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Abstract

Background Identifying clusters of diseases may aid understanding of shared aetiology,
management of co-morbidities, and the discovery of new disease associations. Our study
aims to identify disease clusters using a large set of long-term conditions and comparing
methods that use the co-occurrence of diseases versus methods that use the sequence of
disease development in a person over time.
MethodsWe use electronic health records from over ten million people with multimorbidity
registered to primary care in England. First, we extract data-driven representations of 212
diseases from patient records employing (i) co-occurrence-based methods and (ii)
sequence-basednatural languageprocessingmethods. Second,weapply thegraph-based
Markov Multiscale Community Detection (MMCD) to identify clusters based on disease
similarity at multiple resolutions. We evaluate the representations and clusters using a
clinically curated set of 253 known disease association pairs, and qualitatively assess the
interpretability of the clusters.
Results Both co-occurrence and sequence-based algorithms generate interpretable
disease representations, with the best performance from the skip-gram algorithm. MMCD
outperforms k-means and hierarchical clustering in explaining known disease associations.
We find that diseases display an almost-hierarchical structure across resolutions from
closely to more loosely similar co-occurrence patterns and identify interpretable clusters
corresponding to both established and novel patterns.
Conclusions Our method provides a tool for clustering diseases at different levels of
resolution from co-occurrence patterns in high-dimensional electronic health records,
which could be used to facilitate discovery of associations between diseases in the future.

Multimorbidity, defined as the co-occurrence of two or more long-term
conditions (LTCs) in one person, poses a significant challenge to health
systems worldwide1,2. Having multimorbidity is associated with poorer
quality of life3, increased mortality4, greater use of healthcare services, and
higher healthcare costs5,6. As a binary label, multimorbidity is a crude
marker of medical complexity7 but there is growing evidence that distinct
profiles or clusters of LTCs may be associated with differences in
outcomes8–10. Although some clusters of co-occurring conditions are clini-
cally well-established, for example, a cluster of conditions representing
metabolic syndrome11,12, the evolution of analysis methods for big data

opens up the use of routinely collected electronic health records (EHRs) for
identifying clusters of less commonly occurring conditions. The anticipated
benefits of the identification of disease clusters are summarised by Whitty
and Watt (2020), as an opportunity “to uncover new mechanisms for dis-
ease; to develop treatments; and to reconfigure services to better meet
patients’ needs.13”

Over the last decade, many studies have been conducted to identify
clusters of LTCs which co-occur together14,15. Among previous studies,
mental health and cardio-metabolic conditions have consistently emerged
as the two most replicable clusters14,15. However, current approaches to
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Plain language summary

Havingmultiple long-termconditions is linked
to worse health, poorer quality of life, and
difficulties accessing healthcare. Identifying
groups, or ‘clusters’of diseases that aremore
likely to occur together in one person may
help healthcare services to better meet the
needs of those with multiple conditions. Our
study aims to identify clusters of similar dis-
eases, based not only on the diseases
someone has now, but on the order in which
they developed them.Wecompare a range of
methods and find that our strategy performs
best at explaining diseases that are already
known tobe linked,whilstalso identifyingnew
clustersof diseases.Thesemethodscouldbe
used in future to better understand how dis-
eases occur together, which could help the
design of more efficient healthcare services.
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detect disease clusters suffer from limitations both in the use of data sources
and in the approach to capture the multi-level complexity of disease asso-
ciations. Firstly, most studies have used a relatively small number of LTCs
(median=16 and range=10-99 for the 51 studies reviewed by Busija et al.
(2019)) with coarse disease definitions (e.g., Diabetes, rather than con-
sidering separate subtypes). Secondly, most studies obtain only one clus-
tering (with usually fewer than ten clusters), which may limit identification
of associations between less common conditions14. As is the case with
unsupervised methods, it is unlikely that there is one single true config-
uration of clusters, but rather that a sequence of clusterings, from fine
resolutions with many clusters to coarse resolutions with few clusters, may
reveal more nuanced associations, and serve different purposes. Indeed,
multiscale graph-based clustering methods, such as Markov Multiscale
Community Detection (MMCD), enable the identification of clusters at
different resolutions directly from the structure of the data, without the need
to pre-specify the number of clusters or impose a hierarchical structure16–18.

Recently, natural language processing (NLP)methods have emerged as
a promising approach for handling the high-dimensional data found in
EHRs19–21. When trained on word sequences in natural language, these
predictivemodels learn a vector representation for each word, referred to as
aword embedding, which captures semantic and syntactic characteristics of
each word using the context in which it is used in text. In an analogous
fashion, such models can be applied to the coded data in EHRs, where
medical codes are words and EHRs are analogues to documents, to generate
disease embeddings that capture information from their occurrence and the
sequences observed in real data19–23. The disease embeddings can then be
used to calculate the similarity between diseases for use in clustering.
However, it remains unclear whether NLP methods incorporating addi-
tional information from the sequence of diseases recorded over time pro-
duce substantively different clusters to those obtained solely from co-
occurrence-based methods, such as Multiple Correspondence Analysis
(MCA), a dimensionality reductionmethod which has been used in several
previous studies of multimorbidity clustering24–26.

In this study, we aim to identify clusters of diseases from EHR data in
an unsupervised manner, combining two recent approaches. Firstly, we
generate disease representations applying two methods: one based only on
co-occurrence (MCA), which is compared to newer NLP embedding
methods that make use of code sequences. Secondly, we employ the mul-
tiscale graph-based clusteringmethod ofMMCD to identify disease clusters
at different levels of resolution, based on the similarity of the obtained
disease embeddings and compare against the k-means and hierarchical
clustering algorithms commonly used in studies of disease clustering14. We
apply thesemethods to a large and representative primary care EHRdataset
of over 10 million patients in England and evaluate the resulting disease
clusters to demonstrate that they provide clinically interpretable insights
into disease associations.

