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Abstract

Background Resolution of type 2 diabetes (T2D) is common following bariatric surgery,

particularly Roux-en-Y gastric bypass. However, the underlying mechanisms have not been

fully elucidated.

Methods To address this we compare the integrated serum, urine and faecal metabolic

profiles of participants with obesity ± T2D (n= 80, T2D= 42) with participants who

underwent Roux-en-Y gastric bypass or sleeve gastrectomy (pre and 3-months post-surgery;

n= 27), taking diet into account. We co-model these data with shotgun metagenomic pro-

files of the gut microbiota to provide a comprehensive atlas of host-gut microbe responses to

bariatric surgery, weight-loss and glycaemic control at the systems level.

Results Here we show that bariatric surgery reverses several disrupted pathways char-

acteristic of T2D. The differential metabolite set representative of bariatric surgery overlaps

with both diabetes (19.3% commonality) and body mass index (18.6% commonality).

However, the percentage overlap between diabetes and body mass index is minimal (4.0%

commonality), consistent with weight-independent mechanisms of T2D resolution. The gut

microbiota is more strongly correlated to body mass index than T2D, although we identify

some pathways such as amino acid metabolism that correlate with changes to the gut

microbiota and which influence glycaemic control.

Conclusion We identify multi-omic signatures associated with responses to surgery, body

mass index, and glycaemic control. Improved understanding of gut microbiota - host co-

metabolism may lead to novel therapies for weight-loss or diabetes. However, further

experiments are required to provide mechanistic insight into the role of the gut microbiota in

host metabolism and establish proof of causality.
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Plain Language Summary
Weight-loss surgery is a highly

effective treatment of type 2 diabetes

in people with obesity. Interestingly,

the improvement in diabetes after

weight-loss surgery occurs before

any significant weight-loss. Through

better understanding of this meta-

bolic improvement, weight-loss sur-

gery provides a unique avenue to

identify novel ways of treating dia-

betes and obesity. Here we combine

measurements of metabolism, gut

bacteria and diet in people with

obesity, with or without type 2 dia-

betes and in patients before and after

weight-loss surgery. We have used

these data to identify changes asso-

ciated with weight-loss surgery,

obesity and diabetes. Improved

understanding of the mechanisms

behind these changes, including how

changes to gut bacteria influence

metabolism, may lead to new treat-

ments for weight-loss or diabetes.
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The global epidemic in obesity and associated disease states
carries a significant health and economic burden. The gut
microbiota (GM) has been implicated as a contributing

factor in a number of these diseases, including obesity and type 2
diabetes (T2D)1–3. Faecal microbiota transplant experiments in
obesity3 and T2D3,4 have shown that this relationship is causal,
but these studies have failed to fully unravel the complex
mechanisms behind this observation, further complicated by the
fact that each individual’s GM is unique and subject to redun-
dancy in its metabolic function5. Therefore, there is a need to
move beyond simply profiling the composition of GM commu-
nities in order to understand the true nature of host-microbe
relationships.

Surgical procedures such as Roux-en-Y gastric bypass (RYGB)
and vertical sleeve gastrectomy (VSG) achieve sustainable weight-
loss in obesity6. Importantly, they are also highly successful in the
resolution of obesity-related co-morbidities including T2D7. These
metabolic outcomes are achieved through both weight-dependent
and, interestingly, weight-independent mechanisms8. Weight-
independent effects occur because bariatric surgery, particularly
RYGB, induces a complex system-wide metabolic effect, including
modification of the GM-host metabolic axis9. The overwhelming
disruption to the GM caused by bariatric surgery is only just being
defined, as is its functional importance. To date, few studies have
explored longitudinal host-microbe interactions in human cohorts
following bariatric surgery, with most studies focussing on either
the microbiota or the metabolome10,11. Multiple mechanisms for
the GMs contribution to achieving weight-loss and metabolic
improvement post-surgery have been hypothesised, including:
reduced energy harvest of non-digestible food types such as com-
plex carbohydrates; reduced gut permeability leading to decreased
systemic inflammation; and alterations in microbe-host co-meta-
bolites such as bile acids (BAs), amino acids (AAs) and short-chain
fatty acids (SCFAs)10,12.

Bariatric surgery provides a unique opportunity to unravel
these complex host-microbe interactions through phenotyping
before and after intervention to reduce the impact of inter-
individual variability. Here we have performed multi-platform
profiling, to establish changes in the host-microbe interactions in
volunteers with obesity ± T2D and in individuals undergoing
bariatric surgery with and without T2D to identify dysregulated
pathways in T2D that are functionally restored after bariatric
surgery. First, we have compared differences in GM-host co-
metabolism in participants with T2D compared to individuals
without diabetes at baseline to ascertain which metabolites were
associated with glycaemic control. Next, we profiled subgroups of
patients undergoing RYGB or VSG to evaluate changes in GM-
host co-metabolism following these contrasting interventions and
assessed their impact on glycaemic control, taking into account
intervention-dependent changes in eating behaviour.

Our results provide a comprehensive atlas of host-gut microbe
responses to bariatric surgery, weight-loss and glycaemic control
at the systems level. We find minimal overlap between metabo-
lites associated with body mass index (BMI) and those associated
with glycaemic control, consistent with weight-independent
mechanisms of T2D resolution. Further, we establish multiple
associations between the gut microbiota and host metabolites.
However, further experiments are required to provide mechan-
istic insight into the role of the gut microbiota in host metabolism
and establish proof of causality.

Methods
Experimental model and participant details
Recruitment. Patients referred for consideration of bariatric sur-
gery who were obese (BMI > 30 kg/m2), aged ≥ 18, had failed

efforts at lifestyle modification and dieting and were willing to
comply with the trial protocol were recruited prospectively to this
observational study, with volunteers providing written consent.
Volunteers with type 2 diabetes (HbA1c ≥ 48 mmol/mol or trea-
ted), impaired glucose tolerance (HbA1c 42–47mmol/mol) and
without diabetes were eligible for recruitment.

Patients who had previously undergone bariatric or major
abdominal surgery, were or intended to become pregnant during
the trial period, or took long-term antibiotics were excluded.
Major abdominal surgery included patients who had undergone
small or large bowel resection, liver, pancreatic, splenic or
stomach surgery, as these could influence the gut microbiota and/
or the patient’s metabolic state. Patients that had previously had
an appendicectomy, cholecystectomy or hernia repair were not
excluded.

The study protocol and sample collection instructions were co-
developed with patient representatives to help reduce the study
burden for patients. To improve patient compliance sample
collection occurred at the time of patients’ usual hospital
appointments preoperatively and at 3-months post-procedure.
A small exploratory cohort were also sampled at 1-year post-
procedure and are reported in Supplementary Figs. 4–9, Supple-
mentary Tables 6–8 and Supplementary Data 6–8.

Metabolic surgery. Participants underwent Roux-en-Y Gastric
Bypass (RYGB) or Vertical Sleeve Gastrectomy (VSG) surgery at
a National Health Service (NHS) University Teaching Hospital in
London, UK. A single dose of 1.2 g intravenous co-amoxiclav was
given during induction of anaesthesia (clindamycin if penicillin
allergic). See Supplementary Note 1 for further details of the
perioperative dietary advice given and surgical techniques used.

Regulatory approvals. The study received NHS Research Ethics
Committee (15/ES/0026) approval and was registered with
ClinicalTrials.gov (NCT02421055).

Clinical, demographic and dietary data collection. Participants
were assessed at the above time points for: (1) anthropometric &
physiological measurements, (2) demographic details, (3) bio-
chemical parameters including glycated haemoglobin (HbA1c),
(4) oral-hypoglycaemic, insulin and other medication use, length
of diabetes diagnosis and other co-morbidities.

Diet assessment: An online self-reported 24-hour dietary recall
questionnaire (www.myfood24.org) was utilised to capture
detailed dietary intake information from patients at each of the
study time points so that changes in diet following surgery could
be accounted for in the analysis. Three 24-hour recall ques-
tionnaires were completed at each time point. Participants were
able to pick from a selection of pictures of corresponding foods to
accurately ascertain portion quantities. Collected dietary infor-
mation was used to calculate Alternative Healthy Eating Index
2010 (AHEI-2010) scores as described previously13. In brief,
scores of 0-10 were given for 11 components (maximum score
110). High scores were given for a high intake of vegetables, fruit,
nuts and legumes, whole grains, long chain omega-3 fats and
polyunsaturated fats, moderate intake of alcohol and low intake
of sugar, sweetened drinks and fruit juice, red and processed
meat, trans-fat and sodium.

Sample collection: Serum (n= 156), faecal (n= 80) and 24 h
urine (n= 83) samples were collected preoperatively and at
3-months postoperatively (serum= 49, faecal= 27, urine= 30)
in a non-fasted state (see Supplementary Fig. 1). Urine samples
were collected in sterile containers over a 24-hour period fin-
ishing at 9am on the day of the study visit. Stool samples were
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collected using a Faecotainer® collection kit and stored on an ice
pack provided, as close as possible to but not more than 6 h
before the study visit. Serum was collected using red top BD
Vacutainer® serum tubes (no additive) and processed according
to manufacturer guidelines. After collection, samples were ali-
quoted and stored at −80 °C until analysis. Prior to freezing, a
separate aliquot of homogenised stool was used to generate faecal
water as follows: approximately 10 g of stool was added to 4 parts
HPLC grade H2O (g/ml), vortexed at 2850 rpm for 15 min then
centrifuged at 10,000 × g for 15 min at 4 °C. The resulting
supernatant (faecal water) was frozen at −80 °C until analysis14.

