communications medicine

Article

https://doi.org/10.1038/s43856-024-00716-3

A modeling study to define guidelines for
antigen screening in schools and
workplaces to mitigate COVID-19

outbreaks

% Check for updates

Yong Dam Jeong ® ', Keisuke Ejima ®3'
Robin N. Thompson ®°, Il Hyo Jung®’, Shingo lwami'&>'%"

, Kwang Su Kim"*'%, Shoya lwanami®", William S. Hart®,
, Marco Ajelli'?>"® & Kazuyuki Aihara'"®

Abstract

Plain language summary

Background In-person interaction offers invaluable benefits to people. To guarantee safe
in-person activities during a COVID-19 outbreak, effective identification of infectious
individuals is essential. In this study, we aim to analyze the impact of screening with antigen
tests in schools and workplaces on identifying COVID-19 infections.

Methods We assess the effectiveness of various screening test strategies with antigen tests
in schools and workplaces through quantitative simulations. The primary outcome of our
analyses is the proportion of infected individuals identified. The transmission process at the
population level is modeled using a deterministic compartmental model. Infected individuals
are identified through screening tests or symptom development. The time-varying sensitivity
of antigen tests and infectiousness is determined by a viral dynamics model. Screening test
strategies are characterized by the screening schedule, sensitivity of antigen tests,
screening duration, timing of screening initiation, and available tests per person.

Results Here, we show that early and frequent screening is the key to maximizing the
effectiveness of the screening program. For example, 44.5% (95% CI: 40.8-47.5) of infected
individuals are identified by daily testing, whereas it is only 33.7% (95% CI: 30.5-37.3) when
testing is performed at the end of the program duration. If high sensitivity antigen tests
(Detection limit: 6.3 x 10* copies/mL) are deployed, it reaches 69.3% (95% Cl: 66.5-72.5).
Conclusions High sensitivity antigen tests, high frequency screening tests, and immediate
initiation of screening tests are important to safely restart educational and economic
activities in-person. Our computational framework is useful for assessing screening
programs by incorporating situation-specific factors.

During the COVID-19 pandemic, people
actively sought safer ways to resume in-
person educational and economic activities
while keeping the risk of infection low. For this,
it may have been key to implement regular
screening tests for individuals in places like
schools and workplaces, since these tests
can identify positive cases and help prevent
the spread of the virus within these settings.
Here, we introduce a computer model that
evaluates the effectiveness of different
screening programs in those facilities. The
model involves how the virus spreads
between people and within the human body,
considering how the accuracy of tests can
change as the infection progresses. The
study examines various screening strategies.
The simulations demonstrate that using
highly sensitive tests, conducting frequent
screenings, and starting the tests immedi-
ately are crucial for effectively identifying
positive cases. Our approach can be flexibly
expanded in the future to consider various
factors like vaccination and new variants.

In early 2020, SARS-CoV-2, the virus responsible for COVID-19, rapidly
spread throughout the world. Some of the main reasons why COVID-19
was hard to contain are its high transmissibility' and substantial transmis-
sion from pre-symptomatic and asymptomatic infected individuals™.
While vaccines were key to dramatically decreasing COVID-19 burden’,
they only offer partial protection against infection and immunity wanes over
time”™"". In fact, as shown by the Omicron outbreaks in China in late 2022/

early 2023, COVID-19 still has the potential to put great pressure on
healthcare systems'>". This, coupled with the emergence of new SARS-
CoV-2 variants, highlights the importance of studying mechanisms to
mitigate future COVID-19 outbreaks.

The COVID-19 pandemic has changed the way we think about in-
person work and education. While online working and education have
become more widespread during the pandemic, they do not offer the same
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benefits as in-person interactions'’. For example, studies have shown that
the shift to online teaching has led to a decline in course completion rates
among college students”, as well as a negative impact on mental health,
anxiety, and depression'>"". Regarding remote work, the impact on pro-
ductivity is controversial and depends on types of stress (i.e., job-related and
non job-related) and industries™ ™.

To guarantee a safe in-person presence in schools and workplaces,
different testing and screening policies have been implemented during the
pandemic with various levels of success™. We can summarize these policies
into two main categories: symptomatic testing and mass testing. First,
symptomatic testing is based on testing (e.g., through PCR or antigen tests)
of individuals showing certain pre-defined symptoms (e.g., fever, respiratory
symptoms); individuals with confirmed infection are then isolated (e.g., at
home or in dedicated facilities) and other action may be taken (e.g., start of a
contact tracing investigation, quarantine of household members, quarantine
of colleagues). Second, mass testing is based on the screening of an entire
population (e.g, all students at a school, all city residents) using viral tests
such as PCR or antigen tests regardless of symptoms™*°. As for symptomatic
testing, individuals who test positive are then isolated, and the policy may
also entail further actions. Given the substantial fraction of asymptomatic
infections” ™’ and pre-symptomatic transmission™*"', epidemiological and
modeling studies have shown that control strategies involving mass testing
generally provide much larger mitigation effects, although they are more
expensive’” . However, to safeguard in-person economic and educational
activities, further research is needed to define effective guidelines for the
operational implementation of screening protocols.

