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Transferable neural wavefunctions for solids
 

L. Gerard    1,4, M. Scherbela    1,4, H. Sutterud2,4, W. M. C. Foulkes    2 & 
P. Grohs    1,3 

Deep-learning-based variational Monte Carlo has emerged as a highly 
accurate method for solving the many-electron Schrödinger 
equation. Despite favorable scaling with the number of electrons, 𝒪𝒪𝒪nel4), 
the practical value of deep-learning-based variational Monte Carlo is limited 
by the high cost of optimizing the neural network weights for every system 
studied. Recent research has proposed optimizing a single neural network 
across multiple systems, reducing the cost per system. Here we extend this 
approach to solids, which require numerous calculations across different 
geometries, boundary conditions and supercell sizes. We demonstrate that 
optimization of a single ansatz across these variations significantly reduces 
optimization steps. Furthermore, we successfully transfer a network trained 
on 2 × 2 × 2 supercells of LiH, to 3 × 3 × 3 supercells, reducing the number of 
optimization steps required to simulate the large system by a factor of 50 
compared with previous work.

Many interesting material properties, such as magnetism and super-
conductivity, depend on the material’s electronic structure as given 
by the ground-state wavefunction. The wavefunction may in principle 
be found by solving the time-independent Schrödinger equation, but 
doing so with sufficient accuracy is challenging because the computa-
tional cost grows dramatically with the number of particles. The chal-
lenge is particularly pronounced in solid state physics, where accurate 
calculations for periodic systems require the use of large supercells—
and, consequently, many particles—to minimize finite-size effects.

Over the past few decades, density functional theory (DFT) has 
emerged as the primary workhorse of solid-state physics. When using 
local or semi-local exchange–correlation functionals, DFT calculations 
have a favorable scaling of 𝒪𝒪𝒪nel3) or better, where nel is the number of 
electrons in the system, and an accuracy that is often sufficient to help 
guide and predict experiments1,2. However, the choice of functional is 
in practice an uncontrolled approximation, and DFT sometimes yields 
quantitatively or even qualitatively wrong results, especially for 
strongly correlated materials3,4.

Another approach, known as variational Monte Carlo (VMC), uses 
an explicit parameterized representation of the full many-body wave-
function and optimizes the parameters using the variational principle. 
This method has a favorable scaling of 𝒪𝒪𝒪nel3−4) (refs. 5,6) but is limited 

in accuracy by the expressivity of the ansatz used. Recently, deep neural 
networks have been used as wavefunction ansatze6–8 and used to study 
a large variety of systems including small molecules6,9,10, periodic model 
systems described by lattice Hamiltonians7,11–13, the homogeneous 
electron gas14,15 and Fermi liquids16,17. Due to their flexibility and expres-
sive power, deep-learning-based VMC (DL-VMC) approaches provide 
the best current estimates for the ground-state energies of several 
small molecules9,10 In DL-VMC, the wavefunction ansatz ψθ is repre-
sented as a neural network, with the variational parameters θ being the 
network weights and biases. An approximation of the ground state is 
obtained by minimizing the energy expectation value of this ansatz 
(Fig. 1a). In each optimization step, electron coordinates r are sampled 
from the probability density ∣ψθ∣2, and these samples are used to esti-
mate the energy expectation value Eθ. Using automatic differentiation, 
the energy gradient is computed, and the network parameters θ are 
updated to minimize this energy.

Despite the success for small molecules, efforts to apply DL-VMC 
to real solids18,19 have been limited by the high computational cost 
involved. While a single calculation may be feasible, studying real solids 
requires many similar but distinct calculations. First, it is necessary to 
perform calculations involving increasingly larger supercells to esti-
mate finite-size errors and extrapolate results to the thermodynamic 
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physics such as dimerization, a lattice-constant-dependent metal–
insulator transition and strong correlation effects. A collaborative 
effort3,22 has obtained results for this system using a large variety of 
high-accuracy methods, providing a trustworthy benchmark.

The first test is to obtain the total energy per atom for a fixed atom 
spacing, R = 1.8a0 (where a0 is the Bohr radius), in the TDL attained as 
the number of atoms in the supercell tends to infinity. To this end, we 
train two distinct models on periodic supercells with Natoms = 4, 6, …, 
22. The first model is trained at twist k = 0 (the Γ-point) only. The second 
is trained using all twists from a Γ-centered four-point Monkhorst– 
Pack grid23. The three inequivalent twists are k = 0, 1

4
and 1

2
 in units of 

2π/R, and their weights are w = 1, 2 and 1, respectively. Once the model 
has been pretrained on these relatively short chains, we fine-tune it on 
larger chains with Natoms = 32 and 38. We use the extrapolation method 
described in ref. 22 to obtain the energy E∞ in the TDL. Previous authors 
have extrapolated the energy using only chain lengths of the form 
Natoms = 4n + 2, n ∈ ℕ , which have filled electronic shells. We also 
report extrapolations using chain lengths Natoms = 4n, which lead to 
partially filled shells.

Figure 2a shows that all of our extrapolations (Γ-point filled shells, 
Γ-point unfilled shells and TABC) are in good qualitative agreement with 
previous results obtained using methods such as lattice-regularized 
diffusion Monte Carlo (LR-DMC)22 and DeepSolid18, a FermiNet-based6 
neural wavefunction for solids. Quantitatively, we achieve slightly 
lower (and, thus, more accurate) energies than DeepSolid for all 
values of Natoms. Using TABC, we obtain E∞ = −565.24(2) mHa, which 
is 0.2–0.5 mHa lower than the estimate obtained using LR-DMC and 
DeepSolid, and agrees within uncertainty with the extrapolated energy 
computed using the auxiliary-field quantum Monte Carlo (AFQMC) 
method22. Most notably, however, we obtain these results at a frac-
tion of the computational cost of DeepSolid. Whereas DeepSolid 
required a separate calculation with 100,000 optimization steps for 
each value of Natoms (and would have required even more calculations 
for twist-averaged energies), we obtain results for all 10 chain lengths 
and values of Natoms = 4, …, 22, with 3 twists for each system, using only 
50,000 optimization steps in total. Furthermore, by reusing the model 
pretrained on smaller chains, we obtain results for the larger chains 
with Natoms = 32 and 38 using only 2,000 additional steps of fine tun-
ing. This reduces the cost of simulating the large chains by a factor of 
approximately 50. We note that, as expected, the use of TABC reduces 
finite-size errors, allows us to combine results for filled and unfilled 