Analysis methods
1H-NMR spectroscopic analysis of metabolites
Sample preparation: Urine and faecal water samples were pre-
pared for analysis by 1H-NMR spectroscopy as follows: frozen
samples (−80 °C) were thawed, vortexed and then centrifuged at
1600 × g for 10 min to remove particulates and precipitated
proteins. Faecal water supernatant was further filtered through
Micro centrifuge filters (0.45 µm Nylon, Costar) at 16,000 × g for
15 min at 4 °C. 540 μL of each sample was mixed with 60 μL of
1.5 M KH2PO4 buffer (pH 7.4, 80% D2O) containing 1 mM of the
internal reference standard, 3-(trimethylsilyl)-[2,2,3,3,-2H4]-pro-
pionic acid (TSP) and 2 mM sodium azide (NaN3), as described
previously15.

After thawing, serum samples were centrifuged at 12,000 × g
for 5 min at 4 °C. Subsequently, 300 µL of serum was mixed with
300 µL of 0.075M NaH2PO4 buffer (pH 7.4) containing 0.8 mM
of the internal reference standard, 3-(trimethylsilyl)-[2,2,3,3,-
2H4]-propionic acid (TSP) and 3.1 mM sodium azide (NaN3), as
described previously15.

1H-NMR spectroscopy: 1H-NMR spectroscopy was performed at
300 K on Bruker 600MHz (urine and serum) and 800MHz
(faecal water) spectrometers (Bruker Biospin) using the following
standard one-dimensional pulse sequence: RD – gz1 – 90° – t1 –
90° – tm – gz2 – 90° – ACQ15. The relaxation delay (RD) was set at
4 s, 90° represents the applied 90° radio frequency pulse, inter-
pulse delay (t1) was set to an interval of 4 μs, mixing time (tm)
was 10 ms, magnetic field gradients (gz1 and gz2) were applied for
1 ms and the acquisition period (AQA) was 2.7 s. Water sup-
pression was achieved through irradiation of the water signal
during RD and tm. For the urine samples, each spectrum was
acquired using 4 dummy scans followed by 32 scans while faecal
spectra were acquired using 256 scans and 4 dummy scans and
collected into 64 K data points. A spectral width of 12,000 Hz was
used for all the samples. Prior to Fourier transformation, the free
induction decays (FIDs) were multiplied by an exponential
function corresponding to a line broadening of 0.3 Hz. Serum
samples were analysed by 1H-NMR spectroscopy using the
standard one-dimensional pulse sequence described above and
Carr-Purcell-Meiboom-Gill (CPMG) one dimensional pulse
sequences. CPMG was used to attenuate broad, interfering peaks
from lipids and proteins present in serum. The CPMG pulse
sequence had the form RD – 90° – (t – 180° – t) n – ACQ. The
acquisition parameters were set using the same settings as the
standard 1D pulse sequence, with the spin-echo delay (t) set at
0.3 ms and 128 loops (n) performed. Continuous wave irradiation
was applied at the water resonance frequency during the relaxa-
tion delay (RD).

Pre-processing: 1H-NMR spectra were automatically corrected
for phase and baseline distortions and referenced to the TSP
singlet at δ 0.0 using TopSpin 3.1 software. Spectra were then
digitized into 20 K data points at a resolution of 0.0005 ppm using

an in-house MATLAB R2014a (Mathworks) script. Subsequently,
spectral regions corresponding to the internal standard (δ −0.5 to
0.5) and water (δ 4.6–5) peaks were removed. In addition, the
region containing urea (δ 5.4–6.3) was removed from the urinary
and serum spectra due to its tendency to cross-saturate with the
suppressed water resonance. All spectra were normalised using
median fold change normalisation using the median spectrum as
the reference16.

Quantitative bile acid analysis. Quantitative analysis of 57 bile
acids was performed using an established technique17. The
method was adapted for analysis of bile acids in faecal samples.

Sample preparation: Bile acids were extracted from serum using
the following method: 100 µL of serum was vortexed with 280 µL
of MeOH. Samples were centrifuged at 14,000 × g for 15 min at
4 °C, followed by incubation at −20 °C for 20 min. Internal
standards (16 deuterated bile acids) were added to the super-
natant at a final concentration of 50 nM.

Bile acids were extracted from faecal samples using the
following method. Faecal samples were first freeze-dried.
100 mg of freeze-dried material was then placed in microtubes
with 1 ml of 2:1:1 H2O: Acetonitrile (ACN): Isopropanol (IPA)
and approximately 50 mg of 1 mm Zirconia beads. This under-
went 3 × 30 seconds bead beating and a Biospec bead beater
followed by centrifugation at 16,000 × g for 20 min at 4 °C. The
supernatant was further filtered through Micro-centrifuge filters
(0.45 µm Nylon, Costar) at 16,000 × g for 15 min at 4 °C. To
ensure bile acid concentrations were within the dynamic range of
the machine extracts were diluted 1:25 and 1:200 prior to analysis
using the H2O:ACN:IPA mix. A mixture of internal standards (16
deuterated bile acids) was added to the filtered supernatant at a
final concentration of 50 nM.

LC-MS machine conditions: BA analysis was performed using an
ACQUITY ultra-performance liquid chromatography (UPLC)
coupled to a Xevo triple quadrupole (TQ-S) mass spectrometer.

For liquid chromatography, an ACQUITY BEH C8 column
(1.7 μm, 100 mm × 2.1 mm) was used at an operating temperature
of 60 °C. The mobile phase solvent A consisted of a 1:10
ACN:H2O, with 1 mM ammonium acetate and pH 4.15 adjusted
with acetic acid. Mobile phase solvent B consisted of 1:1
ACN:IPA. The chromatographic gradient was as previously
published17.

Mass spectrometry was performed in negative ionisation mode
(ESI-) using the following parameters: capillary voltage 1.5 kV,
cone voltage 60 V, source temperature 150 °C, desolvation
temperature 600 °C, desolvation gas flow 1000 L/hr, and cone
gas flow 150 L/hr. 57 bile acid species (36 non-conjugated, 12
taurine conjugated, 9 glycine conjugated) were assayed using
multiple reaction monitoring (MRM). The transitions for each
bile acid and deuterated internal standard were set as previously
published17.

Quantitative analysis of SCFAs and other carboxylic acids. A total
of five short/medium chain fatty acids, three methyl-branched
SCFAs and two hydroxyl carboxylic acids were analysed by GC-
MS using a method adapted from Moreau et al.18.

Sample preparation: After defrosting and mixing, 100 µL of
urine / serum was aliquoted with 500 µL of methyl tert-butyl
ether (MTBE) with 100ppm of internal standard (methyl stearate)
and 2 µL of HCL. This was vortexed and then shaken for 20 min.
Following this samples were centrifuged at 10,000 × g for 5 min at
4 °C. Next, 90 µL of the polar phase was placed into a silanised
vial and vortexed with 150 µL of derivatiser N-tert-
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butyldimethylsilyl-N-methyltrifluoroacetamide with 1% tert-
butyldimethylchlorosilane (MTBSTFA+ 1% TBDMSCI). This
was then incubated for 45 min at 60 °C before aliquoting into
silanised inserts for analysis.

The method was modified to account for higher levels of SCFA
in stool. After defrosting, 100 mg of stool was aliquoted with
1,000 µL of MTBE with 100ppm of internal standard (methyl
stearate) and 4 µL of HCL. 30 µL of the polar phase was mixed
with 150 µL of derivatiser.

GC-MS machine conditions: Derivatised samples were analysed by
GC-MS with a Bruker triple quadrupole (TQ) GC-MS/MS. Helium
was used as a carrier gas at a constant flow rate of 1.5ml/min
through the column. The injector temperature was 250 °C with a
split ratio 1:10. The temperature of the oven was started at 40 °C
and increased at the rate of 46 °C/min to 127 °C, 2 °C/min to reach
131 °C, 30 °C/min to reach 160 °C, then 50 °C/min to reach a final
temperature of 300 °C. The transfer line to the mass spectrometer
was set at 280 °C. Targeted analysis of the ten compounds and
internal standard was performed in multiple reaction monitoring
mode (MRN) using the settings outlined in Table 1.

Quantitative serum metabolite analysis. Quantitative analysis of
other metabolites in serum samples, including amino acids, bio-
genic amines, acylcarnitines, phosphatidylcholines, lysopho-
sphatidylcholines and sphingolipids was performed using the
Biocrates AbsoluteIDQ® p180 kit, according to the manufacturer
guidelines19. Samples were analysed using flow injection analysis
(FIA)-MS/MS and LC-MS/MS for different metabolite groups.

Sample preparation: In total, 10 µL of serum sample / PBS /
calibration / QC and 10 µL of the ISTD mix (except in blanks)
was added to each well. This was dried for 30 min under nitrogen
flow. Following this, 50 µL of the derivatization solution was
pipetted into each well. The plate was covered and incubated for
20 min, then dried for 60 min under nitrogen flow. Next, 300 µL
of extraction solvent was added to each well, shaken for 30 min at
450 rpm, then centrifuged for 2 min at 500 × g. For the LC-MS/
MS 150 µL was added to 150 µl H2O. For the FIA, 15 µL was
added to 750 µL of FIA mobile phase. Both plates were shaken for
2 min at 600 rpm.

Machine conditions: Samples were analysed using a Waters
I-Class UHPLC system and Waters Xevo TQ-S tandem mass
spectrometer.

For FIA-MS/MS (direct infusion): the FIA mobile phase
consisted of Biocrates Solvent I+ 290 mL MeOH. A 2min

isocratic method was used, starting at 0.15 mL/min for 0.1 min,
gradually decreasing to 0.03 mL/min at 1 min, increasing to
0.2 mL/min at 1.5 min, to 0.8 mL/min at 1.60 min, and finally
decreasing to 0.15 mL/min at 1.95 min. MS settings were:
capillary voltage 3.2 kV, cone voltage 10 V, source offset 50 V,
source temp 150 °C, desolvation temp 620 °C, cone gas 150 L/H,
desolvation gas 1000 L/H, collision gas flow 0.15 mL/min, probe
position 5 mm.

