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Swarm learning with weak supervision
enables automatic breast cancer
detection in magnetic resonance imaging
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Abstract

Plain language summary

Background Over the next 5 years, new breast cancer screening guidelines recommending
magnetic resonance imaging (MRI) for certain patients will significantly increase the volume
of imaging data to be analyzed. While this increase poses challenges for radiologists,
artificial intelligence (Al) offers potential solutions to manage this workload. However, the
development of Al models is often hindered by manual annotation requirements and strict
data-sharing regulations between institutions.

Methods In this study, we present an integrated pipeline combining weakly supervised
learning—reducing the need for detailed annotations —with local Al model training via
swarm learning (SL), which circumvents centralized data sharing. We utilized three datasets
comprising 1372 female bilateral breast MRI exams from institutions in three countries: the
United States (US), Switzerland, and the United Kingdom (UK) to train models. These models
were then validated on two external datasets consisting of 649 bilateral breast MRl exams
from Germany and Greece.

Results Upon systematically benchmarking various weakly supervised two-dimensional
(2D) and three-dimensional (3D) deep learning (DL) methods, we find that the 3D-ResNet-
101 demonstrates superior performance. By implementing a real-world SL setup across
three international centers, we observe that these collaboratively trained models outperform
those trained locally. Even with a smaller dataset, we demonstrate the practical feasibility of
deploying SL internationally with on-site data processing, addressing challenges such as
data privacy and annotation variability.

Conclusions Combining weakly supervised learning with SL enhances inter-institutional
collaboration, improving the utility of distributed datasets for medical Al training without
requiring detailed annotations or centralized data sharing.

Breast cancer screening guidelines are
expanding to include more MRI scans,
increasing the amount of imaging data
doctors must analyze. This study explored
how artificial intelligence (Al) can help manage
this increased workload while overcoming
challenges such as limited data sharing
between hospitals and the need for detailed
annotations on each image. Researchers
used MRI scans from five hospitals in the US,
Switzerland, the UK, Germany, and Greece to
train and test Al models. They found that a
specific type of Al model performed the best,
and that training Al collaboratively across
hospitals improved results compared to
training at individual sites. This approach
could make Al tools more effective and secure
for use in healthcare, potentially improving
breast cancer detection and patient
outcomes.

New screening recommendations for breast cancer are presently being
introduced across Europe and the United States'’. Previous guidelines
focused on mammography as the primary tool for breast cancer
detection™. The latest guidelines advocate the use of magnetic resonance
imaging (MRI) as a screening method for a significant number of
women, particularly those with extremely dense breast tissue. This
recommendation is reflected in the recently published EUSOBI
guideline'. With these modifications, the use of MRI as a screening tool
will need to be exponentially scaled up, potentially involving millions of
women scanned annually within the European Union. This substantial
rise in imaging demand is currently unmatched by a proportional

increase in trained specialty radiologists. This disparity underscores a
growing medical necessity for computed-assisted approaches, in parti-
cular deep learning (DL) methods. These systems can assist radiologists
in interpreting breast MRI data, thereby enabling general radiologists to
achieve a level of proficiency comparable to that of experts’. While high-
quality evidence shows a potential clinical benefit of DL in
mammography®, similar advancements in MRI for breast cancer face
significant challenges. Notably, studies that have achieved high-
performance DL models using MRI data often rely on large, proprie-
tary datasets that are not publicly accessible. The performance of DL
systems for medical image analysis scales with the amount of training
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data. Hence, the lack of data accessibility hinders reproducibility and
limits collaborative efforts within the research community.
Therefore, training accurate, high-performance DL models for breast
cancer detection in MRI is constrained by two primary limitations:
access to a large number of examinations and the availability of ground
truth labels.

