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Abstract

Background In the era of personalized cancer treatment, understanding the intrinsic
heterogeneity of tumors is crucial. Despite some patients responding favorably to a
particular treatment, othersmaynot benefit, leading to thevariedefficacyobserved in standard
therapies. This study focuses on the prediction of tumor response to chemo-immunotherapy,
exploring the potential of tumormechanics andmedical imaging as predictive biomarkers.We
have extensively studied “desmoplastic” tumors, characterized by a dense and very stiff
stroma, which presents a substantial challenge for treatment. The increased stiffness of such
tumors can be restored through pharmacological intervention with mechanotherapeutics.
Methods We developed a deep learning methodology based on shear wave elastography
(SWE) images, which involved a convolutional neural network (CNN) model enhanced with
attention modules. The model was developed and evaluated as a predictive biomarker in the
setting of detecting responsive, stable, and non-responsive tumors to chemotherapy,
immunotherapy, or thecombination, followingmechanotherapeuticsadministration. Adataset
of 1365 SWE images was obtained from 630 tumors from our previous experiments and used
to train and successfully evaluate our methodology. SWE in combination with deep learning
models, has demonstrated promising results in disease diagnosis and tumor classification but
their potential for predicting tumor response prior to therapy is not yet fully realized.
Results We present strong evidence that integrating SWE-derived biomarkers with
automatic tumor segmentation algorithms enables accurate tumor detection and
prediction of therapeutic outcomes.
Conclusions This approach can enhance personalized cancer treatment by providing non-
invasive, reliable predictions of therapeutic outcomes.

In the fight against cancer, it is well recognized that tumors are highly
heterogeneous and theymight differ considerably not only between tumors
of different types, but also among tumors of the same type or even the same
tumor during progression. As a result, the efficacy of standard cancer

therapies varies, and while some patients respond to a particular treatment,
other patients do not gain any benefit. Consequently, crucial to cancer
therapy is the prediction of a patient’s response to treatment1. Failure of
standard therapies has led to the introduction of a new era of personalized,
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Plain language summary

In personalized cancer treatment, it is
important to understand that not all tumors
respond the same way to therapy. While
some patients may benefit from a particular
treatment, othersmaynot, leading to different
outcomes. This study focuses on predicting
how tumors will respond to a combination of
chemotherapy and immunotherapy.
Specifically, we looked at difficult-to-treat
tumors with very stiff structures. These
tumors can be softened with certain drugs
making them more responsive to treatment.
Wedeveloped a computermethod to analyze
medical images that measure the stiffness of
tumors.Ourmethodwas trainedona largeset
of tumor images and was able to predict how
well a tumor would respond to treatment.
Overall, this approach could improve perso-
nalized cancer treatment using non-invasive
medical imaging to predict which therapies
will be most effective for each patient.
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patient-specific treatments. The basis of these treatments is the identifica-
tion of one or more biomarkers that characterize the state of a particular
tumor. Emerging technologies have been used towards the development of
new biomarkers analyzing mainly the human genome, but only a few of
them have been approved for cancer prediction1.

Apart from genomic analysis, specific aspects of tumor mechanics
could be used as potential predictive biomarkers. It has been well docu-
mented that specific types of stiff, “desmoplastic” tumors with a dense
stroma (i.e., dense extracellular matrix and non-cancerous cells) are hard to
treat and that making them softer through pharmacological interventions
results in improved response to therapy2–5. Specifically, desmoplastic
tumors, such as subsets of breast and pancreatic cancers and sarcomas,
experience tissue stiffening as they growwithin a host of normal tissue. This
is caused by the activation of fibroblasts that overproduce extracellular
matrix components, mainly collagen and hyaluronan6,7. Tumor stiffening
induces compression of intratumor blood vessels compromising vessel
function, i.e., impaired blood flow/perfusion and oxygen delivery8,9. In turn,
hypo-perfusion reduces drug delivery to the tumor and hypoxia induces
immuno-suppression, compromising cancer therapy10,11. To restore these
abnormalities, a strategy to alleviate tumor stiffness by reprogramming
activated fibroblasts to express normal levels of extracellular matrix prior to
therapy has been tested in preclinical studies in our lab and with co-
workers2,3,11–18. This strategy has already been successful in clinical trials19

and new trials are on schedule (clinicaltrials.gov identifier NCT03563248,
EudraCT Number: 2022-002311-39), establishing a new class of drugs that
aim to modulate tumor mechanics, known as mechanotherapeutics20.

Tumor stiffness can be monitored non-invasively with ultrasound
shear wave elastography (SWE), which is being used for diagnosis and
pathologyassessment acrossdifferentdisease settings21–24. Inoncology, SWE
has demonstrated promising results in the context of unraveling associa-
tions between tumor stiffness and hypoxia, improving the diagnostic
accuracy of rectal tumor staging25, enhancing radiologic assessment of
breast tumors against standard B-mode anatomical imaging26 and differ-
entiating betweenmalignant and benign thyroid nodules27. Using relatively
small cohorts, previous studies have demonstrated that SWE can also be
important for potentially predicting response to treatment28–30. For example,
Evans et al. reported that SWE-estimated interim changes (frombaseline) in
stiffness of breast tumors, were strongly associated with pathological com-
plete response to neoadjuvant chemotherapy28. Gu et al. demonstrated that
SWEmeasurements in the mid-course of neoadjuvant chemotherapy were
able to predict treatment response29. There are also recent studies that have
demonstrated the utility of deep learning for SWE data analysis31–35. These
studies have mainly focused on classifying malignant from benign lesions
either by fine-tuning pre-trained models (initially trained in the ImageNet
data, a large public natural image database)31,36, or through the development
of convolutional neural networks (CNN)models that were trained from the
beginning32–34. Recent evidence on medical image analysis, has demon-
strated that hybridization of CNN models with attention mechanisms can
improve the diagnostic performance of pure CNNs across various clinical
applications and medical imaging modalities37. However, CNN-Attention
models have not been examined in the setting of predicting tumor response
to therapy from SWE data and, there is no previous study that investigates
the ability of SWE in predicting tumor response to chemo-immunotherapy.
The focus of this study is to explore the predictive power of SWE imaging
combined with CNN-Attention models in determining the outcome of
chemo-immunotherapy with or without mechanotherapeutics in murine
tumor models.

Recent studies have demonstrated the benefits of combining CNN
architectures with attention mechanisms in medical image analysis37.
AlthoughCNNmodels can efficiently learn local pixel interactions andhave
achievedperformance gains over the last years, theyhave limitedcapabilities
in modeling long-range pixel interactions37. In contrast, the attention
mechanism is designed to learn long-range interactions within data. Briefly,
the attentionmechanism captures long-range pixel interactions by allowing
the model to selectively focus on learning relationships between spatially

distant regions within imaging data37,38. To learn complementary local-long
range pixel interactions, there is an increasing trend to co-pollinate CNN
models with attention modules which has led to performance improve-
ments against pure CNN counterparts across various medical image ana-
lysis tasks, including classification37,38.

