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Abstract

Background Primary immunodeficiency (Pl) is a group of heterogeneous disorders resulting
from immune system defects. Over 70% of Pl is undiagnosed, leading to increased mortality,
co-morbidity and healthcare costs. Among Pl disorders, combined immunodeficiencies (CID)
are characterized by complex immune defects. Common variable immunodeficiency (CVID)
is among the most common types of Pl. In light of available treatments, it is critical to identify
adult patients at risk for CID and CVID, before the development of serious morbidity and
mortality.

Methods \We developed a deep learning-based method (named “TabMLPNet") to analyze
clinical history from nationally representative medical claims from electronic health records
(Optum® data, covering all US), evaluated in the setting of identifying CID/CVID in adults.
Further, we revealed the most important CID/CVID-associated antecedent phenotype
combinations. Four large cohorts were generated: a total of 47,660 Pl cases and (1:1 mat-
ched) controls.

Results The sensitivity/specificity of TabMLPNet modeling ranges from 0.82-0.88/0.82-
0.85 across cohorts. Distinctive combinations of antecedent phenotypes associated with
CID/CVID are identified, consisting of respiratory infections/conditions, genetic anomalies,
cardiac defects, autoimmune diseases, blood disorders and malignancies, which can possibly
be useful to systematize the identification of CID and CVID.

Conclusions We demonstrated an accurate method in terms of CID and CVID detection
evaluated on large-scale medical claims data. Our predictive scheme can potentially lead to
the development of new clinical insights and expanded guidelines for identification of adult
patients at risk for CID and CVID as well as be used to improve patient outcomes on
population level.

Plain language summary

Primary immunodeficiencies (PI) are
disorders that weaken the immune
system, increasing the incident of life-
threatening infections, organ damage
and the development of cancer and
autoimmune diseases. Although Pl is
estimated to affect 1-2% of the global
population, 70-90% of these patients
remain undiagnosed. Many patients
are diagnosed during adulthood, after
other serious diseases have already
developed. We developed a compu-
tational method to analyze the clinical
history from a large group of people
with and without Pl. We focused on
combined (CID) and common variable
immunodeficiency (CVID), which are
among the least studied and most
common Pl subtypes, respectively.
We could identify people with CID or
CVID and combinations of diseases
and symptoms which could make it
easier to identify CID or CVID. Our
method could be used to more readily
identify adults at risk of CID or CVID,
enabling treatment to start earlier and
their long-term health to be improved.
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disorders resulting from defects of one or more components

of the immune system!. PI patients are susceptible to serious,
life-threatening infections, organ damage, secondary malignancies
and autoimmune diseases?. As of 2020, more than 450 PI subtypes
have been discovered which were linked to 485 genetic defects®*.
This is an increase from over 350 PIs in 2017°. As further PI
research is conducted, it is anticipated that this number will con-
tinue to increase. Early PI diagnosis is critical to improving health
outcomes and reducing morbidity and mortality®. Improvements
in genetic, immunologic, imaging and medical assessments
allow the characterization and therapeutic intervention of many
PI disorders*S. An important challenge to the early PI diagnosis is
the highly heterogeneous clinical presentation, across and within
PI subtypes’-®. Another critical barrier is the low awareness
of PI among primary care practitioners and hence, a lack of
referral to clinical immunologists, leading to suboptimal diagnostic
evaluation!-°.

Awareness campaigns by advocacy groups have identified the
warning signs to help identify PI patients (Supplementary
Table 1)7. Although clinically relevant, this specific set of mani-
festations does not provide a comprehensive list of clinical phe-
notypes for systematizing PI screening®. Apart from severe
combined immunodeficiency (SCID) for which newborn screening
is established in the United States, population-based screening for
PI does not exist!~>9. Therefore, underdiagnosis, misdiagnosis, or
diagnosis delay is common in PI>!0. Undiagnosed patients are
subject to increased mortality and morbidity>*©, and are associated
with increased healthcare visits and costs’. Of note, the National
Institute of Health estimates that PI may be affecting 1- 2% of the
global population, with recent meta-analyses suggesting that 70-
90% of PI patients remain undiagnosed even in countries with well-
established diagnostic facilities!0-12.

Among primary immunodeficiencies, combined immunodefi-
ciencies (CID) are a group of genetic disorders characterized by
T-cell impairments, leading to concurrent B-cell and in some cases
NK-cell defects!:?. The most severe CID subtype, SCID, is char-
acterized by a profound T-cell deficiency!>~>?. If not treated at
early infancy, SCID is fatal. Newborn screening and hematopoietic
stem cell or bone marrow transplantation have been established as
the gold-standard in treating SCID!3, Other CID subtypes
marked by partial but not complete T-cell dysfunction, are asso-
ciated with variable co-morbidities, and disease progression, and
are among the least investigated immune deficiencies!®!314,
Unlike SCID, CID patients commonly present with late disease/
symptom onset (>1-year of age) due to residual T-cell function and
have a variable clinical presentation (depending upon the indivi-
dual), hence, their diagnosis cannot be based upon SCID-specific
newborn screening>!3. Moreover, although a childhood onset is
expected due to being genetically-driven, many CVID and CID
patients are diagnosed in adulthood due to a lack of awareness
hindering childhood diagnosis and/ or delayed disease onset!>14.
Pneumonia has been shown to be the most frequent severe infec-
tion in CID patients)!3. CVID is characterized by B-cell defects
and is the second most frequent PI (after selective IgA
deficiency)!>10. Currently, CID and CVID have well-established,
available treatment options. HSCT and BMT are the clinical
standard definitive treatments for CIDL10. Immunoglobulin (Ig)
replacement therapy is a critical therapeutic intervention in CID
and CVID that reduces severe infections, end-organ damage,
hospitalizations and overall morbidity and mortality. Concomitant
antimicrobial therapies are frequently employed to reduce the
severity of infections!>14. Considering the underdiagnosis and the
available treatments for CID/CVID, it is important to establish
methodologies for screening their clinical phenotypes for which
there are no other means of systematic identification.

P rimary immunodeficiency (PI) is an heterogeneous group of

Numerous recent studies demonstrated the merits of machine
learning for the accurate analysis of medical claims and elec-
tronic health records (EHRs)!>-18. To enhance the learning
process of heterogeneous and sparse features, we developed a
deep learning method in which a generalized linear model was
incorporated (named as “wide” component thereafter), by
adopting a wide and deep learning technique (see details in
Supplementary Fig. 1 and 2)19:20,

Our study objectives were two-fold. First, we developed and
evaluated an accurate deep learning model to analyze adminis-
trative medical claims data from nationally representative EHRs
(covering all US) towards systematizing the identification of adult
patients at risk for CID and CVID. Second, we revealed the most
important CID- and CVID-associated clinical phenotypes and
their combinations, demonstrating a systematic methodology to
potentially improve the identification of adult patients at risk
for CID and CVID. Distinctive combinations of antecedent
phenotypes associated with CID/CVID were identified, consisting
of respiratory infections/conditions (in all Cohorts), genetic
anomalies (all Cohorts), cardiac defects (Cohorts 3-4), auto-
immune diseases (all Cohorts), blood disorders (Cohorts 1-3)
and malignancies (Cohorts 2 and 4), which can possibly be useful
to systematize the identification of CID and CVID. The top
combinations consisting of antecedent phenotypes with a median
of first diagnosis at least 6 months before PI diagnosis were:
disorders involving the immune mechanism + decreased white
blood cell count + asthma (Cohort 1); non-Hodgkin lymphoma
+ pneumonia + fever of unknown origin (Cohort 2); bone
marrow/stem cell transplant + disorders involving the immune
mechanism + asthma (Cohort 3); psoriatic arthropathy + auto-
immune disease not elsewhere classified + asthma (Cohort 4).

