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Potential metabolic and genetic interaction among viruses,
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The metabolism of methane in anoxic ecosystems is mainly mediated by methanogens and methane-oxidizing archaea (MMA), key
players in global carbon cycling. Viruses are vital in regulating their host fate and ecological function. However, our knowledge
about the distribution and diversity of MMA viruses and their interactions with hosts is rather limited. Here, by searching
metagenomes containing mcrA (the gene coding for the α-subunit of methyl-coenzyme M reductase) from a wide variety of
environments, 140 viral operational taxonomic units (vOTUs) that potentially infect methanogens or methane-oxidizing archaea
were retrieved. Four MMA vOTUs (three infecting the order Methanobacteriales and one infecting the order Methanococcales) were
predicted to cross-domain infect sulfate-reducing bacteria. By facilitating assimilatory sulfur reduction, MMA viruses may increase
the fitness of their hosts in sulfate-depleted anoxic ecosystems and benefit from synthesis of the sulfur-containing amino acid
cysteine. Moreover, cell-cell aggregation promoted by MMA viruses may be beneficial for both the viruses and their hosts by
improving infectivity and environmental stress resistance, respectively. Our results suggest a potential role of viruses in the
ecological and environmental adaptation of methanogens and methane-oxidizing archaea.
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INTRODUCTION
Methane is a potent greenhouse gas that can significantly influence
the Earth’s climate [1], and therefore is a critical component in
global carbon cycling. Biogenic methane production is mostly by
methanogenic archaea through methanogenesis in anoxic environ-
ments [2]. Methane can be oxidized by anaerobic methane-
oxidizing archaea (ANME) via a reversed-methanogenesis pathway,
usually in anoxic sediments, which significantly reduces methane
emission into the atmosphere [3–5]. Currently, pure cultured or
enriched methanogens and methane-oxidizing archaea (MMA) are
only found in eight orders of the Euryarchaeota, although emerging
metagenomic evidence indicated that more phyla possibly involved
in the anaerobic metabolism of methane, such as Candidatus
Verstraetearchaeota, Korarchaeota, Nezhaarchaeota etc [6–8]. MMA
usually survive in mutualistic ways [1]. Most of ANME rely on
syntrophic interactions with sulfate-reducing bacteria (SRB), except
for ANME-2d, or occasionally ANME-1 [9, 10]. Many methanogens
also benefit, although not obligatory, from syntrophic bacteria, such
as SRB from the phylum Firmicutes, carbohydrate-fermenting
bacteria from the phylum Chloroflexi, and acetate-oxidizing bacteria
from the class Deltaproteobacteria [11–14].
In most anoxic environments, viruses are the main biological

controlling factors of indigenous microbial communities such as
MMA [15]. However, our knowledge about viruses that can infect

MMA is scarce. Currently, only few viruses that infect methano-
gens have been isolated, such as Myoviridae ΦFl (infects
Methanobacterium sp.) [16], Siphoviridae ψM1 (infects Metha-
nothermobacter marburgensis Marburg) [17], and Tectiviridae
MetSV (infects Methanosarcina mazei Gö1) [18]. Generally, most
cultured MMA viruses have been isolated from engineered
ecosystems (e.g., anaerobic sludge, Supplemental Table 1). Using
culture-independent methods, a virus that potentially infects the
methanogen Methanosarcina barkeri Fusaro with high abundance
was identified from hydrocarbon polluted sediment metagen-
omes [19]. Paul et al. recovered an ANME virus from deep
subsurface virome coding for the diversity-generating retro-
elements system, which may enhance the genomic diversification
of their hosts and confer additional selective advantages in the
energy-limited environment [20]. Based on this limited informa-
tion, we hypothesized that diverse and distinct viral groups are
widely distribute in MMA inhabiting environments. Considering
the close ecological relationships between MMA and their
mutualistic partners, we further hypothesized that interactions
exist between them and their viruses. Therefore, to achieve a
better understanding of MMA viruses, we investigated metagen-
omes that may inhabit MMA from a variety of habitats and
expanded knowledge of the diversity, distribution, life strategies,
and possible ecological roles of MMA viruses.
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RESULTS AND DISCUSSION
To evaluate potential viral attack on MMA, we analyzed all MMA
genomes in the NCBI RefSeq database (n= 301; Aug 5, 2020).
More than 74% (86 of 116) of the complete MMA genomes
contain at least one level 4 CRISPR and Cas cluster (CRISPRCasdb
database, version Jan 21, 2021) and the percentage is higher than
the average levels of all archaea (70%) and bacteria (36%) [21].
Furthermore, the proportion of MMA genomes with at least one
provirus was 41.9% (126 of 301), higher than the average level
(~30%) when considering all microbial genomes [22]. These
findings indicate that MMAs are under severe threat from viral
infection, whereas CRISPR Cas system is a vital method for virus
defense.
The gene coding for the α-subunit of methyl-coenzyme M