Traditionally, DL models for tumor detection in three-dimensional
(3D) radiological data are trained in a supervised way, often using
manually drawn tumor annotations as a golden standard”. This process
imposes a significant time and labor demand on expert and trained
radiologists. Moreover, obtaining precise voxel-level boundaries of
tumors in MRI data is not always feasible due to inherent imaging
ambiguities and significant intra- and inter-reader variability, which can
affect subsequent measurements and model performance. Similar lim-
itations apply to other strongly supervised methods, including
bounding-box annotations or centroid annotations, all of which require
expert input and can be subjective and ambiguous™'’. These factors
highlight the importance of alternative approaches that reduce the need
for detailed manual annotations. By applying weakly supervised learning
using global case labels—readily obtainable from routine radiology
reports''—we can circumvent the need for precise annotations while
mitigating issues related to annotation variability. Studies have shown
that automated breast MRI analysis dismissed many lesion free scans
without missing any cancer, potentially reducing radiologist
workload'>".

Training DL models require large and diverse patient datasets, ideally
sourced from multiple institutions across different countries. However,
sharing such data is complicated by legal, ethical, and privacy concerns,
particularly in internal contexts. Federated learning has been proposed as a
technical solution to this issue, enabling the training of multiple DL models
independently across different sites, thereby countering the need for data
sharing'*"". Nevertheless, within the context of traditional federated learn-
ing, there is a need for a central coordinator to aggregate models from each
participating site, introducing a single point of control and potential vul-
nerability. This centralized aspect can be at odds with the goals of fully
decentralized collaboration and may pose scalability issues. Swarm learning
(SL) is a more recent advancement which addresses these limitations by
using blockchain-based communication and model aggregation between
nodes'®"”. Thus, SL eliminates the need for a central coordinator, allowing
participating institutions to contribute equally and securely. Moreover, it
allows dynamic participation, which enables seamless onboarding and
dropout of participating institutions. While SL has shown promise in pre-
vious studies, its application in combination with weakly supervised
learning for the analysis of 3D radiological data has not been extensively
explored.

In this study, we tackle the dual challenges of the high cost of obtaining
ground truth labels and the complexities associated with sharing medical
imaging data across institutions. We propose an integrated approach that
combines weakly supervised learning with SL to facilitate decentralized
training of DL models for breast cancer detection in MRI. To demonstrate
the practical feasibility of our approach, we conducted a proof-of-concept
study involving three institutions from different countries, deploying on-site
hardware to ensure that patient data remained local. We benchmarked a
variety of state-of-the-art models—including commonly used two-
dimensional (2D) and 3D convolutional neural networks (CNNs), multi-
ple instance learning (MIL)-based models, and vision transformers—within
this weakly supervised SL framework. Our results showed that models
trained using SL outperformed those trained on local datasets alone, high-
lighting the potential of SL to enhance model performance through colla-
borative learning. By providing a practical demonstration of integrating
weakly supervised learning with SL for the analysis of 3D radiological data,
our study lays the groundwork for larger-scale evaluations. We believe that
this approach can significantly advance the development and deployment of
DL models in clinical environments, ultimately contributing to improved
patient outcomes.

Methods

Ethics statement

This study was conducted in accordance with the Declaration of Helsinki.
For the University Hospital Aachen (UKA) cohort, ethical approval was
granted by the institutional review board (IRB) of UKA (EK 028/19), with
data acquired in clinical routine and exported from the local PACS system in
anonymized form. The need for informed consent was waived by the IRB, as
the data were anonymized. For the Duke cohort", ethical approval was
granted by the IRB of Duke University Health System, and the anonymized
dataset was accessed under the approved protocol; informed consent was
not required, as the data are publicly available. For the Cambridge Uni-
versity Hospitals (CAM) cohort, data were collected as part of two clinical
trials, TRICKS (REC ref: 13/LO/0411) and BRAID (REC ref: 19/LO/0350),
both approved by the Research Ethics Committee of the Health Research
Authority and the Integrated Research Application System. Informed
consent was obtained from all participants in this dataset. For the Uni-
versitaetsspital Zurich (USZ) cohort, ethical approval for this retrospective
study was provided by the Ethics Committee of the Canton of Ziirich
(Kantonale Ethikkommission). Data were accessed from anonymized
hospital records under the approved protocol, and the need for informed
consent was waived due to the retrospective nature of the study and
anonymization of data. Ethical approval for the MHA cohort was granted by
the Scientific and Ethics Council of MITERA Hospital, which serves as the
hospital’s IRB. The council meets monthly to review all projects and
research protocols. Access to the MHA dataset was granted exclusively to
participants of the ODELIA project, who utilized personalized access
passwords to retrieve imaging and clinical data after anonymization.
Informed consent was not obtained, as the Scientific and Ethics Council
waived the requirement due to the retrospective nature of the study, the
anonymization of the data, and the absence of any impact on patient
management.