Methods
Data sources and data cleaning
We used the Clinical Practice Research Datalink (CPRD) Aurum dataset, a
nationally representative source of general practice (GP) data in England27.
We included all patients aged 18 years or over, registered to aGP practice in
CPRD Aurum between 1st January 2015 and 1st January 2020. Patients
were censored at the earliest of date of deregistration, date of death, date of
last collected data extraction from the practice, or the 1st January 2020. Any
codes that were recordedor observed after the censoring datewere excluded
(see Supplementary Methods for details). Patients with two or more of the
diseases defined below were included. Data cleaning rules for variables,
including socio-demographics, are explained in detail in the Supplementary
Methods.

Disease definitions
Diagnostic codes are recorded in CPRD asMedcodes. These are entered by
clinicians during clinical consultations and converted into a numeric code,
for example, the term ‘Allergic asthma’ as Medcode ID 1483199016. We

translated codes to a corresponding set of 212 LTCs. These were based on
publicly available acute and chronic disease code-lists developed for the
CALIBER study, where each list was developed by a panel of clinicians with
expertise in the disease area28. Of the original 308 diseases, we used a subset
of 211 conditionswhichwere selected as representing chronic conditions by
Head et al. (2021)29. As an example, the diagnostic codes representing
‘Allergic asthma’ and ‘Exercise induced asthma’ are grouped under the
disease category of asthma. We reviewed the code-lists and supplemented
them with an additional disease of chronic primary pain as a prevalent
condition often included in multimorbidity studies (see Supplementary
Methods)30,31,32. Diseases were ordered in sequences from earliest to latest
according to timestamp of the observation, for example, a patient record
might read sequentially as: “asthma, asthma, type 2 diabetes, hypertension,
asthma, hypertension”. We constructed two sequences for comparison: the
first (“multiple”) used all codes, and the second (“unique”) included a dis-
ease only at itsfirst occurrence (i.e., date of diagnosis); in the example above,
this sequence is simplified as: “asthma, type 2 diabetes, hypertension”.
Where two codes had the same timestamp, we randomly ordered the cor-
responding codes.

Generating disease embeddings
Figure 1 summarises the steps of our pipeline from data processing to
clustering. We compared four different methods to create disease embed-
dings. As a baseline approach used previously in multimorbidity research,
we used MCA25,26. Correspondence analysis (CA) is a class of methods
which aim to reduce the dimensionality of binary or categorical data, ana-
logous to Principal Component Analysis for continuous data, by mini-
mising the chi-squared distance between observed and expected values
based on the global co-occurrence matrix, or Burt matrix33–35. MCA is an
extension of CA to two or more variables and has an advantage of allowing
supplementary variables to be added which do not contribute to the cal-
culation of the variance34. We applied MCA to the disease co-occurrence
matrix, using the MCA algorithm implemented in Stata version 17.0
(StataCorp)36.

We compared MCA to three popular NLP word embedding models:
the word2vec models using continuous-bag-of-words (CBOW) and skip-
gram (SG)37, and Global Vectors (GloVe)38. CBOW and SG are related
methods which use neural network architectures: in the case of CBOW, the
model predicts a target word given a surrounding context window, whereas
in SG, the model predicts the context given a target word37. In contrast,
GloVe incorporates matrix factorisation of global co-occurrence statistics,
combined with a local window38. Applied to text, these models are parti-
cularly effective at capturing semantic and syntactic word analogies, for
example, capturing the relationship of ‘king is to queen as man is to
woman’38. In each case, we compared the default hyperparameter values of
the models to values we hypothesised might better represent the smaller
vocabulary and relatively short sequences (in comparison to the documents
forwhich themethodswere originally developed).We then selected the best
performing model according to our evaluation metrics below.

For CBOWand SG, we used the word2vecmodel implemented in the
gensim package for training on the sequences of all 10.5 million patients39.
We compared vector sizes of 10 and 30, window sizes of 2 and 5, negative
sampling of 2 and5, anddown-sampling of frequent diseases comparing the
default of 0.001 to no down-sampling. For GloVe, we used the glove-python
implementation and compared a default window size of 5 to values of 2, and
learning rate of 0.05 to values of 0.01 and 0.140.We also testedmodels over a
range of epochs as detailed in the Supplementary Methods.

Evaluation of embeddings
We evaluated our embedding methods using a curated set of 253 known
disease association pairs. These were created by three co-authors with a
clinical background, TB, JC, and DS, based on the 212 available diseases,
using the British Medical Journal Best Practice guidelines and clinical jud-
gement as detailed in the Supplementary Methods41. For each embedding
model we proceeded as follows: for each disease d1 in the set of known
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disease association pairs, we calculated the percentage of known associated
diseases (d2… dN) that were in the set of ten most similar diseases of d1 in
terms of cosine similarity computed from the embedding. Similar approa-
cheshave beenused by other authors, with Solares et al. (2021) using a range
of neighbourhood sizes from three to 2021. Beam et al. (2019) used bootstrap
sampling of the similarity distribution for each condition, and assigned
conditions if in the top 5% of the distribution of most similar conditions,
which is roughly equivalent to use of the top ten conditions in our case
(given 212 conditions)23. We checked the robustness of our evaluation by
comparing different thresholds of neighbourhood sizes of two, five, and 20.