In this study, we conduct a model-based evaluation of the effectiveness
of various screening programs in schools and workplaces to determine the
optimal screening schedule, screening duration, and timing of screening
initiation based on the sensitivity of the adopted test. Indeed, our aim is to
investigate the optimal screening programs that a facility (e.g., a firm) can
self-implement to maintain its operation. Thus, we assume that the
screening programs are implemented in a single facility, not multiple
facilities at the same time. As a consequence, we are not interested in ana-
lyzing the effect of antigen screenings in controlling outbreaks in the
community.

Methods

Overview of the model

We used computational modeling to assess the effectiveness of alternative
screening programs. We developed two models working at different
scales: i) a model of virus transmission between individuals in a community
where the facility under screening belongs, and ii) a model of the within-host
viral dynamics for each infected individual in the facility. The viral dynamics
model is a compartmental model composed of two components: the
amount of the virus and the proportion of uninfected target cells. The model
was parameterized using longitudinal viral load data collected from over 200
SARS-CoV-2 infected individuals. The between-hosts transmission model
was also a compartmental model, where the population is divided into six
classes characterized by infectious status, immune status, and symptom
presence.

We considered multiple screening programs, each of which was
determined by five factors: (1) screening schedule, (2) sensitivity (i.e.,
detection limit) of the antigen test, (3) timing of screening program initia-
tion, (4) number of available tests per person, and (5) screening duration.
We only considered screening using antigen tests, because antigen tests are
more realistic for screening settings given their lower cost and shorter
turnaround time (time between sampling and returning results) compared
to PCR tests™. All individuals in the facility were tested under the same
schedule.

The screening programs are implemented to identify infected indivi-
duals to avoid the possibility of further spread of the infection in the facility.
Thus, we set the primary and secondary outcomes of our analysis to be the
proportions of infected individuals and the proportion of pre-infectious (i.e.,
latent) and infectious individuals identified during the screening period

among all infected individuals before the screening program, respectively. It
is important to note that individuals who developed symptom before
screening were not counted in both the numerator and the denominator.

Note that the stochasticity lays on the viral load trajectory (the para-
meter sets were resampled from the estimated distributions of model
parameters), measurement error of viral load, timing of infection of infected
individuals in the facility, and timing of symptom onset. Results are based on
100 stochastic realizations of each analyzed scenario.

Viral load data

Longitudinal viral load data for symptomatic and asymptomatic SARS-
CoV-2 infected individuals were obtained from the literature. We con-
ducted a systematic search using PubMed and Google Scholar with the
following inclusion criteria: (1) viral loads were measured and reported at
least at two time points for the same patient; (2) samples were collected from
upper respiratory specimens, such as nose and pharynx; (3) patients should
not have received an antiviral treatment. Most of the identified studies
reported cycle threshold (Ct) values, which correspond to the number of
amplification cycles required to create enough copies of the viral RNA to be
detected in PCR testing. As in previous studies™*, the viral load (copies/mL)
was estimated from the Ct values using the following conversion formula:
log,, (Viralload [copies/mL]|) = —0.32 x Ctvalues[cycles| + 14.11. IRB
review was exempted at Nanyang Technological University (IRB-
2022-1041).

SARS-CoV-2 viral dynamics model

To describe the temporal change in viral load of each infected individual, we
used an already established mathematical model describing SARS-CoV-2
viral dynamics’™";

40— _pr(eyv (),

YO — yf () V(e) - SV(1), @

where f(t) is the ratio between the number of uninfected target cells at time ¢
(since infection) and the number of uninfected target cells at the infection
time, and V(t) is the amount of virus per unit of sample specimens
(copies/mL) at time ¢. The parameters y, $ and & represent the maximum
viral replication rate, the rate constant for virus infection, and the death rate
of infected cells, respectively. Time ¢ = 0 corresponds to the time of
infection, thus f(0) = 1. We assumed V(0) = 10~ (copies/mL)*. Under
reasonable parameter setting, V(t) increases exponentially initially, then
starts declining after reaching a peak. Model parameters were estimated by
fitting Eq. (1) to the longitudinal viral load data using a nonlinear mixed-
effect modeling approach. The nonlinear mixed-effect model allows the
estimation of population parameters while accounting for variability in
parameter values between individuals***. As the time of infection was not
observed directly, we estimated the timing of infection as well’***. Model
parameters were estimated for asymptomatic and symptomatic patients
independently.

The calibrated model was used for simulating individual viral load
trajectories for infected individuals. To account for measurement error, we
also computed a measured viral load, V(¢), in addition to the predicted viral
load, V(¢)”*. The longitudinal true viral load for infected individual k,
V,(t), was generated by running Eq. (1) with a parameter set, which was
resampled from the estimated distributions of model parameters. The
measured viral load for infected individual k was computed by adding an
error term: log,, V,(t) = log,, Vi(®) + & & ~ N(0,0?). The variance of
the error term, o, was obtained by fitting a normal distribution to the
residuals (i.e., the difference between the common logarithms of predicted
viralload and measured viral load). Note that Eq. (1) was fitted to log,, V(t),
not V(t), because it is more natural to assume that the measurement error of
Ct values (thus log,, V(t)), which is directly measured in studies, follows
normal distribution. The logarithm also allows us to avoid an issue with
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fitting that skews towards large values in viral load data. All variables,
parameters, and parameter values are summarized in Table 1.