limit (TDL). Second, twist-averaged boundary conditions (TABC) are 
used to accelerate the rate at which the finite-size errors reduce as the 
supercell size increases20. This requires averaging the results for each 
supercell over many calculations using different boundary conditions. 
Lastly, studying a given system often requires calculations for different 
geometries and lattice constants. As most existing DL-VMC ansatze 
require optimizing a new wavefunction from scratch for each new 
system (Fig. 1b), the computational cost quickly becomes prohibitive 
even for systems of moderate size. For example, Li et al. proposed 
DeepSolid18, an ansatz capable of accurately modeling periodic wave-
functions with up to 100 electrons, but it required over 80,000 GPU 
hours to study a single system.

In this work, we implement a transferable DL-VMC ansatz for real 
solids that takes as input not only the electron positions but also other 
parameters of the system, such as its geometry or boundary condition. 
When computing energies for multiple systems, we do not optimize 
separate ansatze for each system, but instead optimize a single wave-
function able to represent all these systems (Fig. 1c). The transferability 
of this wavefunction across systems yields two large speed-ups in prac-
tice. First, optimizing a single ansatz for many variations of unit-cell 
geometry, boundary condition and supercell requires typically much 
fewer optimization steps than optimizing ansatze separately for each 
system. Second, because the ansatz learns to generalize across systems, 
we can use models pretrained on small systems as highly effective 
initializers for new systems or larger supercells. The key idea, based 
on Scherbela et al.21, sketched in Fig. 1d and detailed in the Methods, 
is to map computationally cheap, uncorrelated mean-field orbitals 
to expressive neural network orbitals that depend on the positions 
of all electrons.

Compared with previous DL-VMC work without transferability, 
our approach yields more accurate results, gives access to denser 
twist averaging (reducing finite-size effects) and requires a fraction 
of the computational resources. For example, for lithium hydride, 
transferring a 32-electron calculation to one with 108 electrons yields 
more accurate results than previous work18 at approximately 1/50 of 
the computational cost.

Results
One-dimensional hydrogen chains
Chains of hydrogen atoms with periodic boundary conditions provide 
a simple one-dimensional toy system that nevertheless exhibits rich 
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Fig. 1 | Schematic overview of our approach. a, A schematic overview of the 
VMC optimization loop. b, The conventional approach of training separate, 
geometry- and twist-specific wavefunctions. c, Our approach of training a 
single, transferable wavefunction across system variations. d, A schematic 
of our transferable wavefunction ansatz: starting from electron and nucleus 

coordinates, nucleus charges r, R, Z and twist ks, we compute high-dimensional 
representations ei for each electron i and Wμ for each orbital μ. We combine 
them to square matrices Φd and use determinants to obtain an antisymmetric 
wavefunction Ψθ with trainable parameters θ. From that, we compute the total 
energy E, applying the Hamiltonian operator H to the wavefunction.
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shells in the extrapolation and leads to faster convergence of the energy 
per atom. By contrast, when using only Γ-point calculations, there is a 
strong even/odd effect in the energy, requiring separate extrapolations 
for unfilled and filled shells.

Beyond energies, we study the hydrogen chain’s phase transition 
from an insulating phase at large interatomic separation, R, to a metal-
lic phase at small R. The transition can be quantified by evaluating the 
complex polarization along the length of the chain

z = ⟨e
i

2π
RNatoms

nel
∑
i=1
xi
⟩ , (1)

where xi is the position of electron i in the direction of the chain. The 
expectation value is defined as 〈…〉 ≡ ∫Ψ*(r)…Ψ(r)dr, where 
r = 𝒪r1, r2,… , rnel ) is a 3nel-dimensional vector of electron positions, Ψ 
is the (approximate) ground-state wavefunction, and the integral is 
over all 3nel electronic degrees of freedom. Although the polarization 
is easy to evaluate in principle, studying the transition is computation-
ally costly because it requires many similar but distinct calculations: 
multiple values of R are required to locate the transition; multiple twists 
k are required to obtain accurate twist-averaged polarizations; and 
multiple chain lengths Natoms are required to allow extrapolation to the 
TDL. Even for a modest selection of all of these variations, studying the 
phase transition in detail requires hundreds of calculations. Using our 
transferable wavefunction, on the other hand, allows us to train a sin-
gle model to represent the wavefunction for all parameter variations 
at once.

We trained a single ansatz to describe all 120 combinations of: (1) 
3 distinct chain lengths, Natoms = 12, 16 and 20; (2) 5 symmetry-reduced 
k-points of an 8-point Γ-centered Monkhorst–Pack grid; and (3) 8 dis-
tinct atom spacings between R = 1.2a0 and R = 3.6a0. A total of 200,000 
optimization steps were carried out, after which the complex polari-
zation was evaluated using equation (1). To improve our estimates 
for Natoms → ∞, we fine-tuned this pretrained model for 2,000 steps on 
chain lengths of Natoms = 40 and a denser 20-point Monkhorst–Pack 
grid containing 11 symmetry-reduced twists. Figure 2b shows that our 
approach qualitatively reproduces the results obtained using DMC and 
AFQMC. In agreement with Motta et al.3, we observe a second-order 

metal–insulator transition. However, where Motta estimates the criti-
cal atom spacing Rcrit = 1.70(5)a0, our results are more consistent with 
Rcrit = 1.32(5)a0. A possible explanation for the disagreement is that 
our neural wavefunction may be less accurate (and may therefore 
produce relatively higher energies) for metals than insulators, disfa-
voring the metallic phase. Another possible explanation follows from 
the observation that, unlike the VMC method used here, the DMC and 
AFQMC methods yield biased estimates of the expectation values of 
operators, such as the complex polarization, that do not commute 
with the Hamiltonian5,24.

