biases. An approximation of the ground state is
obtained by minimizing the energy expectation value of this ansatz
(Fig.1a).Ineach optimization step, electron coordinates rare sampled
from the probability density |¢,/% and these samples are used to esti-
mate the energy expectation value £,. Using automatic differentiation,
the energy gradient is computed, and the network parameters 6 are
updated to minimize this energy.

Despite the success for small molecules, efforts to apply DL-VMC
to real solids'®'” have been limited by the high computational cost
involved. While asingle calculation may be feasible, studying real solids
requires many similar but distinct calculations. First, itis necessary to
perform calculations involving increasingly larger supercells to esti-
mate finite-size errors and extrapolate results to the thermodynamic
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Fig.1|Schematic overview of our approach. a, A schematic overview of the
VMC optimization loop. b, The conventional approach of training separate,
geometry- and twist-specific wavefunctions. ¢, Our approach of training a
single, transferable wavefunction across system variations. d, A schematic
of our transferable wavefunction ansatz: starting from electron and nucleus
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coordinates, nucleus chargesr, R, Z and twist k,, we compute high-dimensional
representations e;for each electroniand W, for each orbital u. We combine
them to square matrices @,and use determinants to obtain an antisymmetric
wavefunction ¥, with trainable parameters 6. From that, we compute the total
energy E, applying the Hamiltonian operator H to the wavefunction.

limit (TDL). Second, twist-averaged boundary conditions (TABC) are
used to accelerate the rate at which the finite-size errorsreduce as the
supercell sizeincreases™. This requires averaging the results for each
supercell over many calculations using different boundary conditions.
Lastly, studying a given system often requires calculations for different
geometries and lattice constants. As most existing DL-VMC ansatze
require optimizing a new wavefunction from scratch for each new
system (Fig. 1b), the computational cost quickly becomes prohibitive
even for systems of moderate size. For example, Li et al. proposed
DeepSolid®, an ansatz capable of accurately modeling periodic wave-
functions with up to 100 electrons, but it required over 80,000 GPU
hours to study asingle system.

In this work, we implement a transferable DL-VMC ansatz for real
solids that takes asinput not only the electron positions but also other
parameters of the system, such as its geometry or boundary condition.
When computing energies for multiple systems, we do not optimize
separate ansatze for each system, but instead optimize a single wave-
function abletorepresent all these systems (Fig. 1c). The transferability
ofthiswavefunctionacross systems yields two large speed-upsin prac-
tice. First, optimizing a single ansatz for many variations of unit-cell
geometry, boundary condition and supercell requires typically much
fewer optimization steps than optimizing ansatze separately for each
system.Second, because the ansatzlearnsto generalize across systems,
we can use models pretrained on small systems as highly effective
initializers for new systems or larger supercells. The key idea, based
on Scherbela et al.”, sketched in Fig. 1d and detailed in the Methods,
is to map computationally cheap, uncorrelated mean-field orbitals
to expressive neural network orbitals that depend on the positions
of allelectrons.

Compared with previous DL-VMC work without transferability,
our approach yields more accurate results, gives access to denser
twist averaging (reducing finite-size effects) and requires a fraction
of the computational resources. For example, for lithium hydride,
transferringa 32-electron calculation to one with108 electronsyields
more accurate results than previous work' at approximately 1/50 of
the computational cost.

Results

One-dimensional hydrogen chains

Chains of hydrogen atoms with periodic boundary conditions provide
asimple one-dimensional toy system that nevertheless exhibits rich

physics such as dimerization, a lattice-constant-dependent metal-
insulator transition and strong correlation effects. A collaborative
effort>? has obtained results for this system using a large variety of
high-accuracy methods, providing a trustworthy benchmark.

Thefirst testisto obtain the total energy per atom for afixed atom
spacing, R =1.8a, (where a, is the Bohr radius), in the TDL attained as
the number of atoms in the supercell tends to infinity. To this end, we
train two distinct models on periodic supercells with Ny yms =4, 6, ...,
22.Thefirst modelistrained at twist k= O (the I-point) only. The second
is trained using all twists from a /-centered four-point Monkhorst-
Pack grid®. The three inequivalent twists are k = 0, - and Zin units of
21/R, and their weights arew =1,2 and 1, respectively. Once the model
hasbeen pretrained ontheserelatively short chains, we fine-tuneit on
larger chains with N,.,,s = 32 and 38. We use the extrapolation method
describedinref.22toobtaintheenergy E..inthe TDL. Previous authors
have extrapolated the energy using only chain lengths of the form
Naoms = 4n + 2, n € N, which have filled electronic shells. We also
report extrapolations using chain lengths N, = 4n, which lead to
partially filled shells.