Methods
Data extraction and curation. All medical claims data used for
training (80%) and testing (20%) the machine learning models,
were extracted from the Optum® de-identified EHR data (Optum,
Inc.,, Eden Prairie, MN), which is a US nationally representative
cohort covering all States. Our observation time frame was from 1
January 2008 to 31 December 2021, which consisted of ~100
million USA patients in total. The data were composed of medical
claims containing clinical history and demographics (the latter
used for matching; see propensity score matching details in the next
paragraph) across all participants. Four large cohorts were gener-
ated: 797, 797, 2,312, and 19,924 PI cases and equal control sizes in
Cohorts 1-4, respectively (Fig. 1). This makes a total of 47,660 cases
and controls. Participants were only included if they were > 18
years old at the time of their PI diagnosis. International Classifi-
cation of Diseases (ICD) codes for CID and CVID identification
were initially derived from the https://www.icd10data.com/. Spe-
cifically, all ICD codes for CID and CVID identification were
defined as listed in the icd10data D81 and icdl0data D83, by
considering all main D81 (for CID) and D83 (CVID) sections and
subsections. All ICD codes were subsequently confirmed by
entering the D81 and D83 sections in the https://icd10cmtool.cdc.
gov/ website search engine. The Supplementary Table 2 presents all
ICD codes identified in the Optum database for CID/ CVID across
Cohorts 1-4 at the time of programming our data extraction.
Across all cohorts, the PI cases and controls were 1:1 matched
for age, gender, race, ethnicity, duration of medical history (in
months), and the number of healthcare visits, using propensity
score (PS) matching (Table 1). This led to an equal number of PI
patients and PS-matched controls across cohorts. All ICD-10 or
ICD-9 codes that were present in the medical claims for each
patient were extracted and the corresponding disease description
(see details in “Data preparation and feature selection”) was
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Fig. 1 Study workflow. CID Combined immunodeficiency, CVID Common variable immunodeficiency.

added in the list of clinical history and considered as co-
morbidity. For each patient and control across all cohorts, all
ICD-10 and ICD-9 codes were available in the Optum® medical
claims data and were automatically extracted and considered in
the clinical history, by only excluding data confounders when
present, as described in the subsection “Data preparation and
feature selection”. Before model training, all the ICD-9 codes
present in our data were converted to ICD-10 codes using the
updated general equivalence mappings (2018 GEMS) from the

https://www.cms.gov/ website (Supplementary Data 1). The
presence or absence of all ICD codes identified were used as
categorical features for training the machine learning models,
without considering the ICD temporal sequence per patient. Our
methodology for extracting clinical history in terms of ICD codes
prior to machine learning, and ICD code to phenotype
conversion, has been previously described?!.

The study was performed with the approval of Pfizer Medical
Affairs and the Medical Algorithm/ AI Review committee. Data
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Table 1 Baseline demographics and clinical characteristics of the 4 cohorts included in the study.
Characteristics Cohort 1 Cohort 2 Cohort 3 Cohort 4
Pl Cases Controls Pl Cases Controls Pl Cases Controls Pl Cases Controls
(n=1797) (n=1797) (n=1797) (n=1797) (n=2312) (n=2312) (n=19,924) (n=19,924)
Age and Gender
Age (years) 4626 46 £25 46 +£26 48 £ 24 44 £ 26 4524 47 24 46 £23
18-30 (%) 16.39 16.32 16.98 17.02 17.12 17.14 13.89 14.01
31-50 (%) 24.55 24.61 23.96 23.91 23.65 23.69 28.98 29.79
51-70 (%) 35.85 35.79 36.05 35.85 34.81 34.79 35.76 36.03
71-max age (%) 23.21 23.28 23.01 23.22 24.43 24.38 21.37 2017
Male (%) 46.9 46.3 46.6 454 44.3 41.7 38.7 37.8
Female (%) 531 53.7 534 54.6 55.7 58.3 613 62.2
Ethnicity (%)
Caucasian 82.4 85.1 83.4 88.1 81.7 84.2 85.3 86.8
African American 8.7 7.3 8.4 6.7 79 7.2 5.8 58
Asian 1.4 1.5 13 0.5 1.7 1.6 1.2 11
Other/Unknown 7.5 6.1 7 4.7 8.7 7.1 7.8 6.3
Patient History
Diagnosis History 10 (8-13) 12 (10-14) 10 (8-13) 12 (9-14) 9 (6-12) 11 (8-14) 9 (6-12) 11 (8-14)
duration (years)?
Number of visits? 201 (103-399) 145 (48-415) 206 (105-399) 182 (45-397) 108 (36-250) 73 (17-243.5) 87 (30-206) 64 (16-195)
3Median (25th-75th percentile).
Pl primary immunodeficiency.

extraction, pre-processing, model training and testing of the
Optum data were performed in accordance with the Declaration
of Helsinki. The Optum data have been acquired according to the
Health Insurance Portability and Accountability Act (HIPAA)
Privacy Rule and all data were fully de-identified before licensed
by Pfizer.

Cohort generation. Figure 1 shows the study workflow, for each
cohort. Cohort 1 was initially examined (discovery cohort). As we
progressively moved from Cohort 2 up to 4, we aimed to evaluate
model diagnostic performance by gradually increasing data het-
erogeneity and diversifying PI and PS-matched control settings
within each cohort increment.

Since pneumonia is the most frequent severe infection in CID!-7,
we first aimed to investigate whether we can identify CID patients
with pneumonia against PS-matched controls with no diagnosis of
PI and pneumonia (Cohort 1). To define pneumonia in PI groups
and controls, all ICD-10/—9 codes referring to pneumonia
subtypes were used from the “Influenza and pneumonia” category
in icd10data J09-J18. We then replicated the model training by
examining if we can identify CID patients with pneumonia against
PS-matched random controls with no diagnosis of PI with and
without pneumonia (Cohort 2). Model training was subsequently
reproduced to detect CID patients against PS-matched random
controls, both with and without pneumonia (Cohort 3). Finally, to
increase further data heterogeneity and re-investigate whether
models can accurately identify PI in diverse patient settings, we
aimed to detect CID and CVID patients against PS-matched
random controls, both with and without pneumonia (Cohort 4).
Across all cohorts, PS-matched controls had no diagnosis of any
type of CID, CVID and PL

Data preparation and feature selection. For both PI patients and
controls in Cohorts 1-4, patient demographics and ICD-10 / ICD-
9 codes were extracted from the Optum® patient and diagnosis
tables (using Dataiku; https://www.dataiku.com/) and used as
input features for model training. To create model features, ICD
codes were converted to corresponding disease descriptions (e.g.,
ICD-10 code for lymphocytopenia is D72.810, which was con-
verted to “lymphocytopenia”). To perform this step, hierarchical

ICD code mapping was implemented using the “regexp_replace”
SQL function, by sequentially combining information from the
Sub Chapter, Major and Short Description levels. These levels
correspond to the diagnosis category, name and description
respectively, as obtained from the most updated ICD Data R
package (http://cran.nexr.com/web/packages/icd/icd.pdf)?!. In
our implementation, we used the 2020 ICD-10-Clinical Mod-
ification release to account for new ICD-10 codes.