reductase (mcrA), the key enzyme in both the methanogenesis
and anaerobic methane-oxidizing pathways, is usually used as a
marker gene for the detection and phylogenetic analysis of MMAs
[8, 23]. Therefore, we analyzed 74 public mcrA gene-containing
metagenomic datasets from diverse natural ecosystems, including
marine and lake sediments, hot spring sediments, peatland soil,
ground water, and hydrothermal vents (Fig. 1, Supplemental
Table 2). The relative abundance of MMA averaged 4.6% across all
samples and reached as high as 73.3% in a mud volcano sediment.
Methanosarcinales was the dominant order of MMAs, followed by
Methanomicrobiales and Methanobacteriales (Supplemental Fig. 1).
A total of 2050 high quality metagenomic assembled genomes
(MAGs) were recovered from the 74 samples. Deltaproteobacteria
(n= 168), Chloroflexi (n= 163), Bacteroides (n= 148), and Gamma-
proteobacteria (n= 137) were the most widespread bacterial
MAGs. Among the 565 archaeal MAGs, 82 affiliated to the eight
typical MMA orders. Functional annotation revealed 12 more
MAGs belonging to Candidatus Bathyarchaeota, Korarchaeota, and
Verstraetearchaeota with methyl-coenzyme M reductase, which
were considered as MMA as well (Supplemental Table 3). Among
94 MMA MAGs obtained in this study, 31 MAGs had at least one
level 4 CRISPR and Cas cluster. The lower rate of MAGs with CRISPR
Cas system compared with reference MMA genomes is probably
because the presence of CRISPR spacers can influence the

tetranucleotide frequency calculation and interfere binning
processes [24].

Viruses are widely distributed in MMA inhabiting
environments
Using combined searches with the Earth’s virome protocol [25],
VirSorter [26], and DeepVirFinder [27], 17,350 viral contigs were
retrieved from the 75 datasets. By integrating the ~2.33 million
viral sequences from the IMG/VR database (v3.0) [28], all viral
contigs were clustered into approximate species level virus
operational taxonomic units (vOTUs) at 95% average nucleotide
identity (ANI), resulting 988,888 vOTUs in total. After excluding the
vOTUs only composed of viral sequences from IMG/VR database,
15,048 vOTUs containing viral contigs identified in the present
study were used for further analysis, in which 5714 vOTU
representative sequences were >10 kb, with four contigs
>200 kb, the latter conforming to the definition of giant viruses
(Fig. 2a; Supplemental Table 4). As estimated by CheckV, 577
viruses were complete or with high quality [29]. Compared with
the latest IMG/VR database, ~65% (9761) and 9.7% (1463) of the
vOTUs identified in this study were novel, or of higher quality,
respectively. Moreover, 59.3% of the vOTUs were only found in
one of the 74 datasets and >90% of the vOTUs were distributed in
<4 samples, suggesting a high diversity and endemic of the
viruses within the studied environments (Supplemental Fig. 2a).
On the other hand, 78.8% vOTUs could be assigned taxonomy,
mostly as tailed viruses (Caudovirales), which was dominated by
Myoviridae (31.6%), followed by Siphoviridae (27.7%) and Podovir-
idae (14.5%) (Fig. 2b). The distribution range of Myoviridae was
significantly wider than Siphoviridae and Podoviridae
(Mann–Whitney ranked t-test, p < 10−4; Supplemental Fig. 2b).
The lifestyle of viruses is a critical factor to evaluate their