Figure 2ashows that all of our extrapolations (/-point filled shells,
I-pointunfilled shellsand TABC) arein good qualitative agreement with
previous results obtained using methods such as lattice-regularized
diffusion Monte Carlo (LR-DMC)* and DeepSolid™®, a FermiNet-based®
neural wavefunction for solids. Quantitatively, we achieve slightly
lower (and, thus, more accurate) energies than DeepSolid for all
values of N, ms. Using TABC, we obtain £, = -565.24(2) mHa, which
is 0.2-0.5 mHa lower than the estimate obtained using LR-DMC and
DeepSolid, and agrees within uncertainty with the extrapolated energy
computed using the auxiliary-field quantum Monte Carlo (AFQMC)
method*. Most notably, however, we obtain these results at a frac-
tion of the computational cost of DeepSolid. Whereas DeepSolid
required a separate calculation with 100,000 optimization steps for
each value of N, (and would have required even more calculations
for twist-averaged energies), we obtain results for all 10 chain lengths
and values of Nyoms = 4, ..., 22, with 3 twists for each system, using only
50,000 optimization stepsintotal. Furthermore, by reusing the model
pretrained on smaller chains, we obtain results for the larger chains
with N,,,ms = 32 and 38 using only 2,000 additional steps of fine tun-
ing. This reduces the cost of simulating the large chains by a factor of
approximately 50. We note that, as expected, the use of TABC reduces
finite-size errors, allows us to combine results for filled and unfilled
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Fig. 2| One-dimensional hydrogen chain. a, Extrapolation of the energy
peratomto the TDL for R =1.8a,. Results obtained using DeepSolid (neural
wavefunction), LR-DMC, AFQMC and our transferable neural wavefunction
are shown. Open markers indicate energies computed by fine-tuning amodel
pretrained on smaller supercells. The shaded area depicts the statistical
uncertainty in the AFQMC result. The Monte Carlo uncertainty of our results is
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approximately 10 pHa, well below the marker size. b, The complex polarization
|z| as afunction of the interatomic separation, R, showing a phase transition
betweenametal at small R and aninsulator at large R. AFQMC and DMC results
are taken from the work of the Simons Collaboration®. The error bars for our
results represent Monte Carlo uncertainty. DeepSolid results are taken
fromLietal.’s.

shellsinthe extrapolationand leadsto faster convergence of the energy
per atom. By contrast, when using only /-point calculations, thereisa
strong even/odd effectin the energy, requiring separate extrapolations
for unfilled and filled shells.

Beyond energies, we study the hydrogen chain’s phase transition
fromaninsulating phase atlarge interatomic separation, R, to ametal-
lic phase at small R. The transition can be quantified by evaluating the
complex polarization along the length of the chain
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where x;is the position of electron i in the direction of the chain. The
expectation value is defined as (...) = [¥'(r)...¥(r)dr, where
r=(r,r, ..., 1y, )isa3n,-dimensional vector of electron positions, ¥
is the (approximate) ground-state wavefunction, and the integral is
over all3n, electronic degrees of freedom. Although the polarization
iseasy to evaluatein principle, studying the transition is computation-
ally costly because it requires many similar but distinct calculations:
multiple values of Rare required to locate the transition; multiple twists
k are required to obtain accurate twist-averaged polarizations; and
multiple chainlengths N, are required to allow extrapolation to the
TDL.Evenforamodestselection of all of these variations, studying the
phase transitionin detail requires hundreds of calculations. Using our
transferable wavefunction, on the other hand, allows us to train a sin-
gle model to represent the wavefunction for all parameter variations
atonce.

Wetrained a single ansatz to describe all 120 combinations of: (1)
3 distinct chainlengths, N, ms = 12,16 and 20; (2) 5 symmetry-reduced
k-points of an 8-point I-centered Monkhorst-Pack grid; and (3) 8 dis-
tinctatom spacings betweenR =1.2a,and R = 3.6a,. A total of 200,000
optimization steps were carried out, after which the complex polari-
zation was evaluated using equation (1). To improve our estimates
for Nyoms > ©, We fine-tuned this pretrained model for 2,000 steps on
chain lengths of N, =40 and a denser 20-point Monkhorst-Pack
grid containing 11symmetry-reduced twists. Figure 2b shows that our
approach qualitatively reproduces the results obtained using DMC and
AFQMC. In agreement with Motta et al.>, we observe a second-order

metal-insulator transition. However, where Motta estimates the criti-
calatom spacing R.;. =1.70(5)a,, our results are more consistent with
R..i. = 1.32(5)a,. A possible explanation for the disagreement is that
our neural wavefunction may be less accurate (and may therefore
produce relatively higher energies) for metals than insulators, disfa-
voring the metallic phase. Another possible explanation follows from
the observation that, unlike the VMC method used here, the DMC and
AFQMC methods yield biased estimates of the expectation values of
operators, such as the complex polarization, that do not commute
with the Hamiltonian®**,

Also in agreement with Motta et al.?, we find that the hydrogen
chain shows quasi-long-range antiferromagnetic correlation at at
large lattice constant R. The expected atomic spins are zero on every
atom, but the spins on neighboring atoms are antiferromagnetically
correlated. As the lattice constant gets smaller and the system transi-
tions to the metallic phase, these correlations decrease as shown in
Supplementary Fig. 3.

Graphene

To demonstrate the application of our transferable DL-VMC ansatz
to atwo-dimensional solid, we compute the cohesive energy of gra-
phenein a2 x2supercell and compare against the DL-VMC results of
DeepSolid by Li et al.”®. We use TABC, apply structure-factor-based
finite-size corrections® as detailed in the Methods and add zero-point
vibrational energies (ZPVE). The DeepSolid results wererestrictedtoa
Monkhorst-Pack grid of 3 x 3 twists, yielding three symmetry-reduced
twists in total. In our case, because we are able to compute multiple
twists at once with minimal extra cost, we increase the grid density to
12 x12. Thisincreases the number of symmetry-reduced twists from 3
t019.0ur denser twist grid contains a subset of the twists considered by
DeepSolid, allowing a direct comparisonwith theirindependent energy
calculations. We stress that we require only a single neural network,
optimized for 120,000 steps, to obtain energies for all twists (both the
12 x12 grid and the 3 x 3 subset). DeepSolid, on the other hand, opti-
mized for 900,000 stepsintotal, obtaining energies only forthe3 x 3
twist grid. We find that our transferable ansatz has an approximately 2x
higher per-step cost compared with DeepSolid (Supplementary Fig.2),
but the large reduction in the required number of optimization steps
(Fig. 3a) far outweighs this cost.
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2x2x2supercell.