To this end, we employed SWE images of various murine tumor
models, including breast cancer (4T1 andE0771),fibrosarcoma (MCA205),
osteosarcoma (K7M2), and melanoma (B16F10) treated with chemo-
immunotherapy5,16,18,39,40. We integrated a deep learning approach, con-
sisting of a convolutional neural network enhancedwith attentionmodules.
This model, trained on a dataset of 1365 SWE images that were taken prior
to treatment, was able to predict whether tumors were likely to respond,
remain stable, or resist therapy.

Our findings indicate that SWE images can forecast the efficacy of
chemotherapy, immunotherapy, or their combination. Given the estab-
lished clinical use of SWE in oncology and other fields, our research holds
promising implications for personalized therapeutic strategies in cancer
treatment. Remarkably, these predictive capabilities hold true even when
data from all tumor models are analyzed collectively.

Methods
Cell culture and tumor models
The in vivo experiments have already been successfully conducted and
subsequently published5,16,18,39,40. Our research team, in collaboration with
other colleagues from our laboratory, meticulously cultivated a diverse
range of cancer cell lines under carefully tailored culturing conditions. The
breast adenocarcinoma cell lines 4T1 and E0771 were cultured in Roswell
Park Memorial Institute medium supplemented with fetal bovine serum
and antibiotics. The melanoma cell line B16F10 was maintained in Dul-
becco’s Modified Eagle’s Medium with similar supplements. The fibro-
sarcoma cell line K7M2 andMCA205 was grown in an expansion medium
containing RPMI-1640, L-glutamine, sodium pyruvate, FBS, non-essential
amino acids, antibiotics, and β-mercaptoethanol. All cell lines were incu-
bated at 37 °C in a 5%CO2 environment. The specific culturing conditions
tailored to each cell line were determined based on previous
research5,16,18,39,40.

We established syngeneic orthotopic models of murine mammary
tumors by implanting specific numbers of 4T1or E0771 cancer cells into the
mammary fat pad of female mice. Similarly, osteosarcoma, fibrosarcoma,
andmelanomamodels were generated by implantingK7M2,MCA205, and
B16F10 cells, respectively, into the flanks of male or female mice. The cell
count for implantation was determined from prior research5,16,18,39,40. All
animal experiments adhered to the animal welfare regulations and guide-
lines of the Republic of Cyprus and the European Union.

Treatment protocol
All mice were treated with amechanotherapeutic agent (200mg/kg tranilast,
500mg/kg pirfenidone) and chemo-immunotherapy, anti-mouse PD-L1
antibody (B7-H1, Bio X Cell, 10mg/kg) was administered intraperitoneally
(i.p.) and Doxil (3mg/kg) intravascularly (i.v.)5,16,18,39,40. Upon reaching an
average tumor volume of 150 mm3, we initiated treatment with mechan-
otherapeutic. When tumors averaged 350 mm3 in size, we introduced che-
motherapy, immunotherapy, or a combination of these, every three days for
three doses for immunotherapy and daily for chemotherapy. Tumor
dimensions were regularly monitored, and tumor volume was calculated
using adigital caliper.The elastography imageswere takenwhen tumors in all
groups were approximately 350mm³ in size, and before the initiation of
chemo-immunotherapy. The endof treatment is defined as the day following
the administration of the third dose of immunotherapy, or seven days after
the initiation of chemotherapy. Supplementary Fig. 1 shows the representa-
tive SWE images before and after mechanotherapeutic treatment.

Ultrasound imaging
The imageswere taken using ultrasound shearwave elastography (SWE) on
aPhilipsEPIQEliteUltrasound systemwith a linear array transducer (eL18-
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4). The transducer measures the velocity of 2D shear waves as they pro-
pagate through tissue perpendicular to the original acoustic impulse,
creating a color-mapped elastogram (in kPa) superimposed on a B-mode
standard anatomical ultrasound image. The color spectrum, ranging from
blue (soft tissue) to red (hard tissue), provides insights into tissue stiffness. A
confidencedisplaywas also employed to verify the shearwave qualitywithin
the user-defined region of interest (ROI). To address the issue of shear wave
reflections at tumor boundaries, a thick gel (~1.5 cm thickness) was applied
over the tumor surface to create a more uniform medium and thus, mini-
mize the impact of wave reflections and boundary effects.

To ensure the accuracy and reliability of the SWE measurements,
several critical technical parameters and practices were followed during
imaging: Careful control of the transducer’s pressure and its precise posi-
tioning relative to the tumor ensured optimal wave generation and propa-
gation, minimizing artifacts that could potentially affect the measurement’s
accuracy. The Philips EPIQ Elite system’s processing algorithms were uti-
lized to calculate the velocity of shear waves in real-time, providing
immediate feedbackon tissue stiffness. The focusedbeamradiationpressure
shear wave source was positioned at the middle of the tumor. The settings
that were used were: frequency 10MHz, power 52%, B-mode gain 22 dB,
dynamic range 62 dB.

Pre-processing
SWE images from murine tumors were used for training and testing all
models in terms of predicting treatment response. SWE and B-mode
ultrasound images were used to develop a model for automatic segmenta-
tions of the tumor area (Auto-Prognose-CNNattention model (Segfor-
Class), see next section). SWE images were overlaid on B-mode images,
hence the two datasets were geometrically registered. To train and evaluate
the automatic segmentation model, we used an additional 579 SWE and
B-mode images from mice that did not undergo chemo-immunotherapy.
These images were selected from all five tumor types considered in our
analysis, ensuring a comprehensive representation. Importantly, the ima-
ging for these tumors was conducted simultaneously with the treated
tumors, when the tumor volume was approximately 350mm³. These
images were used as an augmented dataset (a total number of 1944 images
were employed for the development of this model). The tumor area was
manually annotated in eachof these images to create amask for training and
evaluating the model.

To develop the SegforClass method, we initially devised and trained a
key-point detection algorithm to crop the elastography and B-mode data.
The resulting images served as inputs for theU-Netmodel componentof the
SegforClass combined method.