Patient cohorts

In this retrospective study, we utilized five breast MRI datasets, namely
“Duke”, “USZ”, “CAM”, “MHA”, and “UKA”. For real-world training,
Duke, USZ, and CAM were employed as the training cohorts, while UKA
and MHA served as the external test cohorts. The training was conducted
using real-world SL methodology, which involved training from indepen-
dent sites without sharing data. The internal training and validation cohort,
referred to as “Duke” was hosted on our local system, as it is publicly
available"”, and was collected between 2000 and 2014 at Duke Hospital in
Durham, North Carolina, USA. Out of the 922 patients (=cases) of biopsy-
confirmed invasive breast cancer in this dataset, 271 cases lacked infor-
mation on tumor location and were excluded from analysis. The remaining
651 patients (=cases) were analyzed, consisting of 623 benign and 679
malignant (unilateral) breasts, with 28 patients (=cases) having bilateral
breast cancer (Supplementary Fig. 2). As the Duke dataset is a staging dataset
all patients had malignant breast cancer. The data was acquired using a
1.5/3.0 Tesla scanner from General Electric or Siemens. The MRI protocol
involved a T1-weighted fat-suppressed sequence (one pre-contrast and four
post-contrast scans) and a non-fat-suppressed T1-weighted sequence. The
study included only female patients, with a mean age of 53 + 11 years (range
22-90) years. The USZ dataset was employed as a real-world training cohort
and was collected between 2013 and 2022 at USZ, Switzerland. The data
gathering was conducted within the Picture Archiving and Communication
System (PACS) of the USZ. The search focused on identifying dynamic
contrast-enhanced (DCE)-MRI examinations that met specific inclusion
criteria: individuals aged above 18 years, absence of implants, and avail-
ability of assessments for Breast Imaging Reporting and Data System (BI-
RADS) indicating the likelihood of malignancy. All the data were acquired
in a transverse plane in a prone position and with fat-saturation during the
DCE T1 sequences. It includes 272 female patients (Supplementary Fig. 3),
out of which 272 were used for analysis, having 203 benign and 69 malignant
cases, with 1 of the malignancies representing bilateral breast cancer. The
data was acquired using 1.5/3 Tesla scanners from Siemens Sola/Siemens
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Magnetom Skyra. The MRI protocol involves a T1-weighted non-fat-
suppressed axial sequence (one pre-contrast and four to eight post-contrast
scans) and a non-fat-suppressed T2-weighted sequence. The mean age of
the patients was 47 +14.5 years (range 23-83). The CAM dataset was
employed as a real-world training cohort and was collected between 2014
and 2021 at CAM, United Kingdom. It includes 305 female patients (Sup-
plementary Fig. 4), out of which 302 were used for analysis, having 153
benign and 149 malignant cases, with 2 of the malignancies representing
bilateral breast cancer. The data was acquired using 1.5/3 Tesla scanners
from GE SIGNA Artist / DISCOVERY. All the data were acquired in a
transverse plane in a prone position and with fat-saturation during the DCE
T1-weighted sequences. The UKA dataset”” was employed as the first
external test cohort and was collected between 2010 and 2017 at Aachen
Hospital, Germany. It includes 500 female patients (Supplementary Fig. 5),
out of which 422 were used for analysis, having 93 benign and 329 malignant
cases, with 27 of the malignancies representing bilateral breast cancer. The
data was acquired using a 1.5 Tesla scanner from Philips. The MRI protocol
involves a T1-weighted, non-fat-suppressed axial sequence (one pre-
contrast and four post-contrast scans) and a non-fat-suppressed T2-
weighted sequence. The mean age of the patients was 57 + 11 years (range
26-81). The MHA dataset was employed as the second external test cohort
and was collected in the year 2022 at Mitera Hospital, Athens. It includes 145
female patients (Supplementary Fig. 6), out of which 144 were used for
analysis, having 107 benign and 37 malignant cases, with 5 of the malig-
nancies representing bilateral breast cancer. The data was acquired using a
Magnetom Vida 3 Tesla scanner from Siemens. The MRI protocol involves
a T1-weighted, non-fat-suppressed axial sequence (one pre-contrast and
four post-contrast scans) and a non-fat-suppressed T2-weighted sequence.
The mean age of the patients was 50 + 11 years (range 23-81). A detailed
description of the image acquisition parameters of all cohorts is reported in
(Supplementary Data 1).