Our twist-averaged energy using the 3 x 3 twist grid is 4 mHa per
primitive cell lower than the DeepSolid energy. Looking at individual
twists (Table 1), we find that our energies for k, and k, are lower than
the energies obtained by DeepSolid by 1 mHa and 7 mHa, respectively,
while our energy for k; is higher by 4 mHa. This twist-dependent accu-
racyisexpected, because we allocate optimization steps proportional
tothe twist’'ssymmetry weight (see ‘Sampling’in the Methods), thereby
potentially optimizing k; and k, more stringently than k;. This proce-
dure ensures that more optimization steps are spent on twists with high
contribution to the final energy, thus improving efficiency.

To checkfor finite size effects, we also compute cohesive energies
onalarger3 x 3supercellwithal2 x 12 twist grid. Due to the transferabil-
ity of our wavefunction, we can use wavefunction parameters obtained
fromthe 2 x 2 supercell as initialization for the 3 x 3 supercell calcula-
tion, thereby reducing the number of required optimization steps.

When computing cohesive energies and correcting for finite-size
effectsusingastructure-factor-based correctionand ZPVE, we obtain
energies that are 7 mHa lower than experimental values for the 2 x 2
supercell, that is, we predict slightly stronger binding than experi-
ment. For the 3 x 3 supercell, we predict 15 mHa higher energies than
experimental values (Supplementary Table 1). We hypothesize that the
remaining discrepancy may be a finite-size artifact and that even for
the 3 x 3 supercell energies may not yet be converged. An alternative
hypothesisis thatalarger, more expressive network may be needed to
represent the true ground-state wavefunction for the 3 x 3 supercell.

With a network that has been trained across the entire Brillouin
zone, we can evaluate observables along arbitrary paths in k space.
Figure 4 isabandstructure-like diagram, showing how the total energy
varies alonga path passing through the high-symmetry k-points "= (0,
0), M=(0,1/2) and K= (1/3, 2/3) in units of the supercell reciprocal
lattice vectors. We use the pretrained model from the 12 x 12 Monk-
horst-Pack grid and transfer it to the bandstructure-like diagram with
k-points previously unseen during optimization, requiring only a few
additional optimization steps. We fine-tune the pretrained model for
the k-pointson the path, using around 100 optimization steps per twist
andthenevaluate the energies along the path. Analogously to the Dirac
cone visible in the one-electron bandstructure, our many-electron
bandstructure displays a characteristic cusp at the K-point.

Lithium hydride

We have also used the transferable DL-VMC ansatz to evaluate the
energy-volume curve of LiH in the rock-salt crystal structure. As shown
in Fig. 5 (see also Supplementary Section 7), we obtain the energy-
volume curve by fitting a Birch-Murhaghan equation of state to the

Table 1| Total energies of graphene in Hartrees for a
primitive cell, as computed by VMC, after the structure
factor correction (SFC) and after adding ZPVE

Twist Weight Total Totalenergy Totalenergy
energy +SFC +SFC+ZPVE
k= (0, 0) 1/9 -76.1559 -761534 -76.1406
DeepSolid  k,=(1/3,1/3) 2/3 -76.2495 -76.2470 -76.2342
ks=(2/3,1/3) 2/9 -76.2631 -76.2607 -76.2479
k,=(0, 0) 1/9 -761572(2) -761542(2) -761414(2)
Ourwork  k,=(1/3,1/3) 2/3 -76.2572(2) -76.2543(2) -76.2415(2)
ks=(2/3,1/3) 2/9 -76.2590(2) -76.2560(2) -76.2432(2)

The table compares our results against the total energies computed with DeepSolid' at
the three symmetry-inequivalent twists on the 3x3 Monkhorst-Pack grid. The twists are
expressed in the basis of the reciprocal lattice vectors.

total energies of a2 x 2 x 2 supercell at eight different lattice param-
eters. To reduce finite-size errors, the eight total energies are twist
averagedusinga$s x 5 x 5-centered Monkhorst-Pack grid and include
structure-factor-based finite-size corrections. For comparison, Deep-
Solid performed a I-point calculation only and estimated finite-size
errors by converging a Hartree-Fock calculation with an increasingly
dense twist grid'®. To all results we add ZPVE taken from ref. 26, making
the calculated cohesive energy less negative by approximately 8 mHa.
The DeepSolid results by Li et al.”® took no account of the ZPVE, explain-
ing the slight difference between our depiction of their results, shown
in Fig. 5, and their original publication'.

We trained a single neural network wavefunction across 8 lattice
constants and 10 symmetry-reduced twists, making 80 systems in
total. By comparison, DeepSolid required a separate calculation for
eachgeometry.