For all models, we employed data augmentation methods, thereby
artificially increasing the size of the training dataset41. Our augmentation
techniques included horizontal and vertical flips, random rotations,
brightness adjustments, as well as combining all these together. Specifically,
for the U-Net component of the (Auto-Prognose-CNNattention) seg-
mentation model, we augmented the data in the training set by applying
horizontal and vertical flips.We employed horizontal and vertical flips only
for data augmentation in order to improve the robustness and performance
of the model by introducing variations to the training dataset to help in the
generalization of the model to unseen data. The images that were flipped
either vertically or horizontally were considered along with the original
images to artificially increase the training dataset. This helps the model to
learn from a bigger dataset (i.e., a wider range of B-mode images), which
reduces overfitting and increases generalization. Changes in the brightness
on a subset of the images in the training dataset were also used to all
classificationmodels. Thiswas applied to images that hadB-mode and SWE
maps overlapped. These brightness adjustments were used not only for the
B-mode underneath the elastography but to the whole elastography image.
We introduced random crops and zoom operations, with a zoom range of
0.2, to simulate variations in the field of view and image scaling. A set of
images underwent random rotations within a 60-degree range, introducing
rotational variability to mimic different orientations of the anatomy during

imaging procedures. A combination of these augmentations (excluding
vertical flips but including horizontal flips, shear, and zoom) was also
applied to a specified subset.We did not adjust or change the settings of the
ultrasound system for the elastography.

The training set was designated for the initial training of various
models, while the validation set was used to adjust the models’ hyper-
parameters and select the optimal model based on cross-validation per-
formance. Finally, the testing set was applied to assess the selected model’s
efficacy on data that it had not previously encountered. The allocation of
images to these setswas done randomly,with a distribution of 70%allocated
to the training set, and 15% to each of the validation and testing sets.

Deep learning models
For tumor (response, stable and non-response) classification, we employed
three different approaches assessed as prognosticmodels. Responsive, stable
and non-responsive tumors were defined by their relative tumor volume
change, employed the RECIST (i.e., Response Evaluation Criteria in Solid
Tumors) criterion42, occurred between the time of the chemo-
immunotherapy administration and the end of the treatment (Fig. 1a):
Responsive (relative tumor volume change <1.2), stable (1.2 <relative tumor
volume change<2), andnon-responsive (relative tumor volume change>2).
Firstly, we developed and trained various architectures from the beginning,
by devising numerous convolutional neural networks (CNNs) designs fol-
lowed by fully connected layers prior to classification. Our best-performing
model (named as “Prognose-CNNattention”), comprises convolutional
layers, followed by interleaved max-pooling and fully connected layers. To
further optimize classification performance by modeling both local-global
pixel relationships from the input data, we further enhanced the CNN
model by adding two sequential trainable soft-attentionmechanisms which
are integrated as part of the model training. These mechanisms enable the
network to focus on the most important regions of the input images. Fol-
lowing experimentation, we empirically engineered the attention modules
to the output of the second and third convolutional blocks Fig. 2.

The Prognose-CNNattention model accepts SWE images as inputs
and the manually drawn tumor region of interest (ROI, as model input) in
64x64x3 dimensions, and produces a prediction probability for each of the
three classes. To prevent overfitting on the training set, we integrated
dropout layers as shown inFig. 2 and early stoppingof the trainingprocess if
performance was not improving after 100 epochs, by retrieving the best
weights up to that stage. We used sparce categorical cross-entropy loss
function and grid search for hyperparameter tuning. Following experi-
mentation, we found that the optimal batch size was 32 and that using
Stochastic Gradient Descent optimizer leads to lower validation loss and
faster convergence, as compared toAdam optimizers. The optimal learning
ratewas 0.0035, but we used cosine decay learning rate, an adaptive learning
rate scheduling technique, to improve convergence and generalization.
Through this process, learning rate is gradually reduced over epochs in a
cosine manner.

Subsequently, we developed a U-Net-based43 architecture to automate
tumor segmentations and feed them later into the Prognose-CNNattention
model. The U-net architecture comprises an encoder that performs
downsampling by reducing the spatial dimensions and increasing the depth
of the image to capture its concepts, and a decoder that does upsampling by
restoring the spatial dimensions, as shown in Supplementary Fig. 2. Unlike
the original U-Net architecture, we used fewer convolutional layers to
prevent overfitting. We examined two models for tumor segmentation in
this study.Thefirstmodeluses SWE imageswithRGBchannels in (64 x 64x
3) as input, and the second model uses grayscale (64 x 64 x 1) B-mode
images. Previous studies33 have demonstrated that using the B-mode for
tumor segmentation can perform better, because the tumor boundaries are
well defined from the B-mode anatomical images against the color SWE
images. The batch size for the training and validation sets is 32. The output
of the models is a segmentation map that assigns each pixel of the input
image to either the tumor area or the background. Following hyperpara-
meter tuning, we found that the Adam optimizer with a starting learning
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rate of 0.001was optimum for training ourmodel.We also applied the same
cosine decay learning rate strategy as described for the Prognose-
CNNattention model.

The U-Net-based tumor ROI segmentations were fed into the
Prognose-CNNattention model to perform predictions of responsive,
stable, and non-responsive tumors to anti-neoplastic therapies, offering a
fully automated procedure. This combined framework was named “Auto-
Prognose-CNNattention”. The main difference between Prognose-
CNNattention and SegforClass is that the former performs classification
using manually drawn tumor ROIs, whilst the latter produces automatic
tumor segmentations prior to classification (executed again through the
Prognose-CNNattention model).

Finally, Xception44, VGG16, Inception-v345 and ResNet5046 pre-
trained models were used, fine-tuned, and assessed for their prognostic
ability to detect responsive, stable, and non-responsive tumors. To train the
models, we adopted the pre-trained weights of each architecture derived
from their original training on the “ImageNet”, as initial weights. Following
this, we appended our classifier at the end of each architecture and pro-
ceededwithfine-tuning ourmodel by performing further training using our
data. During fine-tuning, all model layers weights were kept unfrozen to
allow the model to learn in-SWE-domain data distributions.