Preprocessing workflow

The same preprocessing pipeline was applied to all datasets in this study.
The preprocessing comprises two main steps. In the initial preprocessing
step, the DICOM files are converted into NIFTI format, which facilitates the
distinction and storage of images as pre-contrast and first post-contrast
sequences. Following this, the difference between the first post-contrast and
the pre-contrast images is calculated to produce subtraction images, known
as sub-contrast sequences. After these initial transformations, individual
cropping or padding is applied to the left and right breast volumes to suit the
requirements of our model, which processes a single breast volume at a time.
We are using intensity-based localization rather than manual segmentation
or a separate Al algorithm for segmentation. We crop the height to 256
pixels, It calculates a threshold to find the foreground (presumably the breast
area) and adjusts the crop dynamically to include this area, using a margin
from the top. Each breast volume is then globally labeled for malignancy
(yes/no) according to the classifications provided by the Duke, USZ, CAM,
MHA, or UKA datasets. The images are subsequently resampled to achieve
auniform resolution of 256 x 256 x 32 voxels. By simplifying the problem of
tumor detection into such a binary classification problem on the whole
volume of a breast in an MRI image, we enable the problem to be analyzed
with a range of weakly supervised prediction methods (Fig. 1A).

SL workflow

In this study, we investigate the potential of SL in co-training machine
learning models for the purpose of predicting breast cancer on MRI data,
utilizing multiple computers that are situated at physically distinct locations.
The SL approach enables each participating site to hold its own set of
proprietary data, with no clinical data shared between the participants'. We
implemented an SL network consisting of three separate “nodes”, and
trained a model using this network (Fig. 1B). During the training process,
model weights were exchanged between nodes at multiple synchronization
events (sync events), which took place at the end of each synchronization
interval. The synchronization interval represents the number of batches

after which learning sharing occurs. The model weights were then averaged
at each sync event, and training continued at each node using the averaged
parameters. We utilized a weighted averaging approach, which involved
multiplying the weights contributed by each node with a weighting factor
proportional to the amount contributed by the partner. This approach was
motivated by previous studies in gastric and colorectal cancer'®*'. Our SL
implementation stored metadata about the model synchronization on an
Ethereum blockchain, with the blockchain managing the global status
information about the model. We used the Hewlett Packard Enterprise
(HPE) SL implementation, which consisted of four components: the SL
process, the Swarm Network (SN) process, identity management, and HPE
license management. All processes, or nodes, were run in multiple Docker
containers. We provide a detailed description of our SL process, along with a
small sample dataset and instructions on how to reproduce our experiments
using our code in the following link™: https://github.com/KatherLab/
swarm-learning-hpe/releases/tag/odelia_v0.6.0.