For LC-MS/MS: A Waters Acquity UPLC BEHC18 1.7 µm
2.1 x 75mm column was used. Mobile phase A: 1000 mL
H2O+ 2 mL formic acid (FA), Mobile phase B: 500 mL ACN+
1 mL FA. Gradient elution was used; starting at a flow rate of
0.8 mL/min with 100% A for 0.45 min, then changing in a linear
gradient to 85% A at 3.3 min, to 30% A at 5.9 min, to 100% B at
6.05 min, flow then increased in a concave gradient to 0.9 mL/min
100% B by 6.20 min, remaining at 0.9 mL/min 100% B until
6.42 min, before decreasing back in a concave gradient to 0.8 mL/
min 100% B at 6.52 min. The mobile phase was then changed in a
concave gradient from 100% B to 100% A between 6.52 and
6.7 min and remained at 100% A 0.8 ml/min until 7.3 min. MS
settings were: capillary voltage 3.9 kV, cone voltage 20 V, source
offset 50 V, source temp 150 °C, desolvation temp 350 °C, cone
gas 150 L/Hr, desolvation Gas 650 L/Hr, collision gas flow
0.15 mL/min, probe position 7 mm.

Data were processed using targetlynx (Waters) and METIDQ
(Biocrates; version Carbon) then exported as a CSV file for
statistical analysis.

Faecal metagenomic analysis
DNA extraction: Faecal samples were stored at −80 °C prior to
analysis. DNA was extracted using the MoBio PowerFaecal®
DNA Isolation Kit, according to manufacturer’s instructions. In
brief, DNA was extracted from two separate 0.25 g aliquots of
mixed whole stool samples at each analysis point. Samples were
homogenised in 2 ml bead beating tubes containing garnet beads.
Cell lysis of host and microbial cells was facilitated through both
mechanical collisions between beads and chemical disruption of
cell membranes. The reagent to precipitate non-DNA organic and
inorganic material was then applied. Lastly, DNA was captured
on a silica spin column, washed and eluted for downstream
analysis. Quality control of DNA quality and quantity was
assessed using an Agilent 4200 TapeStation.

Shotgun sequencing: Shotgun sequencing was performed using an
Illumina HiSeq 4000 with paired-end 150 bp reads. Library pre-
paration was undertaken using the NEBNext Ultra II DNA
Library Prep Kit. 15 dual index barcodes (unique at both ends)
were custom-designed and ordered from Integrate DNA Tech-
nologies (IDT®). Quality control of prepped libraries was per-
formed using the Promega GloMax® and QuantiFluor® dsDNA
systems. Each of the “uniquely dual-indexed” libraries were
pooled and run on a single lane of the HiSeq4000. A mean of
6.89 Gb sequence data was acquired for each of 120 samples
(median 6.84, range 3.88 – 14 Gb).

Processing of sequence data: There are known lane-swapping
issues with the HiSeq 4000, leading to duplication of some
sequencing reads. For this reason, fastq files for each sample were
subject to de-duplication using FastUniq20. Sequencing data were
then processed using the Scalable Metagenomics Pipeline
(ScaMP)21, (https://github.com/jamesabbott/SCaMP). In brief,
raw sequence data were assessed for the presence of adapter
sequences and trimmed using Trim Galore! (Babraham Bioin-
formatics) to remove low-quality bases (Q < 20) from the 3ʹ end
of reads and discard trimmed reads shorter than 100 nt. Quality
control of trimmed reads was performed using FastQC

Table 1 GC-MS conditions used to analyse SCFA and
carboxylic acid compounds.

Compound Quantifier (m/z) Qualifier (m/z) Collision
energy (eV)

Acetate 117→ 75 117→ 47 10
Propionate 131→ 75 131→ 47 10
Butyrate /
Isobutyrate

145→ 75 145→ 43 10

Valerate /
Isovalerate

159→ 75 159→ 57 12

2 Methylbutyrate 159→ 75 159→ 57 12
2 Hydroxybutyrate 147→ 73 147→ 45 20
Caproate 173→ 75 173→ 81 15
Lactate 147→ 73 147→ 45 20
Methyl
stearate (IS)

87→ 55 87→ 59 10
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(Babraham Bioinformatics). Reads that mapped with BWA-
MEM22 to human genome (hg19) were removed from read pairs,
as ethical permission is not available for use of human data
derived from metagenomes. Remaining reads were assumed to be
microbial (bacteria, archaea, virus, fungi, protozoa) and processed
further. Trimmed sequence data with human reads removed have
been deposited with GenBank, EMBL and DDBJ databases under
the BioProject accession number PRJNA473348.

MetaPhlAn 2.623,24 was used to determine the bacterial and
archaeal taxonomic composition/abundance for each sample.
Metagenome assembly was carried out in two rounds using
metaSPAdes 3.11.025, with an initial independent assembly
carried out for each sample. Unassembled reads were then
pooled and subjected to a second round of assembly to improve
the representation of low-abundance sequences. Taxa were
normalised to relative abundance for downstream analyses.

Ab-initio gene prediction was carried out using
MetaGeneMark26,27. The resulting predictions were translated,
and the protein sequences clustered using the cluster-fast method
of UCLUST28, with a 95% identity cut-off. Centroid sequences
from each cluster were used to form a non-redundant gene
catalogue used for downstream analyses. Gene abundance in each
sample was determined by alignment of the reads using BWA-
MEM against the gene catalogue, determining the number of
reads mapped to each gene sequence and normalising as
described29. Functional annotation to KEGG pathways was
carried out by mapping centroid sequences to the eggNOG-
Mapper database30 (version 4.5, downloaded on 1 March 2018)
using Diamond software on our in-house server.

Microbial gene richness (MGR) was determined as described
previously29,31. Briefly, data were downsized to adjust for
sequencing depth and technical variability by randomly selecting
7 million reads mapped to the gene catalogue (of 11,005,136
genes) for each sample and then computing the mean number of
genes drawn over 30 random samplings.

Quantification and statistical analysis
Pre-processing. To correct for dilution differences between sam-
ples normalisation procedures were applied. Global metabolite
(1H-NMR spectra) data sets were corrected for dilution effects
using median fold change normalisation16. Scaling to unit var-
iance was then applied to serum and urine data sets, while pareto
scaling was used for faecal datasets, due to the presence of
dominant and variable oligosaccharide resonances. Targeted
metabolites measured within urine samples were corrected for
dilutional differences using osmolality and creatinine
measurements32. Metagenome data were expressed as relative
abundance. Taxa with low abundance (present in <30% of both
subgroups) were excluded from downstream statistical analyses.

Univariate analysis. Due to the non-parametric nature of the
results, differences between paired samples pre/post intervention
in clinical data, quantified metabolites and within the gut
microbiota were assessed for significance using the Wilcoxon
Rank test (two-sided). Differences in non-paired data were
assessed using the Mann–Whitney U test (two-sided). P-values
were adjusted for multiple testing using the Benjamini-Hochberg
(BH) False Discovery Rate method (pFDR). Phylogenetic Trees
were generated to illustrate significant gut microbiota changes
using the GraPhlAn33 script in Python.

Multivariate analysis. Multivariate statistical analysis of normal-
ised 1H-NMR spectra was performed using SIMCA 15
(Umetrics)16. Principal component analysis (PCA) was used to
provide an overview of the data. Orthogonal Partial Least Squares

—Discriminant Analysis (OPLS-DA) models were established
based on one predictive component and one orthogonal com-
ponent to discriminate between samples from participants with
and without T2D. Unit variance scaling was applied to the
1H-NMR spectral data. The fit and predictivity of the models
obtained were determined by the R2X and Q2Y values respec-
tively. Significant metabolites differentiating between groups were
obtained from 1H-NMR OPLS-DA models after investigating
1H-NMR signals with correlation coefficient values higher than
0.35. Jack-knifed 95% confidence intervals of the coefficients were
used to confirm statistical significance of the variables.

Paired global metabolic data, pre- and post-intervention, were
analysed using Repeated Measures, Monte-Carlo Cross-Validation,
PLS-DA (RM-MCCV-PLSDA)34,35 using covariate adjusted projec-
tion to latent structures in MATLAB. Data were centred and scaled
to account for the repeated-measures design. 1000 MCCV models
were generated and used to calculate the mean cross-validated
predictive component score (Tpred) and variance for each sample35.
The fit and predictivity of the models obtained was determined by
the R2X and Q2Y values respectively. Gaussian kernel density
estimates of the Tpred in each group were generated for visual
interpretation35. A total of 25 bootstrap resamplings in each of the
1000 models was used to estimate the variance and mean coefficient
for each variable and derive a p value for each variable accordingly35.
Benjamini-Hochberg false discovery corrections were performed
and a variable was considered significant with a false discovery rate
value (q) ≤ 0.01. Manhattan plots showing -log10(q) x sign of the
variable regression coefficient for each variable within each RM-
MCCV-PLSDA model were generated, with dotted lines added to
illustrate the q value significance cut off level on the log10 scale.

Exploration of gut microbiota taxa was performed using
Principal coordinates analysis (PCoA) of Bray-Curtis dissimilarity
matrices (β-diversity) using the Vegan36 function in R. Sig-
nificance of group separation in β-diversity was assessed by
permutational multivariate analysis of variance (PERMANOVA).
Nested PERMANOVA was used for paired analyses pre- and
post-intervention to account for the repeated measures design.

