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Deep learning and transfer learning identify breast
cancer survival subtypes from single-cell
imaging data
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Abstract

Background Single-cell multiplex imaging data have provided new insights into disease

subtypes and prognoses recently. However, quantitative models that explicitly capture single-

cell resolution cell-cell interaction features to predict patient survival at a population scale are

currently missing.

Methods We quantified hundreds of single-cell resolution cell-cell interaction features

through neighborhood calculation, in addition to cellular phenotypes. We applied these

features to a neural-network-based Cox-nnet survival model to identify survival-associated

features. We used non-negative matrix factorization (NMF) to identify patient survival

subtypes. We identified atypical subpopulations of triple-negative breast cancer (TNBC)

patients with moderate prognosis and Luminal A patients with poor prognosis and validated

these subpopulations by label transferring using the UNION-COM method.

Results The neural-network-based Cox-nnet survival model using all cellular phenotype and

cell-cell interaction features is highly predictive of patient survival in the test data (Con-

cordance Index > 0.8). We identify seven survival subtypes using the top survival features,

presenting distinct profiles of epithelial, immune, and fibroblast cells and their interactions.

We reveal atypical subpopulations of TNBC patients with moderate prognosis (marked by

GATA3 over-expression) and Luminal A patients with poor prognosis (marked by KRT6 and

ACTA2 over-expression and CDH1 under-expression). These atypical subpopulations are

validated in TCGA-BRCA and METABRIC datasets.

Conclusions This work provides an approach to bridge single-cell level information toward

population-level survival prediction.
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Plain language summary
It may be possible to separate

patients with cancer into different

groups or subtypes based on the

features of their tumor, such as the

interactions between different types

of cells in the tumor. In this study, we

develop a computer-based model to

calculate the interactions between

cells in breast cancer images. We use

these interactions to identify seven

subtypes of patients with breast

cancer with differences in their sur-

vival. We identify some subpopula-

tions of patients with atypical survival

outcomes. This work may ultimately

help clinicians and researchers to

identify patients with breast cancer at

increased risk of poorer outcomes

and to tailor their treatments

accordingly.
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Breast cancer became the most commonly diagnosed cancer
in 2020, with an estimated 2.3 million new cases globally1.
Predicting survival in breast cancer can aid clinicians in

making prompt prognostic decisions and deciding the direction
of treatment. The relevance of prognosis in oncology is projected
to grow in the future as new prognostic indicators allow for
more precise treatment therapies2. However, insufficient knowl-
edge about the intercellular interaction between the tumor and
tumor microenvironment is a big roadblock in applying perso-
nalized therapies. The breast cancer tumor ecosystems in breast
cancer consist of neoplastic epithelial cells forming the tumor
core, as the ‘tumor microenvironment’ is composed of several
types of immune cells, fibroblasts, adipocytes, and mesenchymal
cells3,4. These diverse cell types alter molecular and cellular
programs and present dynamic spatial heterogeneity as the dis-
ease progresses. Such temporal and spatial changes are respon-
sible for differential responses to anti-cancer therapies and
subsequent clinical outcomes. Hence, it is essential to develop a
comprehensive understanding of breast cancer heterogeneity by
elucidating the contribution of tumor, tumor microenvironment,
and their intricate interactions5,6.

Investigations at single-cell resolution7,8 have lately enabled
detailed elucidation of tumor-microenvironment interactions.
Various components of tumor-immune-stromal relationships
have been identified, and tumor heterogeneity was also analyzed
to distinguish breast cancer subtypes based on epithelial and
immune cell populations9–11. Potential biomarkers have also
been discovered for personalized cancer immunotherapy through
Single-cell RNA sequencing (scRNA-seq)12. However, one major
limitation of scRNA-seq is the loss of spatial information
crucial in understanding tumor heterogeneity in situ13. To
address these issues, spatially resolved assays, such as single-cell
transcriptomic and proteomic techniques, have been developed to
study the distribution of cells in cancers14. Recently, Imaging
Mass Cytometry (IMC)-based approaches have quantified tumor
heterogeneity with spatial context and identified new breast
cancer molecular subtypes in large population cohorts15,16.
However, most of these studies that detect molecular subtypes
are unsupervised, without explicitly fitting phenotypes such as
survival in the learning process. Rather, survival is used as a post
hoc metric to evaluate the subtypes17. Moreover, these unsu-
pervised approaches cannot be directly used to predict uncovered
patients, limiting the practical utility of the subtype findings.

In this study, we asked whether quantifying single-cell level
cell-cell interactions could provide meaningful insights for
prognosis prediction for breast cancer patients. We computed
single-cell level imaging features that capture cell-cell interactions
in breast cancer tissues from a previous single-cell imaging mass
cytometry study on 259 breast cancer patients with survival
data16. We applied a neural network-based method Cox-nnet
previously developed in our group18 on these features to predict
explicitly the patient survival outcome. Using the top survival
features, we uncovered seven single-cell interaction-based patient
subtypes that show better associations with survival compared to
the current mainstream molecular subtypes in breast cancer. We
characterized these survival subtypes with distinct profiles of
cellular phenotypes as well as cell-cell interactions. Using this
survival subtyping classification, we identified two atypical patient
subpopulations: a subgroup of triple-negative breast cancer
patients with moderate prognosis and a subgroup of Luminal A
patients with poor prognosis. We further utilized the transfer
learning approach and validated the presence of such uncon-
ventional subgroups and their biomarkers in the TCGA and
METABRIC breast cancer datasets.