Experimental design
In this study, we investigated the performance of multiple DL models within
three main categories: CNN-based-2D, CNN-based-3D, and MIL-based
workflows (Fig. 1C). We used the SL technique using three nodes, each with
a percentage of the training dataset, and compared its performance to the
model trained based on a centralized dataset (we will refer to this technique
as a centralized model) to validate the efficiency of SL technique as a
decentralized learning technique. For this purpose, we used 80% of the Duke
dataset for training and the remaining 20% as an internal testing cohort. The
UKA dataset was exclusively utilized as an external validation cohort. For
the SL technique, we ensured a balanced representation of benign and
malignant cases by patient level, dividing the training partition of the Duke
dataset with ratios of 40%, 30%, and 10% into three separate learning nodes
in three separate bare-metal servers. The data partitioning was conducted
randomly at the patient level and in a stratified manner, ensuring that each
partition was not based on individual breasts but on the patients as a whole.
To compare the performance of the models trained using the SL
technique to the centralized models, we trained each model as a classifier
using the centralized training dataset (80% of the Duke dataset) on one
single computer system. Following the training phase, all models were
subjected to validation on both 20% of the internal cohort and complete
external cohorts (UKA). To validate our weakly supervised tumor detection
with SL in a real-world scenario, we conducted real-world swarm training.
The training involved utilizing Duke’s open-source data at our center and
the USZ and CAM cohorts at their respective centers. We initiated the
models with random weights, a crucial step for introducing variability in the
starting conditions for both local and SL setups across participating sites. In
local training, each site independently trained a 3D-ResNet101 model on its
dataset, allowing models to adapt to unique characteristics of the local data
without data exchange between sites. After completing the designated
training epochs in the SL framework, a final round of weight merging was
performed to align the models across different sites, incorporating features
learned from each site’s dataset into a unified model. The aggregation
algorithm for weights typically averaged the contributions from each par-
ticipating model. Following the training phase, the models underwent
validation against the MHA and the UKA datasets, which were not part of
the training data. The experiment was conducted five times to account for
variability and to measure the stability of the model’s performance across
iterations. This approach included repeating the process of weight initi-
alization, model training (both locally and via SL), and the final weight
merging step for the SL models. All the experiments were repeated five times
using different random seeds.

Al methods

The DL models chosen for this study were selected through a compre-
hensive literature survey encompassing radiology and technical publica-
tions. Consequently, we explored 2D-CNN models”, 3D-CNN

models”*, MIL approaches, and also utilized vision transformer (ViT)
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Fig. 1| Schematic of the Weakly Supervised Learning (WSL) and Swarm Learning
(SL) workflow. A Schematic representation of the Deep Learning-based WSL

workflow for breast cancer tumor detection on Magnetic Resonance Imaging (MRI)
data, B Overview of the SL setup for a 3-node network, C Graphical representation of

techniques and models architecture for benchmarking WSL with breast cancer 3D
MRI data, D Combined representation of real-world SL-based WSL for Breast
Cancer Tumor Detection and Data Split Ratio.

models”*. All pipelines were applied to the preprocessed subtraction

images as described above. The following provides a detailed description of
these techniques.

2D-CCNs. CNNs are a subtype of DL models widely used in radiology for
activities like image classification, detection, and segmentation. They
employ a mathematical function known as convolution to process input
images. This makes them capable of learning hierarchical patterns in data
in a way that is invariant to translation. To begin with, the 3D MRI data is
segmented into 32 slices, each containing 256 x 256 pixels. These indi-
vidual image slices serve as input for CNNs based on the 2D-ResNet50
architecture. Using a weakly supervised learning approach, we label all
32 slices extracted in this scenario based on the volume, which indicates
the presence or absence of a tumor in the entire volume. The CNN model
treats each slice independently, producing a prediction score that reflects
the model’s interpretation of specific features or conditions present in

each MRI slice. To accumulate individual slice scores and generate
volume-level predictions, we selected the highest score among all 32 slices
within the volume. This top score was then allocated as the prediction
score for the entire volume™”.