The employment of Xception, VGG16, Inception-v3, and ResNet50
pre-trained models, initially trained on the extensive ImageNet dataset,
introduces a foundation of generalized visual recognition capabilities to

Fig. 1 | Dataset. a Schematic of the experimental protocol and the time of shear wave
elastography (SWE)measurements. Analysis of SWE images based on b the therapy
applied and c the cancer cell lines, along with the corresponding distribution of
images among the three classes: response, stable, and non-response. The dataset
comprises a total of 1365 images. The specific cancer cell lines included are the
murine mammary adenocarcinomas (breast tumors) 4T1 and E0771, the

fibrosarcoma MCA205, the osteosarcoma K7M2, and the melanoma B16F10.
d Representative SWE images accompanied by B -mode images, with dashed lines
indicating the tumor region of interest (ROI). The images were taken prior to
initiation of chemo-immunotherapy when tumors in all groups were approximately
350 mm³ in volume and they were used to predict tumor response to therapy.
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our study. However, the intrinsic difference between the general imagery
of ImageNet and the specialized nature of shear wave elastography (SWE)
and B-mode ultrasound images necessitates a meticulous fine-tuning
process. This process allows thesemodels to adapt from their broad initial
training to the nuanced requirements of medical imaging, specifically the
identification and classification of tumor responses in SWE images. The
fine-tuning involved adjusting the models to recognize patterns and fea-
tures pertinent to ultrasound images, a task divergent from the models’
original training. It is crucial to acknowledge that while these pre-trained
models bring a wealth of pre-learned features, the transition to medical
imaging data introduces complexities due to the unique characteristics of
ultrasound images, such as texture, contrast, and noise patterns, which
differ markedly from the natural images in ImageNet. This adaptation
phase is pivotal for leveraging the models’ deep learning capabilities
within a medical context, aiming to enhance their prognostic ability for
precise tumor response classification.Thedecision to keep allmodel layers
weights unfrozen during fine-tuning was strategic, ensuring the models’
comprehensive adaptation to the specificities of SWE-domain data,
thereby mitigating the potential for performance discrepancies attributed
to the models’ origins in non-medical image recognition.

We trained all models on A100 and V100 NVIDIA GPUs with 40GB
and 16GB respectively. We used TensorFlow and Keras for the imple-
mentation and training of the models and Python programming language
for statistical analysis and evaluation. The training process of the deep
learning models is illustrated in Supplementary Figs. 3 and 4.

Bootstrapping for confidence interval computations
In our statistical analysis, we employed bootstrapping, a powerful resam-
pling technique, to compute confidence intervals for various metrics
derived fromour dataset. Bootstrapping involves repeatedly sampling, with
replacement, from the observed dataset to generate a large number of
simulated samples, knownas bootstrap samples. For eachbootstrap sample,
we calculated the statistic of interest. This process was iterated thousands of
times, leading to a distribution of the computed statistics from which
confidence intervals were derived. Specifically, we created 100 subsamples
from the original training set. Out of these 100 predictions, we computed
the mean value of each observation and established 95% confidence
intervals.

Models interpretation
Before the trainable soft-attentionmechanismwas added to theCNNmodel
in this study, the Grad-CAM technique47 was used to get a heatmap
visualization that highlights the regions of the images that the model con-
sidered important for the classification prediction. After the addition of the
soft-attention mechanism, attention heatmaps of the estimators were sub-
sequently generated to visualize these crucial regions. Both the Grad-CAM
technique applied to the Prognose-CNN model and the attention maps
applied to thePrognose-CNNattentionmodel for visualizationpurposes are
post-hoc techniques, meaning that are applied after the models have been
trained.While the post-hoc techniques for visualization are applied after the
models have been trained, the trainable soft-attention mechanisms are
trained during the training process of the model.

Assessment of intra- and inter-user variability
To ensure the robustness and reliability of our findings, we conducted a
thorough evaluation of both intra- and inter-user variability. This was crucial
for validating the consistency and reproducibility of tumor segmentation and
classification performed both manually by experts and automatically by our
models. Intra-user variabilitywas assessedbyhaving the same expert perform
tumor segmentation and classification on a randomly selected subset of
images at two different time points, separated by a two-week interval. Inter-
user variability was evaluated by comparing the tumor segmentation and
classification performed by different experts on the same set of images.
Specifically, segmentations by two laboratory experts in humanperformance,
and an expert radiation oncologist were compared. This comparison enabled
us to understand the variability in segmentation approaches and inter-
pretations between different experts with varying levels of experience and
expertise.Thefindings fromthese variability assessmentswereused to inform
the training and evaluation of our deep learning models. Understanding the
extent of variability helped in fine-tuning the models to account for differ-
ences in expert interpretations, ultimately aiming to develop a model that
performs consistently across a range of segmentation scenarios.

Statistical analysis
All machine learning models were evaluated for their ability to detect
responsive, stable, and non-responsive tumors by calculating the area under
the receiver-operating-characteristic (ROC) curve (AUC). We report the

Fig. 2 | Classification architecture of the prognostic prediction model. The pre-
dictionGof the last layer of the network is combinedwith the L1 and L2 estimators in
the second and third layers, respectively. Attention weights a1 and a2 are created by

applying a softmax function to the compatibility scores c1 and c2. Attention
mechanism outputs G1 andG2 are finally concatenated to create the final prediction
of the model.
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specificity, sensitivity, PPV, NPV and ROC, AUC (Tables 1 and 2). Given
the balanced nature of our dataset, we used the macro-average over the
micro-average, treating all classes with equal importance. The Dice score
was used to evaluate the segmentation performance of the Segfor-
Class model.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Development and Evaluation of the Prognose-CNNattention
Model for Predicting Tumor Response to Chemo-
Immunotherapy
We developed a deep learning methodology based on SWE images, which
involved a CNN model enhanced with attention modules, named as
Prognose-CNNattention model. The Prognose-CNNattention model was
developed and evaluated as a prognostic model in the setting of detecting
responsive, stable, and non-responsive tumors to chemotherapy, immu-
notherapy, or the combination, following mechanotherapeutics adminis-
tration. A dataset of 1365 SWE images was obtained from 630 tumors/mice
(2-3 SWE images per tumor) as derived from our previous
experiments5,16,18,39,40 (Fig. 1b–d) and used to train and evaluate all our deep
learning models. In the experiments, mechanotherapeutic treatment – that
does not have any anti-tumor effects –was initiated when tumors reached a
size of 100-150mm3 and administered daily throughout the experimental

protocol. The chemo-immunotherapy was initiated 3-7 days after the start
of mechanotherapeutics. Responsive, stable and non-responsive tumors
were defined by their relative tumor volume change, employed the RECIST
(i.e., Response Evaluation Criteria in Solid Tumors) criterion42, occurred
between the timeof the chemo-immunotherapy administration and the end
of the treatment (Fig. 1a): Responsive (relative tumor volume change <1.2),
stable (1.2 <relative tumor volume change <2), and non-responsive (relative
tumor volume change >2). The dataset includes 502 images from tumors
that responded to therapy, 421 from tumors that stayed stable, and442 from
non-responsive tumors. In our analysis, we considered images from dif-
ferent tumor types together in order to increase the sample size for training,
validation, and testing but also in order to showcase that biomarkers derived
from tumor stiffness can be applied successfully independently from the
tumor type. Also, our analysis focused on the effect of stiffness on tumor
response and other parameters, including the sex of the mice was beyond
its scope.