Also in agreement with Motta et al.3, we find that the hydrogen 
chain shows quasi-long-range antiferromagnetic correlation at at 
large lattice constant R. The expected atomic spins are zero on every 
atom, but the spins on neighboring atoms are antiferromagnetically 
correlated. As the lattice constant gets smaller and the system transi-
tions to the metallic phase, these correlations decrease as shown in 
Supplementary Fig. 3.

Graphene
To demonstrate the application of our transferable DL-VMC ansatz 
to a two-dimensional solid, we compute the cohesive energy of gra-
phene in a 2 × 2 supercell and compare against the DL-VMC results of 
DeepSolid by Li et al.18. We use TABC, apply structure-factor-based 
finite-size corrections25 as detailed in the Methods and add zero-point 
vibrational energies (ZPVE). The DeepSolid results were restricted to a 
Monkhorst–Pack grid of 3 × 3 twists, yielding three symmetry-reduced 
twists in total. In our case, because we are able to compute multiple 
twists at once with minimal extra cost, we increase the grid density to 
12 × 12. This increases the number of symmetry-reduced twists from 3 
to 19. Our denser twist grid contains a subset of the twists considered by 
DeepSolid, allowing a direct comparison with their independent energy 
calculations. We stress that we require only a single neural network, 
optimized for 120,000 steps, to obtain energies for all twists (both the 
12 × 12 grid and the 3 × 3 subset). DeepSolid, on the other hand, opti-
mized for 900,000 steps in total, obtaining energies only for the 3 × 3 
twist grid. We find that our transferable ansatz has an approximately 2× 
higher per-step cost compared with DeepSolid (Supplementary Fig. 2), 
but the large reduction in the required number of optimization steps 
(Fig. 3a) far outweighs this cost.
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Fig. 2 | One-dimensional hydrogen chain. a, Extrapolation of the energy 
per atom to the TDL for R = 1.8a0. Results obtained using DeepSolid (neural 
wavefunction), LR-DMC, AFQMC and our transferable neural wavefunction 
are shown. Open markers indicate energies computed by fine-tuning a model 
pretrained on smaller supercells. The shaded area depicts the statistical 
uncertainty in the AFQMC result. The Monte Carlo uncertainty of our results is 

approximately 10 μHa, well below the marker size. b, The complex polarization 
∣z∣ as a function of the interatomic separation, R, showing a phase transition 
between a metal at small R and an insulator at large R. AFQMC and DMC results 
are taken from the work of the Simons Collaboration3. The error bars for our 
results represent Monte Carlo uncertainty. DeepSolid results are taken  
from Li et al.18.
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Our twist-averaged energy using the 3 × 3 twist grid is 4 mHa per 
primitive cell lower than the DeepSolid energy. Looking at individual 
twists (Table 1), we find that our energies for k1 and k2 are lower than 
the energies obtained by DeepSolid by 1 mHa and 7 mHa, respectively, 
while our energy for k3 is higher by 4 mHa. This twist-dependent accu-
racy is expected, because we allocate optimization steps proportional 
to the twist’s symmetry weight (see ‘Sampling’ in the Methods), thereby 
potentially optimizing k1 and k2 more stringently than k3. This proce-
dure ensures that more optimization steps are spent on twists with high 
contribution to the final energy, thus improving efficiency.

To check for finite size effects, we also compute cohesive energies 
on a larger 3 × 3 supercell with a 12 × 12 twist grid. Due to the transferabil-
ity of our wavefunction, we can use wavefunction parameters obtained 
from the 2 × 2 supercell as initialization for the 3 × 3 supercell calcula-
tion, thereby reducing the number of required optimization steps.

When computing cohesive energies and correcting for finite-size 
effects using a structure-factor-based correction and ZPVE, we obtain 
energies that are 7 mHa lower than experimental values for the 2 × 2 
supercell, that is, we predict slightly stronger binding than experi-
ment. For the 3 × 3 supercell, we predict 15 mHa higher energies than 
experimental values (Supplementary Table 1). We hypothesize that the 
remaining discrepancy may be a finite-size artifact and that even for 
the 3 × 3 supercell energies may not yet be converged. An alternative 
hypothesis is that a larger, more expressive network may be needed to 
represent the true ground-state wavefunction for the 3 × 3 supercell.

With a network that has been trained across the entire Brillouin 
zone, we can evaluate observables along arbitrary paths in k space. 
Figure 4 is a bandstructure-like diagram, showing how the total energy 
varies along a path passing through the high-symmetry k-points Γ = (0, 
0), M = (0, 1/2) and K = (1/3, 2/3) in units of the supercell reciprocal 
lattice vectors. We use the pretrained model from the 12 × 12 Monk-
horst–Pack grid and transfer it to the bandstructure-like diagram with 
k-points previously unseen during optimization, requiring only a few 
additional optimization steps. We fine-tune the pretrained model for 
the k-points on the path, using around 100 optimization steps per twist 
and then evaluate the energies along the path. Analogously to the Dirac 
cone visible in the one-electron bandstructure, our many-electron 
bandstructure displays a characteristic cusp at the K-point.

Lithium hydride
We have also used the transferable DL-VMC ansatz to evaluate the 
energy–volume curve of LiH in the rock-salt crystal structure. As shown 
in Fig. 5 (see also Supplementary Section 7), we obtain the energy–
volume curve by fitting a Birch–Murhaghan equation of state to the 

total energies of a 2 × 2 × 2 supercell at eight different lattice param-
eters. To reduce finite-size errors, the eight total energies are twist 
averaged using a 5 × 5 × 5 Γ-centered Monkhorst–Pack grid and include 
structure-factor-based finite-size corrections. For comparison, Deep-
Solid performed a Γ-point calculation only and estimated finite-size 
errors by converging a Hartree–Fock calculation with an increasingly 
dense twist grid18. To all results we add ZPVE taken from ref. 26, making 
the calculated cohesive energy less negative by approximately 8 mHa. 
The DeepSolid results by Li et al.18 took no account of the ZPVE, explain-
ing the slight difference between our depiction of their results, shown 
in Fig. 5, and their original publication18.