As in clinical practice a PI patient may be assigned multiple ICD
codes corresponding to general or more specific characterization of
P, all other immunodeficiency-related features identified in the
clinical history were removed as confounding variables, to avoid
biasing model training (Supplementary Table 2). These confound-
ing variables co-occurred with either D81.89 or D81.9 and were
(with ICD-10 code in parentheses): “other specified immunodefi-
ciencies” (D84.8), “nonfamilial hypogammaglobulinemia” (D80.1),
“immunodeficiency with predominantly antibody defects” (D80.9),
“other immunodeficiencies” (D84.89), “immunodeficiency unspe-
cified” (D84.9), “selective deficiency of immunoglobulin G [IgG]
subclasses” (D80.3), “selective deficiency of immunoglobulin
A [IgA]” (D80.2), “selective deficiency of immunoglobulin M
[IgM]” (D80.4), “immunodeficiency with predominantly antibody
defects unspecified” (D80.9), “antibody deficiency with near-
normal immunoglobulins or with hyperimmunoglobulinemia”
(D80.6), and “other immunodeficiencies with predominantly
antibody defects” (D80.8).

Pre-processing. All pre-processing and machine learning model
development were developed in Python 3.7 using pandas, numpy,
scipy, matplotlib, GridSearchCV, scikit-learn (for classic machine
learning baseline models), and PyTorch widedeep (for deep
learning models). Following data preparation, the number of
features (ICD codes) identified were Cohort 1: 2,188; Cohort 2:
2,154; Cohort 3: 3,522; and Cohort 4: 10,445 features. For each
patient within Cohort 1-4, one-hot encoded categorical values
were generated based on whether a patient was positive or
negative across each diagnosis ICD code (defined as 1 and 0,
respectively). Therefore, the feature dimension “d” for each
machine learning model in Cohorts 1-4 was: 2,188 x 2; 2,154 x 2;
3,522 x 2; and 10,445 X 2, respectively. For logistic regression
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(LR) and support vector machine (SVM), the one-hot encoded
categorical values across each ICD code were used as inputs. In
deep learning models, the one-hot encoded values were converted
into binary value embeddings across each ICD code, using the
“tab_preprocessor.fit_transform” (PyTorch widedeep library)
function.

Machine learning models. We developed 2 deep learning models
(both with wide and deep components):'>20 a multi-layer per-
ceptron (MLP)-model based with dense layers and an MLP model
with dense layers in which we incorporated a series of ResNet
blocks?2, named TabMLPNet and TabResNet, respectively (Sup-
plementary Fig. 1). The wide and deep components were jointly
trained!®. The wide (linear model) component was used to learn
sparse features via cross-product transformations, whilst the deep
component (deep neural network) was focusing to learn dense
embeddings in the low-dimensional space!®?0. The pyramidal
architecture of the TabMLPNet model involved 6-layers in total: 3
dense layers of 64 neurons, followed by 3 dense layers of 32 neu-
rons. In our experiments, we observed that model accuracy
decreased by 3-5%, as 1-4 more layers were added in the 6-layer
TabMLPNet structure. The incorporation of ResNet blocks (with
skip connections being able to skip a maximum of two layers, as
shown in Supplementary Fig. 1) aims to leverage the flexibility of
additional residual functions to be learned inside a deep learning
model, as inspired by He et al. 22 He et al. showed that by intro-
ducing residual learning blocks, the degradation problem can be
addressed. The degradation problem is defined as follows: as the
network depth increases, accuracy gets saturated and then degrades
rapidly?2. The residual learning (ResNet) blocks are additional
layers that are capable to push the residual component to zero
when this is optimal during training (and perform “identity
mapping”)?2. This gives flexibility in the model, to either exploit or
almost eliminate some layer operations during training. In our
analysis, we explored whether through deepening the network
structure via using a series of ResNet blocks, would eliminate the
degradation-type of problem observed and improve the diagnostic
performance of deeper (>6-layer) models. Following experi-
mentation, the architecture of the TabResNet model was consisted
of 5 dense ResNet blocks followed by an MLP structure with 4
dense layers of 100, 100, 50 and 50 neurons, respectively. In both
models, each dense layer was followed by a ReLU activation. The
input dimension (size) for each deep learning model was d x b,
where b is the batch size. Both models were trained using a batch
size of 128 across 200 epochs, with a dropout of 0.1 per dense layer.
Joint training of the wide and deep components was performed
using the Adam optimizer by empirically selecting a fixed learning
rate of 0.001 (default value for Adam).

We also developed 2 baseline models: LR and SVM-based. To
optimize and fine-tune both models, the GridSearchCV library was
used to automatically identify their most optimum parameters. For
LR, the multi-parametric space on which grid search performed
was: regularization penalty (L1, L2), inverse of regularization
strength (0.01, 0.1, 1, 10, 100) and class weight (balanced, none).
For SVM, a radial basis function kernel was used for which the grid
search was: inverse of regularization strength (0.01, 0.1, 1, 10, 100)
on L22 regularization and kernel coefficient (0.001, 0.01, 0.1, 1). A
cross-validation of 10 and a train-to-test split ratio of 80:20 stratified
based on deriving equal numbers of PI and controls in the train and
test sets within each cohort were used for all deep and machine
(baseline) learning models.

Mapping ICD codes into phenotypes. Following machine
learning model training and testing, we identified ICD codes that
were associated with PI diagnoses in Cohorts 1-4. In the context

of interpreting the clinical meaning of these features, we con-
verted features into clinical phenotypes (diseases), by using the
phenome-wide associations studies (PheWAS) Phecode v.1.2
(dedicated ICD to phenotype grouping system)23.

Based on the PheWAS Phecode v.1.2, one or more ICD codes
were classified into a distinct phenotype, for each patient. To
perform this conversion precisely, the “regexp_replace” SQL
function was used to combine information from the Short and
Long Description, Major and Sub Chapter levels (see ‘Long -
Short_Major_SubChap_ICD_Des.csv’ file in the Supplementary
Data 2), as obtained from the most updated ICD Data R package
(http://cran.nexr.com/web/packages/icd/icd.pdf?!. The phenotype
mapping file that we created and used is given as Supplementary
Data 3. In Supplementary Data 4, we give access to the code
developed for main data transformations, pre-processing and
machine learning model fitting.

Statistical analysis. Statistical analyses were performed in R (R
Foundation for statistical computing, Vienna, Austria). PS-
matching was performed using the Matchlt library (the “glm”
distance measure was used). All machine learning models were
evaluated by calculating the area under the receiver-operating-
characteristic (ROC) curve (AUC). We report the sensitivity,
specificity, positive predictive value, negative predictive value,
overall accuracy, and ROC AUC (Table 2).