ecological significance. Lytic infection more likely indicates top-
down control of the host community [30], whereas lysogenic
infection usually regulates the metabolism of prokaryotic hosts
[31]. In this study, both the presence of integrase genes annotated
by the Pfam database and the integration of viral regions into host
genomes predicted by VirSorter were used as signatures for a
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Fig. 1 Geographic locations of metagenomic samples analyzed in this study. A simple description of ecosystems for each site are pointed
to sites. The number of samples, number of MMA MAGs and viral contigs recovered from each site separated by colons were illustrated in
parenthesis. Squares and circles indicate soil/sediment and water samples, respectively; red and green indicate samples from the ocean and
land, respectively.
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lysogenic viral lifestyle [32]. Among the 15,048 vOTUs identified in
this study, a total of 978 vOTUs were considered as proviruses
(Supplemental Table 4). Among the 577 high quality or complete
vOTUs, at least 21.32% (123 of 577) had potential to enter the
lysogenic cycle. Recently, a provirus (MFTV1) infecting hyperther-
mophilic Methanocaldococcus fervens AG 86 T, which had been
predicted using similar in silico methods with the present study
[33], was successfully induced by low temperature stress [34].

The MMA viruses are diverse and unique
Using a modified in silico host prediction pipeline [28], 141 vOTUs
were predicted to infect methanogens or methane-oxidizing
archaea, expanding by >40% of the current cultured or uncultured
MMA viral diversity in public databases. The orders Methanosarci-
nales (94 vOTUs), Methanobacteriales (18 vOTUs), and Methanomi-
crobiales (9 vOTUs) were the most prevalent hosts of the predicted
MMA viruses (Supplemental Table 5). Among the viruses of
Methanosarcinales, 20 vOTUs were predicted to infect ANME-2. For
the MMA viruses with taxonomic assignment, more vOTUs were
classified as Siphoviridae (39%) than Myoviridae (26%). High
relative abundance of MMA viruses can be observed, especially
in methane seep and marine sediments (Supplemental Fig. 3).
Each MMA virus was generally distributed in same or similar
environments, although certain vOTUs were recovered from
diverse ecosystems.
To investigate the genomic similarity of the predicted MMA

viruses with publicly available sequences, a shared protein
content-based network analysis [35] was performed with four
datasets to produce genus-level viral clusters (VCs): (1) 3464
prokaryotic viral genomes, including 107 archaeal viruses and
3357 bacterial phages (RefSeq v99); (2) all 15,048 vOTUs mined in
this study; (3) 140 provirus regions (Supplemental Table 6)
identified from 301 MMA genomes (Supplemental Table 7) from
the NCBI RefSeq database; and (4) 349 MMA vOTUs acquired from
the IMG/VR database (v3.0). The gene-sharing network revealed
that no MMA viruses/proviruses could form VCs with viral genome
from RefSeq v99, except for two methanogens viral isolates
(Methanothermobacter virus ψM100 and Methanobacterium virus
ψM2) (Fig. 3), which reflected the uniqueness of the viruses
infecting MMA. By contrast, the MMA viruses derived from the
present study and the public databases formed cohesive clusters,
suggesting that MMA viruses with various origins share similar

core genomic characteristics. However, variation of the pan-
genomic traits could be observed between the MMA viruses
identified in this study, which are all from natural environments,
and those from the IMG/VR database primarily identified from
animal-associated (32.3%) or engineered (55.9%) ecosystems [28].
Among the 2640 protein clusters (PCs) encoded by MMA viruses
from natural ecosystems (140 and 51 MMA viruses from the
present study and the IMG/VR database, respectively), 43.2%
(1140) of the PCs are unique (Supplemental Fig. 4). Furthermore,
46.0% of the PCs of MMA viruses from engineered and animal-
associated ecosystems are distinct compared with those from the
other environments. The lower nutrient concentrations and higher
complexity of redox gradients in the investigated natural
ecosystems [36, 37] may contribute to the differences in the viral
genomic signatures. On the contrary, for the 64 shared PCs, they
generally related to some core functions of viruses, such as
structure (capsid, portal, and tail), replication (DNA methylase,
DNA polymerase, integrase, and transposase), lysis (holin),
packaging (terminase), and toxin-antitoxin systems.
To investigate the phylogenetic variation between MMA viruses

and NCBI reference viruses, terminase large subunit were used to
construct a maximum likelihood tree (Fig. 4). Clear evolution
variations could be observed of MMA viruses and other viruses, as
well as the viruses infecting MMA of different orders. Furthermore,
terminase large subunit encoded by MMA viruses clustered
according to their taxonomy and inhabiting environments. The
tetranucleotide frequencies of viruses infecting different orders of
MMA were compared (Supplemental Fig. 5). Except for Methano-
massiliicoccales and their viruses, Methanomicrobiales, Methano-
bacteriales, Methanosarcinales, and Methanococcales were
illustrated similar tetranucleotide frequencies with their viruses.
Moreover, similar tetranucleotide frequencies could be observed
for viruses infecting MMA from same order, although their
tetranucleotide frequency variations were higher than their hosts.