Markov Multiscale Community Detection
Tocluster the selected disease embeddings,we usedMMCD.Thefirst step is
to construct a similarity graph of diseases, a sparsifiedweighted graphwhere
the diseases are the nodes of the graph and the weights represent the
similarity between the embedding vectors. To construct the graph from the
data,we calculated the pairwise cosine similaritymatrix S for all diseases and
followed the normalisation approach of Altuncu et al. (2019), by calculating
the distance matrixD ¼ 1� S, applying max normalisation to give D̂, and
then calculating the normalised cosine similarity as Ŝ ¼ 1� D̂42. This
produces a dense similarity matrix, which is then sparsified to transform it
into a similarity graph. This sparsification is a key pre-processing step in
MMCD as it removes edges with weaker associations. Although simple
thresholding based on weights was originally applied in this step, it is not
robust to noise and does not capture well the inhomogeneities in the
similarities in the data. Hence, several methods have been proposed for this
step using global constructions that involve the minimum spanning tree
(MST), which contains the collection of edges with minimum weight sum
that fully connect all nodes on the graph, thus ensuring global connectivity.
To this sparse network, edges representing local connectivity are often
added, such as the k-nearest neighbours (kNN) for each node. Recently, Liu
and Barahona (2020) demonstrated improvement on the kNN graph by
using continuous kNN (CkNN)18. In CkNN, for distance di,j connecting
nodes i and j, and where dk(i) and dk(j) are the distances to the k-th nearest

neighbour of i and j, respectively, then the edge is retained if:

d i; j
� �

< ∂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dk ið Þdk j

� �q
ð1Þ

where ∂ is a parameter that can be varied to alter the sparsity of the network.
In our case, we hold ∂ constant at a value of 1, but vary the value of k; as
shown by Liu and Barahona (2020), the MMCD algorithm is relatively
robust todifferentparameterisations18.We selected aCkNNvalueof ten, but
comparison of CkNN values of five, fifteen and twenty resulted in similar
partitions.

To this sparsened undirected network, we then appliedMMCD, using
the pygenstability module in Python17,43,44 which models a random-walk
across the network, and evaluates subgraphs of the original graph over
which the Markov dynamics is contained over a time t that acts as a scale.
The natural scanning over scales performed by the diffusion on the graph
reveals larger communities (i.e., coarser clusterings) as the scale t is
increased17. For details of themethod and its applications seeDelvenne et al.
(2010) and Arnaudon et al. (2021)17,43. At each time step, we optimise the
cost function 2000 times using the Leiden algorithm45, and calculate the
normalised variation of information (NVI), an information theoretic
measure for comparing cluster partitions, where 0 indicates identical par-
titions and 1 indicates dissimilar partitions46. The algorithm then selects
partitions that have low values of theNVI across scales and alsowith respect
to the Leiden optimisation, using the automated scale selection algorithm
developed by Schindler et al. (2023) which smooths the NVI to identify
persistence across scales47. Models were run over aMarkov scale aiming for
between 4 and 30 clusters, using 500 scale steps, 2000 optimisation eva-
luations and select 400 optimisations to compute the NVI at each scale44.

Benchmarking and evaluation of clusters
As a benchmark, we compared the cluster partitions derived fromMMCD
to k-means and hierarchical clustering using Ward’s method, as baselines
widely used in multimorbidity research14. We compared to the same

Fig. 1 | Pipeline for generating disease clusters from Clinical Practice Research Datalink (CPRD) data.

https://doi.org/10.1038/s43856-024-00529-4 Article

Communications Medicine |           (2024) 4:102 3



number of clusters as identified in MMCD. In contrast to MMCD, which
used the cosine similaritymatrix, thesemethods were applied directly to the
disease embeddings as input features. We implemented k-means with the
Lloyd algorithm, iterating 1000 times with different random centroid seeds.
We used scikit-learn package for both k-means and Ward’s clustering
algorithms48.

To enable comparison acrossmethods, we calculatedmetrics related to
the interpretability of clusters. As an intrinsic measure of the relevance of
disease clusters to patterns of diseases in patients,wefirst randomly sampled
100,000 patients with replacement. For each patient, we then randomly
sampled twodifferent diseases from their set of all diseases, once per patient.
We assigned patients to a disease cluster if both diseases were contained
within the same cluster. Of these patients {P1,… PN} assigned to a disease
cluster, we calculated ametric of the pairwise Jaccard similarity between the
set of twodiseases {d1, d2} for each patient in the same cluster, and report the
arithmetic mean of all possible pairs.

To compare between the three clustering algorithms for partitionswith
the same number of clusters, we used information from the 253 known
disease pairs. We expect that in a more interpretable clustering solution,
known disease pairs are more likely to be assigned to the same cluster. To
correct for the bias that favours unbalanced and uninformative clustering
solutions with all diseases assigned to a single cluster, we considered the
observed assignment of known disease pair edges within clusters to that
expected, assuming the contingency table in Table 1.

Following from Table 1, we calculated the odds ratio for a known
disease pair edge being intra-cluster compared to inter-cluster:

OR ¼ DPintra × Einter

DPinter × Eintra
ð2Þ

A higher OR here can be interpreted as higher odds that a known
disease pair edge is found in the same cluster given the cluster distribution
for a partition with the given number of clusters, representative of more
balanced and informative clusters.

Comparison to ICD-10 classification
We compared the clusters to the system a condition is assigned to in the
CALIBER code-lists, which is corresponds closely to the classification of
chapters in ICD-1028, using the normalised variation of information (NVI).
Each disease is assigned to one of sixteen systems, for example, asthma is
assigned under ‘Diseases of the Respiratory System’, similar to the chapters
used in ICD-10.