Model of SARS-CoV-2 transmission in the community

To describe SARS-CoV-2 transmission between individuals, we developed
another mathematical model. The model is a SLIR model, where the
population at time t is divided into four compartments: Susceptible (S(¢)),
Latent (ie., infected, but not yet infectious) (L(t)), Infectious (I(¢)), and
Removed (i.e., temporarily fully protected) (R(¢)) (Fig. 1a). Note that each
compartment is proportional to the total population which is fixed over
time: S(t) + L(t) + I(¢) + R(t) = 1. Accounting for presence and absence
of symptoms, L(¢) and I(¢) are separated into two groups (the subscripts a
and s correspond to asymptomatic and symptomatic individuals, respec-
tively). Newly infected cases are immediately allocated to either L,(¢) or
L(t) following the asymptomatic ratio, p. Those in L(¢) move to I(t) once
they acquire infectiousness after the latent period. Those in I(t) move to R(t)
once they lose infectiousness. Here, we assume that latent and infectious
periods follow gamma distributions. Note that the sum of # independent
exponential distributions Exp(n) with mean 1/nA, is a gamma distribution
Gamma(n, n1) with mean 1/A. Then, the model can be described by fol-
lowing ordinary differential equations:

ds(e)

= ~BOLO+L0),
dL;;(t) = pbS() (1, (1) + L()) — 2¢,L,, (1), dL;j(t) =2¢g,L,,(t) — 2¢,L,5(t),
dLs;t(t) = (1= p)bS(O)(I(1) + I,(6)) — 2¢,L, (1), dLj;t(t) =2¢L () — 26.L,(t)
dl“;t(t) = 2¢,L,,(t) = 20,1,,(8), dI“;t(t) =20,1,,(t) = 20,]1,,(t),
dI;‘f” =2eL,,(t) = 20,1, (0), % = 20,1,,(t) — 20,1, (1),

% =20,1,,(t) +201,(t),

Ly(t) = L1 (t) + L, (1), L(t) = L (1) + L (1),
L(t) = 1,,(8) + 1,,(8), I(t) = I, (1) + I, (1),
(2

where b is the transmission rate and p is the asymptomatic ratio. Note that
1/eand 1/0 are the mean latent period and the mean infectious period with
gamma distributions, respectively. The basic reproduction number of Eq.
(2) can be derived: R, = pa—ha + (1 — p) U%.

Some of the parameters regulating the transmission model are
informed by the viral dynamics model (Fig. 1b). Specifically, the latent
period is defined as the interval between the time of infection and the time
when the viral load crosses the infectiousness threshold (10° copies/mL),
which may differ between asymptomatic and symptomatic infected
individuals*~. The infectious period is defined as the time interval during
which the viral load is above the threshold. We estimated the values of these
periods by running the viral dynamics model (i.e, Eq. (1) with 10,000
parameter sets resampled from the estimated parameter distributions. By
fitting a gamma distribution to those values, we estimated the mean values,
which were used to set 1/¢ and 1/0. This process was performed for
asymptomatic and symptomatic individuals independently (Supplemen-
tary Fig. 8).

The baseline of the asymptomatic ratio, p, was set at 70% since most
infected cases did not present respiratory symptoms during the early stages
of the COVID-19 pandemic*. However, it is important to acknowledge
uncertainty in this value, as well as heterogeneity p between populations,
which can be influenced by pharmaceutical interventions like vaccines.
Currently, with high vaccination coverage, 80%-90% of infected cases are
observed to be asymptomatic’””’. As we focus on implementing screening
programs in schools and workplaces where most people are children or
adults, and vaccination effectiveness and coverage are different between

Table 1 | SARS-CoV-2 viral dynamics model variables and
parameters

Variables Description
V(t) Viral load at time t (copies,/mL)
f(t) The ratio between the number of uninfected cells at time t and that at
time 0
Parameter Description Asymptomatic Symptomatic
y Maximum rate constant for 6.06 6.81
viral replication (day~")
B Rate constant for virus 415x10°® 9.41x10°7
infection
([copies/mL] "day~")
é Death rate of infected 0.74 0.83
cells (day™")
o Standard deviation of error 1.82 1.64

term (logo[copies,/mL])

areas and age groups™’, we conducted sensitivity analyses encompassing a
range of values of p from 20% to 90%.

The transmission rate, b, was assumed to be constant over the infec-
tious period and set by considering the relationship between the repro-

duction number, R, and the other model parameters: b = = where

Re
p+(1-p
1/0, and 1/0, are mean infectious periods for asymptomatic and symp-
tomatic cases, respectively. The value of R, depends on many factors
including pathogen transmissibility, population immunity, social behavior,
and deployed interventions. As such, we investigated a wide range of values
of R,, ranging from 1.5 to 5.0, as observed at various stages of the COVID-19
pandemic’™>. For the baseline analysis, we set R, = 2.0. In our main
analyses, the size of the school/workplace where the screening programs are
implemented was assumed to be 1000. The timing of infection of each
infected individual in the facility at time ¢ was randomly sampled from a
Poisson distribution of mean m(t), where m(t) corresponds to the product
between the incidence rate in the community at time ¢ and the number of
individuals in the focus facility (i.e., 1000). The size of the community was set
at 10 million people, substantially larger than that of focus facility. All
variables, parameters, and parameter values are summarized in Table 2.