MMA viruses may infect mutualistic Deltaproteobacteria
Many proteins encoded by MMA viruses were found having high
homology with proteins from Deltaproteobacteria. To uncover the
relationships between MMA viruses and Deltaproteobacteria, host
prediction was conducted with 386 vOTUs that were identified as
potentially infecting Deltaproteobacteria using the same host
prediction pipelines (Supplemental Table 8). Interestingly, four
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vOTUs were predicted to infect both MMA and Deltaproteobacteria
(Supplemental Fig. 6). Specifically, 11 and 13 proteins of vOTU
SRR3715733_6188278_L48927 were best hits to MMA and
Deltaproteobacteria, respectively, in a BLASTP search of the NCBI
nr database. Gene cluster I, containing viral structure-related
genes showed high similarity with MMA, whereas gene cluster II
was homologous to Desulfuromonadales bacterium C00003093
(GCA_001751205.1). The recombination of the viral genome with
MMA and Deltaproteobacteria implied a possible cross-domain
infection. For vOTU SRR5214151_scaffold00034_L57801, the
genomic region encoding tail- and capsid-related genes is
homologous to a prophage integrated in a deltaproteobacterial
genome (GCA_007280345.1), while the match between the viral
protospacer and CRISPR spacer of Methanobrevibacter olleyae
(GCF_001563245.1) indicates a previous infection of MMA. More-
over, the anti-recBCD protein 1 (abc1) encoded by this viral contig
was proved able to inhibit RecBCD nuclease, a complex with
central anti-phage functions in bacteria [38, 39]. Considering the
abc1 gene is located adjacent to three type IV CRISPR-Cas protein-

encoding genes (csf2, csf3, and csf4), we suspect a possible function
of this gene island in viruses in resisting MMA CRISPR-Cas immune
systems. Amechanism for resisting host CRISPR-Cas systemsmay be
important for viruses to expand their host-range [40].
Emerging evidence derived from recent ecological and

metagenomics studies indicates that viruses with broad host-
range are far more prevalent than previously thought [41, 42], yet
the underlying mechanism is still poorly understood. From the
IMG/VR database v3.0, we found similar evidence of cross-domain
infection by MMA viruses, which were also predicted to infect
Anaerolineales (Chloroflexi), or Syntrophorhabdus and/or Smithella
(Deltaproteobacteria) (Supplemental Fig. 6, Supplemental Table 9).
As most MMA benefit from symbiotic heterotrophic bacteria,
represented by Deltaproteobacteria and Chloroflexi [1], the close
ecological relationships between MMA and their mutualistic
partners are probably the reason why they are susceptible to
the same viruses, or their viruses are similar in genetic
characteristics. Viruses have long been deemed an important
medium of horizontal gene transfer [43]. Viruses with broad host-

MMA phages
Deltaproteobacteria phages
The other viruses

From the present study

MMA phages from IMG/VR database
MMA prophages from NCBI RefSeq

Ref archaeal phages
Ref bacterial phages

From public databases

Fig. 3 Relationship between vOTUs identified in this study and reference viral genomes. Gene-sharing network of viral sequences
including all vOTUs from this study (n= 15,048), MMA virus vOTUs from the IMG/VR database (n= 349), provirus regions of MMA from the
NCBI RefSeq database (n= 140), and RefSeq prokaryotic viruses (n= 3464). Nodes (circles) represent genomes and contigs, and shared edges
(lines) indicate shared protein content. Only edges with a significance coefficient ≥10 are illustrated.
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range perhaps significantly contribute to gene transfer from
bacteria to archaea, which has been implicated as a primary driver
of archaeal metabolic innovation [44, 45], but the actual
contribution awaits more experimental evidence.