3D-CNNs. These are adaptations of the 2D-CNN design tailored to
handle 3D-data for breast MRI classification®”’. The 3D-ResNet model
incorporates 3D-convolutional layers, pooling layers, and normalization
layers along with residual connections, which help retain spatial infor-
mation and mitigate vanishing gradients during training. By leveraging
the 3D structure of breast MRI data, the 3D-ResNet model captures
volumetric and spatial information that potentially enhances the classi-
fication task’s performance relative to 2D-CNN models. In our study, we
used 3D-ResNet18, 3D-ResNet50, 3D-ResNet101, and 3D-DenseNet121
architectures. These are adaptations of recognized 2D models specifically
designed for volumetric data processing.
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MIL-based methods. Recent research in developing DL algorithms in
the medical domain has identified a promising class of supervised
learning algorithms known as MIL***. Unlike supervised learning, where
each observation or “instance” is assigned a separate class label, MIL
assigns class labels to groups of observations, or “bags of instances™*. MIL
operates in two phases: feature extraction (transforming MRI slices into
512 feature vector representations) and training. We used the ResNet18
model pre-trained on ImageNet™ for feature extraction. Extracted fea-
tures are then used to train a MIL model to predict outcomes at the slice
level. Subsequently, it executes volume-wise aggregation and utilizes an
attention mechanism to assess the significance of various instances
within a bag for weighing their contributions. This process involves
merging predictions from multiple slices that belong to the same volume,
resulting in a comprehensive prediction for that MRI volume. We
employed three architectures for the MIL-based models: the attention-
based MIL” (Att-MIL), which has a multilayer perceptron (classifier
network) (512 x 256), and (256 x 2) with an attention mechanism®. This
is followed by a hyperbolic tangent (tanh) layer to obtain the slice-wise
prediction score, which is aggregated patient-wise for the 3D-MRI data.
The second approach we used is the vision transformer-based MIL*
(ViT-MIL). In this approach, we used a transformer network with multi-
headed self-attention to process slice embeddings. This potentially
enables the network to capture intricate relationships among the ele-
ments by treating the slice embeddings as a sequential input. The latent
dimension of each head is set to 64, resulting in a total dimension of 512.
We stack the embeddings of each patch in a sequence of size n x 512,
which is then transformed to a dimension of (n 4- 1) x 512 by applying a
linear projection layer followed by ReLU activation. The class token
approach was chosen over averaging the sequence elements for better
interpretability of the attention heads. The final technique we used for
analysis was the ViT-MIL with an LSTM. The architecture starts with a
1D CNN layer to learn local features from the extracted features. It is
followed by a linear layer to adapt the input dimensions to the required
size for the Transformer Encoder. The Transformer Encoder and
BiLSTM layers are then used to model the contextual and temporal
relationships within the data. Finally, the attention mechanism is applied
to determine the instance-level importance, and the classifier head is used
for the final classification. In summary, the ViT-LSTM-MIL model aims
to combine the strengths of Vision Transformer, LSTM, and Multi-
Instance Learning to improve the classification performance on the 2D
slices obtained from the breast MRI dataset.

Explainability

We utilize three established techniques™' for model visualization:
GradCAM*, GradCAM-++*, and occlusion sensitivity analysis (OCA)**.
GradCAM, or Gradient-weighted Class Activation Mapping, works by
visualizing the gradients of the target class in the final convolutional layer of
the model. It effectively highlights the regions in the image that have a strong
influence on the model’s prediction. GradCAM++ is an extension of
GradCAM, improving upon its predecessor by using higher-order deriva-
tives and taking pixel-level contribution into consideration, providing a
more refined visualization. Occlusion sensitivity works by systematically
occluding different parts of the input image and monitoring the effect on the
model’s output. The change in prediction probability is indicative of the
significance of the occluded part in the model’s decision. A substantial
change implies that the occluded region was critical for the model’s decision.
The chosen methods operate on a 2D level. Visualization is performed on a
selection of 16 slices chosen evenly from the 5th to the 27th slice, ensuring a
comprehensive representation of the volumetric data while maintaining a
manageable number of visualizations.