Metabolite identification. A combination of data-driven strategies
such as such as SubseT Optimization by Reference Matching
(STORM)37 and Statistical TOtal Correlation SpectroscopY
(STOCSY)38 and analytical identification strategies were used to
aid structural identification of significant discriminatory meta-
bolites. Specifically, a catalogue of 1D 1H-NMR sequence with
water pre-saturation and 2D NMR experiments such as
J-Resolved spectroscopy, 1H-1H TOtal Correlation SpectroscopY
(TOCSY), 1H-1H COrrelation SpectroscopY (COSY), 1H-13C
Hetero-nuclear Single Quantum Coherence (HSQC) and 1H-13C
Hetero-nuclear Multiple-Bond Correlation (HMBC) spectroscopy
were performed. Finally, where possible, metabolites were con-
firmed by in situ spiking experiments using authentic chemical
standards. See Supplementary Fig. 2 for an example 1H-NMR
spectrum labelled with identified metabolites.

Relative concentrations of identified metabolites from
1H-NMR datasets were calculated from intensity measurements
of a representative spectral peak of the metabolite, ensuring no
overlap with signals from other metabolites.

Euler diagram of metabolites. A Euler diagram of identified
metabolites from Serum, Urine and Faecal biofluids associated
with Bariatric Surgery, Weight / BMI, T2D and Diet (pFDR
<0.05) was generated using Eulerr in R (version 6.1.1)39.

DIABLO integration of omics datasets. To probe relationships
between data sets we used Data Integration Analysis for
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Biomarker discovery using Latent cOmponents (DIABLO)40,
implemented through the mixOmics41 package in R. DIABLO
extends sparse generalized canonical correlation analysis
(sGCCA)42 to a classification framework. Resulting in a multi-
omics integrative method that simultaneously identifies key
variables correlated across different data types while dis-
criminating between phenotypic groups.

Normalised datasets (gut microbiota species taxa, gut micro-
biota KEGG pathways (Levels 2-3) and quantified metabolites
from urine, serum and faecal biofluids) were used with a full
weighted design matrix where correlation was 0.1 between data
matrices and 1 for the Y outcome, to result in a correlated and
discriminant molecular signature41. To account for the repeated
measures (pre/post procedure) experimental design, multilevel
DIABLO (mDIABLO) models were constructed using within-
subject variation matrices for each omics dataset40,43,44. Classi-
fication performance was assessed using the balanced error rate
(BER) from cross-validation of samples, with BER= 0.5 x (false
positive rate + false negative rate). BER scores range from 0-1,
with a perfect classification model scoring 0, a random predictor
0.5 and a model with systematically incorrect predictions 1.

Gut microbiota-metabolome associations. Spearman’s correlations
between BMI, HbA1c and Microbiota-Metabolome datasets were
generated in MATLAB. Partial Spearman’s correlations were also
performed to adjust for covariates. Corrected p values (pFDR)
were used to select significant correlations. Significant
(pFDR<0.01) first order correlations to BMI and HbA1c and
cross-correlations between these variables were displayed using
Cytoscape 3.8.0.45. Correlations between gut microbiota, meta-
bolite and dietary datasets were displayed using Complex-
Heatmap in R46. Correlations with a pFDR value <0.05 are
displayed, correlations with a pFDR <0.01 are highlighted.
Hierarchical clustering of correlations was performed using
Euclidean distances.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Results
Serum samples were collected from 156 participants with obesity.
Sixty-six participants had T2D, 26 had Impaired Glucose Toler-
ance (IGT) and 64 were non-diabetic. Complete sample sets of

serum, 24-hour urine and stool were collected from 80 of these
individuals (42 T2D, 11 IGT, 27 non-diabetic).

Forty-nine patients underwent bariatric surgery (VSG= 26,
RYGB= 23; Fig. 1) and gave serum samples pre and 3-months
post-surgery (19 T2D, 6 IGT). Twenty-seven of these participants
(VSG= 14, RYGB= 13) gave complete sample sets of serum, 24-
hour urine and stool pre and 3-months post-surgery. More
patients with diabetes underwent RYGB than VSG (11/23 vs 8/
26). Otherwise, baseline demographics were not significantly
different between procedures. Full demographics are detailed in
the Supplementary Tables 1 & 2.

Microbial and metabolic profiling indicated systematic differences
relating to obesity, T2D and bariatric surgery (both RYGB and
VSG), with metabolic signatures identified across the three biofluids
(urine, serum, faecal water). Each condition had a specific set of
metabolic correlates, with some overlap between groups. We iden-
tified 207 metabolites associated with bariatric surgery, 54 (26%) of
these metabolites were characteristic of improved glycaemic control,
41 (20%) associated with BMI reduction and 28 (14%) were asso-
ciated with dietary changes (Fig. 2 and Supplementary Data 1).
Consistent with the observation that the mechanism for T2D
resolution following bariatric surgery is partially independent of
weight-loss, of the 175 metabolites associated with either T2D or
BMI only 7 overlapped (4% commonality).

Gut microbial differences between participants with and
without T2D. Shotgun metagenomic profiling did not identify a
difference in microbial gene richness or β-diversity of the GM
derived from the distal colon between participants with or
without T2D at baseline (Supplementary Figs. 10 and 11).
However, compositional analysis of the GM demonstrated lower
relative abundance of the genera Escherichia (Proteobacteria),
Peptostreptococcaceae unclassified (Firmicutes) and Barnesiella
(Bacteroidetes) in individuals with T2D relative to individuals

Fig. 1 RYGB and VSG weight loss procedures. Schematic of Roux-en-Y
Gastric Bypass (RYGB) and Vertical Sleeve Gastrectomy (VSG)
procedures, showing the respective anatomical changes.

Fig. 2 Metabolites associated with bariatric surgery, body mass index
and glycaemic control. Euler diagram of identified metabolites associated
with bariatric surgery, weight / body mass index (BMI), type 2 diabetes
(T2D) and diet. Diagram shows identified metabolites from serum, urine
and faecal biofluids with associations (pFDR < 0.05) to (1) post- versus pre-
bariatric surgery, (2) lower weight / BMI, (3) lower glycated haemoglobin
(HbA1c) / non-T2D Vs T2D, (4) lower dietary substrate / higher
Alternative Healthy Eating Index (AHEI-2010) score. Metabolites with
concordant changes are grouped together. Metabolites from each grouping
and their associations are detailed in Supplementary Data 1.
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without diabetes. Individual species from the genera Rumino-
coccus, Parabacteroides and Bacteroides had higher relative
abundance (Fig. 3d). Functional analysis of the GM found lower
levels of KEGG pathways relating to cofactor and vitamin
metabolism, including nicotinate and nicotinamide metabolism
and one-carbon metabolism by folate in participants with T2D
relative to participants without diabetes. Methane metabolism,
streptomycin and neomycin biosynthesis, polycyclic aromatic
hydrocarbon degradation and D-alanine metabolism pathways
were also less prevalent in T2D, while bisphenol degradation
pathways were more abundant.

Metabolic differences between participants with and without
T2D. Individuals with T2D were metabolically distinct from BMI
matched controls without T2D, as determined from both targeted

MS assays and global 1H-NMR profiles. In participants with T2D,
the serum secondary to primary (2:1) BA ratio was higher
compared to participants without T2D at baseline. Conjugation of
the primary BA cholic acid (CA), the overall glycine:taurine
conjugation ratio of primary BAs and lithocholic acid were also
higher in participants with T2D. Conversely, CA and the
CA:CDCA (chenodeoxycholic acid) ratio were lower. In addition,
conjugation of secondary BAs including tauro-ursodeoxycholic
acid (TUDCA), taurohyocholic acid (THCA), glycohyocholic acid
(GHCA) and the conjugated UDCA:UDCA ratio was lower. In
faeces, 5α-cholanic acid-3α-ol-6-one was lower in individuals
with T2D relative to control participants without T2D. Targeted
GC-MS analysis found higher 2-hydroxybutyrate and lactate in
urine and serum from participants with T2D relative to controls.
Serum 2-methylbutyrate and isovalerate were also higher in

Fig. 3 Gut microbiota changes after bariatric surgery and in participants ± T2D. a Phylogenetic tree of significant differentially abundant taxa from phyla
to species 3-months post Roux-en-Y Gastric Bypass (RYGB) (n= 13). b Phylogenetic tree of significant differentially abundant level 2 and level 3 Kyoto
Encyclopaedia of Genes and Genomes (KEGG) pathways 3-months post RYGB (n= 13). c Phylogenetic tree of significant differentially abundant taxa from
phyla to species 3-months post Vertical Sleeve Gastrectomy (VSG) (n= 14). d Phylogenetic tree of significant differentially abundant taxa from phyla to
species between participants with type 2 diabetes (T2D) (n= 42) vs participants without diabetes (n= 27). Taxa / KEGG pathways significantly (p < 0.05)
increased post-surgery (a–c) or lower in participants with T2D vs participants without diabetes (d) are shown in green, taxa / KEGG pathways significantly
(p < 0.05) decreased post-surgery (a–c) or higher in participants with T2D vs participants without diabetes (d) are shown in red. Changes that remain
significant after Benjamini-Hochberg multiple testing corrections (pFDR < 0.05) are denoted with an asterisk (*). Plots (a–d) are shown individually in
Supplementary Figs. 12, 14, 15 and 17.
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participants with T2D, while urinary butyrate was lower. Further
quantitative analyses of serum metabolites found higher
branched-chain AAs (BCAAs) leucine, isoleucine and valine,
aromatic AAs (AAAs) phenylalanine and tyrosine, as well as
alanine, methionine, glutamate, lysine and proline in volunteers
with T2D relative to controls without diabetes. The biogenic
amines 2-aminoadipate, methionine sulfoxide and sarcosine and
short-chain acylcarnitines (C2-5, 9) were also present in higher
concentrations in the group with T2D. Conversely, longer-chain
acylcarnitines (C14, 16, 18) and a number of lyso-phosphati-
dylcholines, acyl-alkyl-phosphatidylcholines, longer-chain diacyl-
phosphatidylcholines and sphingomyelins were present in lower
concentrations in participants with T2D.