We used Python version 3.8.10 and Pandas version 1.3.5 for data
manipulation and management49,50. Sankey diagrams were created in
Plotly51.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Description of the data
Of 15,256,726 patients aged 18 years or older registered in CPRDAurum in
England from 1st January 2015 to 1st January 2020, there were 10,579,232
(69.3%) with at least two of a pre-defined set of 212 LTCs and were thus
included in the study. Characteristics of the eligible cohort are displayed in
Supplementary Table 1. The median age was 52 (IQR: 36–68) years. There

were more females thanmales (53.4% vs 46.6%) with a small number (263)
recorded in CPRD as “indeterminate” gender. The majority (73.0%) of
people were recorded as being of White ethnicity, with 13.9% having no
recordeddata on ethnicity. Therewas a roughly even split between deciles of
socioeconomic deprivation (measured by the Index of Multiple Depriva-
tion), but with relatively fewer in the most deprived decile (9.1%). For each
patient, we constructed two sequences for comparison: the first (multiple)
used all diagnostic codes representing the 212 LTCs, and the second
(unique) included a code only at its first occurrence. Using the unique code
sequences, the median number of codes per patient was 5 (IQR: 3–9); using
multiple code sequences, the median was 13 (IQR: 6–33) (Supplementary
Table 1 and Supplementary Fig 1). Raised total cholesterol had the highest
code occurrence of unique code sequences (5,408,007) and hypertension
had the highest code occurrence including multiple code sequences
(29,299,147) (Supplementary Table 2).

Disease embeddings
Wegenerated twodifferent disease embeddings (see Fig. 1).ApplyingMCA,
as shown by the scree plot (Supplementary Fig 2), the first two dimensions
explained a large amount of the variance: 58.3% for thefirst, and5.5% for the
second. As expected, the first dimension largely reflected increasing age and
number of conditions (see Supplementary Fig 3). To evaluate our embed-
dings, we developed a set of 253 clinically well-established disease pairs.
Using this set of disease pairs, 30 dimensions from MCA resulted in the
optimal number of disease pairs being assigned in the top ten nearest
neighbours to eachdisease basedon the cosine similarity calculated from the
MCA embeddings (see Methods and Fig. 2).

We next generated embeddings using three NLPmodels: CBOW, SG,
andGloVe, trained on each of the unique andmultiple code sequences from
all 10.5 million patients. We tested a range of hyperparameter values, and
the optimal hyperparameters were chosen for each of the threeNLPmodels
using the same evaluation strategy as for MCA (see Supplementary
Tables 3–6). When evaluated against the curated set of 253 known disease
pairs, GloVe and SG had similar performance to MCA-30 for unique code
sequences, with lower performance for CBOW (Fig. 2). The NLP models
had comparatively better performance when run on multiple code
sequences versus unique code sequences, indicating that additional infor-
mation is provided by the sequence of reappearing codes. In a sensitivity
analysis, model performance was similar when comparing against the
nearest two, five or twenty neighbours (Supplementary Fig 4). Overall, SG
withmultiple codes (SG-M) showed the best performance across allmodels.
We thus selected SG-M with an embedding dimension of 30 as the best-
performing NLP embedding and compared it to the best co-occurrence
embedding (MCA-30) for clustering.

Clustering of disease embeddings
We applied a multiscale clustering algorithm (MMCD) to the cosine simi-
larity between both disease embeddings (MCA-30 and SG-M). Using the
MCA-30 embeddings, MMCD identified optimal clusterings at three
resolutions representing 23, nine, and six clusters (Fig. 3). Using the SG-M
embeddings, optimal clusteringswere identified at 25,fifteen, seven, andfive
clusters andwe selected thefirst three of these for further evaluation (Fig. 4).
In both cases, Sankey diagrams demonstrated that most conditions in a
cluster remained in the same cluster across levels of resolution
(Figs. 5 and 6). This indicates a quasi-hierarchical pattern of similarity
between diseases, with smaller groups of diseases showing greater similarity
and, in turn, getting integrated into broader disease groups with a looser
observational similarity.

Comparison to other clustering methods
To evaluate our clustering method, we compared the clusters derived from
MMCD to two clustering algorithms widely used in studies of disease
clustering: k-means and Ward’s hierarchical clustering14. In each case, we
selected the same corresponding number of clusters to those fromMMCD.
For both embedding methods, k-means, and hierarchical clustering

Table 1 | contingency table of assignment of known disease
pairs to clusters

Intra-cluster Inter-cluster

Known disease pair edges DPintra DPinter

Other disease pair edges Eintra Einter
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Fig. 3 | Selection of optimal clusterings from Markov Multiscale Community
Detection using MCA-30 embeddings. The optimal clusterings at 23, nine and six
clusters. The disease similarity graphs obtained with CkNN for the three optimal
clusterings are shown above, where the nodes correspond to diseases, coloured by
cluster assignment, and edges to strong similarities. In the trace below, the shaded
areas correspond to partitions across scales, where darker areas correspond to more

robust partitions. The NVI (green line) represents the variation in the assignment of
diseases to clusters within each Markov time step, t, and the purple line represents
the block NVI across t; minima of these traces represent robustness within and
across scales, respectively (see Methods). MCA-30 = Multiple Correspondence
Analysis retaining 30 dimensions.