Methods
Dataset and extracted features. The dataset analyzed in the study
is obtained from a previously published study containing 259
patients16. The dataset contains the IMC data, phenograph
neighborhood information, clinical features (Tumor Grade, ER
Status, PR Status and HER2 Status), and patient prognosis out-
come (overall survival time, disease-free survival time, and alive/
dead status). The previous work defined 27 cellular phenotypes
that described the histopathological landscape of breast cancer,
and direct neighbor cells are defined within 4 pixels (4 μm) dis-
tance to the target cell. In this study, we used the clinical features,
cellular phenotype density (count of cells of each phenotype per
unit area), and cellular neighborhood information for analysis, as
detailed below:

Clinical features. The clinical features set comprises the Tumor
Grade, ER Status, PR Status, and HER2 Status for each patient.
Tumors in which cells appear highly dissimilar to normal cells
tend to proliferate, and the tumor grade is assigned based on the
extent of proliferation. In the traditional clinicopathological
classification of breast cancer, patients are classified into Luminal
A, Luminal B, Triple-Negative, and HE2-Enriched classes. This
classification is based on patients’ clinical features such as ER
(positive/negative), PR (positive/negative), and HER2 (positive/
negative) status19,20.

Cellular phenotypic features. For each patient, the cell phenotype
density is quantified as the counts of each cellular phenotype per
unit area in the IMC image of the tumor tissue. Out of the ori-
ginal 27 cellular phenotypes, there are six immune, seven stromal,
and fourteen epithelial cellular phenotypes. The six immune
phenotypes are B Cell, T and B Cell, T-Cell1, Macrophage1,
T-Cell2, Macrophage2. The seven stromal phenotypes are Endo-
thelial, Vimentinhi Fibroblasts, Small circular Fibroblasts, Small
elongated Fibroblasts, Fibronectinhi Fibroblasts, Large Elongated
Fibroblasts, SMAhi-Vimentinhi Fibroblasts. The 14 epithelial
cellular phenotypes are Hypoxic Epithelial Cells, Apoptotic
Epithelial Cells, Proliferative Epithelial Cells, p53+ EGFR+ Epi-
thelial Cells, Basal CK Epithelial Cells, CK7+CKhiCadherinhi

Epithelial Cells, CK7+CK+ Epithelial Cells, Epitheliallow Epithe-
lial Cells, CKlowHRlow Epithelial Cells, CK+HRhi Epithelial Cells,
CK+HR+ Epithelial Cells, CK+HRlow Epithelial Cells, CKlow

HRhip53+ Epithelial Cells, Myoepithelial Cells.

Cell-cell interaction features. The phenotypic features in the ori-
ginal report are limited, as they do not assess the interactions
between cellular phenotypes and between tumor-tumor micro-
environments, which are important parts of tissue heterogeneity.
We utilized the available phenograph21 neighborhood-
information data from each patient and quantified the binary
interactions between cellular phenotypes. The phenograph
neighborhood of the IMC image is described as a numerous
cellular network spread out in the mass cytometry image, where
individual cells are represented as nodes of the cellular network.
Starting with 27 cellular phenotypes, we calculated 378 pairwise
phenotype-phenotype features.

Cell-cell interactions are restricted to those within the same
cellular community. We iterate through each cell of a cellular
community in the image, enumerate the binary interactions the
cell makes with its neighbors, and multiply the sum of the
interactions by the clustering coefficient C of the cellular
community as the weight. Then, we repeat this process for all
the cellular communities across the mass cytometry image, sum
the 378 interactions, and divide them by the area occupied by all

ARTICLE COMMUNICATIONS MEDICINE | https://doi.org/10.1038/s43856-023-00414-6

2 COMMUNICATIONS MEDICINE |           (2023) 3:187 | https://doi.org/10.1038/s43856-023-00414-6 | www.nature.com/commsmed

www.nature.com/commsmed


the cells. We define the result of this procedure as the ‘Cell-Cell
Interaction Score’ (CCIS).

CCIS8Pairðx;yÞ;x2P;y2P ¼ ∑8N ðC � BxyÞ
A

ð1Þ

where C is the clustering coefficient for each cluster, Bxy is the
binary interaction counts between a particular pair of phenotypes
x and y, A is the total area occupied by all the cells in a mass
cytometry image, P is the set of all phenotypes and N is the
number of cellular communities in an image.

At a more detailed level, these 378 can be further categorized
by immune/stromal/epithelial cell types in the interacting pairs
and classified as immune-immune (21 features), immune-stromal
(42 features), immune-epithelial (84 features), stromal-stromal
(28 features), stromal-epithelial (98 features), epithelial-epithelial
(105 features) interactions. Among the feature pairs, 1 immune-
stromal feature (macrophage interacting with Large Elongated
Fibroblasts), 2 immune-epithelial features (macrophage interact-
ing with Hypoxic Epithelial Cells and macrophage interacting
with CK7+CKhiCadherinhi Epithelial Cells), 1 stromal-stromal
feature (Large Elongated Fibroblasts self-interaction) and 1
stromal-epithelial (Large Elongated Fibroblasts interacting with
Myoepithelial cells) are dropped since these pairwise phenotype-
phenotype interactions calculations returned 0 (lack of neighbors
within the immediate vicinity), hence the final number of features
would be 373 features. We plot the feature heatmaps using the
‘heatmap’ package in R.