Simulation of alternative screening programs

We used the two models (i.e., Eq. (1) and Eq. (2) to evaluate the effectiveness
of various screening programs. The effectiveness of the screening programs
was assessed by the following outcomes: (i) proportion of infected indivi-
duals identified by the screening program, and (ii) proportion of latent (i.e.,
pre-infectious) and infectious individuals identified by the program. In both
cases, the proportion is estimated as a fraction of individuals who were
infected before the start of the program. Details on the estimation of these
two outcomes are reported in Supplementary Note 1 and Supplemen-
tary Fig. 1.

Five parameters regulate the analyzed screening programs: screening
schedule, sensitivity (i.e., detection limit) of antigen tests, screening duration
(T), timing of screening initiation, and number of available tests per person
(k). We investigated the six screening schedules (Fig. 1c). Schedule 0
involves daily screening of symptomatic students/workers only, while
Schedule 1 includes screening of all students/workers on a daily basis.
Schedules 2 and 3 are daily symptomatic screening with testing of all stu-
dents and workers every two and three days, respectively. Schedule 4 con-
sists of daily symptomatic screening and testing of all students and workers
on the first day and last (k — 1) days of screening duration. Finally, Schedule
5 pairs daily symptomatic screening with random testing of all students/
workers (i.e., the screening of all students/workers takes place k times in days
selected at random). Note that Schedules 1-5 are implemented until all
available tests have been used, and these schedules also involve symptom
screening.
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Fig. 1 | SARS-CoV-2 transmission model and viral dynamics model. a Schematic
illustration of SARS-CoV-2 transmission model. b Three different phases of SARS-
CoV-2 viral dynamics. The black solid line is a typical viral load curve (for an
illustration purpose). The horizontal gray solid line is an infectiousness threshold.
One goes through three phases since infection: latent (blue), infectious (red), and
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non-infectious (green) depending on the viral load, respectively. The horizontal red
and blue solid lines are detection limits of low sensitivity and high sensitivity antigen
tests, respectively. ¢ Different screening schedules. The pink-shaded regions indicate
a symptom-based screening. For illustration purposes, the number of antigen tests
per individual is set to 4.

We assumed the screening program is implemented by a facility
itself to maintain its operation. As such, the resources that the facility can
decide to allocate for the screening could be highly variable. We thus
assessed various scenarios. First, two antigen tests with different sensi-
tivity were considered: low (2.0 % 10 copies/mL) and high (6.3 x 10*
copies/mL)™. Note that the low sensitivity antigen tests are more com-
monly used; thus, we considered those tests in our baseline scenario. The
screening duration was set as 10 days. We varied the timing of screening
initiation depending on different epidemic phases: growth, peak (base-
line), and decline phases (Fig. 2a). The peak phase was defined as starting
on the day with the largest number of newly infected individuals in the
community. The growth and decline phases are defined as starting when
the number of newly infected individuals reaches 10% of the peak
number of new infections (before and after the peak, respectively). The
number of available tests per person was set as 4 in the baseline scenario;
alternative values of 3 and 5 were explored as sensitivity analyses. The
parameters of the screening programs are summarized in Supplementary
Table 1. Symptom screening is triggered by symptom presence. Specifi-
cally, for each symptomatic individual, the incubation period (i.e., the
period between the time of infection and onset of symptoms) was
sampled from a lognormal distribution Lognormal(1.76, 0.41), which
was estimated in our previous study” and gives a median incubation
period of 5.8 days. It is important to stress that the incubation period
does not correspond to the latent period. While the latent period is
related to the transmission process (i.e., latent individuals are not yet able
to transmit the infection), the incubation period is related to the clinical
progression of the infection. Specifically, in this study, the incubation
period plays a key role, as the onset of symptoms triggers testing.

Identified individuals are assumed to be isolated immediately. We
further assume that the epidemic dynamics in the community are not
affected by the dynamics in the focus school/workplace, since the size of the
school or workplace is substantially smaller compared to the size of the
community. Furthermore, we assume no transmission in the school/

workplace as we are interested in the proportion of identified infected
individuals who were infected before the initiation of the screening program.

Economic costs associated with screening programs are practically
helpful to design and evaluate screening programs. To this end, we used the
incremental cost-effectiveness ratio (ICER), which is defined as the ratio of
the difference in costs between two strategies to the difference in
effectiveness™*. Here, compared to Schedule 0 (ie, only symptom
screening), we calculated the ICER of Schedules 1-5 including antigen tests
(see Supplementary Note 2). We assumed the cost of rapid antigen test (i.e.,
lateral flow tests) is 5 USD per kit”, although the cost could differ between
countries. We did not consider the logistic costs of the program as we
considered them to be similar between programs.