Before the development of the models, images were split into training,
validation, and testing sets. The training set was used to train all different
models. The validation set was used to fine-tune all models’ hyper-
parameters and evaluate which was the best-performing model through
cross-validation assessments. The testing set was used to evaluate the per-
formance of the best-performing (final) model from the previous step on
unseen data. The training, validation, and testing sets were determined
randomly and consisted of 70%, 15%, and 15% of the images, respectively.

Furthermore, to access the predictive accuracy of our Prognose-
CNNattention model, we compared it with predictions from four widely

Table 1 | Classification performance comparison of the architecture trained from thebeginningwith largepre-trainedmodels in
the test set

Model AUC Accuracy Sensitivity Specificity PPV NPV

Prognose-CNNattention 0.96 ± 0.0012 0.8683 ± 0.0071 0.8676 ± 0.0009 0.9349 ± 0.0012 0.8629 ± 0.0011 0.9355 ± 0.0022

Prognose-CNN (without
Attention)

0.96 ± 0.0021 0.8491 ± 0.0082 0.8453 ± 0.0010 0.9257 ± 0.0001 0.8466 ± 0.0023 0.9108 ± 0.0034

Auto-Prognose-
CNNattention

0.95 ± 0.0015 0.8299 ± 0.0113 0.8232 ± 0.0009 0.9164 ± 0.0002 0.8339 ± 0.0001 0.9152 ± 0.0043

Xception 0.92 ± 0.0023 0.8095 ± 0.0020 0.8027 ± 0.0009 0.9058 ± 0.0007 0.8126 ± 0.0014 0.9047 ± 0.0012

VGG16 0.94 ± 0.0014 0.7949 ± 0.0048 0.7855 ± 0.0011 0.8983 ± 0.0007 0.7977 ± 0.0011 0.8994 ± 0.0023

Inception-V3 0.91 ± 0.0012 0.7875 ± 0.0092 0.7582 ± 0.0002 0.8848 ± 0.0009 0.7603 ± 0.0031 0.8909 ± 0.0026

ResNet50 0.92 ± 0.0011 0.8172 ± 0.0014 0.8127 ± 0.0001 0.9079 ± 0.0011 0.8137 ± 0.0021 0.9075 ± 0.0025

Macro-average values of AUC, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) are presented for eachmodel. Macro-average is the average value of eachmetric
for the three classes, by treating all 3 classes equally. All pre-trained models were fine-tuned to the specific task and data.

Table 2 | Classification performance metrics of different models trained from the beginning in the test set

Model Class AUC Accuracy Sensitivity Specificity PPV NPV

Prognose-CNN (without
Attention)

Response 0.99 ± 0.0012 0.8476 ± 0.0082 0.9189 ± 0.0071 0.9618 ± 0.0012 0.9315 ± 0.0001 0.9124 ± 0.0022

Stable 0.92 ± 0.0014 0.7903 ± 0.0113 0.8741 ± 0.0007 0.7313 ± 0.0002 0.9058 ± 0.0043

Non-
Response

0.97 ± 0.0015 0.8260 ± 0.0009 0.9412 ± 0.0010 0.8769 ± 0.0034 0.9143 ± 0.0007

Prognose-CNNattention Response 0.99 ± 0.0021 0.8692 ± 0.0071 0.9595 ± 0.0011 0.9618 ± 0.0014 0.9342 ± 0.0026 0.9767 ± 0.0113

Stable 0.93 ± 0.0012 0.7749 ± 0.0026 0.9090 ± 0.0023 0.7869 ± 0.0113 0.9028 ± 0.0012

Non-
Response

0.97 ± 0.0023 0.8550 ± 0.0022 0.9338 ± 0.0026 0.8676 ± 0.0011 0.9270 ± 0.0009

Auto-Prognose-CNNattention
(SegforClass)

Response 0.98 ± 0.0014 0.8309 ± 0.0113 0.8920 ± 0.0026 0.9542 ± 0.0025 0.9167 ± 0.0012 0.9398 ± 0.0002

Stable 0.89 ± 0.0016 0.8065 ± 0.0007 0.8392 ± 0.0009 0.6849 ± 0.0071 0.9091 ± 0.0011

Non-
Response

0.96 ± 0.0017 0.7826 ± 0.0082 0.9559 ± 0.0020 0.9000 ± 0.0043 0.8966 ± 0.0022

AUC sensitivity, specificity, PPV and NPV metrics have different values per class following the one-vs-rest scheme. Performance improvement is observed for the architecture that includes attention
mechanism. Auto-Prognose-CNNattention (SegforClass) framework consists of the tumor segmentation model followed by the prognostic prediction model.
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explored pre-trained (on the large ImageNet dataset) classification models,
namely Xception, VGG16, Inception-v3 and ResNet50, which were fine-
tuned and evaluated as baseline models. Also, apart from the development
of the prediction model, we were also interested in automating the tumor
segmentation process from the B-mode images. Thus, we developed a U-
Net-based classificationmodel to automate tumor area segmentations prior
to classification. We named the combined U-Net and Prognose-
CNNattention framework as Auto-Prognose-CNNattention (SegforClass)
and reassessed the performance of our predictive scheme.

Diagnostic performance of the prognose-CNNattention mode
The Prognose-CNNattention model architecture is shown in Fig. 2. This
model leverages a sophisticated classification framework that integrates
multiple layers of processing and attention mechanisms to achieve its
remarkable diagnostic performance. One of the distinctive features of the
Prognose-CNNattention model is the incorporation of attention mechan-
isms,whichmarkedly contribute to itshighperformance.Attentionweights,
represented as ‘a1’ and ‘a2’, are created by applying a softmax function to
compatibility scores ‘c1’ and ‘c2’. These compatibility scores capture the
relevance and importanceof various elements in the input data, allowing the
model to focus on the most informative aspects. The Prognose-
CNNattention model architecture demonstrated the highest diagnostic
performance in predicting responsive, stable, and non-responsive tumors,
against all other models (Prognose-CNNattention, Prognose-CNN (with-
out Attention), Auto-Prognose-CNNattention, Xception, VGG16, Incep-
tion-V3, ResNet50) evaluated in this study (Table 1 and Supplementary
Table 1).