Fig. 2 | Percentage of disease associations from a
curated set of 253 known disease pairs that are
assigned to the ten nearest neighbours based on
cosine similarity for each disease embedding. A
data table with the exact values underlying the figure
is given in Supplementary Table 9.
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produced unbalanced partitions, with a few dominant clusters and some
additional very small clusters containing few diseases. Using our curated set
of 253 clinically established disease associations, we found that known
disease pairswere substantiallymore likely to be assigned to the same cluster
using MMCD (Fig. 7). Furthermore, although randomly sampling any two
diseases from one patient, a patient wasmore likely to have both conditions
assigned to the same disease cluster using hierarchical and k-means clus-
tering, due to the large size of the dominant clusters, they were less likely to
share conditions with other people in the same cluster (Supplementary
Fig 5) across the range of partitions.

Comparison of clusters to ICD-10 chapters
We also compared the MMCD disease clusters to the assignment of the
diseases in the corresponding sixteen chapters of the ICD-10 medical tax-
onomy by computing the NVI, where NVI = 0 indicates perfect agreement
and NVI = 1 corresponds to maximum disagreement. With the MCA-30
embeddings, the similarity to the ICD-10 chapters ranged fromNVI = 0.60

for 23 clusters to NVI = 0.75 for six clusters (Supplementary Table 7A).
With the SG-Membeddings, theNVIwas slightly lower than that forMCA-
30, ranging from 0.55 for 25 clusters to 0.68 for seven clusters (Supple-
mentary Table 7B). These results indicate a substantial mismatch in the
groupings of diseases within the MMCD clusters compared to the ICD-10
chapters, reflecting the difference between data-driven co-occurrence pat-
terns and a clinical taxonomy.

Descriptive evaluation of clusters
Given its higher performance, we considered only the MMCD clusterings
for further descriptive evaluation. To aid visualisation and interpretation,
clusters were assigned a descriptive label aiming to represent most of the
diseases in the cluster. Figures 5 and 6 show Sankey diagrams capturing the
quasi-hierarchical organisation of the MMCD clusters obtained for both
MCA-30 and SG-M embeddings, whereas Figs. 8 and 9 provide a more
detailed visualisation of the contents of the disease clusters across
resolutions.

Fig. 4 | Selection of optimal partitions from Markov Multiscale Community
Detection using SG-M embeddings. The optimal clusterings contain 25, fifteen
seven, and five disease clusters and we focus on the displayed clusterings with 25,
fifteen, and seven disease clusters. The disease similarity graphs obtainedwithCkNN
for the three optimal clusterings are shown above, where the nodes correspond to
diseases, coloured by cluster assignment, and edges to strong similarities. In the trace

below, the shaded areas correspond to partitions across scales, where darker areas
correspond to more robust partitions. The the NVI (green line) represents the
variation in the assignment of diseases to clusters within each Markov time step, t,
and the purple line represents the block NVI across t; minima of these traces
represent robustness within and across scales, respectively (see Methods). SG-M =
Skip-Gram using Multiple code sequences.
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Clusters fromMCA-30 embeddings
At the 23-cluster resolution, several well-defined clusters were identified,
including a cluster representing the established metabolic syndrome52

(including obesity, raised cholesterol, hypertension, diabetes, and dia-
betes complications), forms of stroke, autoimmune and inflammatory
conditions, and liver conditions (Fig. 8). Many malignancies clustered

together at this fine resolution, except for breast, gynaecological and
thyroid primary malignancies, which clustered separately, and primary
malignancy of the skin and prostate, which clustered separately along
with urological conditions. As would be expected from similarities drawn
from co-occurrences in data, some clusters reflected diseases common in
particular age groups, for example a cluster of diseases affecting younger

Fig. 5 | Sankey diagramof clusters at resolutions of
23, 9, and 6 clusters, using MCA-30 embeddings.
Clusters within a single partition are represented by
nodes of the same colour. Lines connecting nodes of
different colours are weighted according to the
number of conditions in each cluster and represent
the number of conditions that are in the corre-
sponding cluster at a coarser resolution. CKD =
Chronic Kidney Disease; HF = Heart Failure; LD =
Learning Disabilities; MH = Mental Health; MSK =
Musculoskeletal; MCA-30 = Multiple Correspon-
dence Analysis retaining 30 dimensions.
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people (including acne, dysmenorrhoea, polycystic ovarian syndrome,
and allergic and chronic rhinitis), and another cluster with diseases more
common in older people (including dementia, hearing loss and visual
impairment).

The sequence of clusterings at multiple resolutions revealed that most
of the disease clusters at the 23-cluster resolution integrate quasi-

hierarchically at coarser resolutions (Fig. 5). Notably, the metabolic clus-
ter displayed the strongest stability, with the same conditions clustered
together across all resolutions. However, some diseases separated from their
assigned clusters across different scales. For example, cysticfibrosis (CF)was
present in an ‘Autoimmune and inflammatory’ cluster at a resolution of 23
clusters but joined an ‘Alcohol, haematological and liver’ cluster at coarser

Fig. 6 | Sankey diagramof clusters at resolutions of
25, 15, and 7 clusters, using SG-M embeddings.
Clusters within a single partition are represented by
nodes of the same colour. Lines connecting nodes of
different colours are weighted according to the
number of conditions in each cluster and represent
the number of conditions that are in the corre-
sponding cluster at a coarser resolution. GI = Gas-
trointestinal; HF = Heart Failure; LD = Learning
Disabilities; MH = Mental Health; MSK = Muscu-
loskeletal; SG-M = Skip-Gram using Multiple code
sequences.
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resolutions, which may reflect the challenge of assigning a multi-system
disease such as CF to a consistent set of clusters.