The Birch-Murnaghan fit gives an equilibrium lattice constant of
7.66(1)a, (dotted orangeline), which agrees well with the experimental
value of 7.674(2)a, (ref. 26). Our Birch-Murnaghan estimate of the
cohesive energy of -177.3(1) mHa per primitive cell deviates from the
experimental value of -175.3(4) mHa by -2.0(5) mHa. This marks an
improvement over the DeepSolid results'® of -166.8(1) mHa, which
differ from experiment by 8.5(5) mHa. Because we are able to optimize
all systems at once, our results were obtained with roughly 5% of the
computerequired by DeepSolid, and the speed-upis evidentin Fig. 3b.
Similar improvements can be observed in the variance of the local
energy (Supplementary Section 8).
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Although we improve on the DeepSolid baseline, the cohesive
energy mightstillbeimpacted by finite-size effects because of the small
sizeof the2 x 2 x 2 supercell used. To check this, we also studied a larger
supercell containing 3 x 3 x 3 primitive unit cells. This 108-electron
system is one of the largest to have been studied using neural wave-
functions so far. DeepSolid used 400,000 optimization steps to get
aI-point estimate for the cohesive energy and overestimated the
energy by around 7 mHa per primitive cell compared with the experi-
mental results'*, By contrast, we can exploit the transferability of
our wavefunction and use the parameters obtained from pretraining
onthe2 x 2 x2supercells asinitialization for the muchlarger3x3 x3
supercell. Due to the good generalization of our ansatz, we are able to
calculate the cohesive energy for the 3 x 3 x 3 supercell with only 8,000
additional optimization steps shared across ten different twists. Using
twist averaging, astructure-factor correctionandaZPVE correction as
before, we obtain a cohesive energy of -174.6 mHa per primitive cell,
deviating from experiment by only 0.7(5) mHa per primitive cell. The
magnitude of this deviation is close to the 0.4-mHa spread of experi-
mental data obtained from different thermochemistry experiments®.
Our twist-averaged 3 x 3 x 3 calculation required only ~2% of the compu-
tational resources used by DeepSolid for asingle -point calculation’®,

Furthermore, we compared our approach to the case of pretrain-
ing on a single system and fine-tuning the pretrained wavefunction
on the remaining systems with independent calculations (similar to
DeepSolid) for a2 x 2 x 2 supercell of LiH. This comparison confirms
that the approach of training a single neural network wavefunction
across different systems converges much faster then fine-tuning inde-
pendent wavefunctions (Supplementary Fig. 7).

Discussion

By training a single transferable wavefunction across system sizes,
geometries and boundary conditions, our approach substantially
reduces the computational cost of applying DL-VMC to solids. Com-
bining this approach with other acceleration techniques—such
as the efficient forward evaluation of the Laplacian by Li et al.”” or
pseudo-potentials*®*—might enable the study of strongly correlated
materials with DL-VMC. Our approach could also be extended to
grand-canonical twist averaging®, in which the number of electrons
inthe supercell varies with the twist. Because our ansatz already sup-
ports a variable number of particles, this extension should be easy
toincorporate.

Our approach shares many of the limitations of other DL-VMC
methods, including the sensitivity with regard to MCMC initializa-
tion. A standard practice in DL-VMC is to assign each electron a spin
and initialize it close to the nuclei at the beginning of the calculation.
If the electrons are initialized in an anti-ferromagnetic pattern, that
is, alternating the spins of neighboring atoms, but the ground state
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Fig. 5| Energy-volume curve of LiH per primitive cell. The curveisfora2 x2 x 2
supercell as calculated using DeepSolid™ and our transferable DL-VMC method.
The DeepSolid results (black circles, with a Birch-Murnaghan fit represented asa
black line) were obtained at a single twist, the I-point. Hartree-Fock corrections
were applied, as discussed inref. 18, and aZPVE correction was added. Our
results (orange circles, with a Birch-Murnaghan fit represented as an orange line)
are twist averaged, usinga 5 x 5 x 5 Monkhorst-Pack grid per lattice constant.
Structure-factor-based corrections were applied, and aZPVE correction was
added. The gray bar indicates the experimental uncertainty”. The statistical error
bars are too small to be visible on this scale and therefore have been omitted.

The vertical dashed orange line indicates the equilibrium lattice constant as
calculated from the Birch-Murnaghan fit to our data. The vertical dashed gray
line indicates the experimental value of the equilibrium lattice constant®. The
orange cross shows the twist-averaged cohesive energy of a3 x 3 x 3 simulation
cell, again using structure factor correction. This was obtained by transferring
the network pretrained for the 2 x 2 x 2 systemto a3 x 3 x 3 supercell, using

only 8,000 additional optimization steps. A5 x 5 x 5 Monkhorst-Pack grid of
twists was used. The black cross shows the result of DeepSolid’s 3 x 3 x 3 -point
calculation with a Hartree-Fock finite-size correction.

is ferromagnetic, as can be the case for the hydrogen chain when the
interatomic separation is small, our approach tends to converge to
local minima. FermiNet suffers from similar problems.

Another limitation arises from the allocation of compute budget
between the multiple geometries or systems described by a single
neural network. We allocate more compute during optimization to
twists withalarger weight, which has a positive effect on twist-averaged
results in general, because twists with higher contribution are
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converged to higher accuracy (Table 1). However for individual twists,
when plotting, for example, the band structure (Fig. 4), not all twists are
optimized to the same accuracy, potentially skewing results.