MMA viruses are associated with organosulfur metabolism
To investigate the mechanisms of MMA viruses interacting with
their hosts and affecting biogeochemical cycles, virus-encoded
putative auxiliary metabolic genes (AMGs) were predicted using
DRAM-v, followed by manual curation, resulting in the identifica-
tion of 44 putative AMGs (auxiliary score ≤ 3) related to various
host metabolic functions, including carbohydrates, nucleotides,
cofactors and vitamins, sulfur, and amino acid metabolisms
(Supplemental Table 10). One of the most widespread and
abundant putative AMGs was cysH, which encodes phosphoade-
nosine phosphosulfate reductase, a key enzyme of the assim-
ilatory sulfate reduction pathway (Fig. 5a; Supplemental Table 10).

cysH has frequently been reported to be carried by viruses from
diverse anoxic ecosystems, including rumen [46], sulfidic mine
tailings [47], stratified redoxcline [48], and cold seeps [32], but to
be absent from oxic ecosystems [48]. As one of the limited
electron acceptors in anoxic environments, sulfate plays vital roles
in energy metabolism of microorganisms [49]. Meanwhile, sulfur is
also an essential constituent of biomass [50], so the enhancement
of sulfur uptake through assimilatory sulfate reduction for
synthesis of sulfur-containing amino acids (methionine and
cysteine) and other organic matters may help MMAs, as well as
their viruses, to survive in anoxic ecosystems.
To explore the potential function of cysH in viruses, the

frequency of cysteine and methionine codons was compared
between viruses with and without a cysH gene identified in this
study. Significant higher cysteine frequency was observed for the
viruses containing cysH. However, the methionine frequency was
not influenced by the presence of cysH (Supplemental Fig. 7). The
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widespread presence of DNA (cytosine-5)-methyltransferase (dcm)
in viral genomes, which catalyzes the degradation of methionine,
may explain this phenomenon. There were 154 vOTUs that
contained the dcm gene, seven of which were predicted to infect
MMA with one MMA virus carried both cysH and dcm genes. We
also found that the viruses with the dcm gene had a higher

frequency of codons for cysteine (but not methionine) in their
genomes (Supplemental Fig. 7). The dcm gene from viruses may
enhance the degradation of methionine to redirect organic sulfur
to enter the cysteine biosynthesis pathway, although a potential
function of dcm in helping viruses to protect DNA from being cut
by native methylation-sensitive restriction enzymes has been
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reported [51]. Overall, we propose two strategies used by viruses
in anoxic ecosystems to synthesize more cysteine, which is the
only amino acid that can form disulfide bonds that stabilize viral
protein structure [52]. Viruses enhance the assimilatory sulfate
reduction pathway, and/or reuse the sulfur in methionine or other
organosulfur from the host cell to synthesize cysteine (Fig. 5b).
To help uncover the function of cysteine in viruses, the two

MMA viral genomes separately containing cysH and dcm genes
were studied in detail (Fig. 5a). In both viruses, the tail spike
protein was among the most cysteine-rich proteins. Tail spikes are
responsible for attachment to cells, and frequently recognize and
hydrolytically cleave bacterial cell surface polysaccharides [53].
The enrichment with cysteine of the tail spike may play a critical
role in the disruption of the host membrane via specific and non-
specific electrostatic and hydrophobic interactions with cell
surface groups [54, 55]. Radical S-adenosyl-L-methionine (SAM)
enzyme, which includes a vitamin B12-binding domain and a
[4Fe–4 S] cluster, also has 10 cysteine and initiate diverse sets of
radical reactions [56]. The three cysteine residues of the CX3CX2C
motif coordinate three of the four irons of the [4Fe–4 S] cluster at
the active site of the enzyme [56]. A huge virus identified in this
study encoded 15 radical SAM enzymes (Supplemental Fig. 8),
indicating a critical function of this gene for viruses in anoxic
ecosystems. Overall, cysteine may be important for both the
activity of enzymes and entry into host cells for viruses.