The statistical computing software R (version 4.2.3) was used for all
analyses. A nonlinear mixed effects model analysis was performed on
MONOLIX 2019R2 (www.lixoft.com). The study’s supporting codes can be
found on the Zenodo repository™”. IRB review was exempted at Nanyang
Technological University (IRB-2022-1041).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Different viral dynamics between asymptomatic and sympto-
matic patients
Ten papers were identified that met all the inclusion criteria. In total, the
viral load data of 109 symptomatic individuals and 101 asymptomatic
individuals were used to estimate the parameters of the viral dynamics
model (i.e., Eq. (1). Seven studies were from Asia and two were from the
USA. The other was from Europe (Supplementary Table 2).

The parameters of the viral dynamics model were fitted to the long-
itudinal viral load data for asymptomatic and symptomatic individuals
independently (Fig. 2b and Supplementary Fig. 2). We observed differences
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Table 2| SARS-CoV-2 transmission model variables and parameters

Variables Description

S(t) Proportion of susceptible population at time t

L) Proportion of asymptomatic latent population at time ¢

L) Proportion of symptomatic latent population at time t

1,(t) Proportion of asymptomatic infectious population at time t

Is(t) Proportion of symptomatic infectious population at time ¢

R(t) Proportion of removed population at time ¢

Parameter Description Baseline Range
R, Basic reproduction number 2.0 1.5t05.0
b Transmission rate (day'1) Theoretically derived” Theoretically derived
P Asymptomatic ratio 0.7 0.2t00.9
1/e, Mean latent period for asymptomatic infected individuals, modeled as a gamma distribution (day) 2. 7% -

1/es Mean latent period for symptomatic infected individuals, modeled as a gamma distribution (day) 3.0k -

1/0, Mean infectious period for asymptomatic infected individuals, modeled as a gamma distribution (day) 6.0% -

1/0g Mean infectious period for symptomatic infected individuals, modeled as a gamma distribution (day) 7.4% -

& Obtained from the viral dynamics model Eq. (1).
R,

— e

 (egra-eg)

in the peak viral load and the duration of viral shedding between two groups,
but not in the time of the peak viral load (Fig. 2b). The epidemiological
parameters related to disease progression (i.e., the latent period and infec-
tious period for asymptomatic and symptomatic individuals, respectively),
informed by the viral dynamics model, are summarized in Table 2.

Effectiveness of screening programs

Incorporating the viral load dynamics in the transmission model (i.e., Eq.
(2)), we evaluated the effectiveness of screening programs. Under our
baseline epidemiological parameter setting (R, = 2.0, p = 0.7), the daily
incidence in the community peaks on epidemic day 152 and is at 10% of the
peak incidence on epidemic days 116 and 187 (Fig. 2a) - we considered
screening programs starting on these three days (denoted peak, growth, and
decline phases of the epidemic, respectively). Assuming that the infection
risk for those at the school and the workplace is dependent on that of the
community, the epidemic curve at the facility is proportional to that of the
community (Fig. 2a). In the growth phase, higher proportions of infected
individuals are either latent or infectious because not much time has passed
since their infection, whereas more individuals are already non-infectious
with low viral load in the decline phase (Fig. 2a).

The effectiveness of different screening programs was assessed based
on the proportion of infected individuals identified through either antigen
test screening or symptom presence. We considered our baseline scenario
unless otherwise specified (Table 2 for transmission model parameters and
Supplementary Table 1 for screening programs). When screening tests were
not performed (Schedule 0), individuals can be identified only by symptom
screening during the period of the screening program (Fig. 1c). The pro-
portion of identified individuals increases over time but saturates around
Day 7, because the viral load of asymptomatic individuals who were infected
before the screening program drops below the detection limit by this time
(thus they cannot be identified), and symptomatic individuals who were
infected before the screening program have already presented symptoms by
this time. This proportion reaches 14.6% (95% CI: 13.0-16.3) by the end of
the program (Schedule 0). When screening tests were performed (Schedule
1 to 5), the proportion of identified individuals after the program was
remarkably higher compared with that under Schedule 0 (Fig. 2c).

Compared with other schedules, early and frequent screening (such as
Schedules 1 and 2) identified more infected individuals on average (Fig. 3).
In particular, 36.9% (95% CI: 33.7-40.1) and 36.0% (95% CI: 32.7-39.8) of
individuals were identified by antigen tests under Schedule 1 and 2,
respectively, whereas the proportion was 22.0% (95% CI: 18.9-25.6) under

Schedule 4 (late screening). Also, Schedule 1 identified 7.5% (95% CI:
5.1-9.9) of symptomatic individuals with antigen testing sooner, before the
onset of symptoms, compared to Schedule 0. At the peak of the epidemic, the
infection stage of individuals was mainly distributed in the early stage of viral
progression, which implies that their viral loads may be as high as the
detection limit (Supplementary Fig. 9a). Thus, Schedule 1 effectively iden-
tified positive individuals more than other schedules.