Table 1 and Fig. 3a present the receiver operating characteristic curves
(ROC)- derived results of the Prognose-CNNattention model. The
Prognose-CNNattentionmodel achieved an accuracy of 0.87 on the test set
and an area under the curve (AUC) of 0.96. Figure 3b shows theROCcurves
of the three classes for the evaluation of the same model at all thresholds.
Additionally, to assess the robustness and reliability of our findings, we
conducted a comprehensive evaluation of both intra- and inter-user
variability in tumor segmentation and classification. This evaluation
involved two laboratory experts in human performance, who classified the
images into three categories based on their expertise, at two distinct time
points separated by a two-week interval to assess intra-user variability. This
process ensured the validation of the consistency and reproducibility of
manual classifications against the automated model predictions. The clas-
sification performance of laboratory experts (Expert 1 and 2), presented as
twins cross/star respectively across two sessions inFig. 3a, b, reflects not only
their diagnostic accuracy but also the consistency of their classifications over
time and across different evaluators. The confusionmatrix of the Prognose-
CNNattention model is presented in Fig. 3c, which demonstrates that
specimens responsive to therapy were not predicted as non-responsive by
the model, and vice versa. The Prognose-CNNattention-derived model
outcomes for all 3 classes aredetailed inTable 2.By employing100bootstrap
resamples for each metric of interest, we were able to derive confidence
intervals that accurately reflect the variability and uncertainty inherent in
our complex dataset (Table 1). The results of this method revealed that the
confidence intervals obtained through bootstrappingwere tighter andmore
reliable. Based on the curve comparison, it was determined that the differ-
ence between theROCof thePrognose-CNAttentionmodel and theROCof
the best pre-trained model is statistically significant. This finding indicates
that although the Prognose-CNAttention model demonstrated only a
marginal improvement, this enhancement was consistent across various
ROC thresholds, underlining its significance. Therefore, the Prognose-
CNAttention model performs better than the best pre-trained model in a
statistically significant manner.

Subsequently, we carried out further analysis to evaluate how well the
Prognose-CNNattention model performed per treatment procedure. The
results are shown in Fig. 3d. This analysis was essential to ensure that the
model consistently provides acceptable results and behaves fairly for all
treatment groups. Based on the results, we can say that the model performs

well for all treatment groups with only a small percentage of misclassified
tumors.

Our analysis extends to evaluating the Prognose-CNNattention
model’s predictive performance across various tumor types, as detailed in
Supplementary Fig. 5. The confusionmatrices provided for each tumor type
reveal critical insights into the model’s diagnostic accuracy and its capacity
to generalize across different cancer categories. Notably, the model
demonstrates commendable performance in classifying tumors as respon-
sive, stable, or non-responsive to treatment across all examined tumor types.

Comparative analysis ofpre-trainedmodels’predictiveaccuracy
Although all pre-trained models examined showed high diagnostic per-
formance, they showed lower accuracy in predicting responsive, stable, and
non-responsive tumors from SWE data, against the Prognose-CNNatten-
tion, Prognose-CNN and SegforClass models (Table 1, Fig. 3a). Confusion
matrices of all pre-trainedmodels during inference in the test set, are shown
in Supplementary Fig. 6.

Impact of attention mechanisms on model performance
We further performed an ablation experiment to evaluate the performance
of thePrognose-CNNattentionwithout attention (Prognose-CNN). Table 2
shows a detailed comparison between the Prognose- CNNattention and the
Prognose-CNN models. By incorporating trainable attention mechanisms
in the Prognose-CNNattention model, the model’s accuracy improved by
0.02 against its plain CNN counterpart. Additionally, the Prognose-
CNNattention model achieved the highest AUC, sensitivity and PPV in
terms of predicting responsive tumors.

Performance of SegforClass model in tumor segmentation and
classification
Subsequently, we developedmethods for the automatic segmentation of the
tumor from the ultrasound B-mode images. We developed two U-Net
models, one used SWE images, and the other standard anatomical B-mode
images for training and testing. The segmentationmodel that used B-mode
images outperformed the SWEU-Net model. In particular, the model with
B-mode images achieved a Dice coefficient score of 0.81 on the test set,
whilst the model that used SWE images achieved a score of 0.79. Following
this experiment, B-mode images were used in the final SegforClass model.
The Auto-Prognose-CNNattention-derived model outcomes for all three
classes are shown in Table 2. The diagnostic performance metrics were
slightly lower compared to the Prognose-CNNattention model. The seg-
mentation maps of Fig. 4 demonstrate the agreement between the manual
and automatic segmentations, by presenting the areas where the model
successfully identified the tumor region. Fig. 5 shows examples of the Seg-
forClass model framework. Supplementary Fig. 7 shows the ROC curves of
the three classes for the evaluation of the same model at all thresholds, and
the confusion matrix of the SegforClass model.

Validation of SegforClass model through expert manual
segmentation
We further evaluated our SegforClass model outcomes by comparing these
against manually drawn tumor areas from an additional expert radiation
oncologist recruited from the German Oncology Center (GOC, Limassol,
Cyprus). The expert radiation oncologist manually segmented the tumor
areas in B-mode images in a subset of the test set. The complete dataset was
manually annotated by an ultrasound expert from our lab.

To ascertain the robustness and reliability of our tumor segmentation
and classification, we extensively assessed both intra- and inter-user
variability. This involved: (a) Evaluating intra-user variability by having
each expert repeat the segmentation and classification on a selected subset
of images across two sessions, separated by a two-week interval. (b)
Assessing inter-user variability through comparisons between segmen-
tations and classifications performed by two laboratory experts and an
expert radiation oncologist on the same set of images. Using the Dice
coefficient score as ourmetric, we conducted two primary evaluations: (1)
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Fig. 3 | Prognostic prediction performance. a Macro-average ROC with the one-
vs-rest scheme that shows the performance metrics difference between the
Prognose-CNNattention model and the pre-trained networks (right) and the per-
formance metrics difference between the Prognose-CNN models with and without
attention, and Auto-Prognose-CNNattention framework (SegforClass) (left).
b ROC curves of the three classes for the Prognose-CNNattention model. The
performance of a laboratory experts is plotted in a, b by twins cross/star respectively
across two sessions. cConfusionmatrix of the Prognose-CNNattention. dPrognose-

CNNattention model performance per treatment group. The ratio of responsive,
stable and non-responsive tumors per treatment group in our dataset compared to
how the model classified the tumors in each treatment group. P values for the ROC
curves between the ROC of the Prognose-CNAttention and the ROC of best pre-
trained (Prognose-CNN models without attention, Auto-Prognose-CNNattention,
Xception, VGG16, Inception-V3, ResNet500.043, 0.0021, 0.0015, 0.0001, 0.0007.
0.0023 respectively.
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comparing manual segmentations among the experts, and (2) comparing
the manual segmentation by the expert radiation oncologist with seg-
mentations derived from the SegforClass model (as shown in Supple-
mentary Fig. 8). Both sets of comparisons achieved a Dice score of
0.79–0.81, indicating a high level of agreement. This high Dice score,
reflecting consistent and reproducible segmentations between manual
annotations by our laboratory and ultrasound experts, and between these
manual annotations and the SegforClass model’s output, validates the
accurate annotation of the dataset.