We trained a single neural network wavefunction across 8 lattice 
constants and 10 symmetry-reduced twists, making 80 systems in 
total. By comparison, DeepSolid required a separate calculation for 
each geometry.

The Birch–Murnaghan fit gives an equilibrium lattice constant of 
7.66(1)a0 (dotted orange line), which agrees well with the experimental 
value of 7.674(2)a0 (ref. 26). Our Birch–Murnaghan estimate of the 
cohesive energy of −177.3(1) mHa per primitive cell deviates from the 
experimental value of −175.3(4) mHa by −2.0(5) mHa. This marks an 
improvement over the DeepSolid results18 of −166.8(1) mHa, which 
differ from experiment by 8.5(5) mHa. Because we are able to optimize 
all systems at once, our results were obtained with roughly 5% of the 
compute required by DeepSolid, and the speed-up is evident in Fig. 3b. 
Similar improvements can be observed in the variance of the local 
energy (Supplementary Section 8).
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Fig. 3 | Optimization curves. Mean energy as a function of total optimization steps across all geometries and twists. Energies are the running average over the last 
1,000 steps. Crosses mark final evaluation energies. a, Energy of 2 × 2 supercell of graphene. b, Mean energy of the potential energy surface of LiH in a  
2 × 2 × 2 supercell.

Table 1 | Total energies of graphene in Hartrees for a 
primitive cell, as computed by VMC, after the structure 
factor correction (SFC) and after adding ZPVE

Twist Weight Total 
energy

Total energy 
+ SFC

Total energy 
+ SFC + ZPVE

DeepSolid

k1 = (0, 0) 1/9 −76.1559 −76.1534 −76.1406

k2 = (1/3, 1/3) 2/3 −76.2495 −76.2470 −76.2342

k3 = (2/3, 1/3) 2/9 −76.2631 −76.2607 −76.2479

Our work

k1 = (0, 0) 1/9 −76.1572(2) −76.1542(2) −76.1414(2)

k2 = (1/3, 1/3) 2/3 −76.2572(2) −76.2543(2) −76.2415(2)

k3 = (2/3, 1/3) 2/9 −76.2590(2) −76.2560(2) −76.2432(2)

The table compares our results against the total energies computed with DeepSolid18 at 
the three symmetry-inequivalent twists on the 3 × 3 Monkhorst–Pack grid. The twists are 
expressed in the basis of the reciprocal lattice vectors.
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Although we improve on the DeepSolid baseline, the cohesive 
energy might still be impacted by finite-size effects because of the small 
size of the 2 × 2 × 2 supercell used. To check this, we also studied a larger 
supercell containing 3 × 3 × 3 primitive unit cells. This 108-electron 
system is one of the largest to have been studied using neural wave-
functions so far. DeepSolid used 400,000 optimization steps to get 
a Γ-point estimate for the cohesive energy and overestimated the 
energy by around 7 mHa per primitive cell compared with the experi-
mental results18,26. By contrast, we can exploit the transferability of 
our wavefunction and use the parameters obtained from pretraining 
on the 2 × 2 × 2 supercells as initialization for the much larger 3 × 3 × 3 
supercell. Due to the good generalization of our ansatz, we are able to 
calculate the cohesive energy for the 3 × 3 × 3 supercell with only 8,000 
additional optimization steps shared across ten different twists. Using 
twist averaging, a structure-factor correction and a ZPVE correction as 
before, we obtain a cohesive energy of −174.6 mHa per primitive cell, 
deviating from experiment by only 0.7(5) mHa per primitive cell. The 
magnitude of this deviation is close to the 0.4-mHa spread of experi-
mental data obtained from different thermochemistry experiments26. 
Our twist-averaged 3 × 3 × 3 calculation required only ~2% of the compu-
tational resources used by DeepSolid for a single Γ-point calculation18.

Furthermore, we compared our approach to the case of pretrain-
ing on a single system and fine-tuning the pretrained wavefunction 
on the remaining systems with independent calculations (similar to 
DeepSolid) for a 2 × 2 × 2 supercell of LiH. This comparison confirms 
that the approach of training a single neural network wavefunction 
across different systems converges much faster then fine-tuning inde-
pendent wavefunctions (Supplementary Fig. 7).

Discussion
By training a single transferable wavefunction across system sizes, 
geometries and boundary conditions, our approach substantially 
reduces the computational cost of applying DL-VMC to solids. Com-
bining this approach with other acceleration techniques—such 
as the efficient forward evaluation of the Laplacian by Li et al.27 or 
pseudo-potentials28—might enable the study of strongly correlated 
materials with DL-VMC. Our approach could also be extended to 
grand-canonical twist averaging29, in which the number of electrons 
in the supercell varies with the twist. Because our ansatz already sup-
ports a variable number of particles, this extension should be easy 
to incorporate.

Our approach shares many of the limitations of other DL-VMC 
methods, including the sensitivity with regard to MCMC initializa-
tion. A standard practice in DL-VMC is to assign each electron a spin 
and initialize it close to the nuclei at the beginning of the calculation. 
If the electrons are initialized in an anti-ferromagnetic pattern, that 
is, alternating the spins of neighboring atoms, but the ground state 

is ferromagnetic, as can be the case for the hydrogen chain when the 
interatomic separation is small, our approach tends to converge to 
local minima. FermiNet suffers from similar problems.

Another limitation arises from the allocation of compute budget 
between the multiple geometries or systems described by a single 
neural network. We allocate more compute during optimization to 
twists with a larger weight, which has a positive effect on twist-averaged 
results in general, because twists with higher contribution are 
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orange cross shows the twist-averaged cohesive energy of a 3 × 3 × 3 simulation 
cell, again using structure factor correction. This was obtained by transferring 
the network pretrained for the 2 × 2 × 2 system to a 3 × 3 × 3 supercell, using 
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converged to higher accuracy (Table 1). However for individual twists, 
when plotting, for example, the band structure (Fig. 4), not all twists are 
optimized to the same accuracy, potentially skewing results.