Survival modeling. We use a variety of neural-network-based
Cox-nnet models as the one-stage Cox-nnet-v2 models for the
phenotypic feature set, tumor-microenvironment feature set,
tumor-core feature set, and pairwise combinations. Further, we
develop a two-stage Cox-nnet model by combining the hidden
layer output of previously trained one-stage models. For each
one-stage Cox-nnet-v2 model, the hidden layer nodes are equal to
the square root (rounded up) of input nodes. The Cellular Phe-
notypic (CP), tumor-microenvironment interaction (TMI), and
tumor-core interaction (TCI) feature-based models have 27, 268,
and 105 input features, respectively, and hence we obtain 6, 17,
and 11 nodes in the respective hidden layer. The two-stage Cox-
nnet model combines the hidden layer output features. As a
result, 34 input features are used in the second stage. For com-
parison, we use the Cox-PH model on clinical features as the
baseline model.

Survival feature ranking. We calculate the feature importance of
the 34 input features using the ‘Variable Importance’ function of
the Cox-nnet-v2 model. Out of the 34 input features in the two-
stage Cox-nnet model, we calculate the importance scores,
separate them into the original three sets of 6, 17, and 11 features,
respectively, and associate them with the one-stage Cox-nnet-v2
models. For each model, we took a dot product of the hidden
layer feature-importance vector with the model weights to get the
importance scores vector of the original features.

bO ¼ WT :bH; ð2Þ
where Ô is the importance vector of the original features
(shape1).W is the model weight matrix (shape h x p). H is the
importance vector for hidden layer (shape h x 1).

Unsupervised analysis for patient subtype detection. We nor-
malize the feature importance values between 0 and 1 and
select the top features from each of the three feature sets. For
the phenotypic set, we set the threshold as 0.5 and selected
all the features with a higher importance score. For the

tumor-microenvironment and tumor-core feature sets, we select
features with an importance score greater than 0.75. In total, out
of the 40 features we choose 50 features and perform NMF-based
consensus clustering using the NMF R package v0.23.0. This
technique has been used in molecular subtype detection in
cancer22,23. We carry out a hyperparameter search for the NMF
rank and varied it from 3 to 15, finding that the maximum values
of ‘cophenetic scores’ and ‘silhouette coefficients’ are reached at
an NMF rank of seven, and hence we choose the optimum NMF
rank as seven for subsequent analysis.

Feature correlation analysis and comparison between NMF-
defined and clinically defined subtypes. We calculate the cor-
relations between the features associated with each NMF-defined
subtype using Spearman’s Correlation Coefficient in R and plot
the Circos plot of the correlation using the circlize package
in R24. How the NMF-defined classes intersect with the clin-
icopathological classification is determined by a Sankey Plot. We
plot the Sankey plot using the plotly package in Python.

Class label transfer and comparison with TCGA-BRCA and
METABRIC datasets. We verify our results for ‘TNBC-Good
Survival’ and ‘Luminal A-Poor Survival’ patient subpopulations
in two external datasets, TCGA-BRCA and METABRIC25,26.
Here, we utilize the mass cytometry counts for 30 protein-based
biomarkers and calculate the average expression of each bio-
marker over all the cells present in the IMC image. We treat it as
pseudo-bulk protein expression and a proxy for bulk mRNA
expression to facilitate the comparison with bulk mRNA
expression-based external datasets. Then, we repurpose the
UNION-COM algorithm27 to perform patient matching between
our dataset, the TCGA-BRCA dataset, and the METABRIC
dataset. The UNION-COM method was originally developed to
perform topological alignment and label transfer on single-cell
multi-omics datasets. It takes two expression matrices as input,
calculates the joint embedding between the two datasets, and
maps samples from one dataset to another. In the TCGA-BRCA
dataset, we find 28 genes corresponding to 28 protein-based
biomarkers out of 30 (except TWIST and mTOR). In the
METABRIC dataset, we find all 30 genes corresponding to the 30
protein-based biomarkers. For each TNBC and Luminal A sub-
population, the pseudo-bulk protein expression matrix from the
single-cell dataset is used as input, and the mRNA expression
matrix is applied as the external dataset in the UNION-COM
method. We run the UNION-COM method using default para-
meters, and it returns the pairwise distance between patients
between our dataset and the external dataset. We set a 99.5%
similarity cutoff and select patients matching our ‘TNBC-Good
Survival’ and ‘Luminal A-Poor Survival’ patient subpopulations,
respectively. Survival plots are made using the lifelines
Python package, and differential gene expressions are done using
the limma package in R28.

Cross-check the TNBC survival subtypes with the molecular
subtypes of TNBC. We cross-compared the seven subtypes in
the previous study29 with the two survival subtypes we identified.
We used the six subtype markers (MKI67, MYC, EGFR,
CDH1, SNAI2 and TWIST1) in that study that overlap with the
30 protein-based biomarkers in the single-cell imaging dataset
here. The six markers are MKI67 and MYC as the proliferation
markers, EGFR as the growth factor/Myoepithelial markers,
and SNAI2 and TWIST1 as the epithelial-mesenchymal
transition–associated (EMT-associated) markers. The raw data
from the previous study are not available; we relied on the pixels
in this heatmap as the normalized gene expression values for the
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comparative study. We first transformed the heatmap of Sup-
plementary Fig. 629 of the six markers from RGB (red, green and
blue) to HSV(Hue, Saturation and Value) scale and filtered out all
the red and green-related colors by setting the HSV thresholds.
Then we transformed the HSV scale to the gray scale and mapped
the intensity to log-transformed gene values according to the
figure legend. Specifically, we map green-related colors from −2
to 0 and red-related colors from 0 to 2. We plotted the level of the
six markers from the imaging data alongside the heatmap from
the previous study. We performed hierarchical clustering with the
average expression level of markers from the two survival sub-
types defined by us and the TNBC molecular subtypes obtained
from the previous study.