While this work demonstrates the transferability of a wavefunc-
tion across variations of a system (lattice constant, supercell size and
twist), moreresearchis needed to develop wavefunctions that reliably
transfer to entirely new systems, such as different compositions or
lattices. Prior work on molecules in the gas phase has shown that it
is possible to pretrain a single wavefunction on a diverse set of mol-
ecules and transfer the results to new, unseen molecules®. There are
several open challenges to applying this approach to solids: First, the
effectiveness decreases when transferring the pretrained model to
systems substantially larger thanthosein the pretraining set. Thisissue
isparticular problematic for solids, where finite-size scaling may often
require transferability to large systems. Second, successful pretraining
typically requires wavefunction optimization for alarge, diverse set of
systems. Thisis challenging for calculations of solids, which areinher-
ently more costly than calculations for molecules owing to the need for
supercells. In practice, while pretraining on hundreds of qualitatively
different systems is achievable on a moderate compute budget for
gas-phase molecules, this scale is currently out of reach for solids.

Methods

Notation

All vectors, matrices and tensors are denoted by bold letters, except
for functions. We use lower-caseindicesi,j=1, ..., n, for electron posi-
tionsand upper-caseindices/, /=1, ..., N,,,msfOr atom positions, where
ng and N,ms are the numbers of electrons and atoms in the supercell.
Orbitals are enumerated by the indices g and v, which range from 1 to
n,.. The position of the ith electron is r; € R3. When i is not used as a
subscript, it denotes the imaginary unit. By r = (ry, ..., r, ), we denote
the 3n,-dimensional vector of all electron positions. Similarly, nuclear
positions and charges are represented by R=(R;,...,Ry, ) and
Z=(%4,...2y,,,) The matrix L € R¥3 contains the supercell lattice
vectorsinits columns. The twist vector, which may always be reduced
into the first Brillouin zone of the supercell, is denoted by k.. The dot
product of two vectorsaandbis writtena - b, and by © we refer to the
element-wise multiplication (Hadamard product).

Deep-learning VMC
Thetime-independent Schrodinger equation for asolid takes the form

AV = Fp,

A 1 N
H= 3 Z Vl%i + Veoulomb ?2)
i

with the Hamiltonian in the Born-Oppenheimer approximation and
Coulomb potential Vi,yoms- A finite supercell is used to approximate
thebulksolid, and the Coulomb potentialis evaluated using the Ewald
method, as described inrefs.14,31.

In this work, we are interested in finding the lowest eigenvalue
of the Schrodinger equation—the ground-state energy, E,—and the
corresponding energy eigenfunction. To find an approximate solu-
tion, one can reformulate the Schrédinger equation as a minimiza-
tion problem using the Rayleigh-Ritz variational principle. Given an
arbitrary anti-symmetric trial wavefunction, ¥y, with @ denoting, for
example, the trainable parameters of a neural network, the best attain-
able approximation to the ground state may be found by minimizing
the energy expectation value

L(®) = Ey_ gy [HW > £, 3

0
Y

with respect to 0. Animportant constraint for the construction of the
trial wavefunction arises from the Pauli exclusion principle, which
states that the wavefunction must be antisymmetric with respect to

the permutations of different electron coordinates®. As in previous
work, we approximate the expectation value in equation (3) using
Monte Carlo integration with samples drawn from the 3n,-dimensional
probability density |Wy(r)|* (refs. 6,8).

A list of all relevant hyperparameters can be found in
Supplementary Table 2.

Architecture

Overview. Our ansatz can be broken down into the computation of
periodic input features, the computation of embeddings e, for each
electron-nucleus pair, the computation of correlated orbitals and the
assembly of the final wavefunction ¥, as a sum of Slater determinants.
Each step serves adistinct purpose.

The input features enforce the periodic boundary conditions of
the supercell. To capture correlation effects, we use a neural network
to map single-electron coordinates to vectorsinalatent space. These
vectors, also known as embeddings, depend on the positions of all of
the other electronsinapermutation equivariant way. Each embedding
therefore contains information about the corresponding electron as
wellasitsenvironment. Theembeddings are subsequently mapped to
many-electron orbitals as outlined below.

Ansatz. Our wavefunction ansatzis asum of Slater determinants mul-
tiplied by aJastrow factor,
Nger
(R, ZK) =e/® Y det Oy(r,R,Z k). 4)
d=1

The optimization is free to adjust the relative normalizations of the
determinants in the unweighted sum, making it equivalent to a
weighted sum of normalized determinants, as might be used in a
configuration-interaction expansion. The Jastrow factor & is node-less
and follows the work of Hermann et al.%, while the determinant enforces
the fermionic antisymmetry. Instead of using single-particle orbitals
inthe determinant, asin most quantum chemical approaches, we follow
other neural wavefunction methods®and promote every entry @, in
the orbital matrix @, from a one-electron orbital, ¢,,(r,), to a
many-electronorbital, @,,,(r) (temporarily dropping the dependency
onR, Z and k, for the sake of brevity). The many-electron orbitals are
permutation equivariant, such that applying a permutation i to the
electron position vectors permutes the rows of @, by r, that is,
DB iy > Fu(ng)) = Panou(ts, - » o) Thisensuresthat the determinant
has the correct fermionic symmetry. Each entry is constructed as a
linear combination of atom-centered functions with permutation
equivariant dependencies on both electrons and atoms