MMA viruses adapt to their hosts and inhabiting ecosystems
The MMA viruses identified in this study encoded genes involved
in the biosynthesis of O-antigen (including UDP-glucose 4-
epimerase, GDP-mannose 4,6 dehydratase, and dTDP-4-
dehydrorhamnose reductase) and other carbohydrate glycosyl-
transferases (GT2, GT4, and GT9) (Supplemental Fig. 9). The
O-antigen is an important component of the outer membrane, but
flexible and highly variable even among the closest of relatives
[57–59]. Temperate phages from the gammaproteobacterial
Shigella flexneri code for factors responsible for serotype conver-
sion, which can protect S. flexneri from immune response directed
against the O-antigen component of the outer membrane
lipopolysaccharide (LPS) [60]. The O-antigen genes encoded by
MMA viruses may enrich rhamnose and galactose in the LPS of
their hosts by converting GDP-D-mannose to GDP-D-rhamnose,
dTDP-4-dehydro-β-L-rhamnose to dTDP-L-rhamnose, and UDP-D-
glucose to UDP-D-galactose. Rhamnose-rich O-antigen can con-
tribute to surface adhesion and cell-cell aggregation [61], which is
a strategy to protect microorganisms from environmental stresses
[62, 63]. On the other hand, as the burst size of MMA viruses is
generally small [17, 34], the aggregated cells may make it easier
for viruses to encounter potential hosts (Fig. 5c). As well as the
synthesis of O-antigen, the bactoprenol glucosyl transferase gene
(gtrB) affiliated to GT2 encoded by MMA viruses catalyze the
transfer of glucosyl from UDP-glucose to bactoprenol [64].
Moreover, research has revealed that the modification of host
O-antigen and LPS by viruses (typically proviruses) probably acts
as a protective mechanism to exclude other viruses from infecting
by altering viral adsorption sites [65, 66]. Additionally, viruses may
help with host defensive systems. A total of 12 MMA viruses
identified both in this study and the IMG/VR database containing
genes coding for non-toxic nonhemagglutinin type C, which in
proviruses of Clostridium botulinum, protects against pH-mediated
botulinum neurotoxin type C (BoNT/C) inactivation [67]. MMA
viruses also contain diverse genes associated with the purine and
pyrimidine metabolism pathways, to shift host metabolism toward
nucleotide biosynthesis as an adaptation to viral replication [68].
Previous research found that viruses encoded various
carbohydrate-active enzymes affiliated to glycoside hydrolases
to augment the breakdown of complex carbohydrates to increase
energy production and boost viral replication [32, 69–71]. How-
ever, the putative AMGs encoded by MMA viruses rarely related to

organic matter degradation, consistent with the metabolism of
methanogens and ANME, which barely use carbohydrates as
carbon and energy sources.

CONCLUSIONS
Together, we observed the high diversity and novelty of viruses
from various natural environments that potentially inhabit MMA.
Distinct genome signatures, wide distribution, and high abundance
were observed for the viruses infecting methanogens or methane-
oxidizing archaea. Several MMA viruses were predicted to be able to
infect mutualistic sulfate-reducing bacteria such as Deltaproteobac-
teria and Chloroflexi. As adaptations to their inhabiting environment,
complex strategies were proposed of MMA viruses to interact with
their hosts, such as enhancing assimilatory sulfate reduction to
synthesize organosulfur, protecting the defense systems of their
hosts, and facilitating cell-cell aggregation to resist environmental
stresses. Although intensive laboratorial or in situ experiments are
needed to validate these results, the present study may expand our
view of MMA viruses and provide clues to the survival strategies of
viruses in anoxic environments.

MATERIALS AND METHODS
Data acquirement
Using a previously reported mcrA protein database (n= 153) containing
sequences from the known methanogens and ANMEs [8], predicted
protein sequences of high-throughput metagenomes were queried to
identify metagenomic datasets containing MCR-based alkane metabolism-
related genes, using Diamond [72] version 0.8.28.90 (identity ≥ 0.3,
coverage ≥ 0.75, e value ≤ 1 × 10–20). A total of 74 genomic datasets were
acquired and download from the NCBI Sequence Read Archive public
database (Fig. 1; Supplemental Table 2). Raw reads were trimmed using the
Sickle algorithm version 1.33 followed by the assembly conducted using
MEGAHIT version 1.0.6-hotfix1 with default parameter. Moreover, to
identified high degree of confidence CRISPR spacers and proviruses of
MMA, 116 complete and 185 draft genomes of methanogens or ANMEs
were download from NCBI reference sequence database (RefSeq). All
biological sequence data was downloaded using NCBI datasets command
line tools version 10.5.1 (https://www.ncbi.nlm.nih.gov/datasets).