In addition, we examined the difference in the number of used antigen
tests during screening between schedules. While Schedule 1 identified
individuals by using antigen tests up to 4 times properly, most individuals
were identified by the first antigen test under Schedule 4 (Fig. 4a). Addi-
tionally, since Schedule 4 uses antigen tests later in the screening period,
more symptomatic individuals were identified by symptom screening than
by antigen tests, and thus most identified symptomatic individuals used the
test only once. On the other hand, because the timing of using antigen tests
in Schedule 1 is focused on earlier during the screening, most symptomatic
individuals used all 4 times tests before being identified by symptom
screening (Fig. 4b). We also computed the ICER of the screening programs
(Fig. 4c). The ICER under Schedule 1 was estimated to be about 50, meaning
that an average of 50 USD is required to identify one additional infected
individual relative to Schedule 0. In contrast, Schedule 4 is estimated to
require about 80 USD per additional identified infected individual com-
pared to Schedule 0.

We varied the reproduction number (R,) and proportion of asymp-
tomatic infections (p). The proportion of identified individuals was nega-
tively associated with p, because symptom screening works better for small
p- Meanwhile, it was positively associated with R,, because more individuals
have a high viral load when the screening programs start as the epidemic
curve gets steeper (first column panels in Fig. 5 and Supplementary Fig. 9b).
Comparing the schedules under our baseline epidemiological parameter
setting (Fig. 2c), Schedules 1 and 2 identified more positive individuals
because their viral load was still high when they were tested. Indeed,
Schedule 1 (daily screening) yielded 47.1% (95% CI: 44.2-51.0) in identi-
fying infected individuals, whereas it was 33.7% (95% CI: 30.5-37.3) for
Schedule 4 (late screening). The proportion of identified individuals by only
antigen tests was also positively associated with R,, and Schedules 1 and
2 showed better outcomes (second column panels in Fig. 5). Moreover,
compared to Schedule 0 (only symptom screening), the proportion of
identified symptomatic individuals by antigen tests before their symptoms
have shown increased, as p decreased. Generally, symptom screening works
better when there are many symptomatic patients, so in this case, there may
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Fig. 2 | SARS-CoV-2 epidemic curves and viral load curves. a SARS-CoV-2 epi-
demic curves (upper panel). The black, purple, and pink curves are the daily inci-
dence (as a proportion of the total population) of new infections, asymptomatic
infections, and symptomatic infections, respectively. The vertical red, yellow, and
blue dashed lines are the timings of screening initiation for the growth, peak, and
decline phases of the epidemic, respectively. Simulated SARS-CoV-2 viral dynamics
of asymptomatic and symptomatic individuals in the school or workplace over time
(lower panel). The blue, red, and green lines are latent, infectious, and non-infectious
stages as defined in Fig.1a. Note that the green line is discontinued on the right end
when the viral load drops below a detection limit of 10° copies/mL. b Estimated viral
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load curves from the SARS-CoV-2 viral dynamics model. The solid lines are drawn
using the best-fit population parameters (purple: asymptomatic, pink: sympto-
matic). The shaded regions correspond to 95% predictive intervals created using a
bootstrap approach. c. Cumulative proportion of identified SARS-CoV-2 infected
individuals during the screening programs (Schedules 0 to 5) under our baseline
setting (R, = 2.0, p = 0.7). We used baseline values for screening programs (i.e., low
sensitivity tests [2.0 X 10° copies/mL], screening initiation at peak phase, and 4
antigen tests for each person). The shaded regions are 95% confidence intervals using
a bootstrap approach.

be little difference in the proportion between Schedule 0 and other schedules
that use antigen tests. However, since the viral load of symptomatic indi-
viduals is higher than that of asymptomatic individuals, screening using
antigen tests is effective in identifying symptomatic individuals before being
identified by symptom screening, even for small p (Fig. 2b and third column
panels in Fig. 5).

We further explored the impact of changing the other parameters of
screening programs. Higher sensitivity antigen tests, screening initiated at
an earlier phase of the epidemic, and more screening tests are associated
with effective screening programs (Fig. 6). Notably, 69.3% (95% CI:
66.5-72.5) of infected individuals were identified by high sensitivity antigen
tests (6.3 X 10* copies/mL) under the baseline epidemiological parameter
setting (Fig. 6a). The number of tests improved the effectiveness; however,
the impact was minor compared with the other parameters because most of
identified individuals were identified at the first few tests (Fig. 6c and Fig. 2c).
In schools, screening programs tailored for young individuals may be
needed. In fact, most children infected with SARS-CoV-2 remain
asymptomatic™ and have lower viral loads and shorter viral shedding than
symptomatic individuals or older adults®**". Therefore, antigen tests with

high sensitivity may be instrumental enhance screening programs in
schools. We also varied the facility size considering 500 and 2,000 as sen-
sitivity analyses as compared with the default size of 1000. We found that the
average outcomes did not depend on the size of the facility. However, the
variance of the outcomes increased when the facility size decreased (Sup-
plementary Fig. 7).