Orthogonal Partial Least Squares—Discriminant Analysis
(OPLS-DA) models of global 1H-NMR spectra comparing
individuals with and without T2D were generated. Serum and
faeces produced robust models (R2Y= 0.61, Q2Y= 0.44 and
R2Y= 0.59, Q2Y= 0.35, respectively) while urine produced the
least robust model (R2Y= 0.80, Q2Y= 0.12, Supplementary
Fig. 3). In serum, participants with T2D were characterised by
higher concentrations of VLDL/LDL lipoproteins, BCAAs,
lactate, alanine, proline, pyruvate, tyrosine and α-glucose relative
to controls without T2D, whereas HDL, glutamine, glyceropho-
sphocholine, phosphocholine/choline and histidine were lower. In
faeces, individuals with T2D had higher levels of glycine and the
anti-hyperglycaemia drug dimethylbiguanide (Metformin). Lac-
tate, uracil, BCAAs, and tyrosine were lower relative to controls
without diabetes. As expected, in urine, α- and β-glucose were
higher in participants with T2D, while isobutyrate, glycine,
creatine, creatinine, O-acetylcarnitine, N-methyl-2-pyridone-5-
carboxamide, methylnicotinamide and formate were lower
relative to participants without T2D.

Full details of metabolic differences in participants with T2D
relative to participants without diabetes can be found in
Supplementary Tables 3–5 and Supplementary Data 2–5.

Integrative analysis of metabolic and gut microbiota profiles in
individuals with and without T2D. Multi-omic signatures of
participants with T2D versus individuals without diabetes were
modelled using Data Integration Analysis for Biomarker dis-
covery using Latent cOmponents (DIABLO), with a cross-
validated balanced error rate (BER) of 0.18, indicating good
class separation at the systems level (see Supplementary Fig. 18).
Volunteers with T2D were characterised by higher levels of lac-
tate, glucose and alanine in serum; lactate, glucose and
2-hydroxybutyrate in urine and the presence of dimethylbigua-
nide (Metformin) in faeces compared to controls without dia-
betes. Whereas lower serum phosphatidylcholines and HDL
lipoprotein; lower urinary glycine, trimethylamine and iso-
butyrate and faecal valine and uracil levels were characteristic of
participants with T2D relative to participants without diabetes.
Lower levels of GM from the Peptostreptococcaceae unclassified
(Firmicutes) and Barnesiella (Bacteroidetes) genera were also seen
in the T2D signature, as were lower levels of GM KEGG pathways
including lipid and N-glycan biosynthesis; nicotinate, nicotina-
mide, methane, alanine and one-carbon metabolism; and bio-
synthesis of secondary metabolites such as streptomycin and
neomycin.

Clinical findings after bariatric surgery. Significant weight-loss
was achieved after both procedures, although the percent weight-
loss was greater after RYGB (p= 0.023) (Fig. 4a). At 3-months
post-surgery patients with T2D who underwent VSG and RYGB
had mean (±standard deviation) glycated haemoglobin (HbA1c)
reductions of 17.8 mmol/mol (±11.2) and 19.4 mmol/mol (±12.5)

respectively. Relative to baseline, VSG and RYGB patients had
reductions in HbA1c of 27.6% (±12.1) and 28·6% (±14.2),
respectively. Three months after VSG, 4/8 participants with T2D
had complete diabetes resolution (HbA1c < 42 mmol/mol), 2/8
had partial resolution (HbA1c < 48 mmol/mol) and 2/8 had
ongoing T2D (HbA1c ≥ 48 mmol/mol). Of 4 participants with
IGT that underwent VSG, two had resolution. Three months after
RYGB, 8/11 participants with T2D had complete diabetes reso-
lution and 3/11 had ongoing T2D. Two participants with IGT
underwent RYGB, both had complete resolution.

Three months following surgery there were large changes in
dietary intake compared to baseline. As measured by three self-
reported 24-h dietary recall questionnaires collected at each time
point, there were significant reported reductions in calorie,
carbohydrate, fat, fibre and sodium intake after both operations.
In addition, protein and vegetable intake was significantly
reduced after VSG, while saturated fat and sugar intake were
significantly reduced after RYGB (Fig. 4c). Dietary healthiness,
measured using the Alternative Healthy Eating Index (AHEI-
2010)13, was increased 3-months after RYGB and VSG surgery
(median 42 vs 54, p= 0.002, Fig. 4b).

Gut microbial changes after bariatric surgery. Multivariate
analysis demonstrated a change in β-diversity (Bray-Curtis dis-
similarity) after RYGB (PERMANOVA p= 0.002), but not VSG
(Supplementary Figures 13 and 16). There was no difference in
microbial gene richness after either bariatric procedure. Com-
positional analysis revealed a major disruption to the GM after
RYGB, but more subtle changes after VSG. Three months after
RYGB, participants had: (i) Increased relative abundance of
Veillonella, Gemella, Granulicatella, Enterococcus, Streptococcus
and Clostridium (Firmicutes), Fusobacterium (Fusobacteria),
Klebsiella and Escherichia (Proteobacteria), Actinomyces and
Anaerotruncus (Actinobacteria) and Prevotella (Bacteroidetes);
(ii) decreased relative abundance of Holdemania, Eubacterium,
Faecalibacterium, Subdoligranulum, Ruminococcus, Dorea and
Anaerostipes (Firmicutes), Burkholderiales (Proteobacteria), Bifi-
dobacterium and Collinsella (Actinobacteria). Changes at each
taxonomic rank from phylum to species are shown in Fig. 3a.
Functional analysis found an increase in bacterial KEGG path-
ways pertaining to: AA metabolism, lipid metabolism including
fatty acid degradation, α-linolenic acid metabolism; and xeno-
biotic biodegradation including benzoate, aminobenzoate and
ethylbenzene degradation. Bile salt hydrolase (choloylglycine
hydrolase) pathways were reduced (p= 0.03) (Fig. 3b).

Three months after VSG, participants had increased relative
abundance of a select number of species within the genera
Streptococcus, Eubacterium and Anaerotruncus (Firmicutes) and
Escherichia (Proteobacteria) and decreased species within Faeca-
libacterium, Dorea, Anaerostipes, Roseburia and Coprococcus
(Firmicutes) (Fig. 3c). Limited changes to KEGG pathways were
found after VSG.

Metabolic changes after bariatric surgery. Increases in glycine
conjugation relative to taurine in both primary and secondary serum
BAs occurred after RYGB. Whereas decreased primary and con-
jugated primary BAs were noted after VSG. Additionally, glycohyo-
cholic acid was increased after RYGB, while murocholic acid and
isolithocholic acid were increased after VSG. After RYGB and VSG,
both groups had increased secondary BA ursodeoxycholic acid
(UDCA) and conjugated secondary BAs (GUDCA+TUDCA) in
serum, likely to be predominantly due to the exogenous adminis-
tration of UDCA for gallstone prophylaxis postoperatively in patients
with a gallbladder in situ. Faecal levels of primary, secondary, con-
jugated primary and secondary and overall faecal BAs were decreased
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after both procedures. Similar to serum there was an increase in the
conversion ratio of primary to secondary BAs in faeces. Absolute 5α-
cholanic acid-3α-ol-6-one and allolithocholic acid were increased
after RYGB and VSG respectively. 5β-cholanic acid-3α-ol-12-one and
3,6/3,12-diketocholanic acid were reduced after RYGB. After RYGB,
but not VSG, excretion of 2-methylbutyrate and isovalerate in urine
and faeces increased. In serum, lactate was decreased after RYGB and
showed a non-significant trend towards decreasing after VSG, con-
sistent with the lower concentrations of serum lactate in participants
without T2D compared to those with T2D. In faeces, acetate was
reduced after both procedures, while butyrate and valerate reduced
after VSG. Both procedures resulted in a decrease in the majority of
serum AAs, including BCAAs and AAAs. However, glycine and
serine were increased after both procedures, with glutamine also
increased after RYGB. Serum kynurenine and sarcosine were

decreased and symmetric dimethylarginine was increased after both
procedures. 2-aminoadipate was lower after VSG. Short-chain acyl-
carnitines (C0, C3-5) and a large number of phosphatidylcholines
and lyso-phosphatidylcholines species were reduced after both RYGB
and VSG. Whereas, C2 and longer-chain acylcarnitines (C7, 8, 10, 14,
16, 18), sphingomyelins and predominantly longer-chain acyl-alkyl-
phosphatidylcholines were increased, with similar findings after both
interventions.