Results
Feature engineering from the breast cancer single-cell images.
The breast cancer cohort contains 259 patients with survival data,
as reported earlier16. The summary of the cohort’s patients,
including clinical variables such as tumor grades, clinical features
(ER, PR, HER2), and clinicopathological classes, is shown in
Supplementary Table 1. We first extracted 27 pre-defined cel-
lular-phenotype (CP) features based on image mass cytometry
data (Fig. 1a, Supplementary Data 1). These features describe
epithelial, immune, and stromal cell phenotypes at the single-cell
resolution in the original study (“Methods”). We next used net-
works of cells to represent the cells and cellular communities with
the spatial arrangement as shown in the imaging data. We then
calculated phenograph neighborhood information based on the
cellular phenotypes in the tissue (“Methods”). This process results
in an additional 378 cell-cell interaction features that can be
broadly divided into two subsets. The first subset contains 273
features related to the tumor-microenvironment interaction
(TMI) features (Fig. 1a). The TMI features are computed from
pairwise interactions among the three types of cells: immune,
stromal, and epithelial cells. Specifically, they represent immune-
immune (21 features), immune-stromal (42 features), immune-
epithelial (84 features), stromal-stromal (28 features), and
stromal-epithelial (98 features) interactions. The second subset
contains 105 tumor-core interaction (TCI) features, which are
exclusively epithelial-epithelial interactions between epithelial
cells of various cellular phenotypes (Fig. 1a). The distributions of
these 378 features in patients together with clinically defined
breast cancer subtypes are illustrated in Fig. 1b. Anchoring on the
TCI features, hierarchical clustering demonstrates broad but
distinct cellular heterogeneity among patients, far more complex
than that defined by the clinical subtypes. Compared to TCI
features, TMI features describing immune-epithelial and stromal-
epithelial interactions have similar but less distinct heterogeneity.
On the other hand, all CP features show far less global correla-
tions with those TCI patterns presented in epithelial-epithelial
interactions.

Survival prediction using single-cell phenotype features. A
major goal of our study is to identify single-cell level features
associated with patient survival and further evaluate the relative
contributions of these features toward patient survival. To this
end, we used the recently developed Cox-nnet neural-network-
based survival prediction models from our group (Ching et al.18),
which had shown advantages in single or multiple data
modalities30,31, compared to the conventional Cox-PH method32.
Here as a comparison to Cox-nnet models, we built a Cox-PH
model using the clinical information including ER status, PR
status, HER2 status, and tumor grade and TNM (tumor-node-
metastasis) stagings (Set I) as the baseline model. We constructed
a series of two-stage Cox-nnet models (Fig. 2a) on the

combinations (Set II, III, IV, and V) of CP features, TMI features
and TCI features (Set II, III, IV, and V). Two-stage Cox-nnet
models are complex models that use simpler Cox-nnet models as
individual building blocks30 to integrate different feature sets or
data modalities. In the first stage of training, each Cox-nnet
model is built to fit a specific set of data (CP, TMI or TCI fea-
tures) to predict survival. The hidden nodes in the first-stage Cox-
nnet model are then combined as the input features to train a
second-stage Cox-nnet model. For each Cox-nnet model, we used
L2 regularization to reduce overfitting.

To rank the relative contributions of different features, we
estimated the relative importance of the features in each of the
CP, TMI, and TCI feature sets (Supplementary Data 2–4).
Among CP features, immune cells, including type 2 macrophages
(CD68+/vimentin low) and T & B immune cell clusters, have the
highest relative importance scores (1.000 and 0.692 respectively)
compared to those (0.507–0.631) of different subtypes of
epithelial cells (Supplementary Data 2), highlighting their
importance in patient prognosis. In TMI features, two types of
immune-epithelial interactions (T and B cells–CKlowHRlow

epithelial cells, Macrophage1–CK low HRhi p53 +) and a type of
fibroblast–epithelial interaction (small elongated fibroblast–
CK7+CK + epithelial cells) and are top 3 dominant features
(Supplementary Data 3). Among the TCI features, the interac-
tions among most proliferative epithelial cells are the strongest, as
expected (Supplementary Data 4).

Identifying survival subtypes among breast cancer patients.
Our next goal was to identify patient subpopulations associated
with survival, using the top survival features selected by impor-
tance scores from the best model using Set XII (the combination
of CP, TMI, and TCI features). We performed Non-negative
Matrix Factorization (NMF) based consensus clustering on the
top 50 features according to the importance scores (“Methods”).
As a result, we identified seven optimal patient subpopulation
clusters, indexed by 1–7 from the best to the worst survival risks
(Fig. 3a). We confirmed that seven clusters are the optimum
value, based on Cophenetic score and Silhouette coefficient, two
metrics of clustering accuracy (Fig. 3b). The Kaplan-Meier plot
for the overall survival of the seven survival subtypes yields a
much higher C-index of 0.80 and a more significant log-rank p-
value p ¼ 8:6e�0:6 (Fig. 3c) for n= 259 independent patients,
compared to the C-index of 0.63 and the log-rank p-value of
0.001 from the stratification of the four molecular subtypes
(Fig. 3d). These results demonstrate that the single-cell level CP,
TMI, and TCI features yield more informative subtypes that
better reveal the heterogeneity in survivorship among patients.