Furthermore, we repeated our analyses using the secondary outcome
(the proportion of identified latent and infectious individuals) because these
individuals are the source of transmission. In other words, we excluded
those who had already lost infectiousness. We found quantitatively similar
results as in the analyses for the primary outcome (Supplementary Fig. 3 and
Supplementary Figs. 5-6). However, the ICER for the secondary outcome
was slightly higher than for the primary outcome - the higher costs were
entailed in specifically identifying a latent and infectious individual (Sup-
plementary Fig. 4c). Moreover, the difference in the screening effectiveness
between Schedules 1 and 4 was slightly more emphasized: the differences
were about 10.2% and 12.6% for the primary and secondary outcomes on
average, respectively, because more non-infectious individuals were iden-
tified by late screening (Schedule 4).
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Fig. 3 | Effectiveness of different screening sche-
dules on identifying SARS-CoV-2 infected indi-
viduals under baseline setting (R, = 2.0, p = 0.7).
Mean cumulative proportion of SARS-CoV -2 infected
individuals by the end of screening programs. We
used baseline values for screening programs (i.e., low
sensitivity tests [2.0 X 10° copies/mL], screening
initiation at peak phase, and 4 antigen tests for each
person). The black and pink bars represent identified
individuals by antigen tests and symptom screening,
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Discussion assessed the effectiveness of antigen testing in English secondary schools

As well as the devastating public health impacts of COVID-19, the pan-
demic has had substantial socio-economic costs. In countries worldwide,
strategies have been sought to safely restart economic and educational
activities involving in-person interactions. Screening for infection is con-
sidered as key to mitigating the risk of infection while allowing in-person
interactions. We assessed the effectiveness of different screening programs
using antigen tests through simulation of a multi-scale epidemiological
modeling framework.

In the simulations, the transmission model and the viral dynamics
model were combined to incorporate both epidemiological dynamics and
within-person virological dynamics, because both factors influence the
assessment of the effectiveness of screening programs. To parameterize the
viral dynamics model, we used longitudinal viral load data. Further, epi-
demiological parameters related to disease progression (i.e., latent period
and infectious periods) were informed by the viral dynamics model and
used to develop the transmission model. The effectiveness of different
screening programs was assessed, and sensitivity analyses were conducted in
which model parameters were varied. We found that early and frequent
screening with high sensitivity antigen tests yielded high effectiveness
because more individuals are identified while their viral load is high. The
analyses using the secondary outcomes revealed that the importance of early
screening tests was emphasized when only latent and infectious individuals
were counted because those individuals can only be identified when their
viral load is high. This is the first study that assessed the effectiveness of
screening programs with antigen tests in schools or workplaces using a
multi-scale model. A previous study examined the effectiveness of screening
programs targeting an entire population using a viral kinetic model and
suggested that frequent screening tests with a fast turnaround time are key to
mitigating the transmission risk in the population™. Our study is different as
we focused on a small group (i.e., a school or a workplace) as the screening
target, not an entire population, and the multi-scale epidemiological model
was employed. Population-wide screening is feasible in an emergency.
Indeed, population-wide screening was conducted in Slovakia in late 2020
and successfully controlled the epidemic at least for a short time while
screening was performed”. Meanwhile, small-scale screening will not be
powerful enough to control the epidemic at population scale. Therefore, the
effectiveness of screening in a school or a workplace is influenced by the
transmission risk in the population, but a smaller effect might be expected in
the other direction. Further, Larremore et al. assumed screening tests are
performed until the epidemic is contained”, whereas we assumed a limited
screening period. Although antigen screening is less expensive than PCR
testing, enforcing all people to get tested over the pandemic period might be
challenging. Further, previous studies assessed the efficacy of screening
programs without using multi-scale models. For example, Leng et al.

using an individual-based modeling”. The authors assumed that the sen-
sitivity of antigen testing dynamically changed over the course of infection
according to results from an epidemiological study®’. Compared with these
previous studies, test sensitivity is directly informed by the viral load in our
analysis, thus we can estimate the sensitivity for different antigen tests with
different detection limits, which enables us to choose appropriate antigen
tests. Indeed, we found that rapid antigen tests should be designed to have
lower detection limits than infectiousness threshold value in the context of
isolation guideline®.

In this study, we considered antigen tests rather than PCR testing,
because using PCR testing for screening purpose is practically challenging
given the cost and turnaround time (which is around 2 days™). There are
multiple antigen tests with varying sensitivity’*. We found that high sensi-
tivity antigen tests available so far yielded about 18% more identified
infected individuals than low sensitivity antigen tests (Fig. 5). The viral
dynamics were utilized to inform both the time-dependent test sensitivity
and epidemiological parameters, such as the latent and infectious periods.
However, the time-dependent transmission probability was not considered
in this simulation. Several studies have assumed a dynamical transmission
probability informed by the viral dynamics model”***. Nevertheless,
connecting the transmission rate and viral load has been proven to be
challenging, and the aforementioned studies have relied on several untest-
able assumptions. One direct approach to investigate the association
between viral load and transmissibility involves measuring culturability
depending on viral load"****, However, culturability serves as a necessary
condition for transmission but not a sufficient one, as transmission occurs
not only with a culturable virus but also requires exposure to the virus, a
factor not considered in culturability assessments. Another strategy involves
estimating the viral load at the time of infection using viral dynamics models
and information from infector-infectee pairs with longitudinal viral load
data”. Unfortunately, such data are extremely rare, particularly during a
pandemic. Furthermore, it is essential to note that the primary focus of this
study is a broad assessment of the effectiveness of antigen screening, rather
than a detailed modeling of transmission dynamics. For these reasons, we
did not incorporate viral load information to inform a time-dependent
transmission rate in our model.