While this work demonstrates the transferability of a wavefunc-
tion across variations of a system (lattice constant, supercell size and 
twist), more research is needed to develop wavefunctions that reliably 
transfer to entirely new systems, such as different compositions or 
lattices. Prior work on molecules in the gas phase has shown that it 
is possible to pretrain a single wavefunction on a diverse set of mol-
ecules and transfer the results to new, unseen molecules30. There are 
several open challenges to applying this approach to solids: First, the 
effectiveness decreases when transferring the pretrained model to 
systems substantially larger than those in the pretraining set. This issue 
is particular problematic for solids, where finite-size scaling may often 
require transferability to large systems. Second, successful pretraining 
typically requires wavefunction optimization for a large, diverse set of 
systems. This is challenging for calculations of solids, which are inher-
ently more costly than calculations for molecules owing to the need for 
supercells. In practice, while pretraining on hundreds of qualitatively 
different systems is achievable on a moderate compute budget for 
gas-phase molecules, this scale is currently out of reach for solids.

Methods
Notation
All vectors, matrices and tensors are denoted by bold letters, except 
for functions. We use lower-case indices i, j = 1, …, nel for electron posi-
tions and upper-case indices I, J = 1, …, Natoms for atom positions, where 
nel and Natoms are the numbers of electrons and atoms in the supercell. 
Orbitals are enumerated by the indices μ and ν, which range from 1 to 
nel. The position of the ith electron is ri ∈ ℝ3. When i is not used as a 
subscript, it denotes the imaginary unit. By r = 𝒪r1,… , rnel ), we denote 
the 3nel-dimensional vector of all electron positions. Similarly, nuclear 
positions and charges are represented by R = 𝒪R1,… ,RNatoms)  and 
Z = 𝒪Z1,… ,ZNatoms ) . The matrix L ∈ ℝ3×3  contains the supercell lattice 
vectors in its columns. The twist vector, which may always be reduced 
into the first Brillouin zone of the supercell, is denoted by ks. The dot 
product of two vectors a and b is written a ⋅ b, and by ⊙ we refer to the 
element-wise multiplication (Hadamard product).

Deep-learning VMC
The time-independent Schrödinger equation for a solid takes the form

̂HΨ = EΨ , ̂H = − 1
2
∑
i
∇2
ri + ̂VCoulomb (2)

with the Hamiltonian in the Born–Oppenheimer approximation and 
Coulomb potential ̂VCoulomb. A finite supercell is used to approximate 
the bulk solid, and the Coulomb potential is evaluated using the Ewald 
method, as described in refs. 14,31.

In this work, we are interested in finding the lowest eigenvalue 
of the Schrödinger equation—the ground-state energy, E0—and the 
corresponding energy eigenfunction. To find an approximate solu-
tion, one can reformulate the Schrödinger equation as a minimiza-
tion problem using the Rayleigh–Ritz variational principle. Given an 
arbitrary anti-symmetric trial wavefunction, Ψθ, with θ denoting, for 
example, the trainable parameters of a neural network, the best attain-
able approximation to the ground state may be found by minimizing 
the energy expectation value

L𝒪θ) = 𝔼𝔼r∼|Ψθ |2 [
̂HΨθ
Ψθ

] ≥ E0 (3)

with respect to θ. An important constraint for the construction of the 
trial wavefunction arises from the Pauli exclusion principle, which 
states that the wavefunction must be antisymmetric with respect to 

the permutations of different electron coordinates6. As in previous 
work, we approximate the expectation value in equation (3) using 
Monte Carlo integration with samples drawn from the 3nel-dimensional 
probability density ∣Ψθ(r)∣2 (refs. 6,8).

A list of all relevant hyperparameters can be found in 
Supplementary Table 2.

Architecture
Overview. Our ansatz can be broken down into the computation of 
periodic input features, the computation of embeddings eiJ for each 
electron–nucleus pair, the computation of correlated orbitals and the 
assembly of the final wavefunction Ψθ as a sum of Slater determinants. 
Each step serves a distinct purpose.

The input features enforce the periodic boundary conditions of 
the supercell. To capture correlation effects, we use a neural network 
to map single-electron coordinates to vectors in a latent space. These 
vectors, also known as embeddings, depend on the positions of all of 
the other electrons in a permutation equivariant way. Each embedding 
therefore contains information about the corresponding electron as 
well as its environment. The embeddings are subsequently mapped to 
many-electron orbitals as outlined below.

Ansatz. Our wavefunction ansatz is a sum of Slater determinants mul-
tiplied by a Jastrow factor,

Ψ 𝒪r,R,Z,ks) = e J(r)
ndet

∑
d=1

detΦd𝒪r,R,Z,ks). (4)

The optimization is free to adjust the relative normalizations of the 
determinants in the unweighted sum, making it equivalent to a 
weighted sum of normalized determinants, as might be used in a 
configuration-interaction expansion. The Jastrow factor eJ(r) is node-less 
and follows the work of Hermann et al.8, while the determinant enforces 
the fermionic antisymmetry. Instead of using single-particle orbitals 
in the determinant, as in most quantum chemical approaches, we follow 
other neural wavefunction methods6 and promote every entry Φd,iμ in 
the orbital matrix Φd from a one-electron orbital, ϕd,μ(ri), to a 
many-electron orbital, Φd,iμ(r) (temporarily dropping the dependency 
on R, Z and ks for the sake of brevity). The many-electron orbitals are 
permutation equivariant, such that applying a permutation π to the 
electron position vectors permutes the rows of Φd by π, that is, 
Φd,iμ𝒪rπ(1),… , rπ(nel)) = Φd,π(i)μ𝒪r1,… , rnel ). This ensures that the determinant 
has the correct fermionic symmetry. Each entry is constructed as a 
linear combination of atom-centered functions with permutation 
equivariant dependencies on both electrons and atoms

Φd,iμ𝒪r,R,Z,ks) = eiks⋅ri
Natoms

∑
J=1

φdμ𝒪ri, {r},RJ, {R}). (5)