We further describe the survival subtypes based on their top
features and their relationships with other clinical information
(Fig. 3e, Supplementary Table 2). As expected, the better survival
subtypes tend to have more ER+ and PR+ cases, and the worst
survival subtypes tend to have higher tumor grade (Grade III) and
HER2- cases. The best survival subtype 1 is enriched with a
subtype of epithelial cells with high levels of cytokeratin (CK) 7
and 19 but low hormone receptors (CK7, CK19, low HR). It also
has high levels of interaction scores between this epithelial cell
subtype and several subtypes of fibroblast cells, highlighting the
importance of the interaction between these two cell types for
patient outcomes. The next best subtype 2 also has enriched
scores on a subtype of epithelial cells that express pan-
cytokeratins and hormone receptors (pan-CK, HR), as well as
their interactions with certain fibroblast cells. On the other hand,
the subtype 7 with the worst survival is characterized by high
degrees of interactions among proliferative epithelial cells, as well
as interactions between macrophages/T-cells expressing high
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Fig. 1 Overview of different feature sets in the data. a Methodology for extracting the cell-cell interaction features. We utilize the cellular neighborhood
information obtained from the phenograph. The phenograph result contains different locally connected cellular communities. For each cellular community
(the neighborhood graph), we iterate through each cell (node) and count the number of interactions between the particular cell and its neighbors. We
repeat this process for all the different cellular communities to assess the 378 different pairwise cell-cell interactions. b Heatmaps illustrate the different
feature types for all the patients. The patients are arranged in the order defined by the hierarchical clustering based on the epithelial-epithelial interactions.
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vimentin and the proliferative epithelial cells. The second worst
survival subtype 6 has a high level of epithelial cells lacking CK
and HR expression, as well as strong interactions between
fibroblast/B cells and these epithelial cells. In summary, the
survival subtypes show distinct profiles of epithelial cell subtypes
and interactions between the epithelial cells and adjacent immune
and fibroblast cell subtypes.

We also compared the seven survival clusters with the 18
single-cell pathology (SCP) subgroups based on the 27 cellular
phenotype features, as identified from the original study16. As
shown in Supplementary Fig. 1, cluster 1 has a strong association
(90%) with SCP_11 (CK7 and pan-CK) subgroup. Cluster 5 is
enriched with SCP_17 (Hypoxic) subgroup. Cluster 6 is equally
distributed in SCP_7 (Epithelial.low) and SCP_10 (Epithelial.low
mixed) subgroups. Cluster 7 shows a connection with the SCP_14

(Proliferative) subgroup. Cluster 2, Cluster 3 and Cluster 4 do not
show a clear association with some particular SCP subgroups.

Characterization of the seven survival subtypes. We next
directly compared the enrichment of different types of immune,
fibroblast and epithelial cells, as well as their interaction scores in
the seven survival subtypes (Fig. 4). Subtypes 5–7 show quite
distinct patterns from subtypes 1–4. In particular, subtype 5 has a
high level of hypoxic epithelial cells (Fig. 4e), as well as high levels
of interactions between these hypoxic epithelial cells and mac-
rophage2, T/B cells and vimentin-expressing fibroblasts (Fig. 4i, k
and o). Subtype 6 has the second highest level of proliferative
epithelial cells (Fig. 4f) but the lowest levels of vimentin expres-
sion fibroblast cells (Fig. 4c), and accordingly, the second highest

Fig. 2 Two-stage Cox-nnet model comparison with baseline and Cox-nnet-v2. a Model architecture for the two-stage Cox-nnet model. Three individual
Cox-nnet models were built for each data type. The hidden nodes from the first-stage Cox-nnet models were combined to form the input to construct a
Cox-nnet model in the second stage. b Comparison of Concordance index across different Feature Set-Model pairs through boxplot with n= 20
independent experiments. The box displays the quartiles of the dataset, and the whiskers show the rest of the distribution, except for points that are
determined to be outliers, using a method that is a function of the inter-quartile range.
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Fig. 3 Non-negative Matrix Factorization (NMF)-based subpopulation detection associated with survival. a NMF heatmap for 259 patients in our cohort
illustrating the seven subpopulations arranged in order of decreasing survival. b Cophenetic Score and Silhouette Coefficient versus the NMF Rank.
c Kaplan-Meier (KM) plots illustrate the Overall Survival for patients in the seven NMF-derived subpopulation clusters. d Kaplan-Meier plots illustrate the
Overall Survival for patients based on clinicopathological classification. e Heatmap of top-ranked features from best performing two-stage Cox-nnet model,
in associations with tumor grade, clinical features and molecular subtypes.
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scores in interactions between T/B cells and proliferative epi-
thelial cells (Fig. 4l). Subtype 7 stands out with the highest level of
proliferative epithelial cells (Fig. 4f) and the second highest level
of hypoxic epithelial cells (Fig. 4e). As a result, subtype 7 has the
highest scores in the greatest number of TMI-tumor interaction
categories (Fig. 4j–l, p–r). In summary, the subtypes 5–7 with
some of the worst survival outcomes are highly enriched with
hypoxic (subtype 5) or proliferative epithelial cells (subtype 6 and
7), as well as the corresponding interactions between immune
cells and these epithelial cells; however, they have much lower
interactions between fibroblast and immune cells in the tumor
microenvironment (Fig. 4g, h, m, n).