Odds ratios (ORs) and significance levels for features and
phenotypes were calculated using the glm library. Statistical
significance was defined as a two-sided P value < 0.05. Temporal
analysis of the top clinical phenotypes was performed using Box
and Whisker plots. Tableau (Tableau 2021.4, Seattle, USA) was
used for temporal analysis visualizations.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results

Participants. The study involved 3 parts as follows: (1) Deep and
machine learning models were trained and tested for the diag-
nosis of CID patients with pneumonia in a large medical claims
dataset (Optum; discovery cohort). (2) All models were validated
using 2 more CID cohorts from the same dataset, in which the
pneumonia filter was removed from the controls and CID cases/
controls, respectively. (3) Models were further validated in the
largest and most diversified cohort generated, for the diagnosis of
CID and CVID patients. All relevant diagnostic codes are listed in
Supplementary Table 2.

Patient demographics are shown in Table 1, which reflects the
effectiveness of our PS matching process. Age was similar across
cohorts and between PI cases and controls (mean age ranging
from 44-48 years). Gender, ethnicity, and patient history were
also similar between PI cases and controls. Most patients were
female (53.1-62.2%) and Caucasian (82.4-88.1%). The number
of healthcare visits was consistently higher in PI cases against
controls.

Machine learning model performance. Initially, we investigated
the diagnostic performance of our deep learning models
(TabMLPNet, TabResNet) against baseline models (LR, SVM)
developed, in identifying PI against PS-matched controls. All
model ROC curves are illustrated in Fig. 2.

The TabMLPNet model outperformed all other models across
all 4 cohorts, with ROC AUCs ranging from 0.88 to 0.94
(Table 2), showing the highest sensitivity, specificity, positive and
negative predictive value, and overall accuracy across all cohorts,
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Table 2 Diagnostic performance in the testing set of all
machine learning models, across all cohorts analyzed
Patient Cohorts
Metric Cohort 1 Cohort  Cohort  Cohort
2 3 4
Sensitivity =~ TabMLPNet 0.88 0.87 0.82 0.87
TabResNet 0.86 0.85 0.80 0.86
LR 0.86 0.84 0.79 0.85
SVM 0.86 0.85 0.79 0.80
Specificity =~ TabMLPNet 0.85 0.84 0.82 0.82
TabResNet 0.84 0.83 0.81 0.81
LR 0.82 0.82 0.80 0.75
SVM 0.82 0.82 0.80 0.79
PPV TabMLPNet 0.87 0.87 0.80 0.87
TabResNet 0.86 0.86 0.79 0.86
LR 0.85 0.84 0.79 0.83
SVM 0.85 0.82 0.79 0.80
NPV TabMLPNet 0.87 0.91 0.81 0.83
TabResNet 0.85 0.86 0.79 0.81
LR 0.84 0.85 0.76 0.78
SVM 0.83 0.85 0.78 0.79
Accuracy TabMLPNet 0.87 0.87 0.80 0.85
TabResNet 0.86 0.86 0.79 0.84
LR 0.85 0.85 0.77 0.80
SVM 0.85 0.84 0.74 0.80
ROC AUC TabMLPNet 0.94 0.93 0.88* 0.91*
TabResNet 0.93 0.92 0.87* 0.90*
LR 0.92 0.91 0.85 0.88
SVM 0.92 0.91 0.84 0.87
The TabMLPNet model showed the highest diagnostic performance across all cohorts and is
indicated with bold letters. The ROC AUC for TabMLPNet and TabResNet were significantly
higher compared to LR and SVM in the largest Cohorts 3 and 4. These statistically significant
differences are indicated with *. P values for TabMLPNet against LR and SVM were 0.01 and
0.02 and for TabResNet against LR and SVM were 0.02 and 0.03, respectively. No other
significant differences were observed between ROC curves.

ranging from 0.82 to 0.88, 0.82 to 0.85, 0.80 to 0.87, 0.81 to 0.91
and 0.80 to 0.87, respectively.

All other models showed consistently high diagnostic perfor-
mance in identifying PI against PS-matched controls (ROC AUC
range = 0.84-0.93; Table 2). The ROC AUC for TabMLPNet and
TabResNet were significantly higher compared to LR and SVM in
the largest Cohorts 3 and 4 (Table 2). No other significant
differences were observed between ROC curves.

Assessment of TabMLPNet wide and deep components. Using
TabMLPNet, we performed further experiments to examine the
performance of the TabMLPNet model with both wide and deep
components, against the TabMLPNet model with deep-only and
wide-only components.

The TabMLPNet model with wide and deep components
showed consistently the highest ROC AUC in identifying PI
against PS-matched controls across all 4 cohorts, versus the
TabMLPNet model with wide only and deep only components
(Supplementary Table 3 and Supplementary Fig. 3). The ROC
AUC for TabMLPNet wide and deep were significantly higher
compared to TabMLPNet wide only across all cohorts. The ROC
AUC for TabMLPNet wide and deep were significantly higher
compared to TabMLPNet deep only, in Cohorts 1 and 3.

Clinical phenotype importance. The second aim of the study was
to identify the most important CID- and CVID-associated clinical
phenotypes per cohort. Diagnostic codes were converted into
clinical phenotypes and their ORs were calculated.

In Cohorts 1-4, the OR of the top clinical phenotypes ranged
from 14.91-1.85, 14.24-1.83, 23.97-1.95, and 11.12-1.66,

respectively (Figs. 3 and 4). For Cohorts 1-3, the top twenty
phenotypes are presented (Figs. 3a, b and 4a). For the largest
Cohort 4, the top 35 phenotypes are shown, reflecting a greater
number of phenotypes reaching high statistical significance
(Fig. 4b). A full list of all phenotype ORs, prevalence and
statistical significance across cohorts is given in the Supplemen-
tary Data 5.

Several phenotypes were revealed in Cohorts 1-4 (Figs. 3, 4). In
Cohort 1, genetic carrier/susceptibility to disease, pneumococcal
pneumonia, short stature, valvular heart disease and alveolar/
parietoalveolar pneumonopathy were the 5 strongest phenotypes
(Fig. 3a). In Cohort 2, autoimmune disease not-elsewhere-classified
(NEC), valvular heart disease, chromosomal anomalies, myopathy
and non-Hodgkin lymphoma were the 5 top phenotypes (Fig. 3b).
In Cohort 3, deficiencies of circulating enzymes, autoimmune
disease NEC, bone marrow/stem cell transplant, genetic carrier/
susceptibility to disease and disorders of purine/pyrimidine
metabolism were the top phenotypes (Fig. 4a). In the largest
Cohort 4, chromosomal anomalies, disorders of purine/pyrimidine
metabolism, chronic lymphocytic leukemia, deficiencies of circu-
lating enzymes and bronchiectasis were the strongest phenotypes
(Fig. 4b).

Across all cohorts, various other genetic, respiratory, auto-
immune, musculoskeletal, blood and blood cancer diseases were
revealed (Figs. 3, 4; Supplementary Notes). The ORs of the
underlying diagnostic codes across all cohorts were also
computed and are presented in the Supplementary Figs. 4-7.

Temporal distributions. We derived the temporal distributions
of the 25 most important clinical phenotypes, by tracking the first
date of each phenotype diagnosis with reference to PI diagnosis
per patient (Figs. 5-6, Supplementary Notes).