Here, {r} and {R} denote the (permutation invariant) set of electron and 
atom positions, respectively. The phase factor enforces the twisted 
boundary conditions. To construct the φdμiJ ≡ φdμ(ri, {r}, RJ, {R}) using a 
neural network, we use an adaptation of the recently proposed transfer-
able atomic orbital ansatz21,30. The orbitals are written as the inner 
product of an electron–nuclear embedding eiJ ∈ ℝnemb and an orbital 
embedding WdμJ ∈ ℂnemb, multiplied by an exponential envelope φ env

dμJ
,

φdμiJ = 𝒪WdμJ ⋅ eiJ)φ env
dμJ

𝒪ri) (6)

φ env
dμJ

𝒪ri) = e−adμJ ||L
−1riJ ||per , (7)

where adμJ is a learnable decay rate, siJ is the vector from nucleus J to 
electron i, expressed in the basis of the supercell lattice vectors, and 
∣∣siJ∣∣per is the modulus of siJ in a periodic norm explained below. Both the 
orbital embedding WdμJ and the decay length adμJ depend on the orbital 
μ and atom J and are different for each determinant d.
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To obtain WdμJ and adμJ in a transferable way, we do not parameterize 
them directly but represent them as functions of some orbital-specific 
descriptor ̃cμJ ∈ ℝdorb:

WdμJ = fWd ( ̃cμJ) , adμJ = f a
d
( ̃cμJ) , (8)

with fW ∶ ℝdorb → ℂndet×demb and f a ∶ ℝdorb → ℝndet denoting simple multi-
layer perceptrons. The orbital embedding includes information about 
single-particle orbitals of the system calculated with a mean-field 
method, which is key for the transferability of the ansatz. The inputs 
are the orbital features ̃cμJ ∈ ℝdorb , which are concatenations of the 
expansion coefficients of the localized mean-field orbitals in an 
atom-centered basis set, the twist ks, the mean position of orbital μ and 
the position of atom J, with a combined dimensionality of dorb. While 
all parameters and intermediate computations of our network are 
real-valued, the last layer of fW is complex-valued to allow the network 
to represent complex-valued wavefunctions.

An important difference with respect to previous neural 
network-based wavefunctions is the use of electron–nuclear embed-
dings eiJ, which describe the interaction between electron i and nucleus 
J. Other architectures such FermiNet, but also the more closely related 
transferable atomic orbital ansatz21, use embeddings to represent the 
interactions of a single electron i with all nuclei instead. However, when 
the embeddings are both invariant under permutation of nuclei (which 
we require for efficient transferability) and invariant under translation 
of particles by a supercell lattice vector (which we require to enforce 
boundary conditions), they become periodic on the primitive lattice 
(Supplementary Section 4), not just the supercell lattice. This is too 
restrictive to represent correlation beyond a single primitive cell. We 
therefore opt to use electron–nucleus embeddings that are equivariant 
under permutation of nuclei at some additional computational cost 
explained in Supplementary Section 4.

Input. We require our representation of the difference vectors rij = ri − rj, 
riI = ri − RI and rIJ = rI − RJ to be periodic with respect to the supercell lat-
tice. This is accomplished using the approach introduced by Cassella 
et al.14. The first step is to transform the coordinates into supercell 
fractional coordinates with sij = L−1rij, siI = L−1riI and sIJ = L−1rIJ. Periodic 
versions of the difference vectors are then obtained by applying sine 
and cosine element-wise,

ω𝒪s) ∶= [sin𝒪2πs), cos𝒪2πs)], ω ∶ ℝ3 → ℝ6, (9)

xij ∶= ω𝒪sij), xiJ ∶= ω𝒪siJ), xIJ ∶= ω𝒪sIJ), (10)

where square brackets denote the concatenation operator. For the 
distance, we use the periodic norm

𝒪||s||per)2 =
3
∑
l,p=1

(𝒪1 − cos𝒪2πsl))Alp (1 − cos𝒪2πsp)) + sin𝒪2πsl)Alp sin𝒪2πsp))

(11)

for a vector s ∈ ℝ3 with the lattice metric A ≔ LLT. This norm is used to 
define the periodic distance features

xij = ||sij||per, xiJ = ||siJ||per, xIJ = ||sIJ||per. (12)

Embedding. The periodic input features are used to generate 
high-dimensional embeddings eiJ for the construction of the orbital 
matrix. The following embedding is a slight adaption of the appraoch 
used in the recently proposed Moon architecture32. We start by aggre-
gating the electron–electron features into message vectors m0

i
 for each 

electron i

m0
i
=

nel

∑
j=1

Γ
e-e𝒪xij, xij) ⊙ σ (Wm ̃xij + bm) , (13)

and compute the initial electron embeddings h0
i

 as a trainable function 
of these messages

h0
i
= σ (W0m0

i
+ b0) . (14)

The matrices Wm and W0 and vectors bm and b0 are trainable parameters, 
σ is an activation function that is applied elementwise and ⊙ denotes 
the elementwise product. The filter function Γe-e

Γ
e-e𝒪xij, xij) = σ (Wenvxij + b) ⊙ exp (−x2

ij
α) , (15)

ensures an exponential decay with a trainable vector of length scales 
α and a trainable matrix Wenv. Furthermore, the input features 
̃xij = [xij,xij,ks] make the embedding twist dependent to allow for better 

transferability across twists.
To initialize the atomic features, we first one-hot encode the 

nuclear charges Z into a matrix H̃ ∈ ℝNatoms×nspecies. With one-hot encoding 
we refer to the common machine-learning practice of encoding cate-
gorical data (in this case, the type of atom), using a vector that is zero 
everywhere, except in the one dimension corresponding to the cate-
gory it encodes. We then initialize the atom embeddings H0

I
 analogously 

to the electron embeddings, by aggregating atom–atom features for 
each atom I

H0
I
=

Natoms

∑
J=1

Γ
a-a𝒪xIJ, xIJ) ⊙ σ (WaH̃J + ba) , (16)

using a trainable weight matrix Wa and bias vector ba. We then incor-
porate electron–atom information by contracting across all electrons

H1
I
=

nel

∑
i=1

e0
iI
⊙ 𝒪We-a

Γ
e-a𝒪xiI, xiI)) (17)

e0
iI
= σ (h0

i
+H0

I
+Wedge ̃xiI + bedge) , (18)

with ̃xiI = [xiI,xiI,ks]  and trainable matrices We-a, Wedge and bias bedge. 
Subsequently, the atom embeddings are updated with L dense layers

Hl+1
I

= σ (WlHl
I
+ bl) +Hl

I
, (19)

to finally diffuse them to electron-atom embeddings eiI of the form

eiI = σ (Wout1e0
iI
+HL

I
+Wout2h0

i
+ bout) ⊙ (Wout3 Γ out𝒪xiI, xiI)) . (20)

with trainable matrix Wout1 ,Wout2 ,Wout3  and trainable bias vector bout. 
For the sake of simplicity, we omitted the spin dependence in this 
presentation of the different embedding stages. Compared with the 
original Moon embedding32, we use separate filters Γ for the intermedi-
ate layers and the output layer, include the twist as input feature and 
omit the final aggregation step from electron–ion embeddings eiI to 
electron embeddings ei.