Statistics, reproducibility, and hardware

All experiments were repeated five times with different random seeds. The
primary statistical endpoint for classification performance was the area
under the receiver operating curve (AUROC). The AUROC: of five training

runs (technical repetitions with different random starting values) of a given
model were compared. We applied DeLong’s test to evaluate and compare
the models’ performance based on AUROC. To perform the test, we cal-
culated the median patient score from five repetitions of each model. As a
result, we determined statistical significance by considering results from
DeLong’s test with a significance level of p <0.05 as indicative of better
performance. AUROC: are reported as mean + standard deviation. Addi-
tionally, we performed more evaluation metrics such as F1 score, sensitivity,
specificity, positive predictive value (PPV), and negative predictive value
(NPV) on the best-performing model. Sensitivity refers to the ability of the
test to accurately identify true positive cases, while specificity measures the
ability to accurately identify true negatives. PPV evaluates the probability
that a positive test result is indeed a true positive, and NPV assesses the
probability that a negative result is accurate.

At three centers, we deployed SL on different hardware configurations
for our computational tasks. Duke hosted in Dresden utilized an operating
system version of Ubuntu 22.04.3, coupled with 128 GB RAM, and powered
by an NVIDIA Quadro RTX 6000 GPU. Meanwhile, USZ operated on
Ubuntu 22.04.4, with a more robust setup comprising 256 GB RAM and two
NVIDIA GeForce RTX 4090 GPUs. CAM, on the other hand, employed
Ubuntu 20.04.6, featuring 62 GB RAM and an NVIDIA RTX 6000 GPU.
Furthermore, each system was connected to at least 10 MBit/sec Internet
connection, ensuring consistent and reliable network connectivity
throughout the study.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results

The first objective of our study was to evaluate whether weakly supervised
DL workflows can effectively detect breast cancer in MRI data using only
one per-volume label for each patient. To this end, we carried out a sys-
tematic comparison of eight distinct weakly supervised prediction work-
flows, including both 2D- and 3D-CNN models as well as MIL and
transformers (Fig. 1A, C). Given that data sharing typically presents a major
hurdle in training radiology image analysis pipelines, we hypothesized that
SL could alleviate this problem by keeping the dataset distributed
throughout different partners. Therefore, we first simulated an SL setup
(Fig. 1B) with three nodes set up in one laboratory, each controlling 40%,
30%, and 10% of the data, respectively. Second, we conducted real-world SL
experiments, trained on multicentric data, and externally validated them on
two test cohorts (Fig. 1D).

Comparison between simulated SL and centralized mode, using
different weakly supervised workflows

In total, we trained the selected models five times using 80% of the Duke
dataset and internally validated them on the remaining 20% of the Duke
dataset', using both SL and centralized models. (Supplementary Data 2)
reports the area under the receiver operating characteristic curve
(AUROC) values for each experiment for both techniques. Based on the
results produced by the SL technique, it was found that 3D-ResNet
models performed significantly better than their 2D counterparts
(Fig. 2A, Supplementary Table 1, Supplementary Data 4). Notably,
among the 3D models, ResNet-101 provided the highest AUROC,
reaching 0.792 [£0.045]. The other two 3D-ResNet approaches, 3D-
ResNet50 and 3D-ResNet18, also achieved slightly lower performance,
0.766 [+0.050] and 0.768 [+0.022], respectively (Table 1). The MIL
techniques in SL, including Vision Transformer-MIL (ViT-MIL), ViT-
Long Short Term Memory-MIL (ViT-LSTM-MIL), and Attention-MIL
(Att-MIL), showed slightly lower performance with AUROC of 0.740
[£0.019], 0.748 [+0.008] and 0.650 [+0.091] respectively (Table 1).
Furthermore, it should be noted that 2D-ResNet50 achieved a sig-
nificantly lower performance of 0.608 [+0.008] compared to its 3D
counterpart (p =0.000). When comparing SL performance using three
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Local models

nodes with the performance derived from a centralized model, the SL
technique always performed on par with the model trained on the
centralized dataset with no significant difference in their performances
(Supplementary Tables 2-9).

Local models

Generalizability of different weakly supervised workflows on an

external cohort
To validate our findings in an external cohort and investigate the general-

izability of the models between cohorts from multiple origins, we used the
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Fig. 2 | Benchmarking models on internal and external validation.