We assumed the screening is triggered by the epidemic phases deter-
mined by the incidence rate. When considering an entire epidemic, the
temporal dynamics of the incidence curve may follow more complex pat-
terns with multiple waves, which do not allow for a simple definition of
growth, peak, and decline phases. However, in the short-term, these three
phases are generally well-defined. Nonetheless, further research is war-
ranted to explore the effect of complex temporal epidemic dynamics on the
definition of screening strategies. Although we carefully developed the
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Fig. 5 | Effectiveness of different screening schedules on identifying SARS-CoV-2
infected individuals. Mean cumulative proportions of (a) identified SARS-CoV-2
infected individuals, (b) identified SARS-CoV-2 infected individuals by antigen
tests, and (c) identified SARS-CoV-2 symptomatic individuals by antigen tests
compared to Schedule 0 (third column panels) by the end of the screening programs
under different screening schedules varying the proportion of asymptomatic cases

compared to Schedule 0

and the basic reproduction number. Note that the different color scales in the three
columns. Baseline parameter values for screening programs and those for the epi-
demic are used if not specified: R, = 2.0, p = 0.7, low sensitivity tests [2.0 X 10°
copies/mL], 10 days screening, screening initiation at peak phase, 4 antigen tests for
each person. The red dots represent the baseline (R, = 2.0,p = 0.7). Note that we

did not count individuals infected during the screening period.
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different timing of screening initiation (i.e., peak, growth, and decline phases), c.
with different number of available antigen tests per person (i.e., 3, 4, and 5 times).
Baseline parameter values for the screening program (i.e., low sensitivity tests
[2.0% 10° copies/mL], screening initiation at peak phase, 4 antigen tests for each
person) were used if not specified.

model and chose parameter values to evaluate the effectiveness of screening
programs as realistically as possible, there are a few limitations which could
be addressed in future studies. First, we did not consider a false-positive rate
of the antigen tests (specificity of antigen tests for SARS-CoV-2 has been
estimated to be 99.6%"). If the false-positive rate is not negligible, targeted
screening (targeting high prevalence populations) might also be an option to
reduce the burden related to screening tests. Second, both the transmission
model and the viral dynamics model did not consider emerging variants,
reinfection, breakthrough infection, and vaccine effects. For example, if the
viral dynamics of the delta variant or under vaccination is different from the
original variant without vaccination (Li et al. suggested that the delta variant
presented faster viral replication’), our model needs to be updated. How-
ever, our model is flexible enough to incorporate the effect of vaccination or
variants into both the viral dynamics model and the transmission model
once relevant data become available. Third, the transmission model did not
incorporate behavioral changes during the pandemic or screening. Contact
patterns dynamically changed as a response to the pandemic, which was
partly responsible for the multiple waves of infection observed in most
countries””*, and such behavioral dynamics could be incorporated into our
modeling framework. Fourth, within-school/workplace transmission was
assumed not to be influenced by the screening intervention. However,
clusters of infections in school/workplace can take place even when inter-
ventions are implemented and the effective reproduction number is under
the epidemic threshold’*”. Therefore, considering the possibility of trans-
mission in the focus facility represents an important future direction of the
current study. Fifth, the viral dynamics model used in this study is simple
and did not incorporate additional factors such as the immune system.
However, we believe that the adoption of the proposed minimal model is
justified for the following reasons: i) our previous study’” has shown that
more complex models led to similar goodness of fit than the proposed model
and the estimated distributions of model parameters were consistent

between all models; and ii) more complex models require either fixing
parameters or considering additional data that goes beyond longitudinal
viral load (e.g., immunological response data), which would be challenging
in the context of pandemic preparedness.

Our work has valuable scientific and public health implications. From
the scientific standpoint, we have introduced a novel multi-scale approach
to evaluate the efficacy of screening programs at the single facility level.
Notably, the proposed viral dynamics model offers a more adaptable
computational framework, enabling the simultaneous computation of
epidemiological parameters and test sensitivity. From the public health
standpoint, our computational framework can empower decision-makers
to allocate resources more pragmatically. For example, in situations where
resources are abundant, emphasis can be placed on deploying high-
sensitivity tests and prioritizing early and frequent testing.

Regardless of the simplicity, we have proposed a computational fra-
mework to consider the effectiveness of various screening programs
deployed at a small-scale, such as in schools and workplaces. Based on our
analyses, for economic and educational activities to resume safely and in-
person, we recommend frequent and early screening with high sensitivity
antigen tests.

Data availability

The viral load data that support the findings of this study are publicly
available, obtained from publications®****”*~*° (see Supplementary Table 2).
Source data for the main figures are provided in the Supplementary Data file.

Code availability
The study’s supporting codes are available at the Zenodo™.
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