Clusters from SG-M embeddings
The clusters derived from the SG-M embeddings, which consider not
only co-occurrence patterns but also information contained in the mul-
tiple code sequence, were different to those fromMCA-30. At the fine 25-
cluster resolution, well-defined clusters include, for example, one repre-
senting stroke sub-types and another representing heart failure, valvular,
and arrhythmogenic cardiac conditions (Fig. 9). As with MCA-30, a
metabolic cluster including diabetes and obesity was observed, but
hypertension was clustered instead with renal diseases, and both Raised
Total Cholesterol and Raised LDL-C clustered separately with entheso-
pathy, hearing loss, and skin cancer. We found instances of clustering

according to underlying causal mechanisms: two separate autoimmune
clusters are present in this clustering, one including rheumatoid arthritis
and related diseases, and another including spondyloarthropathies and
inflammatory bowel disease which are strongly associated with the HLA-
B27 gene53.

The quasi-hierarchy of the partitions across resolutions in SG-M is less
strong than for MCA-30 (Fig. 6), reflecting the additional complexities
contained in the contextual information of sequences captured by NLP
embeddings. For example, thyroid cancerwas clusteredwith thyroid disease
and learning disabilities at the 25-cluster resolution,which could be partially
attributed to a well-established link between thyroid disease and Down’s
syndrome54. At the fifteen-cluster resolution, thyroid disease and thyroid
cancer joined a cluster with melanoma, testicular, and brain cancer. While
people with melanoma may be at higher risk of developing thyroid

Fig. 7 | Odds ratios for assigning a known disease
pair to the same cluster compared to the expected
distribution of 253 knowndisease pairs. A displays
results using the MCA-30 embeddings and (B)
displays results using the SG-M embeddings. Data
tables with the exact values underlying the figure are
given in Supplementary Tables 10 and 11.
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malignancy55, other associations within this cluster were unexpected. To
investigate this cluster further, we compared the observed to expected ratio
of co-occurrence for each pair of conditions in the cluster (Supplementary
Table 8). This demonstrated a stronger than expected ratio of co-occurrence
of thyroid disease and thyroid malignancy (9.29), of primary brain cancer
with melanoma (2.29), and of thyroid cancer with melanoma (2.35). Tes-
ticular cancer had a lower ratio of co-occurrence with thyroid disease and
thyroid cancer (0.45 and 0.89, respectively), but higher-than-expected ratio
of co-occurrence with brain cancer and melanoma (1.96 and 1.17, respec-
tively), demonstrating that appearance together in a cluster needs to be
examined inmore detail, as it does not necessarily indicate that each disease
is directly associated with every other disease in the cluster.

Discussion
Our study presents an application of an unsupervised, multiscale graph-
based clusteringmethod (MMCD) to vector embeddings of diseasesderived
from EHR data of 10.5 million patient records. Our analysis produces
interpretable clusters of diseases fromfine to coarse resolutions, basedon the
intrinsic patterns of co-occurrence and sequences of diseases in people with
multimorbidity. We found that MMCD outperformed k-means and hier-
archical algorithms in clustering pairs of diseases known to be associated
using disease embeddings generated from both co-occurrence-based MCA
and sequence-based NLP methods. We also find optimal clusterings over
multiple resolutions, highlighting the advantages of considering a range of
levels of coarseness.Although a full descriptionof the relationships of all 212
diseases was outside the scope of this study, we demonstrate the power of
these methods for classifying multimorbidity clusters at different resolu-
tions, which may help identify more fine-grained relationships in future
research. We also provide access to the disease embeddings and cluster
assignments, as an open resource for other researchers.

Clusters derived from MCA-30 and SG-M embeddings differed, but
both pick upmeaningful patterns of diseases that are clinically interpretable.

In general, clusters from SG-M were less interpretable than those from
MCA-30, which is likely to reflect the additional contextual information
captured in disease sequences, beyond those captured by co-occurrence
alone. It may also reflect differences in coding frequency between diseases,
with previous work indicating that some diseases are more likely to have
recurrent codes, particularly thosewithfinancial incentives attached to their
management56. Although there is no gold-standard ground truth for disease
clusters to be compared to, conditions that are known to form part of the
well-establishedmetabolic syndrome52 clustered together across resolutions
in MCA-30, while other clusters represented conditions with similar
underlying causalmechanisms, for example, those associatedwith theHLA-
B27 gene53. In contrast, other clusters represented LTCs that may occur at
similar ages, for example, clusters including dementia and cataracts from
both MCA and SG-M derived embeddings, conditions which are more
prevalent in older people. The clusterings may therefore capture different
factors explaining disease co-occurrence, related to genetics, demographics,
or direct causal relationships.

Finer resolutionswithmore clusters are likely tobe themost valuable in
identifying novel disease associations and, at these resolutions, we found
more unexpected disease patterns that suggest avenues for further investi-
gation, for example, the grouping of thyroid cancer, thyroid disease, mela-
noma, testicular and brain cancer in SG-M. However, as we found, the
cluster assignment does not necessarily indicate that each disease is directly
associated with every other disease (Supplementary Table 8). This may in
part be due to a distinguishing feature of sequence-basedmodels compared
to co-occurrence-based models, whereby the representation is determined
not only by direct co-occurrence but by shared associations of two diseases
with other diseases, capturing indirect information which is less obvious.