The laboratory expert 1 in human performance was responsible for
the manual annotation of the tumor areas in the dataset, ensuring the
accuracy of the ground truth against which the SegforClass model’s per-
formance was benchmarked. The expert radiation oncologist, specifically
recruited from the German Oncology Center (GOC Limassol, Cyprus),
manually segmented the tumor areas in B-mode images for a subset of the
test set. This manual segmentation by the expert radiation oncologist was
then compared to the SegforClass model-derived segmentations. Simi-
larly, the ultrasound expert from 2 the lab manually annotated the com-
plete dataset. The manual segmentations from both the expert radiation
oncologist and the ultrasound experts 1 and 2 were then used to evaluate
the SegforClass model outcomes.

Discussion
In the realm of medical imaging and diagnostics, the integration of arti-
ficial intelligence (AI) and deep learning methodologies is rapidly gaining
traction. Our study offers compelling preclinical evidence that under-
scores thepotential of deep learning techniques in harnessing thepower of
SWE for the development of objective and reliable biomarkers. The pri-
mary objective of these biomarkers is to predict how tumors will respond
to chemo-immunotherapy with or without the use of mechan-
otherapeutics to sensitize the tumor microenvironment. This prediction

capability is crucial as it can differentiate between tumors that are likely to
respond to treatment and those that are not. One of the notable findings of
our study is the potential of the SWE images, to serve as a mechanical/
imaging biomarker. This biomarker can provide insights into the tumor’s
probable response even before the initiation of therapy. The automation of
this prognosis process, facilitated by AI, is another groundbreaking aspect
of our research.

In preclinical studies, the literature reports elastic modulus values for
4T1 breast cancer models within the range of 30–40 kPa48 and for E0771
breast tumorswithin 40–60 kPa49, positioning themat the highest end of the
stiffness spectrum typically observed in murine desmoplastic tumors. For
the B16F10 melanoma model, the reported values are approximately 20
kPa48, reflecting the differences in extracellular matrix composition and
mechanical properties characteristics of melanomas. In clinical settings,
SWE has been mostly applied to breast tumors and it was found to exhibit
higher stiffness values thanmurine tumors, withmeasurements around 110
kPa49. This notable discrepancy underlines the potential variances in tumor
microenvironments and mechanical properties between murine models
and human tumors. There is a lack of pertinent SWE data in the literature
for the fibrosarcoma and osteosarcoma cell lines employed in our study,
except for our previous work that was employed here5,39. The lack of such
data underscores a critical area for future investigation, highlighting the
necessity for a more comprehensive mechanical characterization, spanning
a wider range of tumor types. In our study, the elastic modulus of 4T1
(36.92 ± 5.7 kPa), E0771 (52.36 ± 5.3 kPa), and B16F10 (26.22 ± 5.2 kPa)
tumors that were not treated with mechanotherapeutics, closely matched
the ranges reported in the literature, affirming the accuracy of our SWE
imaging methodology. Notably, a comparison between the elastic modulus
values before and after treatment with a mechanotherapeutic agent reveals
significant changes (p-values 0.00032, 0.000012, 0000084, respectively): 4T1
(30.21 ± 6.3 kPa), B16F10 (21.04 ± 3.1 kPa), and E0771 (33.03 ± 6.7 kPa).

Fig. 4 | Auto-Prognose-CNNattention. Manual segmentation is annotated by a
laboratory expert while automatic segmentation is predicted by the model. Seg-
mentation maps show the regions where the model accurately predicts the tumor

area. The model predicts whether each pixel belongs to tumor area or to the back-
ground. True positive and true negative represent correct predictions.
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The integration of AI andmedical imaging is not just about enhancing
diagnostic accuracy; it is about redefining patient care. With over 2000
ongoing clinical trials, immunotherapy is reshaping the cancer treatment
landscape. The development of predictive biomarkers offers a dual advan-
tage: safeguarding patients from potentially harmful therapies and guiding
patient-specific treatment optimization. Our study underscores the poten-
tial of ultrasound-derived images of stiffness as biomarkers of response to
treatment combinations. This paves the way for comprehensive clinical
research to identify biomarkers based on ultrasound ormagnetic resonance
for predicting patient responses to cancer immunotherapy.

Pre-clinical studies utilizing shear wave elastography (SWE) have
greatly advanced our understanding of tumor physiology, particularly in
distinguishing between benign and malignant neoplasms50–52. By quantita-
tively measuring tissue stiffness, SWE offers a non-invasive biomarker that
correlates with the pathological state of tumors. Malignant tumors typically
exhibit a denser and more rigid extracellular matrix than benign tumors, a
feature that reflects in their higher stiffness values on SWE53,54. This dis-
tinction is crucial, as it enables the early differentiation of cancerous growths
from non-cancerous ones, facilitating timely and appropriate therapeutic
interventions. Further enhancing the utility of SWE, research has also
explored its application in monitoring the dynamic changes in tumor
stiffness in response to various treatments. AI, especially deep learning, has
transformed tumor diagnosis and prediction in medical imaging55–57. By
analyzing complex imaging data to identify patterns invisible to the human
eye, AI enhances diagnostic accuracy, predicts treatment outcomes, and can
potentially have a major impact in personalized care.

Our model shows promise in predicting tumor responses, yet transi-
tioning from pre-clinical models to clinical applications involves over-
coming considerable challenges. The complexity of clinical diagnosis and
treatment necessitates a personalized approach, considering factors beyond
tumor size.Recognizing this, we are advancing our research through clinical
trials in collaboration with the Bank of Cyprus Oncology Center (Nicosia,
Cyprus, EudraCT number: 2022-002311-39) for sarcoma patients and the
German Oncology Center (Limassol, Cyprus) for breast tumor patients.
These trials aim tovalidate ourmodel’s applicability in a clinical setting,with
early results indicating variability in the elastic modulus across tumor types
and sizes. Incorporating SWE imaging into standard diagnostic procedures,

we are refining our model to accommodate the diverse characteristics of
human tumors, ensuring its relevance and effectiveness in informing
treatment decisions. This effort underscores our commitment to bridging
the gap between laboratory research and patient care, highlighting the
importance of multidisciplinary collaboration in bringing innovative diag-
nostic tools to the clinic.