Most phenotypes preceded PI diagnoses across all cohorts. The
number of phenotypes that had a median of first diagnosis greater
than 3 months before PI diagnosis in Cohorts 1-4 were: 16, 21, 15
and 15, respectively. Their median value range in months before
PI diagnosis were: 34.1-3.4, 36.5-4.0, 32.4-3.1, and 29.3-3.2,
respectively. At a threshold of 6 months before PI diagnosis, the
phenotype numbers were 12, 17, 9, and 9 in Cohorts 1-4,
respectively.

Time frame of diagnoses prior to pneumonia. In Cohort 1, 20-
year time frames of ICD codes and clinical phenotypes in CID
cases against controls were computed, prior to (-10 years) and
after (4+10 years) the first diagnosis of pneumonia, used as a
common feature between cases and controls (Supplementary
Figs. 8, 9). The 20-year time frames depict the cumulative pro-
portion of patients with each phenotype, which equals the sum of
the proportions from each of the years preceding or following
pneumonia diagnosis.

It is obvious that most ICD codes and phenotypes started being
diagnosed before the first pneumonia diagnosis in CID cases
against controls. All pneumonia subtypes identified in our study
(as derived from our largest Cohort 4) are provided in the
Supplementary Data 6.

Combinations. Further, we estimated ORs of combined pheno-
types associated with PI (Table 3, Supplementary Tables 4-5).
Various heterogeneous combinations were revealed, mostly con-
sisting of antecedent phenotypes with a median of first diagnosis
at least 6 months before PI diagnosis (Table 3, Supplementary
Tables 4-5, Figs. 5, 6). An illustration of our entire methodology is
shown in Fig. 7.

In Cohorts 1-4, the top combinations consisted of antecedent
phenotypes with a median of first diagnosis at least 6 months
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Fig. 2 Receiver operating characteristic curves for all machine learning models developed and evaluated in the four cohorts. a Pl patients with

pneumonia against pneumonia patients without Pl (N =1594; 797 Pl cases and 797 controls). b Pl patients with pneumonia against randomly selected
patients without Pl, with and without pneumonia (N =1594; 797 Pl cases and 797 controls). ¢ Pl patients with and without pneumonia against randomly
selected patients without PI, with and without pneumonia (N = 4624; 2312 Pl cases and 2,312 controls). d All P| patients (combined and common variable
immunodeficiency patients) with and without pneumonia against randomly selected patients without PI, with and without pneumonia (N =39,848; 19,924
Pl cases and 19,924 controls). Across all cohorts, Pl cases and controls were 1:1 matched for age, gender, race, ethnicity, duration of medical history, and

the number of healthcare visits. Pl: Primary immunodeficiency.

before PI diagnosis were: disorders involving the IM + decreased
white blood cell (WBC) count + asthma (OR =6.53, 95% CI:
2.22-8.75); non-Hodgkin lymphoma + pneumonia + fever of
unknown origin (OR = 6.96, 95% CI: 3.76-10.20); bone marrow/
stem cell transplant + disorders involving the IM + asthma
(OR=16.83, 95% CI: 4.22-9.44); psoriatic arthropathy + auto-
immune disease NEC + asthma (OR = 6.25, 95% CI: 4.73-7.77),
respectively.

Discussion

We have performed a large-scale analysis of medical claims
data derived from a nationally representative EHR database
(global US, covering all States), by devising a deep learning-
based methodology. Our method showed consistently high
diagnostic performance in identifying CID/CVID across 4
cohorts with clinically diverse patient profiles. Furthermore, we
identified the top antecedent phenotypes associated with these
PI. We also revealed the top phenotype combinations for each
cohort and showed that they consist mostly of antecedent
heterogeneous diseases.

To the best of our knowledge, we were the first to interrogate
large medical claims data for the identification of patients at risk
for CID/CVID and of antecedent phenotype combinations
through deep learning and OR calculations. Our large-scale deep
learning method was performed on US representative medical
claims, showed high diagnostic performance, presented an
extensive statistical / temporal analysis of antecedent phenotypes
and phenotype combinations that were associated with CID/
CVID, and is therefore transferable to external clinical settings.
Our model can also be potentially applied to the identification of
other PI disorders. Moreover, none of the previous studies
focused on CID?4-27. The most recent work was a single-center
observational study by Mayampurath et al who analyzed 6,422
patients, of whom only 247 had been diagnosed with PI*4. By
modeling co-morbidities (clinical history), their best-performing
Random Forest model reached a moderate ROC AUC of 0.65
(95% CI: 0.62-0.68) in identifying PI, which was improved to
0.72 (95% CI: 0.69-0.75) when laboratory results and radiology
procedures were considered. The moderate performance in this
study can mainly be due to the small PI cohort used, which led
to extracting a limited number of phenotypes that were
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Fig. 3 Odds ratio (OR, blue) and prevalence (%, red) for the top clinical phenotypes associated with PI, identified in Cohorts 1-2. a Cohort 1 (N =1594);
(b) Cohort 2 (N=1594). All clinical phenotypes significantly associated with the diagnosis of Pl that had an OR >1.5 were included in the illustrations.
Univariate logistic regression was used to calculate the odds ratios. PD: Physiological development, UNS: Unspecified, NEC: Not elsewhere classified, F:

Family, P: Personal, CC: Certain conditions, LH: Lymphoid hematopoietic, C1-C4: Declare congruent phenotypes in Cohorts 1-4.

evaluated against PI. Although this study did not explore deep
learning methodologies, their classic machine learning models
(Random Forest and Logistic Regression) on clinical history,
reached considerably lower performance (ROC AUCs: 0.62-
0.65) compared to our baseline model results (LR and SVM
with ROC AUCs ranging from: 0.84-0.92; Table 2). Rider et al
developed a Bayesian network consisted of known risk factors
and showed 87% and 91% sensitivity and specificity in dis-
criminating PI against controls, using 3,460 pediatric patients
(~50% with PI)?°. Abyazi et al, identified different proteomic
profiles in patients with noninfectious complications against
uncomplicated CVID, implementing unsupervised learning in

72 participants2®. Emmaneel et al., developed a computational
pipeline to discriminate CVID from other PI and healthy
controls, using flow cytometry data from 179 participants®’.
Unlike our work, the last 2 studies focused on evaluating dif-
ferences in the molecular profiles of PI patients and did not aim
to improve PI identification in the frontline of clinical practice.
By improving PI identification via population-based screening,
it is possible to substantially reduce morbidity, mortality,
healthcare visits and costs, through timely patient access to
available definitive and supportive treatments for both CID
and CVID. Our method reached high diagnostic performance
using large medical claims data and revealed phenotypes and
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Fig. 4 Odds ratio (OR, blue) and prevalence (%, red) for the top clinical phenotypes associated with PI, identified in Cohorts 3-4. a Cohort 3

(N =4624); (b) Cohort 4 (N=39,848). All clinical phenotypes significantly associated with the diagnosis of Pl that had an OR > 1.5 were included in the
illustrations. Univariate logistic regression was used to calculate the odds ratios. PD: Physiological development, UNS: Unspecified, NEC: Not elsewhere
classified, F: Family, P: Personal, CC: Certain conditions, LH: Lymphoid hematopoietic, C1-C4: Declare congruent phenotypes in Cohorts 1-4.