Repeated Measures, Monte-Carlo Cross-Validation, Partial
Least Squares Discriminant Analysis (RM-MCCV-PLSDA)
models of serum and urine global 1H-NMR spectra found
excellent separation between participants pre- and post-surgery,
with robust models after both procedures (Fig. 5, Supplementary
Figures 4-7). In serum, a number of significant changes were
consistent after both RYGB and VSG, including altered AA

Fig. 4 Clinical findings after bariatric surgery. a Box plots of weight-loss 3-months post Roux-en-Y Gastric Bypass (RYGB) (n= 23) and Vertical Sleeve
Gastrectomy (VSG) (n= 26) procedures. Patients who underwent VSG had a mean (SD) weight-loss, percent weight-loss and body mass index (BMI)
reduction of 21.7 kg (6.8), 17.3% (5.6) and 7.9 kg/m2 (2.2), respectively. Patients who underwent RYGB had a mean (SD) weight-loss, percent weight-loss
and BMI reduction of 24.6 kg (7.0), 20.2% (4.1) and 9.3 kg/m2 (2.4), respectively. Percent weight-loss was significantly greater in the RYGB group
(p= 0.02). b Dietary healthiness measured by the Alternative Healthy Eating Index (AHEI) pre and 3-months post bariatric procedures. c Box plot of
dietary intake pre and post RYGB & VSG procedures. Horizontal lines indicate the median, boxes indicate the interquartile range (IQR), whiskers extend to
the upper adjacent value (Q3+ 1.5 x IQR) and lower adjacent value (Q1–1.5 x IQR), dots represent outliers. *p < 0.05.
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metabolism, matching results in the targeted AA analysis. Ketone
bodies acetone, acetoacetate and 3-hydroxybutyrate were
increased and evidence of changes to the tricarboxylic acid cycle
was seen, with citrate increasing and pyruvate decreasing after
surgery. VLDL/LDL, lipid glycerol and choline decreased
3-months after RYGB and VSG. The improvement in lipid
profile was seen despite near universal use of statins preopera-
tively. In addition, lactate decreased after RYGB, consistent with
the quantitative GC-MS analysis. In urine, a number of significant
metabolic changes were also consistent after both RYGB and VSG
procedures, including increased bacterially derived metabolites
such as phenylacetylglutamine (PAG), N-methyl-4-pyridone-3-
carboxamide, 4-cresylsulfate, hippurate, trimethylamine-N-oxide
(TMAO) and 2-aminobutyrate. Decreased urinary excretion of
lactate, 3-hydroxyisovalerate and AAs occurred and a reduction
in analgaesic use was observed. RM-MCCV-PLSDA models of
faecal samples analysed by 1H-NMR pre- and post-surgery
produced a robust model for VSG but not RYGB (Supplementary
Figures 8 & 9). Tyramine and β-alanine were increased after VSG.
In keeping with the quantitative SCFA analysis, acetate, butyrate,
valerate were decreased, as were isovalerate, lactate, methanol,
formate, trimethylamine and phenylacetate.

Full details of metabolic changes after bariatric surgery can be
found in Supplementary Tables 6–8 and Supplementary Data 6–9.

Integrative analysis of metabolic and gut microbiota profiles
after bariatric surgery. Multi-omic signatures of the response to
RYGB and VSG were modelled using multilevel DIABLO, with
cross-validated balanced error rates (BER) of 0.021 and 0.085
respectively, indicating significant differences at the systems level
in response to RYGB and VSG and excellent classification
between pre- and post-surgery states (Fig. 6a–f). Each procedure
had a distinct signature. Notably, RYGB was characterised by an
increase in tyrosine and phenylalanine metabolism and benzoate
and fatty acid degradation pathways in gut bacteria. This dif-
ference corresponded with increases in urinary metabolites of
bacterial origin including PAG, hippurate and TMAO. In addi-
tion, there was increased serum glycine and glycine conjugation
of CA and decreased tryptophan and valerate. A number of BA
changes were seen in faeces including increased glyco-
ursocholanic acid and 5β-cholanic acid 3α-ol-6-one. VSG was
characterised by a decrease in a number of GM KEGG pathways.
These correlated with decreased faecal SCFA levels, specifically
acetate, butyrate and valerate. However, similar to RYGB a
number of bacterially derived compounds were increased in the
urine including indoxylsulfate, 4-cresylsulfate, hippurate and
PAG. Serum changes consisted predominantly of decreased
phosphatidylcholines.

A multi-omic signature differentiating between the two bariatric
procedures was characterised by a greater increase in urinary
compounds of microbial origin including PAG, indoxylsulfate,
TMAO and 4-hydroxybutyrate after RYGB relative to VSG. The
reduction in faecal acetate, butyrate, valerate was greater after VSG,
while an increase in 2-methylbutyrate and isovalerate was specific to
RYGB. Glycine conjugation of serum BAs was greater after RYGB.
A number of bacterial species increased further after RYGB,
including Escherichia coli and unclassified Granulicatella and
Gemella species, as did GM KEGG pathways including tryptophan
metabolism, benzoate and toluene degradation and biosynthesis of
unsaturated fatty acids (Supplementary Fig. 19).

Integrative correlation analyses of BMI and HbA1c. BMI is
closely associated with glycaemic control (HbA1c) and both
decreased following bariatric surgery. However, interestingly,

BMI and HbA1c correlation networks had contrasting composi-
tions (Fig. 7). BMI was strongly correlated to a number of bac-
terially derived factors. Species including Escherichia coli,
Streptococcus anginosus, Streptococcus parasanguinis, Clostridium
hathewayi and multiple Veillonella species were correlated with a
lean phenotype, while Eubacterium rectale was correlated with
increased adiposity. Subsequently a number of GM KEGG
pathways such as tryptophan metabolism, linoleic acid metabo-
lism, cytochrome P450, steroid biosynthesis and xenobiotic
degradation were also correlated with lower BMI. Bacterially
derived urinary metabolites PAG, 4-cresylsulfate, indoxylsulfate
and 4-hydroxyphenylacetate were negatively correlated with BMI.
While SCFAs acetate and valerate in faeces and isobutyrate in
urine correlated positively, as did a number of BA species. Cor-
relations to BMI were similar after correcting for glycaemic
control (HbA1c) using partial correlations (Fig. 7c).

Conversely, HbA1c correlated positively with a range of serum
AAs including BCAAs, acylcarnitines (C3, C5, C5-OH), lactate,
kynurenine and 2-aminoadipate. In validation of the model,
HbA1c increased with higher serum and urinary glucose, faecal
metformin levels and age, as expected. Whereas serum HDL,
sphingomyelins, glycerophophocholine and GHCA, urinary
2-aminobutyrate and glycine and faecal 5α-cholanic acid 3α-ol-
6-one levels were negatively associated with HbA1c. To further
isolate weight-independent correlates to HbA1c we conducted
partial correlation analysis correcting for BMI and weight
(Fig. 7d). Similarly, serum and urinary glucose, serum BCAAs,
lipids and pyruvate correlated positively with HbA1c. Whereas
serum glutamine, glycerophosphocholine, phosphocholine and
HDL and urinary glycine correlated negatively.

Influence of diet on gut microbial and metabolic profiles.
Metabolic changes associated with diet overlapped principally with
the effects of bariatric surgery and BMI, but not T2D (Fig. 2).
Carbohydrate and calorie intake correlated positively with a num-
ber of serum glycerophospholipids and sphingomyelins as well as
phenylalanine, hydroxypropionylcarnitine (C3-OH), prope-
noylcarnitine (C3:1) and faecal acetate levels (Fig. 8). While urinary
PAG, 4-cresylsulfate and serum acetate were negatively correlated
with carbohydrates and calorie intake. PAG was also negatively
correlated with fat intake, including trans and polyunsaturated fats.
Serum glutamate was higher with higher levels of trans fat and
tauro-ursodeoxycholic acid (TUDCA) in serum was negatively
correlated with salt (sodium) intake. Fibre intake was positively
correlated with serum proline and C24:1-OH sphingomyelin levels.
While serum leucine levels were lower as diet healthiness (AHEI-
2010 score) increased. Limited changes to the GM relating to diet
were identified, but percentage carbohydrate intake correlated
negatively with the Proteobacteria phylum.

Discussion
Bariatric surgery has been shown to reverse some of the dele-
terious effects to the multiple organ systems and metabolic
pathways that are disrupted in T2D. However, the mechanisms
behind the resolution of T2D are not well understood. It is
thought that a complex interplay of weight dependent and
independent factors47 are involved including: reduced adipose
tissue leading to reduced inflammation and improved insulin
sensitivity48; changes in the architecture of pancreatic islets such
as increased beta cell mass49,50; changes in energy homoeostasis
and mitochondrial function51; restoration of bile acid levels and
their impact on the farnesoid-X receptor (FXR) and the trans-
membrane G protein-coupled receptor 5 (TGR5)52,53; enhanced
release of gut hormones (e.g. GLP154, ghrelin55); reversal of
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Fig. 5 Metabolite changes after RYGB and VSG procedures, assessed by 1H-NMR spectroscopy. Repeated Measures, Monte-Carlo Cross-Validation,
Partial Least Squares Discriminant Analysis (RM-MCCV-PLSDA) models were generated using 1H – Nuclear Magnetic Resonance (1H-NMR) spectra
derived from serum and urine biofluids pre and 3-months post Roux-en-Y Gastric Bypass (RYGB) and Vertical Sleeve Gastrectomy (VSG) procedures.
Model scores: (a) Serum RYGB (n= 23, R2Y 0.99, Q2Y 0.45), (b) Serum VSG (n= 26, R2Y 0.96, Q2Y 0.52), (c) Urine RYGB (n= 14, R2Y 0.99, Q2Y 0.72),
(d) Urine VSG (n= 16, R2Y 0.99, Q2Y 0.64), (Supplementary Fig. 9a) Faeces RYGB (n= 10, R2Y 0.94, Q2Y 0.06), (Supplementary Fig. 9b) Faeces VSG
(n= 14, R2Y 0.98, Q2Y 0.66). Upper panels: RM-MCCV-PLSDA scores plots comparing participant samples pre and 3-months post bariatric surgery.
Models are comprised of 1 predictive and 1 orthogonal component. Lower panels: Mean 1H-NMR spectrum and Manhattan plot. Manhattan plot showing
-log10(pFDR) x sign of the variable regression coefficient (β) for each variable within the RM-MCCV-PLSDA model. Dotted lines illustrate the pFDR
significance cut off level (0.01) on the log10 scale. Spectra considered significant are highlighted in the Manhattan plot and mean spectrum. Red metabolites
(1H-NMR signals) are significantly increased post-surgery, blue metabolites (1H-NMR signals) are significantly decreased post-surgery.
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reduced enteroplasticity56; and via modulation of the gut
microbiome, which is known to contribute to BMI and other risk
factors for T2D57. In addition, bariatric surgery has been shown
to normalise gene expression that is dysregulated in T2D, parti-
cularly mitochondrial genes and those involved with aerobic
metabolism58. Here we show the contrasting impact of T2D and
bariatric surgery on multiple pathways such as aromatic amino
acid metabolism (tyrosine), branched chain amino acid metabo-
lism (valine, leucine, isoleucine), one-carbon metabolism
(methionine, sarcosine), short chain acyl carnitines (C3, C4, C5:1)
and anaerobic glycolysis (lactate, pyruvate), which were higher in
T2D and reduced following bariatric surgery. Similarly, other
amino acids (glutamine, histidine), bile acids (GHCA, THCA,
GUDCA) and lipids (HDL, acyl-alkyl-phosphatidylcholines
C32:1, C38:5, C40:5, C42:5, C44:5, C44:6, Sphingomyelins
C16:0, C18:0, C18:1, C20:2, C24:1, C26:1) were lower in T2D and
increased following bariatric surgery.