Natoms
Py (R ZKS) = € 37 gy (1, {r}, R, (R)). ©)
J=1

Here, {r} and {R} denote the (permutationinvariant) set of electron and
atom positions, respectively. The phase factor enforces the twisted
boundary conditions. To construct the @, = @,,(r;, {r}, R, {R}) usinga
neural network, we use anadaptation of the recently proposed transfer-
able atomic orbital ansatz”*°. The orbitals are written as the inner
product of an electron-nuclear embedding e; € R%m and an orbital

embedding W, e ", multiplied by an exponential envelope P

Pauy = Wqy - eij)QUde;,]jv (ry) (6)

. 1y 1per
envip) =g agy|IL7Mryl| )

¢dyj (7)

where a,,is alearnable decay rate, s is the vector from nucleus/ to
electron i, expressed in the basis of the supercell lattice vectors, and
[|sy1|°*"is the modulus of s, in a periodic norm explained below. Both the
orbitalembedding W, and the decay length a,, depend on the orbital
pand atom/and are different for each determinant d.
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ToobtainW,,anda,,inatransferable way, we do not parameterize
themdirectly butrepresent them as functions of some orbital-specific
descriptor ¢, € R%r:

Wduj =f;N (éul) ’ Aqy =/ da (éuj)’ (8
with fW : Row — Caexdems and f2 : R%w — R denoting simple multi-
layer perceptrons. The orbital embeddingincludes information about
single-particle orbitals of the system calculated with a mean-field
method, which is key for the transferability of the ansatz. The inputs
are the orbital features ¢, € R%», which are concatenations of the
expansion coefficients of the localized mean-field orbitals in an
atom-centered basis set, the twist k,, the mean position of orbital zand
the position of atom/, with a combined dimensionality of d,,,. While
all parameters and intermediate computations of our network are
real-valued, thelastlayer of /" is complex-valued to allow the network
torepresent complex-valued wavefunctions.

An important difference with respect to previous neural
network-based wavefunctions is the use of electron-nuclear embed-
dingse;, whichdescribe the interactionbetween electroniand nucleus
J.Other architectures such FermiNet, but also the more closely related
transferable atomic orbital ansatz”, use embeddings to represent the
interactions of asingle electroniwithall nucleiinstead. However, when
the embeddings are bothinvariant under permutation of nuclei (which
werequire for efficient transferability) and invariant under translation
of particles by a supercell lattice vector (which we require to enforce
boundary conditions), they become periodic on the primitive lattice
(Supplementary Section 4), not just the supercell lattice. This is too
restrictive to represent correlation beyond a single primitive cell. We
therefore opt to use electron-nucleus embeddings that are equivariant
under permutation of nuclei at some additional computational cost
explained in Supplementary Section 4.

Input. Werequire our representation of the differencevectorsr;=r;,—r,
r,=r,—R,andr,=r,— R tobeperiodicwith respect to the supercell lat-
tice. Thisis accomplished using the approach introduced by Cassella
et al.". The first step is to transform the coordinates into supercell
fractional coordinates withs;=L'r;, s, = L'r;and s, = L™'r,. Periodic
versions of the difference vectors are then obtained by applying sine
and cosine element-wise,

R3 - RS,

w(s) := [sin(2ms), cos(2ms)], o : )

X 1= a)(sij), Xy = 0(Sy), Xy 1= w(sy), (10)
where square brackets denote the concatenation operator. For the

distance, we use the periodic norm

3
(||s||F’”)2 = Z (@ = cos2ms)) Ay, (1 — coS(21s),)) + SiN(27s)Ay, SIN(27TS),) )
Lp=1
(11)
foravector s € R3with the lattice metricA := LL". Thisnormis used to
define the periodic distance features

Xy = 1151”7, Xy = [IsylP", Xy = [IsylP"- (12)

Embedding. The periodic input features are used to generate
high-dimensional embeddings e, for the construction of the orbital
matrix. The following embeddingis aslight adaption of the appraoch
usedinthe recently proposed Moon architecture®. We start by aggre-
gating the electron-electron features into message vectors m? for each
electroni

Nel
m =% I'(xy, X;) © 6 (W™Xy +b™),
j=1

13)

and compute theinitial electron embeddings h? as atrainable function
of these messages
h? = o(Wom? + b°). (14)

Thematrices W™and W° and vectorsb™and b® are trainable parameters,
oisanactivation function that is applied elementwise and ® denotes
the elementwise product. The filter function /*¢

Iee(x;, x;) = o(W*™x;; + b) © exp (—xfjo() , 15)
ensures an exponential decay with a trainable vector of length scales
« and a trainable matrix W*™. Furthermore, the input features
X; = [x; X, ksJmake the embedding twist dependent to allow for better
transferability across twists.

To initialize the atomic features, we first one-hot encode the
nuclear chargesZintoamatrix fi € RNxomsXspecies, With one-hot encoding
we refer to the common machine-learning practice of encoding cate-
gorical data (in this case, the type of atom), using a vector that is zero
everywhere, except in the one dimension corresponding to the cate-
goryitencodes. We theninitialize the atom embeddings H analogously
to the electron embeddings, by aggregating atom-atom features for
eachatom/

N(!loms
HY = > I'*a(xy, xp) © o(W*H, + b?),
J=1

(16)

using a trainable weight matrix W* and bias vector b?. We then incor-
porate electron-atominformation by contractingacross all electrons

Nel

H =€) O (W2 I (xy, Xy) (17)
i=1

€) = o (h® + HY + Wedeex, + bedee), (18)

il

with X; = [xy, Xz, ks] and trainable matrices W*?, We®¢ and bias b°d°,
Subsequently, the atom embeddings are updated with L dense layers

H/* = g(WH] + b') + H,, 19)

to finally diffuse them to electron-atom embeddings e, of the form

e, = G(W"“tl €0+ HE + Wouzh? + b°”‘) © (WPUts ToUt(xy, X)), (20)
with trainable matrix Wweut, weut Wouts and trainable bias vector b°*.
For the sake of simplicity, we omitted the spin dependence in this
presentation of the different embedding stages. Compared with the
original Moon embedding™, we use separate filters /for the intermedi-
ate layers and the output layer, include the twist as input feature and
omit the final aggregation step from electron-ion embeddings e, to
electronembeddingse,.