combinations that can possibly have merit for the systematic ~PIL»1013, In particular, there were distinctive combinations of

identification of CID and CVID.

antecedent (>6 months) phenotypes such as respiratory infections

Our findings are clinically important because our predictive or conditions (asthma, pneumonia, bronchiectasis), genetic
scheme detected disease combinations, which are the first-time tobe  anomalies (genetic carrier/susceptibility to disease, lack of normal
reported for the possible identification of patients at risk for PD, chromosomal anomalies), cardiac defects, autoimmune diseases
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Fig. 5 Temporal analysis of the top 25 clinical phenotypes identified in Cohorts 1-2 (by odds ratio). Cohort 1 (N =1,594); Cohort 2 (N=1,594).
Temporal analysis was estimated in terms of Box and Whisker plots. The red line within Box and Whisker plots represents the median. The pink
distribution indicates the lower interquartile value to the median. The dark red distribution indicates the upper interquartile value to the median. The blue
line illustrates the median of the pneumonia diagnosis when present in the data. The Box and Whisker plots are calculated in reference to the Pl diagnosis
showed as black solid line in each Cohort illustration. C1-C4: Declare congruent phenotypes in Cohorts 1-4. The top 25 clinical phenotypes significantly

associated with the diagnosis of Pl were included in the illustrations.

(psoriatic arthropathy, autoimmune disease NEC, celiac disease,
disorders involving the immune mechanism), blood disorders and
malignancies (non-Hodgkin lymphoma), associated with both CID
and CVID (Table 3, Supplementary Tables 4-5, Figs. 5, 6). Since
Cohort 4 involves both CID and CVID, the phenotype combina-
tions revealed can possibly increase early suspicion of potential PI
before further categorization to CID or CVID. Validating further
our proposed method on external medical claims, these respiratory
and non-respiratory combinations can potentially help to expand
the existing clinical warning signs and to systematize the identifi-
cation of patients at risk for CID/CVID.

Most individual respiratory, genetic, autoimmune, blood and
malignancy phenotypes revealed across cohorts are reported in
the literature and recent PI surveys (Figs. 3, 4)1->10-14 Numer-
ous congruent phenotypes were identified across Cohorts 1-4. Of
note, there were also unknown individual phenotypes emerged,

such as asthma (in Cohorts 1-4), coagulation defects complicating
pregnancy or postpartum (Cohorts 3-4) and cancer of lymphoid
histiocytic tissue (Cohort 4)%13, Among the most severe early
manifestations, chronic lymphocytic leukemia was the third most
important antecedent phenotype in Cohort 4 (Figs. 4 and 6).
Despite hematologic malignancies are known to be associated
with PI, there is low awareness of chronic lymphocytic leukemia
in PI patients’. Moreover, hypothyroidism (Cohorts 1-2),
autoimmune diseases NEC (Cohorts 2-4), systemic lupus ery-
thematosus (Cohort 3), psoriatic arthropathy (Cohorts 3-4),
rheumatoid arthritis (Cohort 2) and celiac disease (Cohorts 3-4)
were the top antecedent autoimmune conditions associated with
CID/CVID. Our findings can therefore potentially raise aware-
ness and support treatment optimization strategies for co-treating
early both the underlying disorder (CID/CVID) and each of these
respiratory, oncological and endocrinological diseases.

10 COMMUNICATIONS MEDICINE| (2023)3:189 | https://doi.org/10.1038/s43856-023-00412-8 | www.nature.com/commsmed


www.nature.com/commsmed

COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-023-00412-8

ARTICLE

Other deficiencies of circulating enzymes (C3, C4)
Autoimmune disease NEC (C2-C4)

Bone marrow or stem cell transplant (C1-C4)

Genetic carrier/ susceptibility to disease (C1, C3, C4)
Other disorders of purine and pyrimidine metabolism (C3, C4)
Respiratory conditions of fetus and newborn

Psoriatic arthropathy (C3, C4)

Chromosomal anomalies and genetic disorders
Chromosomal anomalies (C2, C3, C4)

Spinal cord injury without evidence of spinal bone injury
Disorders involving the immune mechanism (C1-C4)
Celiac disease (C3, C4)

Other and UNS congenital anomalies (C3, C4)

Coagulation defects complicating pregnancy/ postpartum (C3, C4)
Paraproteinemia (C3, C4)

Decreased white blood cell count (C1-C4)

Cardiac congenital anomalies (C3, C4)

Encounter for long term current use of antibiotics (C2, C3)
Systemic lupus erythematosus

Perforation of tympanic membrane (C3, C4)

Diseases of white blood cells (C3, C4)

Other specified congenital anomalies of nervous system
Splenomegaly

Blindness and low vision

Encounter for long term current use of medications

-140

Cohort 3

Chromosomal anomalies (C2, C3, C4)

Other disorders of purine and pyrimidine metabolism (C3, C4)
Chronic lymphocytic leukemia

Other deficiencies of circulating enzymes (C3, C4)
Bronchiectasis (C1, C4)

Diseases of thymus gland

Cleft palate

Primary thrombocytopenia

Disorders involving the immune mechanism (C1-C4)
Cardiac shunt heart septal defect

Bone marrow or stem cell transplant (C1-C4)
Myasthenia gravis (C1, C4)

Diseases of white blood cells (C3, C4)
Hypoparathyroidism

Autoimmune disease NEC (C2, C3, C4)
Eosinophilia

Sarcoidosis

Glucocorticoid deficiency

Cardiac and circulatory congenital anomalies
Unspecified diffuse connective tissue disease
Lack of normal PD UNS (C1, C4)

-120 -100 -80 -60 60 80100

Non-Hodgkin lymphoma (C2, C4) b
Celiac disease (C3, C4)
Genetic carrier/ susceptibility to disease (C1, C3,C4)
Psoriatic arthropathy (C3, C4)

Cohort 4 40

-120 -100 -80 -60 -40 -20 O 20 40 60 80 100
Months #

Fig. 6 Temporal analysis of the top 25 clinical phenotypes identified in Cohorts 3-4 (by odds ratio). Cohort 3 (N =4,624); Cohort 4 (N =39,848).
Temporal analysis was estimated in terms of Box and Whisker plots. The red line within Box and Whisker plots represents the median. The pink

distribution indicates the lower interquartile value to the median. The dark red distribution indicates the upper interquartile value to the median. The blue
line illustrates the median of the pneumonia diagnosis when present in the data. The Box and Whisker plots are calculated in reference to the Pl diagnosis
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associated with the diagnosis of Pl were included in the illustrations.