Prokaryotic community, genomic binning, and taxonomic
annotation
To explore the prokaryotic composition of each sample, prokaryotic 16S
rRNA miTags were extracted from quality-controlled reads using SortMeRNA
[73] version 4.2.0 with default parameters. All 16S rRNA miTags were queried
to the kraken2 database (pre-built 16S rRNA gene database of SILVA v138)
using lowest common ancestor algorithm [74], and then adjusted using
Bracken [75]. MetaPhlAn3 was used to evaluate the potential eukaryotic
contamination with default parameters [76], which revealed that the
eukaryotic reads account for <0.1% of all clean reads for all samples. A
hybrid binning approach was employed to cluster metagenomic contigs for
each sample. Before the binning, sequencing reads were mapped to a
corresponding metagenome by Bowtie2 version 2.3.4 and SAMtools version
1.6 to calculate average sequencing depth for each contig [77, 78]. Then the
generated depth profile and metagenomic contigs (≥2 kb) were input into
MaxBin2 for a first binning with default parameters [79]. Resultant contig
groups were individually imported into MetaBAT2 for a second binning with
default parameters [80]. Finally, CheckMwas employed to estimate quality of
the genome bins, which with contamination ≤10% and completeness ≥50%
were retained for subsequent analysis [81]. Since metagenomes were
assembled and binned separately, resulting redundant MAGs, which were
dereplicated at 99% ANI using dRep v2.6.2 (parameters: -comp 50 -con 10 -sa
0.99) [82]. The phylogenetic affiliations of all non-redundant MAGs were
analyzed using the GTDB-Tk genome-based taxonomy (GTDB-Tk version
1.1.1 with GTDB version 89) [83].

Recover and deduplicate viral contigs
Contigs ≥5 kb of all metagenomic samples were pulled for viral contig
recovery by stepwise method according to the confidence of prediction
strategy. (1) The virus detection pipelines of Earth’s virome [25] resulted in
9892 viral contigs; (2) 6264 more contigs were sorted as virus/provirus
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category 1 or 2 by VirSorter [26]; (3) Among the category 3 virus/provirus
sequences, 1088 were identified as viruses using DeepVirFinder (score ≥
0.9 and p < 0.05) [27]. For the 301 MMA genomes, proviruses were also
predicted using VirSorter (categories 1 and 2) [22]. After merging the viral
contigs identified from mcrA-containing metagenomes, provirus regions
from 301 MMA genomes, and all viral contigs of IMG/VR database (v3.0)
[28], species-rank virus groups “vOTUs” were clustered based on pairwise
ANI at the thresholds of 95% identity over 85% alignment fraction (relative
to the shorter sequence) using CheckV code [29], and the longest contig of
each vOTU were kept as representatives for further analysis. The
completeness of viral contigs was then estimated using the CheckV
pipeline (end_to_end program) [29]. VirSorter2 version 2.1 was also used
to evaluate the prediction of viruses according to their standard operating
procedure with manual curation and generate “affi-contigs.tab” files
needed by DRAMv to identify AMGs with parameters --prep-for-dramv and
--provirus-off [84].

Viral taxonomic assignment and distribution profiles
Two complementary approaches were used for taxonomic classification.
Firstly, vConTACT2 was conducted using default parameters resulting in
only 1.26% vOTUs (n= 192) taxonomically annotated. Secondly, all vOTU
representatives were sorted using CAT version 5.0.4 against the NCBI Viral
RefSeq proteins v207 setting default options except “--evalue 1e-5” with
78.8% vOTUs acquiring taxonomic assignment. By comparing the two
methods, high consistent rate (97.8%) of the vOTUs classified by both
methods at family level can be observed. The relative abundances of
vOTUs were quantified using reads per kilobase per million mapped reads,
which calculated by mapping the original trimmed reads to viral contigs
using BBMap version 38.87 with default parameters (https://github.com/
BioInfoTools/BBMap). If the percentage of vOTU contig covered by reads
was ≥85%, this vOTU was considered being present in this sample.