Orbitals. The orbital features ¢,  are aconcatenation of four different
types of features. First, as proposed by Scherbela et al.”, we rely on
mean-field coefficients from a Hartree-Fock calculation. The
mean-field orbitals ¢, arelocalized as described in ‘Orbital localization’
and expanded in periodic, atom-centered, basis functions b,

Natoms My

¢y(ri) = z Z Clu,n brz(ri -R)),

=1 =1

(21

where n, represents the per-atom basis set size of the Hartree-Fock
calculation. We use a periodic version of the cc-pVDZ basis set® and
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find no strong dependence of our results on the basis set used
(Supplementary Fig. 5). In addition, we include relative atom
positions R,

Nycoms
2o RZ)

li’ = RI - Natoms (22)
ZK:I Zg
. . . ~ orb
and analogously relative orbital positions R,
N toms
<orb 2 R,
R’f’ - R‘?rb [ S (23)

Namms ’
Z K=1 ZK

where Ro™is the position of the localized orbital zas outlined in ‘Orbital
localization’. This allows the network to differentiate between different
atoms and orbitals within the supercell. As a final feature, we include
the twist of the system

K, = [ks, sin(R; - k), cos(R,; - ky)] € R5. (24)
Thefinal orbital features ¢, are obtained as a concatenation
=~ sorb -~
G =lcy R R, K | € Réon, 25)

where d,,, = n, +11, resulting from the concatenation of the n, basis
coefficient features, 3 atom position features, 3 orbital position fea-
tures and 5 twist features.

Sampling

We use the Metropolis Hastings algorithm®* to draw samples r from
our unnormalized density |W,|>. We use Gaussian all-electron propos-
alsr’? of the form

rPP = r + 58, (26)

where 8 is drawn from a 3n,,-dimensional standard normal distribu-
tion. We continuously adjust the stepsize s to obtain a mean accept-
ance probability of approximately 50%. Empirically, we find no strong
dependence of autocorrelations on this acceptance target, as long as
itis roughly between 30% and 70%. While it can be shown that under
simplifying assumptions 23% is the optimal acceptance rate®, we do
not find this to be optimal in practice. Performance is more strongly
impacted by too small acceptance rates, and thus, we opt for the
larger ~50%.

When calculating properties of the hydrogen chain for different
lattice constants R, special care must be givento the treatment of spins.
The hydrogen chain has two phases with different arrangements of
spins. Intheinsulating phase at large lattice constant, the ground state
is antiferromagnetic, that is, neighboring spins prefer to be aligned
antiparallel. In the metallic phase at small lattice constant, this anti-
ferromagnetic ordering decreases and the system may even show
ferromagnetic domains®. Moving between these two configurations
is difficult using local Monte Carlo updates as given by equation (26),
so we modify our Metropolis Hastings proposal function. In addition
to moving electrons in real space, we occasionally propose moves
that swap the positions of two electrons with opposite spin. To avoid
biasing our sampling toward either spin configuration, we initialize
half our Monte Carlo walkers in the antiferromagnetic configuration
(neighboring electrons having opposite spin) and half our Monte Carlo
walkersinaferromagnetic configuration (all spin-up electronsinone
half of the chain and all spin-down electronsin the other half). We found
that, on the contrary, initializing all walkers in the antiferromagnetic
configuration (as might be indicated, for example, by a mean-field
calculation) can cause the optimization to fallinto local energy minima
during wavefunction optimization.

When optimizing a transferable wavefunction across multiple
systems, we must also sample these systems during training. To sim-
plify implementation, we sample only a single system per gradient
step. We choose this system randomly, with its probability being either
proportional to the systems weight (in the case of twist averaging) or
proportional to the variance per electron.

Complex KFAC

We use the Kronecker factored approximate curvature (KFAC) method*
to optimize the trainable parameters of our ansatz. KFAC uses the
Fisher information matrix as a metric in the space of wavefunction
parameters. For real wavefunctions, the Fisher matrixis equivalent to
the preconditioner used in the stochastic reconfiguration method ¢,
but thisis not the case for complex wavefunctions. Instead, the Fubini-
Study metric should be used, given by

_ dlny dlny
el )

Writing the complex wavefunction in polar form, ¢ = pe®, thisbecomes

_ 6lnpalnp+6_¢6_¢
\ 06, 06, = 00,00;/’

(27)

(28)

where the first term is the Fisher information matrix and the second
term is the new contribution due to the phase of the wavefunction.
The second term s zero if the phase is a global constant, such as for a
purely real-valued wavefunction. For our wavefunction, the phase is
generally nonzero, due to the complex-valued orbitals and the phase
factor introduced to enforce twist-averaged boundary conditions.