Orbitals. The orbital features ̃cμJ  are a concatenation of four different 
types of features. First, as proposed by Scherbela et al.21, we rely on 
mean-field coefficients from a Hartree–Fock calculation. The 
mean-field orbitals ϕμ are localized as described in ‘Orbital localization’ 
and expanded in periodic, atom-centered, basis functions bη

ϕμ𝒪ri) =
Natoms

∑
I=1

nb

∑
η=1
cIμ,η bη𝒪ri − RI), (21)

where nb represents the per-atom basis set size of the Hartree–Fock 
calculation. We use a periodic version of the cc-pVDZ basis set33 and 
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find no strong dependence of our results on the basis set used 
(Supplementary Fig. 5). In addition, we include relative atom 
positions R̃I

R̃I = RI −
∑Natoms
J=1 RJZJ

∑Natoms
K=1 ZK

(22)

and analogously relative orbital positions R̃orb
μ

R̃orb
μ = Rorb

μ −
∑Natoms
J=1 RJZJ

∑Natoms
K=1 ZK

, (23)

where Rorb
μ  is the position of the localized orbital μ as outlined in ‘Orbital 

localization’. This allows the network to differentiate between different 
atoms and orbitals within the supercell. As a final feature, we include 
the twist of the system

̃k
s
I = [ks, sin𝒪RI ⋅ ks), cos𝒪RI ⋅ ks)] ∈ ℝ5. (24)

The final orbital features ̃cIμ are obtained as a concatenation

̃cIμ = [cIμ, R̃I, R̃
orb
μ , ̃k

s
I ] ∈ ℝdorb , (25)

where dorb = nb + 11, resulting from the concatenation of the nb basis 
coefficient features, 3 atom position features, 3 orbital position fea-
tures and 5 twist features.

Sampling
We use the Metropolis Hastings algorithm34 to draw samples r from 
our unnormalized density ∣Ψθ∣2. We use Gaussian all-electron propos-
als rprop of the form

rprop = r + sδ, (26)

where δ is drawn from a 3nel-dimensional standard normal distribu-
tion. We continuously adjust the stepsize s to obtain a mean accept-
ance probability of approximately 50%. Empirically, we find no strong 
dependence of autocorrelations on this acceptance target, as long as 
it is roughly between 30% and 70%. While it can be shown that under 
simplifying assumptions 23% is the optimal acceptance rate35, we do 
not find this to be optimal in practice. Performance is more strongly 
impacted by too small acceptance rates, and thus, we opt for the 
larger ~50%.

When calculating properties of the hydrogen chain for different 
lattice constants R, special care must be given to the treatment of spins. 
The hydrogen chain has two phases with different arrangements of 
spins. In the insulating phase at large lattice constant, the ground state 
is antiferromagnetic, that is, neighboring spins prefer to be aligned 
antiparallel. In the metallic phase at small lattice constant, this anti-
ferromagnetic ordering decreases and the system may even show 
ferromagnetic domains3. Moving between these two configurations 
is difficult using local Monte Carlo updates as given by equation (26), 
so we modify our Metropolis Hastings proposal function. In addition 
to moving electrons in real space, we occasionally propose moves 
that swap the positions of two electrons with opposite spin. To avoid 
biasing our sampling toward either spin configuration, we initialize 
half our Monte Carlo walkers in the antiferromagnetic configuration 
(neighboring electrons having opposite spin) and half our Monte Carlo 
walkers in a ferromagnetic configuration (all spin-up electrons in one 
half of the chain and all spin-down electrons in the other half). We found 
that, on the contrary, initializing all walkers in the antiferromagnetic 
configuration (as might be indicated, for example, by a mean-field 
calculation) can cause the optimization to fall into local energy minima 
during wavefunction optimization.

When optimizing a transferable wavefunction across multiple 
systems, we must also sample these systems during training. To sim-
plify implementation, we sample only a single system per gradient 
step. We choose this system randomly, with its probability being either 
proportional to the systems weight (in the case of twist averaging) or 
proportional to the variance per electron.

Complex KFAC
We use the Kronecker factored approximate curvature (KFAC) method36 
to optimize the trainable parameters of our ansatz. KFAC uses the 
Fisher information matrix as a metric in the space of wavefunction 
parameters. For real wavefunctions, the Fisher matrix is equivalent to 
the preconditioner used in the stochastic reconfiguration method 6, 
but this is not the case for complex wavefunctions. Instead, the Fubini–
Study metric should be used, given by

Fij = Re {⟨∂ lnψ
∂θi

∗ ∂ lnψ
∂θj

⟩} (27)

Writing the complex wavefunction in polar form, ψ = ρeiϕ, this becomes

F = ⟨∂ lnρ∂θi
∂ lnρ
∂θj

+ ∂ϕ
∂θi

∂ϕ
∂θj

⟩ , (28)

where the first term is the Fisher information matrix and the second 
term is the new contribution due to the phase of the wavefunction. 
The second term is zero if the phase is a global constant, such as for a 
purely real-valued wavefunction. For our wavefunction, the phase is 
generally nonzero, due to the complex-valued orbitals and the phase 
factor introduced to enforce twist-averaged boundary conditions.