Next, we investigated the higher-order of correlation relation-
ship among the cell-cell interactions for each survival subtype.
We calculated the correlations among all the CP, TMI and TCI
features and studied the pairs of cell-cell interaction with
correlations greater than 0.5 (Fig. 4s). For subtype 1, a high
correlation exists between epithelial cell-small, elongated fibro-
blast interaction and epithelial cell-small circular fibroblast
interaction, indicating that they share similar modes of interac-
tions. Similarly, subtype 3 shows a high correlation between
macrophage-small elongated fibroblast interaction and
macrophage-small circular fibroblast interaction. In subtype 7,
proliferative epithelial-macrophage/T-Cell (vimentin-expressing)
interaction is highly correlated with interactions between
vimentin-expressing macrophage and endothelial cells, further
confirming the detrimental and synergistic effect of certain
immune cells on the proliferative tumor.

Discovery of subpopulations of TNBC and luminal A subtypes
with atypical survival outcomes. To uncover new insights into

this survival subtyping, we compared the classification results
using molecular subtyping vs. the survival subtyping approach
(Fig. 5a). Each molecular subtype is split into multiple survival
subtypes, demonstrating the widespread heterogeneity in terms of
survival. We dichotomized the 7 survival subgroups into good
survival (subgroups 1-4) and bad survival (subgroups 5-7) groups
and noticed that for luminal A and TNBC cancers, these sub-
groups show significantly different survival outcomes (log-ranked
p-value < 0.05 for n= 44 independent TNBC patients and
n= 166 independent luminal A patients) from their counterparts
(Fig. 5b, e). Despite being a molecular subtype regarded as having
the worst prognosis, TNBC actually has a large proportion
(61.36%) of atypical good survival patients from clusters 1-4,
where cluster 3 is the major cluster among the four (66.66%). On
the other hand, while the luminal A subtype generally has the best
prognosis among the four molecular subtypes, around 11% of the
luminal A breast cancers still belong to the relatively bad survival
group. We next investigated the signatures of these atypical
subpopulations by differential expression analysis. The atypical
good survival subpopulation in TNBC has over-expression of
GATA3 (Fig. 5b, Supplementary Data 5). On the other hand, the
atypical bad survival subpopulation in the luminal A subtype has
an over-expression of KRT7 and ACTA2 and an under-expression
of CDH1 (Fig. 5e, Supplementary Data 6).

We next tested if such atypical subpopulations can be validated in
general. We used the UNION-COM (Cao, Bai, Hong, &Wan, 2020)
method to perform label-transfer learning based on the pseudo-bulk
protein expression in this single-cell dataset and applied the model to
the transcripts of the same genes in TCGA-BRCA and METABRIC
data. The results show that TCGA-BRCA and METABRIC datasets
indeed have such good survival subpopulations in TNBC (Fig. 5c, d)

Fig. 4 Characterization of the single image-based survival subtypes. a–r Scoring and profiling for the seven survival subtypes based on various cellular
phenotypes and cell-cell interaction features. Cell counts and interactions were normalized between 0 and 1 to make comparison possible on the same
scale. a Macrophage2 Cells, b T and B Cells, c Vimentinhi Fibroblasts, d Small Circular Fibroblasts, e Hypoxic Epithelial Cells, f Proliferative Epithelial Cells,
g Macrophage2–Vimentinhi Fibroblasts, h T and B Cells–Vimentinhi Fibroblasts, i Macrophage2–Hypoxic Epithelial Cells, j Macrophage2–Proliferative
Epithelial Cells, k T and B Cells–Hypoxic Epithelial Cells, l T and B Cells–Proliferative Epithelial Cells, m Macrophage2–Circular Fibroblasts, n Vimentinhi

Fibroblasts–Small Circular Fibroblasts, o Vimentinhi Fibroblasts–Hypoxic Epithelial Cells, p Vimentinhi Fibroblasts–Proliferative Epithelial Cells, q Hypoxic
Epithelial Cells–Proliferative Epithelial Cells, r Proliferative Epithelial Cells–Proliferative Epithelial Cells. Statistical testing was done for n= 259 patients
using the Mann-Whitney U Test with Benjamini-Hochberg-based false discovery rate (FDR) adjustment. The significant pairs are marked as follows: *: p-
value < 0.01. **: 0.01 < p-values < 0.05. Each violin is drawn using the kernel density estimate of the underlying distribution. s Circos plots demonstrate the
correlation between feature pairs associated with each subpopulation.
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and bad survival subpopulations in luminal A patients (Fig. 5f, g).
The atypical subpopulations in both validation cohorts have
significantly different survival curves (log-rank p-value < 0.05 for
n= 159 independent TCGA-BRCA TNBC samples, n= 599
independent TCGA-BRCA luminal A patients, n= 299 independent
Metabric TNBC patients and n= 1369 independent Metabric
luminal A patients) compared to their counterparts. Moreover,
GATA3 is also consistently overexpressed in the atypical good
survival subpopulations in both the TCGA-BRCA and METABRIC
datasets (Fig. 5c, d, Supplementary Data 7 and 8). Additionally, CA9
shows a common under-expression in the TCGA-BRCA dataset
(Fig. 5b, c). Similarly, the matching poor survival luminal A
subpopulations in TCGA-BRCA and METABRIC datasets show the
same patterns of over-expression of KRT7 and ACTA2 and under-
expression of CDH1 (Fig. 5f, g, Supplementary Data 9 and 10). Loss
of CDH1 is a characteristic of invasive lobular breast cancer33.
Confirming this, we found that lobular type increases from 20.72 to
50.7%, comparing the good vs. bad survival subgroups in TCGA
luminal A breast cancers. It also increases from 8.34 to 12.7% for the
good vs bad survival subgroups in the luminal A cancers in the
METABRIC dataset.