The associations of these metabolites with BMI and glycaemic
control are described below. However, although the differential
metabolite set representative of bariatric surgery overlapped with
both diabetes (19.3% commonality) and BMI (18.6% commonality),
the percentage overlap between diabetes and BMI was minimal (4.0%
commonality). Thus, it appears that the change in metabolism with
respect to resolution of T2D is at least in part independent of BMI
reduction, consistent with the observation that BMI and HbA1c were
differentially associated with metabolic profiles (Fig. 2 & 7).

As previously described59 the clinical and metabolic impact of
RYGB was greater than VSG. The RYGB procedure was strongly
associated with altered functionality of the gut microbiome as
reflected in the urine, serum and faecal metabolomes and in the
KEGG pathways associated with the altered microbiome. The
microbiome associated with T2D was distinct from the micro-
biome characteristic of participants without T2D, but in general
the perturbation caused by T2D was of a lower magnitude than
the changes in microbial structure and function observed post
bariatric surgery. The lesser extent of GM differences in partici-
pants with and without T2D relative to the effects of bariatric
surgery, coupled with the strong correlation of the GM to BMI
but not HbA1c (Fig. 7), suggests that the GM predominantly
effects weight-dependent mechanisms. However, although the
impact of T2D on the GM was more subtle, nevertheless we
identified changes in several metabolite groups that correlated
with GM changes after bariatric surgery. As discussed below,
some of these metabolites, such as BCAAs, influence glycaemic
control and may be important in weight-independent mechan-
isms of T2D resolution following bariatric surgery.

Multi-omic comparison of participants with T2D to BMI
matched controls without diabetes. Although we found differ-
ences in various individual taxa within the GM of participants with
T2D compared to BMI matched controls without T2D, there was no

Fig. 6 Integration of metabolite and gut microbiota datasets. Multi-omic datasets pre and 3-months post Roux-en-Y Gastric Bypass (RYGB) (a–c) and
Vertical Sleeve Gastrectomy (VSG) (d–f) procedures were integrated using multilevel Data Integration Analysis for Biomarker discovery using Latent
cOmponents (mDIABLO). a, d Scores plots with samples projected in latent space for RYGB (n= 10) and VSG (n= 14) models respectively. Classes (pre-/
post-surgery) are discriminated along component 1. b, e Scores plots derived from component 1 of individual datasets, showing correlations between
variables from each dataset. c, f Variables from component 1 (coloured by dataset) discriminating between pre/post timepoints are displayed. Differences
in expression of variables pre-/post-surgery are shown by the colour-coded outer lines. Correlations (r > 0.75) between variables are shown by the colour-
coded inner lines. Cross-validated balanced error rates (BER) for each model are shown. Ellipses correspond to 95% confidence intervals.
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overall difference detected in β-diversity. Similarly, others have found
only moderate differences in individuals with T2D and large inter-
individual variability1,60. However, in general the differences in
microbial ecology between participants with and without T2D was
consistent with the existing literature. Consistent with our observa-
tions in the current study, Ruminococcus and Parabacteroides have a
higher relative abundance in T2D rodent models compared to ani-
mals without diabetes61,62 and Ruminococcus has been shown to
exert pro-inflammatory effects and also to promote pathogenesis in
type 1 diabetes63. Similarly, lower relative concentrations of Barnsiella
have been associated with T2D in rodent models64. In contrast, the
role of Bacteroides is less clear with some studies reporting lower
abundancy of Bacteroides in T2D61. Some of the differences in this
T2D cohort, such as lower Clostridium bartlettii (aka Intestinibacter
bartlettii) levels relative to controls without diabetes, are in keeping
with changes due to metformin use (86% metformin use in T2D
group, see Supplementary Table 1 & 2)65,66. However, other differ-
ences in participants with T2D such as lower Escherichia coli were
apparent despite metformin’s well characterised action in increasing
its relative abundance65,66. Escherichia subsequently increased fol-
lowing both RYGB and VSG surgery.

In contrast, large metabolic dissimilarities occurred in
participants with T2D compared to BMI matched controls
without diabetes and we have defined a T2D metabolic signature,
characterised by altered branched chain and aromatic AA, one-
carbon, acylcarnitine, lipid, BA and SCFA metabolism. The
association of lysine and 2-aminoadipate with HbA1c is
consistent with the fact that both metabolites have been
associated with increased risk of T2D in the PREDIMED and
Framingham Offspring Studies67,68. However, other studies seem
to indicate that 2-aminoadipate can modulate insulin secretion
and reduce the impact of diabetes69. These contrasting results
may be due to Maillard reactions which are increased in diabetes
and other age related diseases70. Similarly, inflammation has been
shown to promote the conversion of tryptophan to kynurenine
and increased circulating kynurenine has been previously
associated with HbA1c and diabetes71,72. Likewise, methionine
is susceptible to oxidation to methionine sulfoxide, which was
increased in serum in participants with T2D. This has been
associated with ageing and is consistent with higher oxidative
stress in individuals with T2D73. Metformin is known to exert an
influence on the serum metabolite profile and is associated with

Fig. 7 Metabolite and gut microbiota correlations with BMI and HbA1c. First-order Spearman correlations to (a) body mass index (BMI) and (b) glycated
haemoglobin (HbA1c) derived from metabolite and microbiota datasets. c Partial Spearman correlations to BMI, correcting for HbA1c. d Partial Spearman
correlations to HbA1c, correcting for BMI and weight (weight independent HbA1c correlations) (n= 108). Correlations with a corrected pFDR < 0.01 are
shown. Variables with a negative correlation to BMI / HbA1c are displayed within a circle, variables with a positive correlation have a diamond shape and
red outline. Node size is proportional to the number of significant correlations to that variable. Positive correlations between variables are shown with
orange lines, negative correlations have blue lines. Line thickness is proportional to the correlation strength (r).
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lower concentrations of lipoproteins, N-acetylated glycoproteins,
lactate and glucose, along with increased relative concentrations
of TMAO and 3-hydroxybutyrate74. Thus, metformin shifts the
serum profile towards a non-diabetic state and most of the
metabolic differences observed in the current study do not appear
to be differentially modulated by Metformin.

Multi-omic assessment of changes post RYGB and VSG sur-
gery. Reductions in the intake of all food groups, in particular
carbohydrate, fat, sugar and fibre are commonly noted after
RYGB and VSG. In addition to the restrictive elements of both
procedures through a reduction in stomach size, bariatric pro-
cedures are known to reduce hunger and increase satiety through
modulation of anorexigenic hormones75. Patients also have a
lower brain-hedonic response to food76 and altered food

preferences77. This change appears to be reflected here with an
increase in dietary healthiness, measured using the AHEI-2010
score, after surgery. However, it should be noted that all self-
reported dietary data are subject to misreporting78. Although
both surgical procedures increased diet healthiness, several
microbial and metabolic changes post-surgery were distinct
between interventions thereby implying that dietary change was
not the main driver in these effects. Nevertheless, a number of
metabolic effects due to dietary changes were observed and are
discussed in the relevant sections below.

The magnitude of alteration in faecal bacterial composition
following bariatric surgery was far greater than the perturbation
in the GM that was associated with T2D. This was also consistent
with the alteration in microbial metabolites identified in the
serum, faeces, and particularly the urine following bariatric