The clusters demonstrate a remarkably hierarchical structure with
MCA-30, and to a lesser extent, with SG-M.This is an intrinsic feature of the
data, rather thanMMCD,which does not impose any hierarchical structure
on the sequence of clusterings. Our findings suggest that using hierarchical

Fig. 8 | Assignment of diseases to clusters at resolutions of 23, 9, and 6 clusters,
using MCA-30 embeddings. Arrows assigned between clusters if at least two
conditions, or ≥20% of conditions within a cluster are assigned to a cluster at a

coarser resolution. CKD = Chronic Kidney Disease; HF = Heart Failure; LD =
Learning Disabilities; MH = Mental Health; MSK = Musculoskeletal; MCA-30 =
Multiple Correspondence Analysis retaining 30 dimensions.
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clustering algorithms that enforce a hierarchical structure may mask
meaningful variation in the structure of the data over different resolutions.
For example, in both MCA-30 and SG-M embeddings, CF appeared with
different diseases across resolutions. As a condition linked to both liver
disease57 and higher prevalence of anxiety and depression58, its separation at
different resolutions likely represents the challenge of assigning a multi-
system disease to a single branch of hierarchical clusters. Our multi-
resolution approach thus provides the advantage of allowing assessment of
the stability of disease assignment to clusters across resolutions as ameans of
drawing further information.

Some studies have evaluated the quality of embeddings by comparing
clusters to knownhierarchical disease taxonomies, such as ICD-10, which are
predominantly based around organ systems20,21. We found that our disease
clusters differed substantially to the classification of the ICD-10 chapters,
highlighting the disparity with systems-based classifications and suggesting
that hierarchical taxonomies are not a suitable method by which to evaluate
the quality of disease similarity based on co-occurrence or sequence.

A strength of our work is the direct comparison of co-occurrence to
sequence-based embedding methods. With MCA, although practitioners
often retain two dimensions to visualise relationships, we demonstrated
here that this fails to explain a substantial amount of known disease asso-
ciations when using a large set of LTCs.We trialled a range of popular word
embedding methods and given the applications of these methods in
healthcare data are still relatively new, hypothesised that optimal hyper-
parameters for text data might not be optimal for disease code sequences,
which do not follow the same syntactic relationships. We therefore
experimented with a range of hyperparameters and found optimal ranges
outside of the default values for standard text applications (see Supple-
mentary Tables 3–6). When using unique code occurrences, both GloVe
and SG performed similarly toMCA-30 in identifying known associations,

whilst CBOW’s poorer performance was in line with previous reports in
both text and healthcare data37,59. That NLP models and MCA produce
similar results when using unique code sequences is unsurprising given the
common basis in using disease-disease co-occurrence. Where NLP models
showed improvement (see SG-MinFig. 2)waswhenusing longer sequences
that included recurrent codes in the record, thus utilising additional infor-
mation beyond direct co-occurrence. Previous studies have shown that
sequence-basedmodels have superior predictive performance for a range of
outcomes19,60, but we additionally found that the generated embeddings also
better reflect clinically known disease associations. Applied to text, NLP
methods such asGloVe andword2vec are effective at word analogy tasks, as
compared with methods using co-occurrence alone. However, in a disease
context, there are no clear equivalent disease analogy tasks, which might
explain the relatively small improvement of SG-M over MCA.

More recent NLP architectures, including transformers such as BERT,
make use of the full sequence of medical codes, and incorporate attention
mechanisms that can retain longer-term dependencies often lost using
methods such asword2vec61. Transformer architecturesmay also be used to
generate word embeddings, but when applied to EHR data, require com-
putationally intensive pre-training that was outside the scope of the current
work19,60. Furthermore, the embeddings generate by BERT for a disease are
dependent on the surrounding context (i.e., the other diseases which occur
in sequence in a person) which adds complexity to their interpretation in a
health context and to the identification of a single disease representation.

To help alleviate the lack of a gold-standard set of disease clusters, we
created a list of established disease pairs and used these to compare across
methods,findingMMCDtoperformsubstantially better thanbothk-means
and hierarchical clustering, particularly at finer resolutions. K-means and
hierarchical clustering both produced unbalanced clusters with a large,
dominant cluster and other smaller clusters of rarely occurring diseases,

Fig. 9 | Assignment of diseases to clusters at resolutions of 25, 15, and 7 clusters,
using SG-M embeddings. Arrows assigned between clusters if at least two condi-
tions, or ≥20% of conditions within a cluster are assigned to a cluster at a coarser

resolution. CKD = Chronic Kidney Disease; HF = Heart Failure; LD = Learning
Disabilities; MH = Mental Health; MSK = Musculoskeletal; SG-M = Skip-Gram
using Multiple code sequences.
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likely due to the high dimensional and noisy nature of the disease repre-
sentations, which is a well-characterised problem affecting many clustering
algorithms62. The effect was more marked for MCA-30, suggesting a
smoothing effect of the SG-M-generated embeddings when compared to
MCA. However, in both cases, MMCD produced more balanced clusters,
likely due to both the sparsification of the network using the MST-CkNN
algorithmand the clustering cost function (Markov Stability),which enables
MMCD to overcome such problems when using highly dimensional data.

The clustering of diseases is seen as a key part of elucidating the
complexity of multimorbidity. Disease clusters may have an important role
in clinical education, acting as heuristics for clinicians to prompt them to
consider the co-existence of other diseases in a cluster, or proactive inter-
ventions to prevent their development. However, from a public health
perspective, it remains open to research how disease clusters can best be
applied, and whether they lead to better identification of shared risk factors
or better prediction of clinical endpoints, compared with use of a person’s
individual diseases. For healthcare organisations, developing services that
target clusters of co-occurring diseases might hypothetically help to mini-
mise fragmentation of patient care, reducing the need for those with mul-
tiple conditions to seemultiple specialists63. However, previous research has
highlighted the vast number of unique disease combinations in the
population64 and further work is needed to understand the relationships
between disease clusters and people, and whether clusters can reduce this
complexity in a manner that is meaningful to health service design.