Methanogens and methane-oxidizing archaea viral prediction
From the 15,048 vOTUs identified in this study, the viruses possibly
infecting methanogens or methanotrophic archaea were predicted using
in silico methods based on previous reports [69, 85, 86]. The clustered
regularly interspaced short palindromic repeat (CRISPR) spacers and their
associated Cas proteins were searched using CRISPRCasFinder from the
301 MMA genomes and 94 MMA MAGs binned in the present study [87].
The searching resulted CRISPR arrays were further sorted into four
evidence-levels (level 1–4), which with a higher evidence-level indicating
a higher likelihood being a true-positive array [87]. Search_oligodb function
of Usearch (v11.0.667) was used to compare all predicted viral sequences
to the database of MMA CRISPR spacers (https://drive5.com/usearch). For
each pair of viral sequence and putative host genome, a valid matching
was confirmed when at least one hit had ≤1 mismatch over the entire
spacer length. Similarly, the tRNA genes of vOTUs, MMA genomes and
MAGs were identified by tRNAscan-SE (v2.0.3) setting the parameters “-G”
[88]. Blastn was used to align viral encoded tRNAs to MMA derived
sequences, with complete matches as confidential links between viruses
and hosts. A virus meeting the following criterions was linked to MMA: (1)
viral contigs matched to evidence level 4 CRISPR spacers (22 virus-host
links were identified); (2) identical tRNAs predicted from vOTUs and MMA
genomes (one virus-host link was identified); (3) viral contigs sorted as
MMA or with at least 5 ORFs sorted as MMA by CAT against the NCBI non-
redundant protein database (nr; version 2020.03.04) (80 virus-host links
were identified); (4) viral contigs binned into a MMA MAG with at least one
ORF sorted as MMA (18 virus-host links were identified). Moreover, same
strategy was conducted to predict the phages of Deltaproteobacterial SRB.

Gene-sharing based network analysis
To investigate the relationship between MMA viruses and publicly
available viral sequences, vConTACT2 was used to construct a gene-
sharing network, including all vOTUs acquired in the present study
(n= 15,048), provirus regions identified from 301 MMA genomes from
NCBI RefSeq database (n= 140), MMA viruses identified by IMG/VR
database v3.0 (n= 349), and prokaryotic viral RefSeq v99 integrated in
vConTACT2 (n= 3,464). All above sequences were pooled to call ORFs
using Prodigal (parameters: -m, -p meta) [89], and the resulting protein
sequences were clustered using vConTACT2 with default parameters [35].
The resulting network was visualized in Cytoscape v3.8.2 using edge-
weighted spring-embedded mode [90]. Only the interactions between
viruses with a score ≥10 were illustrated in network.

Functional annotations of viral sequences
All ORFs of 15,152 vOTUs called by prodigal were functionally annotated
against KEGG database (release 95.0) and Pfam database (release 33.0)
using KofamScan version 1.2.0 (E value < 10−5) [91] and Pfamscan (-as) [92],
respectively. For the MMA viruses, the annotation was further conducted
using DRAMv [93] version 1.2.0 with AMGs predicted (--max_auxiliary_-
score 3). All putative AMGs were manual curated by checking the upstream
and downstream genes following recent protocol [94]. Genes related to
nucleotide metabolism were excluded because of their widespread in viral
genomes. The ORFs of viral contigs illustrated in Fig. 5 and Supplemental
Fig. 6 were compared with PDB protein data bank using the online service
of HHpred [95]. The protein fold recognition of viral encoded O-antigen
genes were modelled using PHYRE2 to confirm and further resolve
functional predictions [96]. All O-antigen gene structures modelled by
PHYRE2 had 100% confidence scores and >80% coverage. The viral
genome maps were visualized using Easyfig version 2.2.5 [97].

Phylogenetic and tetranucleotide analyses of MMA viruses
All proteins of MMA viruses/proviruses used in the network analysis with a
terminase large subunit N-terminal domain (T4-like virus type) were
queried to phylogenetic analysis. Protein sequences were aligned with
MAFFT (–localpair – maxiterate 1000) [98] and then adjusted with trimAl
(-automated1) [99]. Maximum likelihood tree was built using IQ-Tree v2.0.3
with model auto-detected (LG+ G) and an ultrafast bootstrap of maximum
iteration of 1000 [100] and visualized using Interactive Tree Of Life (iTOL)
with branch length ignored [101]. Tetranucleotide frequencies of MMA and
their viruses were calculated, clustered, and visualized using Emergent
Self-Organizing Maps [102]. The correlation coefficients of the tetranucleo-
tide frequencies of all MMA viruses were calculated using Python package
pyani. The pairwise comparison of viruses infecting the five orders of MMA
were conducted using ANOSIM.

DATA AVAILABILITY
Metagenomic data are available in the NCBI Sequence Read Archive (https://
www.ncbi.nlm.nih.gov/sra) database and detailed in Supplemental Table 2. All other
data produced in the present study are all available in Supplemental materials.
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