As described, among the most important phenotypes on OR
analysis, several antecedent CID and CVID-associated phenotypes
corresponding to autoimmune diseases have been identified
across cohorts. We refer to these phenotypes together with the
cohort(s) in which each phenotype was identified (from Figs. 3, 4)
and median values in months prior to the first PI diagnosis (from
Figs. 5, 6): hypothyroidism (in Cohorts 1 and 2; median values = -
32.7 and -34.2 months respectively prior to PI diagnosis), disorders
Involving the immune mechanism (Cohorts 1-4; median
values = —13.6, —10.8, —9.4 and —8.9 months respectively),
autoimmune disease not elsewhere classified (Cohorts 2-4; median
values = —36.5, —28.8, and —23.7 months respectively), rheuma-
toid arthritis (Cohort 2; median value = —16.3 months), psoriatic
arthropathy (Cohorts 3 and 4; median values=—32.4 and
—10.8 months respectively), celiac disease (Cohorts 3 and 4;
median values = —23.9 and —16.9 months respectively), systemic
lupus erythematosus (Cohort 3; median value = —25.9 months)
and sarcoidosis (Cohort 4; median value = —15.8 months). These

findings clearly show that the diagnoses of autoimmune diseases
have consistently preceded PI diagnoses. As also mentioned above,
antecedent CID/ CVID-associated phenotypes corresponding to
malignancies were also observed, such as non-Hodgkin lymphoma
(Cohorts 2 and 4; median values= —21.5 and —21.7 months,
respectively) and chronic lymphocytic leukemia (Cohort 4; median
value = — 29.3 months). In addition, bone marrow/ stem cell
transplant (Cohorts 1-4; median values = -24.6, —27.3, —15.5 and
—8.2 months, respectively) and chemotherapy (Cohorts 1 and 2;
median values=—16.9 and —13.8 months respectively) were
among the most important antecedent phenotypes. It is known that
bone marrow/ stem cell transplantation following high-dose che-
motherapy is increasingly used for the treatment of autoimmune
disease and chronic lymphocytic leukemia patients, not sufficiently
responding to conventional treatments??-31. Chemotherapy-based
therapies are the standard of care treatments for non-Hodgkin
lymphoma and chronic lymphocytic leukemia3!. Demonstrating
that autoimmune diseases and malignancies have consistently
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Phenotype Combination

Table 3 Top 5 combinations of clinical phenotypes and their association with Pl (Cohorts 1-4).

Cohort 1
Pneumococcal pneumonia; Disorders involving the IM;** Asthma.**

Disorders involving the IM;** Decreased WBC count;** Asthma.**
Cohort 2

Non-Hodgkin lymphoma;** Pneumonia;** Fever of unknown origin.**
Thrombocytopenia;* Non-Hodgkin lymphoma;** Pneumonia.**

Myeloproliferative disease;** Asthma;** Fever of unknown origin.**
Cohort 3

Genetic carrier /susceptibility to disease;* Asthma.**

metabolism.

Decreased WBC count;* Cardiac congenital anomalies.*

Cohort 4

Disorders involving the IM;* Non-Hodgkin lymphoma;** Asthma.**
Bone marrow /stem cell transplant;** Disorders involving the IM.*

Psoriatic arthropathy;** Autoimmune disease NEC;** Asthma.**

Other alveolar and parietoalveolar pneumonopathy; Bacterial pneumonia; Asthma.**
Valvular heart disease/ heart chambers;** ENC for LT use of MED;* Asthma.**
Decreased WBC count;** Bacterial pneumonia; ENC for long term use of MED;* Asthma.**

Pneumococcal pneumonia; Non-Hodgkin lymphoma;** Fever of unknown origin.**

Asthma;** ENC for long term use of antibiotics; Fever of unknown origin.**

Bone marrow /stem cell transplant;** Disorders involving the IM;** Asthma.**

Pneumonia;** Bone marrow /stem cell transplant;** Disorders involving the IM.**

Genetic carrier /susceptibility to disease;* Other disorders of purine and pyrimidine

Chromosomal anomalies;* Cardiac congenital anomalies; Lack of normal PD UNS.

Bone marrow /stem cell transplant;** Bronchiectasis;* Non-Hodgkin lymphoma.**

Odds Ratio (95% P values Number of phenotypes
(¢))

5.98 (4.67-7.29) 0.0008 3/2/2
6.13 (4.39-7.87) 0.0005 3/1/1
6.46 (5.68-7.24) 0.0004 3/3/2
6.97 (4.89-9.05) 0.0001 4/3/2
6.53 (2.22-8.75) 0.0003 3/3/3
6.96 (3.76-10.20) 0.0001 3/3/3
6.75 (3.49-10.01) 0.0001 3/3/2
5.88 (3.74-8.01) 0.0008 3/2/2
6.33 (3.27-9.39) 0.0002 3/2/2
5.89 (3.23-8.54) 0.0008 3/3/3
6.38 (4.67-8.29) 0.0003 3/3/3
6.35 (3.87-8.84) 0.0003 3/3/3
6.78 (5.02-8.54) 0.0001 2/2/1
5.81 (4.72-6.89) 0.0008 2/1/0
6.83 (4.22-9.44) 0.0001 2/2/0
6.09 (5.75-6.43) 0.0005 3/1/0
6.07 (5.71-6.44) 0.0005 3/3/2
5.86 (5.31-6.41) 0.0008 2/2/1
5.98 (3.75-8.21) 0.0008 3/3/2
6.25 (4.73-7.77) 0.0002 3/3/3

of valve diseases and undefined cardiomyopathy.

The table presents combinations which had at least one phenotype in addition to PI. Phenotypes were selected hierarchically (based on ORs; see Figs. 3-6), introducing at least one new phenotype
combination in each table row (per cohort) and by including the highest number of possible combinations with significant ORs>3.00. The X/ Y/ Z numbering indicates the total number of phenotypes in
each combination and how many of these had a median of first diagnosis greater than 3 (indicated with *) and 6 months (**) before PI diagnosis, respectively. PD Physiological development, UNS

Unspecified, ENC Encounter, LT Long-term, MED Medications, WBC White blood cell, IM Immune mechanism, NEC Not elsewhere classified. Note: valvular heart disease/ heart chambers involve all types

preceded PI diagnoses, can explain the prevalence of bone marrow/
stem cell transplant and chemotherapy phenotypes in our analysis.
It is known that autoimmune diseases, blood malignancies, bone
marrow/ stem cell transplant and/ or chemotherapy can induce
secondary immunodeficiency (SI, through mainly B-cell dysfunc-
tion in some patients)>*32. Although there may be challenges in
differentiating PI from SI (especially when autoimmune disease or
blood malignancy treatment precedes diagnostic testing for PI),
current evidence shows that some antibody deficiencies initially
attributed to SI may instead be due to an underlying PI32. These
findings indicate the need for long-term administration of Ig
replacement therapy in these patients>2. Independently of PI and SI
crossovers in patients with autoimmune disease/ blood malignancy,
our method can be possibly useful for improving the identification
of patients at risk for PI, before further characterization, mon-
itoring and treatment of immunodeficiency by expert immunolo-
gists. Therefore, our large-scale analysis can be potentially
applicable to systematize CID/ CVID identification and improve
patient outcomes.

Table 1 shows the effectiveness of our PS matching process
between PI cases and controls. Age, gender, ethnicity, and patient
history were similar between cases and controls. Consistent with
clinical experience reported in recent surveys’>10, the number of
visits were consistently higher in PI cases against controls.