Orbitallocalization

To obtain orbital features that generalize well across system sizes,
we do not use the canonical mean-field coefficients ¢ as network
inputs. Rather, we use the coefficients ¢'*° of maximally localized
Wannier orbitals computed from c. We follow the procedure of
ref. 37 to find a unitary rotation Uwithin the subspace spanned by the
occupied orbitals. Given a set of mean-field orbitals ¢,(r), u=1, ...,
n,, expanded in periodic, atom-centered basis functions b,,(r), /=1,
vees Natomss 1=1, ..., Ny, as described in ‘Architecture’, we compute the
complex polarization matrix

Xayu = f ¢$(r)eirrc“¢y(r)d r, X€ C3XMoro XMoro (29)

where G = 2ntL " is the matrix of reciprocal lattice vectors. Given a uni-
tary transformation U e C"n»*"n, the transformed polarization matrix
% and the corresponding localization loss £ are given by

Qa;x = Xa,uu = (mXaU)”” (30)

L) = - 1 U5, @1

where ||-||, denotes the L, norm. To facilitate unconstrained optimi-
zation, we parameterize the unitary matrix U as the complex matrix
exponential of asymmetrized, unconstrained complex matrix A:

U= ei®AD, (32)

We obtain the optimal U°¢, and corresponding orbital coefficients ¢'°
viagradient-based optimization

U = argmin,,£(U), C,'l;’z = Z C,,LVU'V“’,C, 33)
m
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using the Adam ** optimizer. For orthorombic supercells, the position
of the Wannier center R¢™ of the localized orbital i can be inferred from
the localized polarization matrix x as

o _ _Laa log X4, (34)

e o a=1..3, p=1...nyp.

For other supercells, we follow the generalization giveninref. 37.

Observables and postprocessing

TABC.Inafinite system, there are finite-size errorsrelated toboth the
artificial constraint of periodicity in the supercell and the lack of cor-
relations of longer range than the supercell. The effects of the former
on the single-particle contributions to the Hamiltonian, namely the
kinetic energy, the Hartree energy and the electron-ion interaction,
canbe reduced using TABC***. Twisted boundary conditions require
that the wavefunction obeys

U(ry, ..., ti+ Lo, . 1y) = eXLaw(ry, .1, 1), (35)

where L, is the ath supercell lattice vector. Equation (35) is
enforced by adding a position-dependent phase e’ ":for each electron
in the transferable atomic orbitals. as seen in equation (5). To obtain
twist-averaged observables, we compute observables across agrid of
twists k, spanning the first Brillouin zone and average the results.

Structure factor correction. To handle finite-size errors in the Ewald
energy, we use the finite-size corrections proposed by ref. 25. Writing
the Ewald energy in terms of Fourier series, we get

2. Ue(Gpp(Gyp)p*(Gp).

v_ N 1 1
(Vi) =3 jom+ 5 2, ve(GOIS(G) — 11+ 55
2 §2 cé:o ) ) 20 Gp#0

(36)

Here, vy, is the Madelung energy, Qis the supercell volume, vg(k) = 471/k
is the Fourier transform of the Coulomb interaction, and G (G,) is a
simulation (primitive) cell reciprocal lattice vector. The translationally
averaged structure factor S(G,) is defined by

S(G) = ﬁ [( P(G)P*(Gs)) — ( P(G)X BT (Gy))], 37)

where p(G,) = ¥, exp (—iG, - ry)isthe Fourier representation of the opera-
tor for the electron density. The structure factor converges fairly rap-
idly with supercell size, sowe can assume that S,(k) = S..(k). In this limit,
the largest contribution to the error is the omission of the G, = 0 term
in the first sum. In cubic systems, we have S(k) « nk* + O(k*), with odd
terms missing due to inversion symmetry, and the k - O limit of
S(k)ve(k) is well defined. As such, to a first approximation, the Ewald
finite-size erroris given by

4nN li Sk)

N ..
AV~ 55 limueksth) = 5o fim =5 (38)

Sampling S(G,) at supercell reciprocal lattice vectors G,, we approxi-
mate the limit k > O by fitting the function

S(k) ~ fik) = 1— e~Gok*—aik* (39)
with a, and a, greater than zero. The form of the fit ensures that S(k)
hasthe correct k’behavior atsmall kand that [im S(k) = 1. Thefinite-size
correction AV, is given by AV, = 4tNa,/20Q. koo

ZPVE. To estimate the ZPVE contribution for graphene, we obtained
the phonon density of states D(w) calculated within DFT using the

Perdew-Burke-Ernzerhof functional® from ref. 39. The ZPVE energy
per primitive cell, Fzp\, is then given as

prim
atoms

SD(w)dw 40)

E; ZPVE =

fD(w)%hw dw,

where A% = 2is the number of atoms per primitive unit cell of gra-
phene. This yields aZPVE of 12.8 mHa per primitive cell for graphene.

ForLiH, we use ZPVE data published inref. 26.

Data availability

All data, including geometries, configurations and the figure source
data, areavailable via GitHub at https://github.com/mdsunivie/deep-
erwin and via Zenodo at https://doi.org/10.5281/zenod0.16084892
(ref.40).Source data are provided with this paper.

Code availability

Allcodeis available via GitHub at https://github.com/mdsunivie/deep-
erwin and via Zenodo at https://doi.org/10.5281/zenod0.16084892
(ref. 40).
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