Orbital localization
To obtain orbital features that generalize well across system sizes, 
we do not use the canonical mean-field coefficients c as network 
inputs. Rather, we use the coefficients cloc of maximally localized 
Wannier orbitals computed from c. We follow the procedure of  
ref. 37 to find a unitary rotation U within the subspace spanned by the 
occupied orbitals. Given a set of mean-field orbitals ϕμ(r), μ = 1, …, 
nel, expanded in periodic, atom-centered basis functions bIη(r), I = 1, 
…, Natoms, η = 1, …, nb, as described in ‘Architecture’, we compute the 
complex polarization matrix

χα,νμ = ∫ ϕ∗
ν 𝒪r)eir

TGαϕμ𝒪r)d r, χ ∈ ℂ3×norb×norb (29)

where G = 2πL−T is the matrix of reciprocal lattice vectors. Given a uni-
tary transformation U ∈ ℂnorb×norb, the transformed polarization matrix 
χ̂ and the corresponding localization loss ℒ are given by

Ωαμ = χ̂α,μμ = (U†χαU)μμ (30)

ℒ𝒪U) = − ∥ Ω𝒪U)∥22, (31)

where ∥⋅∥2 denotes the L2 norm. To facilitate unconstrained optimi-
zation, we parameterize the unitary matrix U as the complex matrix 
exponential of a symmetrized, unconstrained complex matrix A:

U = e
i

2
(A+A†). (32)

We obtain the optimal Uloc, and corresponding orbital coefficients cloc 
via gradient-based optimization

Uloc = argminUℒ𝒪U), c loc
Iη,μ = ∑

m

cIη,νU
loc
νμ , (33)
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using the Adam 38 optimizer. For orthorombic supercells, the position 
of the Wannier center Rorb

μ  of the localized orbital μ can be inferred from 
the localized polarization matrix χ̂  as

Rorb
lα

= − Lαα2π Im log χ̂αμμ, α = 1… 3, μ = 1…norb. (34)

For other supercells, we follow the generalization given in ref. 37.

Observables and postprocessing
TABC. In a finite system, there are finite-size errors related to both the 
artificial constraint of periodicity in the supercell and the lack of cor-
relations of longer range than the supercell. The effects of the former 
on the single-particle contributions to the Hamiltonian, namely the 
kinetic energy, the Hartree energy and the electron–ion interaction, 
can be reduced using TABC20,25. Twisted boundary conditions require 
that the wavefunction obeys

Ψ 𝒪r1,… , ri + Lα,… , rN) = eik⋅LαΨ 𝒪r1,… , ri,… , rN), (35)

where Lα is the αth supercell lattice vector. Equation (35) is 
enforced by adding a position-dependent phase eiks⋅ri for each electron 
in the transferable atomic orbitals. as seen in equation (5). To obtain 
twist-averaged observables, we compute observables across a grid of 
twists ks spanning the first Brillouin zone and average the results.

Structure factor correction. To handle finite-size errors in the Ewald 
energy, we use the finite-size corrections proposed by ref. 25. Writing 
the Ewald energy in terms of Fourier series, we get

⟨ ̂VE⟩ =
N
2 {vM + 1

Ω
∑
Gs≠0

vE𝒪Gs)[S𝒪Gs) − 1]} + 1
2Ω ∑

Gp≠0
vE𝒪Gp)ρ𝒪Gp)ρ∗𝒪Gp).

(36)

Here, vM is the Madelung energy, Ω is the supercell volume, vE(k) = 4π/k2 
is the Fourier transform of the Coulomb interaction, and Gs (Gp) is a 
simulation (primitive) cell reciprocal lattice vector. The translationally 
averaged structure factor S(Gp) is defined by

S𝒪Gs) =
1
N
[⟨ ρ̂𝒪Gs)ρ̂∗𝒪Gs)⟩ − ⟨ ρ̂𝒪Gs)⟩⟨ ρ̂

∗𝒪Gs)⟩] , (37)

where ρ̂𝒪Gs) = ∑i exp 𝒪−iGs ⋅ ri) is the Fourier representation of the opera-
tor for the electron density. The structure factor converges fairly rap-
idly with supercell size, so we can assume that SΩ(k) ≈ S∞(k). In this limit, 
the largest contribution to the error is the omission of the Gs = 0 term 
in the first sum. In cubic systems, we have S(k) ∝ ηk2 + O(k4), with odd 
terms missing due to inversion symmetry, and the k → 0 limit of 
S(k)vE(k) is well defined. As such, to a first approximation, the Ewald 
finite-size error is given by

ΔVE ≈
N
2Ω lim

k→0
vE𝒪k)S𝒪k) =

4πN
2Ω lim

k→0

S𝒪k)
k2

. (38)

Sampling S(Gs) at supercell reciprocal lattice vectors Gs, we approxi-
mate the limit k → 0 by fitting the function

S𝒪k) ≈ f𝒪k) = 1 − e−a0k2−a1k4 , (39)

with a0 and a1 greater than zero. The form of the fit ensures that S(k) 
has the correct k2 behavior at small k and that lim

k→∞
S𝒪k) = 1. The finite-size 

correction ΔVE is given by ΔVE ≈ 4πNa0/2Ω.

ZPVE. To estimate the ZPVE contribution for graphene, we obtained 
the phonon density of states D(ω) calculated within DFT using the 

Perdew–Burke–Ernzerhof functional2 from ref. 39. The ZPVE energy 
per primitive cell, EZPVE, is then given as

EZPVE =
3Nprim

atoms
∫D𝒪ω)dω

∫D𝒪ω) 12ℏωdω, (40)

where Nprim
atoms = 2 is the number of atoms per primitive unit cell of gra-

phene. This yields a ZPVE of 12.8 mHa per primitive cell for graphene. 
For LiH, we use ZPVE data published in ref. 26.

Data availability
All data, including geometries, configurations and the figure source 
data, are available via GitHub at https://github.com/mdsunivie/deep-
erwin and via Zenodo at https://doi.org/10.5281/zenodo.16084892 
(ref. 40). Source data are provided with this paper.

Code availability
All code is available via GitHub at https://github.com/mdsunivie/deep-
erwin and via Zenodo at https://doi.org/10.5281/zenodo.16084892 
(ref. 40).
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