TNBC was previously reported to have six molecular
subtypes29, including 2 basal-like (BL1 and BL2), an immuno-
modulatory (IM), a mesenchymal (M), a mesenchymal stem–like
(MSL), and a luminal androgen receptor (LAR) subtype, as well
as an extra unstable (UNS) subtype. We further cross-checked the
survival-based TNBC subtypes here with those reported earlier
(Supplementary Fig. 2). We selected six markers (MKI67, MYC,
EGFR, CDH1, SNAI2, TWIST1) that are in common with the
Supplementary Fig. 6 of the original study and our single-cell
imaging dataset and relied on the pixels in this heatmap as the
normalized gene expression values for the comparative study. We
scaled the marker gene intensities from the single-cell imaging
data by the RGB values of the pixels. The good TNBC survival
group of the image data shows a lower expression in the
proliferation markers and myoepithelial markers and a mixed
expression in EMT markers (Supplementary Fig. 2b). And the
bad TNBC survival group of the image data shows a combination
of low and high expressions in Proliferation markers and EMT
markers (Supplementary Fig. 2c). From the clustering result of
averaged gene expression in two types of subtype systems, the

good TNBC survival subgroup is the closest to MSL and LAR
subgroups, whereas the bad TNBC survival group is closest to
BL2 and M subgroups (Supplementary Fig. 2d).

Discussion
Breast cancer is a highly heterogeneous disease, and molecular
subtypes based on ER, PR and HER2 statuses are currently the
mainstream classification system. In this study, we leverage the
strengths of detailed single-cell pathology images and neural-
network-based prognosis modeling and define a class of survival-
related subtypes for breast cancer. We argue that cellular phe-
notypes and their interactions provide additional valuable infor-
mation to predict survival, leading to improved clinical impacts.

The uniqueness of this study lies in several aspects. From the
analytical aspect, we explicitly computed hundreds of features
describing cell-cell interactions (TMI and TCI) on single-cell
imaging data. We used these features as inputs for a neural-
network-based survival prediction method called 2-stage Cox-
nnet, which highly accurately fits patient survival and is much
better than clinical data-based Cox-PH regression. From the
biomedical aspect, we have defined seven survival subtypes with
distinct profiles of epithelial, immune, and fibroblast cells, as well
as their interaction patterns. These survival subtypes amend the
molecular subtypes originally based on tumor cell signatures, as
each of the molecular subtypes is highly heterogeneous in terms
of the patient’s prognosis. It also extends beyond previous work
that classified breast cancers by immuno-subtypes34 by con-
sidering additionally the interactions among tumor, immune
cells, etc.

These survival subpopulations are well characterized by protein
markers and cellular phenotypes. The relatively good survival
subtypes 1–4 are enriched with CK or HR expression epithelial
cells as well as interactions between fibroblasts and other immune
cell types, which are lacking in the poorer survival subtypes 5–7.
The best survival subtype 1 has a high expression level of luminal
CK. Corresponding to this observation, CKs were reported to be
associated with better overall survival in breast cancer before35.
Subtype 2, which also has good survival, has high levels of CK8/18
and HR, which was also reported to be associated with good
overall survival36. Subtype 5 has a dominant hypoxia phenotype,

Fig. 5 Discovery and validation of atypical subpopulations in triple-negative breast cancer (TNBC) and luminal A patients. a Sankey plot showing the
distribution of patients in the seven subpopulations vs. clinical subtypes. b Kaplan-Meier (KM) survival plot for the two TNBC subpopulations in the single-
cell dataset and the differentially expressed protein biomarkers for the two subpopulations. c Validation of the two TNBC subpopulations in TCGA breast
cancer data corresponding to those in (b) by KM plot and differentially expressed genes. d Validation of the two TNBC subpopulations in METABRIC breast
cancer data corresponding to those in (b) by KM plot and differentially expressed genes. e KM survival plot for the two luminal A subpopulations in the
single-cell dataset and the differentially expressed protein biomarkers for the two subpopulations. f Validation of the two luminal A subpopulations in
TCGA breast cancer data corresponding to those in (e) by KM plot and differentially expressed genes. g Validation of the two luminal A subpopulations in
METABRIC breast cancer data corresponding to those in (e) by KM plot and differentially expressed genes. (For each subplot, the blue curve represents
the subpopulation in context).
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demonstrated by the high presence of hypoxia epithelial cells.
Hypoxia is associated with resistance against therapies and poor
outcomes37,38. Despite most of the patients being luminal A
subtype, patients in this subgroup show the lowest level of
Vimentinhi Fibroblasts cells (high vimentin expression, low
smooth muscle actin (SMA) expression, and low fibronectin
expression)39. It also has the 2nd highest level of proliferative
epithelial cells, both of which may contribute to poor survival.
Subtype 7 has the highest level of proliferative epithelial cells
marked by KI-67 expression, associated with poor survival40,41. It
also has some of the strongest interactions with cells in EMT,
suggesting the highest degree of tumor infiltration by immune
cells42. The highly active TMI observed in hypoxic subtype 5 and
proliferative subtype 7 are quite interesting. Subtype 5 has lower
proportions of immune cells (e.g., macrophages) but the strongest
interactions between macrophages and the hypoxic epithelial
cells, the signature epithelial cells of this subtype. It also has
the highest interaction between Vimentinhi fibroblasts and
hypoxic epithelial cells. The apparent paradox between low
macrophage concentration vs high interaction with epithelial cells
may be explained by the inflammatory cytokines produced by
macrophages at the hypoxic site, which decreases tumoricidal
activity43. Subtype 7 has the highest proportion of proliferative
epithelial cells, and 75% of the patients are TNBC. This subtype
has the strongest interactions between various cells in the tumor
microenvironment (vimentin expression T/B cells, fibroblasts,
and macrophages2) and proliferative epithelial cells, as well as
interactions between vimentin-expressing macrophages and
hypoxic cells. A high degree of immune infiltration was reported
in TNBC patients with exhausted T Cell populations44, which is
consistent with our results. This subtype also shows the highest
interaction between hypoxic epithelial cells and proliferative
epithelial cells. The hypoxic condition may be a result of the
increased aggressiveness of proliferating epithelial cells45, con-
sistent with prior observation of a close relationship between
proliferation-hypoxia in other solid cancers such as squamous cell
carcinoma46.