In future, we plan to extend our methods to cluster patients directly,
using approaches analogous to topic modelling and document embeddings
in NLP65,66, specifically using large language models, such as BERT, which
may provide additional insights into the similarity of disease sequences
across people21,60,67. Although previous studies have evaluated the associa-
tion of disease clusters with patient outcomes10,68 we believe that evaluating
outcomes should be reserved for clusters of patients, rather than clusters of
diseases. Indeed, our preliminary assessment showed that disease clusters
are not directly representative of patients, as relatively few patients were
allocated to a singledisease cluster, evenwhenonly twoof their diseaseswere
randomly sampled.Various approacheshave been used to assign patients to
disease clusters based, e.g., on a patient having one or more69, two or
more70,71, or three or more72 diseases in a cluster. However, these methods
can assign patients to multiple clusters, an issue that will escalate with a
larger number of clusters, and which can bias assessment of outcomes and
complicate clinical use73. Alternatively, in a similarmanner as can be applied
to generate document vectors, patients could be represented by the sum or
average of their disease vectors.However, it is unclearwhether this approach
is suitable when applied to representations of a person and is a focus for
future research.

With MCA, age was a strong contributor to the first dimension which
explained the largest proportion of variance. Furthermore, some of our
clusters reflected sex differences, such as the clustering of gynaecological and
breast malignancies at finer resolutions. Future work could consider strati-
fication of clustering by age and sex, whichmay increase the ability to detect
associations between less common diseases. Although our study already
used a larger number of diseases (212) than previous studies of multi-
morbidity disease clustering, further increasing the number of conditions or
using individual diagnostic codes (rather than categorising into diseases)
may also increase the ability to detect novel associations at finer resolutions.

A strength of our study is the use of a large and representative sample of
patients registered to general practices in England which enhances the
generalisability of our results27. We used a larger set of LTCs than used
before inmultimorbidity research,makingourfindingsmore representative
of disease patterns amongst patients. Although we experimented with a
range of hyperparameters for our NLP algorithms, it is possible that better-
performing models exist outside the range of hyperparameters tested.
Hyperparameter optimisation could also be performed over our whole
pipeline from generation of the disease representation to clustering. How-
ever, without a ground truth set of clusters, this might risk overfitting our
clusters to represent the known disease associations, which would limit

exploratoryfindings.Althoughour best-performing SG-Mmodel explained
only 56%of the knowndisease pairs, the pairswere not generated to result in
the assignment of all pairs within the top 10 nearest neighbours, and the
number of nearest neighbours that would capture all the disease pairs is
likely to vary according todisease. Indeed, when evaluating instead against a
less strict top 20 nearest neighbours, the percentage of disease assignment
increased to 71% (Supplementary Fig 4).

To compare embedding models, we developed a list of clinically-
established disease associations. However, this list is not exhaustive, and
may be biased towards inclusion ofmore common conditions which have a
stronger evidence base. Furthermore, the combination of conditions
included in theCALIBERstudymay also lead to bias in the embeddings and
the clustering. For example, several unique conditions describe forms of
liver disease and its sequelae (alcoholic liver disease, hepatic failure, cir-
rhosis, portal hypertension, oesophageal varices), which may all represent
the same pathophysiological process, and so inflate similarity metrics
between these conditions. This could explain the prominent separation of
liver diseases on the second dimension in MCA (Supplementary Fig 3).
However, other authors using different data sources and definitions have
found similarly strong clustering of liver-related conditions25. Similarly, the
stability of the metabolic cluster across resolutions in MCA-30 may in part
stem from the inclusion of more diseases of this type in the code-lists (five
diseases representing diabetes and its complications, and four representing
cholesterol and triglycerides).

There are examples where a disease may be classified as both a specific
and non-specific version of the same disease, both of whichmay appear in a
patient’s record. For example, codes for ‘Diabetes: other or not specified’
may be found in a patient’s record in addition to those for ‘Type 2 diabetes’
or ‘Type 1 diabetes’, and similarly ‘Stroke: not otherwise specified’ in
addition to ‘Ischaemic stroke’ or ‘Intracerebral haemorrhage’. In these cases,
the non-specific diseasemay represent use of generic codes used across each
disease subtype, rather than that the disease itself is ‘other’ or unspecified’
and are likely tobe explainedby clinician codingpractices and the specificity
of the available codes. As a result, the embeddings and clusters generated
from routinely collected EHR data as used here reflect not only disease co-
occurrence, but factors related to patients, clinicians, and healthcare
organisations56.

Conclusion
In conclusion, using a representative cohort of over ten million people
registered to general practices in England, we found clusters of diseases
corresponding to both established and novel patterns. Clusters derived
from co-occurrence-based embedding methods tended to be more
straightforward to interpret than those from sequence-based NLP
embedding methods, likely reflecting the additional relationships cap-
tured in disease sequences. Our multi-resolution approach highlights the
nearly hierarchical structure of disease clusters but with notable excep-
tions that indicate the complexity of categorising certain diseases into a
single set of inclusive clusters. Our study demonstrates the promise of
these methods for identifying patterns of disease clusters within highly
dimensional healthcare data, which could be used to facilitate discovery of
associations between diseases in the future and help in optimising the
management of people withmultimorbidity, which is a priority for health
systems globally.

Data availability
The data that support the findings of this study are not openly available due
to the risk of patient identification. Data can be requested from CPRD for
users meeting certain requirements as described here: https://cprd.com/
research-applications. Source data underlying Figs. 2 and 7 can be found in
Supplementary Tables 9-11.

Code availability
The code lists and embeddings generated from this work are available to
download from: https://tbeaney.github.io/MMclustering/74.
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