For successful clinical translation, several key steps are necessary,
including conducting validation studies with human subjects to confirm the
efficacy of ourmodel in a clinical environment, integrating ourfindings into
existing diagnostic protocols to enhance the accuracy of tumor character-
ization, and developing comprehensive guidelines for interpreting shear
wave elastography (SWE) imaging results to support clinical decision-
making. Furthermore, we consider the implications of tumor mis-
classification in clinical practice, recognizing that inaccuracies in tumor
classification could have considerable consequences on treatment planning
and patient outcomes. Misclassified tumors might lead to inappropriate
treatment strategies, potentially affecting the efficacy of the treatment and
the patient’s quality of life. Therefore, minimizing misclassification rates is
crucial to improving treatment outcomes and ensuring that patients receive
the most appropriate care based on accurate tumor characterization.

We have developed deep-learningmodels that can classify tumors into
three categories based on their likely response to therapy: responsive, stable,
or non-responsive. This classification is derived from the mechanical bio-
marker obtained fromthe SWE images. Furthermore,wehave also ventured
into the development of deep learning models specifically designed for the
segmentation of tumor regions from ultrasound medical images. The
automation of these processes is a major leap forward as it offers laboratory
professionals and clinical researchers apowerful tool. This tool amalgamates
the benefits of a mechanical biomarker with the predictive capabilities of
deep learning models, thereby streamlining decision-making processes for
patient-specific treatment plans. We should note that while the mechanical
aspects of the TME, such as tumor stiffness, are crucial, it is imperative to
recognize that biological factors also play a pivotal role in tumor growth,
progression, and treatment resistance. Therefore,methodologies such as the
one presented here could be complementary to biological markers and
considered together by oncologists when deciding the optimal
treatment plan.

Fig. 5 | Combined framework pipeline – Auto-Prognose-CNNattention. The
SWE and B-mode parts are first identified in the ultrasound images. B-mode is then
used as input for the tumor segmentation model and when the tumor region is
segmented, it is transferred to the elastography (SWE) images. The tumor area is

finally cropped and used as input for the prognostic prediction model. In the first
example of thefigure, themodel predicted the tumor as stable with the probability of
78% and in the second example the model predicted the tumor as responsive with
the probability of 99%.
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A noteworthy advantage of employing deep learning and convolu-
tional neural networksover traditional shallowmachine learningalgorithms
is themodel’s ability to scan thedistributionof the elasticmodulus across the
entire tumor area. This is in contrast to merely considering average values
for smaller regions. However, it’s essential to highlight that while large pre-
trained deep learning architectures have shown promise in various chal-
lenging tasks, their intricate nature can sometimes lead to overfitting during
the fine-tuning phase. This overfitting can, in turn, result in a performance
that is subpar compared to shallower architectures that are trained from the
ground up.

The exploration of SWE for predicting tumor response, in con-
junction with the Prognose-CNNmodel, marks a notable departure from
traditional imaging methodologies. Unlike CT or MRI, which assess
tumor response based on changes in size, SWE evaluates the mechanical
properties of tissues offering a novel biomarker for therapeutic outcomes.
This distinction underlines the transformative potential of SWE in
oncology, suggesting that it could lead to more nuanced and potentially
earlier indicators of treatment efficacy. Integrating SWE images with
advanced AI analytics could refine personalization in cancer treatment,
highlighting the crucial role of innovative imaging techniques. The dis-
tinct focus of SWE necessitates comprehensive studies to establish its
clinical utility fully and to integrate its advantages into the standard-of-
care, promising to redefine how tumor responses are evaluated and
therapies are tailored. To this end, SWE is a relatively simple imaging
modality that could be integrated in standard-of-care imaging as part of
diagnosis. Therefore, from the very first time a tumor is diagnosed
through ultrasound imaging, SWE images can be taken and analyzed to
predict tumor response to therapy. Such a prediction could be incorpo-
rated along with other information that clinicians consider in order to
support them in the decision-making process and optimal treatment
protocols. Our model, while promising as a tool for predicting tumor
response,must undergo extensive clinical testing and refinement to enable
its clinical translation.

It is important to note that while the attention mechanism provides a
theoretical advantage in focusing on salient features38, the actual improve-
ment in performance was consistent but relatively moderate, especially
when compared to CNN without attention. However, it is known that the
performance of deep learning models can be influenced by several factors
including the quality and size of the training dataset, the representativeness
of the data for the problem at hand, and the optimization of model
parameters38.

Our results suggest that while the attention mechanism offers a novel
approach, its benefits in the context of predicting tumor response in
ultrasound elastography are consistently incremental when compared to all
othermodels developed in ourwork. This observation underscores the need
for careful consideration of model architecture in relation to the specific
characteristics of the medical imaging data and the clinical problem being
addressed. One of our future endeavors is to transfer the methods and
insights of this work to the clinical setting. Although the Prognose-
CNNattention outperformed all other models, we will carefully evaluate all
model architectures in termsof their ability to classify responsive fromstable
and non-responsive tumors.

The attention maps estimated at the output of the 2nd and 3rd CNN
blocks of the Prognose-CNNattention technique reveal that the model
considers complementary information by focusing on areas with high and
low stiffness, respectively. Our study’s inclusion of a trainable attention
mechanism has led to substantial improvements in prognostic predictions.
This emphasizes the potential advantages of incorporating attention
mechanisms, particularly when predictions are based on the distribution of
a single attribute like stiffness across an input image. In this manner, the
Prognose-CNNattention model is capable of learning both local and global
representations from the SWE data. Conversely, Grad-CAM maps47 indi-
cate that the Prognose-CNN model (without attention) concentrates on
focalized information around the high-stiffness areas. This focus might

extend even outside the tumor area, which can at least partly explain its
lower diagnostic performance compared to the attention-enabled variant.
Interestingly, we observed a performance drop when transitioning to the
SegforClass framework. This decrease can be attributed primarily to the
segmentation model’s performance, especially in scenarios where the
B-mode imaging doesn’t offer a clear visualization of the tumor. The seg-
mentation inaccuracies can cascade into misclassifications by the classifi-
cationmodel, particularly when the input Region of Interest (ROI) contains
elastography regions not associated with the tumor. Supplementary Fig. 9
provides a visual comparison between the Grad-CAM maps of the
Prognose-CNN model and the attention maps of the Prognose-
CNNattention model.

While our study has provided valuable insights, it is not without lim-
itations. One such limitation is the application of the prognostic prediction
model and the tumor segmentation model to mice specimens instead of
human patients. However, the silver lining here is the availability of abun-
dant data for mice, which has expedited the validation process of using the
elastic modulus as a mechanical biomarker for prognostic purposes in pre-
clinical studies. With the foundation laid, models trained on abundant pre-
clinical SWE images canbefine-tunedusing transfer learning techniques for
limited human data, paving the way for broader applications in the future.

Data availability
The datasets used and analyzed in this study are available Supplemen-
tary Data 1.

Code availability
The underlying source code for this study can be accessed via Zenodo58.
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