The subtyping system enabled the discovery of atypical survival
subpopulations. A good survival subpopulation among TNBC
patients (mostly from survival subtype 3) is identified with over-
expression of GATA3; and a small population of bad survival
subtype among luminal A patients are found, with over-
expression of KRT7 and ACTA2 but under-expression of
CDH1. These results are robustly verified in TCGA-BRCA and
METABRIC datasets. GATA3 is a zinc finger transcription factor
involved in cell type differentiation and proliferation. Corre-
sponding to our observations, higher levels of GATA3 were also
shown to be correlated with better survival in breast cancer
patients47. KRT7 encodes cytokeratin-7 and ACTA2 encodes
smooth muscle alpha-2 actin, both are cytoskeleton components.
KRT7 plays a role in cell migration and epithelial-mesenchymal
transition (EMT) pathways and is associated with poor survival
subpopulations for ovarian cancer48,49. Similarly, ACTA2 was
reported to be a marker for poor prognosis in lung cancer50.
CDH1 is a transmembrane glycoprotein that is primarily
responsible for cell adhesion, and its downregulation in tumors
led to increased invasiveness in breast cancer and lung cancer51.
Thus, the work here paved the foundation for improving the
subtyping of TNBC and luminal A cancers using the above-
mentioned biomarkers. Moreover, therapeutics targeting these
molecules may be effective at improving TNBC and luminal A
cancer patients’ survival.

We further investigated the marker genes that have high cor-
relations (Pearson’s correlation coefficient >0.5 or <−0.5) with the
cell-cell interactions, using the two extreme subtypes 1 and 7
(Supplementary Fig. 3). Many above-described relationships

with regard to prognosis are confirmed again. For subgroup 1
(Supplementary Fig. 3a), there exist positive correlations between
CDH1 and epithelial-epithelial cell interactions. Since the loss
of CDH1 is a characteristic of invasive lobular breast cancer33,
a strong positive correlation between CDH1 and the epithelial-
epithelial interactions does indicate good survival. On the
other hand, positive correlations ofMKI67with epithelial-epithelial
interaction and T-cell-epithelial cell interaction in group 7 (Sup-
plementary Fig. 3b) indicate poor survival, as expected52. Inter-
estingly, GATA3 is negatively correlated with T-cell-epithelial cell
interaction in group 7, a cell-cell interaction signature for poor
survival. However, it is positively correlated with epithelial-
epithelial interaction in group 1 with good survival.

While it is true that the cost and time of the multiplex imaging
platform currently do not allow live-time assistance to clinicians
with precision treatment, this technology is highly reproducible
and futuristic. It has already been used for the diagnosis of other
diseases like leukemia53. This technology has provided informa-
tion on disseminated tumor cell phenotypes that frequently
deviate from the clinical disease subtype54. It also advanced our
understanding of the intra-tumor heterogeneity and how the
interactions among different cell types in tumors and tumor
microenvironments affect patient outcomes15,16,55. It is expected
that in the near future, with the reduction of cost and time and
assistance of AI tools and user-friendly computational tools, such
technologies will eventually be adopted by pathology and be more
informative to clinicians.

In summary, the imaging cytometry data at the single-cell
resolution has enabled an unprecedented opportunity to explicitly
study cells in the tumor and tumor microenvironment, as well as
their interactions. By taking advantage of CP, TMI and TCI
features, novel survival subtypes are identified in breast cancers,
each with distinct profiles and more molecular and survival
homogeneity. Moreover, this subtyping system allows us to
identify good survival subpopulations in TNBC and bad survival
subpopulations in luminal A cancers, with robust biomarkers in
multiple population cohorts. The work lays down the foundation
to integrate single-cell resolution information for survival pre-
diction at a large population scale. It has the potential to improve
breast cancer prognosis prediction and patient-stratified treat-
ment in the future.

Data availability
The breast cancer imaging data supporting this study (image mass cytometry data,
phenograph neighborhood information, clinical features and patient prognosis outcome)
are available online at Zenodo per the original study (https://doi.org/10.5281/zenodo.
3518284)56. The source data for generating the main and supplementary figures are
available at the Zenodo repository (https://doi.org/10.5281/zenodo.10038601)57. The
data for validation of the results are available at the TCGA portal (https://www.cancer.
gov/ccg/research/genome-sequencing/tcga) for TCGA-TNBC data and at cbioportal
(https://www.cbioportal.org/study/summary?id=brca_metabric) for METABRIC data.

Code availability
The source code to generate the figures and feature datasets for this work is available at
https://github.com/lanagarmire/BC_imaging57.
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