Fig. 8 Metabolite—dietary intake correlations. Significant Spearman’s correlations (pFDR < 0.05) between measured metabolites and dietary intake are
shown and shaded according to strength of correlation coefficient (Rho), (n= 65). The corresponding biofluid (urine, serum and faeces) of each measured
metabolite is noted.
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surgery (hippurate, PAG, 4-cresyl sulfate, indoxyl sulfate and
TMAO) whereas these metabolites did not strongly differentiate
individuals without diabetes from those with T2D. GM
composition changes along the intestine’s length due to a
gradient in a number of factors such as nutrient availability,
oxygen levels, pH and antimicrobial activity including BA
levels79. The changes to the GM after RYGB in this cohort
represent a shift in the colonic bacteria towards those usually
found in higher concentrations in the small bowel80,81.
Additionally, representation of a number of obligate anaerobes
increased. Whereas fermentative bacteria, usually found in high
concentrations in the colon, decreased after RYGB81,82. As
expected, due to the fact that VSG maintains continuity of the
gastrointestinal tract, the bacterial changes following VSG were
more subtle. Nevertheless, several species increased after VSG
from genera that increased after RYGB. Initial studies investigat-
ing obesity and the gut microbiota found a higher
Firmicutes/Bacteroidetes ratio in individuals with obesity2,83,
while other studies have reported contrasting results, finding
the opposite changes or no difference84,85. We found no
significant change after either procedure, supporting the notion
that the picture is more complex than changes at a phylum level
and that changes at lower taxonomic levels and at a functional
level may be more relevant86. Functional analysis of our cohort
revealed a significant shift towards increased bacterial proteolytic
fermentation (putrefaction) pathways after RYGB. This increase
occurred despite a decrease in dietary protein consumption,
although it is possible that malabsorption resulting from altered
small-intestine anatomy leads to higher AA concentrations
reaching the colon. The change was corroborated by an increase
in a number of bacterially derived metabolites, generated through
the fermentation of AAs. These included urinary PAG,
indoxylsulfate and 4-cresylsulfate derived from the bacterial
metabolism of phenylalanine, tryptophan and tyrosine respec-
tively. Each of these amino acid – microbial metabolite pairs had
a significant inverse correlation, consistent with upregulated
fermentation of proteins and AAs. Isovalerate and 2-methylbu-
tyrate, derived from bacterial-degradation of BCAAs, were also
increased in faeces and urine after RYGB. Urinary PAG has
previously been associated with a lean phenotype87 and was
found to be higher after RYGB in a rat model88. In this study,
PAG was also correlated with a healthier diet (lower carbohydrate
and fat intake, including trans and polyunsaturated fats).
Similarly, the increase in hippurate, the glycine conjugate of
benzoate, post-surgery is consistent with a lean phenotype and
increased fruit intake, as well as reduced risk of metabolic
syndrome independent of diet89. Although bacterial pathways
relating to proteolytic fermentation were not significantly
increased after VSG, a similar but less pronounced increase in
related metabolites also occurred, suggesting that these pathways
were also functionally increased after VSG.

Perturbations in AA homoeostasis, particularly BCAA and
AAAs are associated with insulin resistance90 and future risk of
diabetes91. In this study we identified a higher Fischer ratio
(BCAA/AAA), previously associated with worsening liver func-
tion, in participants with T2D relative to participants without
diabetes92,93. BCAA and AAAs both reduced following surgery,
but the Fischer ratio only reduced following surgery in
participants with T2D and impaired glucose tolerance and was
not significantly altered following surgery in individuals without
diabetes. The association of BCAA with diabetes is thought to be
causative94. BCAA infusions in rats and humans leads to the
development of insulin resistance95. This led us to conclude that
the observed changes in AA profiles after surgery are likely to be
an important factor driving improved insulin resistance. Our
findings suggest that the changes in AA profiles resulted in part

from increased AA putrefaction by the GM after RYGB.
Consequently, RYGB may confer a metabolic advantage for
patients with T2D compared to VSG, through decreased
availability and absorption of BCAA from the gut. In support
of this, germ-free mice have significantly altered profiles of AAs
absorbed from the gut via the portal vein relative to those with a
normal GM96. This difference is due to the large number of
bacteria involved in AA biosynthesis and fermentation97,98. In a
prior study, oral gavage of mice with Bacteroides thetaiotaomicron
led to a reduction in glutamate, phenylalanine, leucine and
valine10. Here two species of Paraprevotella, highly capable of
producing AAs, correlated with serum alanine levels. Perhaps
more importantly we also identified a number of negative
correlations between bacterial species and serum AA levels,
indicating that fermentation of AAs by gut bacteria is an
important pathway influencing human AA profiles. In particular,
species from the genera Streptococcus and Clostridium, important
AA fermenters98, correlated with a reduction in serum BCAAs
(Supplementary Figure 20). However, further studies are needed
that investigate the combined microbial, dietary and human
contribution towards circulating levels of BCAAs. For example,
we also note that the BCAA leucine was negatively correlated
with dietary healthiness (AHEI-2010 score) in this cohort.

In keeping with greater changes to the GM following RYGB,
urinary TMAO was significantly increased after RYGB but not
VSG. Reduction of TMAO and other dietary nutrients such as
choline and L-carnitine to trimethylamine (TMA) is performed
by the GM (predominantly Enterobacteriaceae). Absorbed TMA
is then converted back to TMAO by host hepatic enzymes99.
TMAO has been described as pro-atherogenic and high serum
levels of TMAO have been proposed to be a predictor of
cardiovascular disease91,100. However, the causative effect of
cardiovascular disease from high TMAO is disputed and these
results may have been due to confounders such as reduced kidney
function and poor metabolic control101. Other evidence such as
the presence of high concentrations of TMAO in elite athletes, as
well as in the urine of Japanese populations whose diet contains a
high portion of fish and who have a low risk of cardiovascular
disease, suggests that the causal role of TMAO in cardiovascular
disease is complex and conditional on a wealth of host-microbiota
factors102,103. Moreover, TMAO was recently found to protect
against impaired glucose tolerance and reduce endoplasmic
reticulum stress104.

The initial gateway step in biotransformation of primary
conjugated BAs to secondary BAs is performed by gut bacteria
containing the bile salt hydrolase (BSH) enzyme. Interestingly,
although we observed increased secondary BAs, we found that the
BSH gene load was decreased after RYGB with no overall change
after VSG. Furthermore, there were no significant changes in
other BA enzymes such as hydroxysteroid dehydrogenases. We
concluded that the profound changes in the BA pool composition
observed after both procedures, including increased secondary
BAs, result predominantly from changes in host factors such as
altered hepatic processing and BA re-absorption. In addition,
there was a consistent increase in glycine conjugation of BAs
relative to taurine in serum after RYGB. Changes in glycine/
taurine conjugation can result from changes in their bioavail-
ability in the liver105 and certainly there was increased serum
glycine in this cohort. In addition, bacterial glycine metabolism
pathways were increased after RYGB and this may also influence
the bioavailability of glycine for conjugation. Indeed, germ-free
animals excrete almost exclusively tauro-conjugated BAs106.
Interestingly, GHCA had a strong negative correlation with
HbA1c in this cohort. Diabetes has been associated with lower
serum concentrations of HCA species and they are strong
predictors of metabolic disease107. Administration of hyocholic
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acid by others increased serum fasting GLP-1 in healthy and
diabetic mouse models by simultaneously activating TGR5 and
inhibiting FXR, a unique mechanism not found in other BA
species108. However, the overall metabolic effects of differences in
the BA pool and conjugation patterns are difficult to predict53.

SCFAs are produced through the bacterial fermentation of
dietary fibre and complex carbohydrates. Faecal acetate decreased
after both procedures, likely due to a large reduction in dietary
substrate. Indeed, faecal acetate was negatively correlated with
dietary carbohydrate and calorie intake. However, the reduction
in butyrate and valerate seen after VSG was not replicated after
RYGB, despite a similar reduction in dietary substrate. This
discrepancy suggests that the GM following RYGB is able to
produce these SCFA more readily than the microbiota after VSG.
The SCFA signature is important as each SCFA has a unique
impact on the host. Acetate production leads to a positive
feedback loop that increases appetite, induces lipid deposition in
liver and skeletal muscle, and increases insulin resistance109.
Whereas butyrate has a beneficial role in host satiety, insulin
resistance and colonocyte health110.

Crucially, although the overall changes after bariatric surgery
appear to be towards a healthier phenotype there may be some
negative consequences of surgery. Increased protein metabolism
within the gut is usually considered to be harmful111. Putrefaction
results in the production of toxic compounds such as amines,
sulphides and ammonia112, whilst phenols and indoles, increased
after bariatric surgery in this cohort, are reported to be pro-
inflammatory and cytotoxic113,114.

In conclusion, metabolic changes post-surgery were achieved by
both weight-dependent and weight-independent processes and we
have identified multi-omic signatures specific to obese and T2D
states at the systems level, some of which demonstrated
contrasting patters when compared with the effects of bariatric
surgery. BMI correlated inversely with bacterially derived urinary
metabolites such as PAG, 4-cresylsulfate and indoxylsulfate and
positively with faecal acetate and valerate, whereas HbA1c showed
stronger correlation with serum AAs, acylcarnitines, kynurenine
and 2-aminoadipate. Greater functional and taxonomic changes
were observed in the GM following RYGB compared to VSG.
These microbial changes, particularly after RYGB, appeared to
influence the complex relationship between the GM and host
metabolism. The abundance of amino acid metabolism pathways
within the GM and corresponding metabolites of protein
putrefaction increased after RYGB, despite reduced dietary protein
intake, and correlated with decreased serum BCAAs.

Although this is one of the largest studies to date integrating
metagenomic, metabolomic and dietary data from bariatric
surgery patients and presents several novel avenues for future
study, we acknowledge our approach is not without limitations.
Specifically, metagenomics provides functional predictions with
respect to microbial metabolite production. To allow us to fully
elucidate the contribution of the microbiota to the metabolites we
detect, a standardized dietary intervention incorporating one or
more stable-isotope-labelled substrates would be required in our
cohort. This approach would not only allow us to pinpoint those
metabolites produced via microbial biotransformations but would
also allow us to incorporate metabolic flux analysis into our
metagenomic analyses. Ultimately, this and further mechanistic
work is needed to better understand GM–host co-metabolism
pathways and to establish their full effects on human health.

Data availability
Metagenomic data has been deposited with GenBank, EMBL and DDBJ databases under
the BioProject accession number PRJNA473348.

Further metagenomic and metabolic source data have been deposited at Mendeley
Data: https://doi.org/10.17632/t76nm3yfzh.3115.

All other data are available from the corresponding author on reasonable request.

Code availability
The code to execute RM-MCCV-PLSDA (and also PLS, OSC-PLS, CA-PLS) is provided
in https://bitbucket.org/jmp111/capls/src. The code for executing both the STOCSY and
STORM algorithms is in https://bitbucket.org/jmp111/storm/src. These codes can be
executed in a Matlab environment.
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