CID is characterized by complex immune defects and are
among the least investigated PI1%13:14, Since pneumonia is their
most frequent severe infection!33, we first aimed to investigate
pneumonia phenotype patterns when discriminating CID against
controls, both with pneumonia (Cohort 1). Among the top
phenotypes, we identified pneumococcal and the broader bac-
terial pneumonia subtypes (Fig. 3a). In contrast to the general
pneumonia phenotype, the above pneumonia subtypes did not

precede PI diagnosis (Fig. 5). This might reflect lack of pneu-
monia categorization early in the CID spectrum. In Cohorts 2-4,
to investigate the full spectrum of PI case profiles, the pneumonia
filter was gradually removed from controls and patients (Fig. 1).
In Cohort 2, there were similar pneumonia findings to Cohort 1,
with non-pneumonia diseases dominating in Cohorts 3-4.

This study’s findings are clinically relevant to the medical
community. First, we evaluated different perspectives of CID and
CVID, by developing an accurate method and a comprehensive
evaluation procedure across all 4 (CID/CVID) cohorts. Second, we
developed a deep learning-based method that can learn non-
linearities due to large heterogeneities present in the data. Fol-
lowing evaluation, it can be possibly applied to other heterogeneous
diseases, including other PI disorders. Third, we evaluated our
model on a large cohort of global US patients (N = 47,660 parti-
cipants). Fourth, since our analytical approach is based on the
conversion of ICD codes to explicit clinical phenotypes and the
statistical/ temporal analysis of phenotype combinations, it
potentially has broad applicability for systematizing the identifi-
cation of patients at risk for other underdiagnosed heterogeneous
diseases and PI disorders.

Several limitations should be considered when interpreting our
findings. The main limitation is reliance on ICD codes (medical
claims) from EHR hence, cases and controls could sometimes be
miscoded. However, model-derived PI identification was consistent
across cohorts and the combinations revealed consisted of ante-
cedent phenotypes that are widely reported in the literature!~310-14,
Clinical history might be misinformed because of differences across
regional, institutional, or individual ICD coding processes. The
Optum data used for this study are EHR from numerous hospitals
across US. Hence, any data content differences between hospitals,
reflect nationally representative ICD coding processes. Converting
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Fig. 7 Development and evaluation of a machine learning model pipeline for improving and systematizing the identification of Pl (CID and CVID).
a-d diagnostic performance of all models tested across Cohorts 1-4, respectively. US nationally representative medical claims were used to develop a
cohort of combined immunodeficiency (CID) patients and non-CID controls (both with pneumonia, Cohort 1). Diagnosis (ICD) codes were extracted
and used as variables to train the TabMLPNet model. Subsequently, the same methodology and model were internally tested in 3 replication cohorts
(Cohorts 2-4). To derive clinical insights for the identification of patients at risk for Pl across all cohorts, the ICD codes were then converted to clinical
phenotypes and odds ratios were calculated to estimate hierarchical clinical phenotype importance (Cohorts 1-4). Further, phenotype temporal profiles and
combinations were extracted and assessed in terms of their associations with PI. Clinical phenotypes can be used to enrich the diagnostic criteria for the
early Pl detection, including expanding the existing clinical warning signs and improving patient outcomes on population level. EHR: Electronic Health
Records, CID: Combined immunodeficiency, CVID: Common variable immunodeficiency, Pl: Primary immunodeficiency.

into phenotypes may have minimized any biases from miscoded
disease subtypes. Although we aimed to investigate diverse PI
profiles across cohorts, we consistently identified congruent phe-
notypes between Cohorts 1-3 (CID) and Cohort 4 (CVID), which
reflects the identification of consistent patterns in the presence of PL
Our dataset did not involve laboratory, genetic and imaging data,
which could further enhance the diagnostic performance and
clinical information. Our goal is to validate our method on external
clinical medical claims data thus, investigating multi-modal data

COMMUNICATIONS MEDICINE | (2023)3:189 | https://doi.org/10.1038/s43856-023-00412-8 | www.nature.com/commsmed

analyses is our future endeavor. Validation on clinical medical
claims will also be important to evaluate the generalizability of our
model to diverse external real-world data. The TabMLPNet with
wide and deep components showed higher diagnostic performance
against its deep-only and wide-only counterparts. Nonetheless, this
difference was not significant for Cohorts 2 and 4, when compared
against the TabMLPNet deep-only model. We will therefore
continue evaluating both model variants in our future work.
For CID, we focused on including all D81 ICD codes classified as
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“CID”, reported in the https://www.icd10data.com/ and https://
icd10cmtool.cdc.gov/ websites (by excluding all SCID). In our
future work, we will investigate additional PI subtypes (next to D81)
that have been classified as “affecting cellular and humoral immu-
nity” by the most recent International Union of Immunological
Societies 2022 update on genotypic** and phenotypic3” classifica-
tion, such as from D80, D82 and D84 codes. ICD codes were more
frequent for “Other CID and CVID” as well as “CID and CVID
unspecified” (Supplementary Table 2) in our data, mainly because
full PI characterization is commonly low in clinical settings due to
imprecise ICD coding processes and a lack of referral to clinical
immunologists!?. It is possible that we already include other CID
(next to D81) currently existing in the Optum data, under the
general “Other CID” as well as “CID unspecified” codes; see co-
occurring D80 and D84 confounding variables in the Supplemen-
tary Table 2. On that note, although we removed these as con-
founding variables from patient clinical history to avoid model bias,
these patients were included in our analysis, as CID patients. Our
data analysis has been performed on adult PI cases. One of our
future directions is the concurrent analysis of both adult and
pediatric data. Finally, our model should not be considered as a
definitive method for the diagnosis of CID or CVID. Instead, it
could be used as a starting point for potentially identifying adult
patients at risk which can lead to an early referral to clinical
immunologists and in turn access to appropriate blood, immuno-
logic, genetic, imaging and other complementary medical assess-
ments, to fully characterize and design treatments for CID/ CVID.

In conclusion, the proposed predictive scheme achieved accu-
rate performance for the identification of CID and CVID based
on a large-scale analysis performed on US representative medical
claims. Our methodology can potentially lead to new clinical
insights and expanded guidelines for the detection of phenotype
combinations, increase clinical awareness and be used to improve
identification of adults at risk as well as clinical outcomes on
population level.

Data availability

Additional numerical values underlying Figs. 3 and 4 are presented in Supplementary
Data 5. The datasets used for this study could not be made publicly available due to a
data use commercial agreement between Pfizer and Optum. However, the authors
encourage collaborations and would like to declare that the data can be made available to
qualified investigators upon request with evidence of institutional review board approval.

Code availability

We make available 5 main code pieces, which refer to the main data transformation and
pre-processing steps up to machine learning model fitting (Supplementary Data 4): 1.
Code used to convert ICD9 to ICD10 (SQL), 2. Convert ICD to the corresponding
disease description (SQL), 3. Convert ICD to phenotypes (SQL), 4. Pivot table with
features: ICD disease descriptions (Python) and 5. All machine learning models together
with wide and deep, deep only and wide only experimental procedure (Python). We also
give access to the 2018 GEMS mapping (Supplementary Data 1), to the processed Long,
Short, Major and Sub Chapter descriptions of ICD codes (Supplementary Data 2) and to
the phenotype mapping file that we created and used (Supplementary Data 3). The first
data extraction step occurs directly inside Dataiku, by extracting diagnosis and patient
data tables, as described in our Methods. Other code parts referring to data sanity checks
is not publicly available for proprietary data reasons but can be made available to
qualified investigators upon request.
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