A Classification performance (area under the receiver operating curve, AUROC) for
prediction of tumor on internal validation cohort, i.e., 20% of Duke cohort. The three
shades of blue represent different parts of a single cohort, Duke, with the centralized
model in dark blue comprising 80% of Duke. Error bars represent the standard
deviation of AUROC values for each model across five repetitions of the experiment.
Individual data points outside the whiskers indicate outliers from the five repetitions.
B Classification performance (area under the receiver operating curve, AUROC) for
prediction of tumor on external validation cohort, i.e., UKA. The number of patients
used for prediction per cohort is 122 for Duke and 422 for UKA. Error bars represent
the standard deviation of AUROC values for each model across five repetitions of the
experiment. Individual data points outside the whiskers indicate outliers from the
five repetitions. C Classification performance for prediction of the tumor using 3D-
Resnet101 model trained using real-world swarm learning across three cohorts:
Duke, USZ, and CAM. Its classification performance was evaluated on an external
validation cohort, UKA, for tumor prediction. Local model performance was

assessed using AUROC and DeLong’s test to compare it with swarm models. Error
bars represent the standard deviation of AUROC values for each model across five
repetitions of the experiment. Individual data points outside the whiskers indicate
outliers from the five repetitions. The significance level was set at p < 0.05 (*P < 0.05,
**¥P <0.001), and median patient scores from five repetitions determined superior
performance. D Classification performance for the prediction of tumors using the
3D-Resnet101 model was trained using real-world swarm learning across three
cohorts: Duke, USZ, and CAM. Its classification performance was evaluated on an
external validation cohort, MHA, for tumor prediction. Local model performance
was assessed using AUROC and DeLong’s test to compare it with swarm models.
Error bars represent the standard deviation of AUROC values for each model across
five repetitions of the experiment. Individual data points outside the whiskers
indicate outliers from the five repetitions. The significance level was set at p < 0.05
(*P<0.05, **P < 0.001), and median patient scores from five repetitions determined
superior performance. The training cohort from Duke is consistently represented by
the dark blue color throughout the figure.

Table 1| Prediction performance statistics for the internal validation of 20% of the Duke cohort. Featuring different nodes and
techniques used for benchmarking breast cancer tumor prediction

Technique Local training (AUROC) Swarm (AUROC) Centralized Model (AUROC)
Node1 (40%) Node2 (20%) Node3 (10%)
3D-ResNet18 0.676 [+0.030] 0.742 [+0.028] 0.660 [+0.024] 0.768 [+0.022] 0.782 [+0.034]
3D-ResNet50 0.634 [+0.107] 0.698 [+0.065] 0.650 [+0.021] 0.766 [+0.050] 0.814 [+0.032]
3D-ResNet101 0.744 [+0.042] 0.496 [+0.098] 0.550 [+0.023] 0.792 [+0.045] 0.824 [+0.011]
3D-DenseNet121 0.654 [+0.120] 0.498 [+0.099] 0.600 [+0.073] 0.625 [+0.148] 0.712 [+0.036]
ViT-MIL 0.670 [+0.036] 0.666 [+0.032] 0.532 [+0.058] 0.740 [+0.019] 0.694 [+0.073]
ViT-LSTM-MIL 0.704 [+0.011] 0.688 [+0.022] 0.520 [+0.043] 0.748 [+0.008] 0.752 [+0.008]
Att-MIL 0.714 [+0.018] 0.604 [+0.046] 0.500 [+0.034] 0.650 [+0.091] 0.674 [+0.018]
2D-ResNet50 0.614 [+0.011] 0.594 [+0.011] 0.512 [+0.030] 0.608 [+0.008] 0.598 [+0.015]

The values of the table represent the mean AUROC, while the errors indicate the standard deviation of AUROC values for each model across five experimental repetitions. The best-performing swarm and

centralized models are highlighted in bold.

trained models from internal validation experiments and deployed them on
an external dataset from Uniklinik Aachen (UKA), Aachen, Germany.

As in the internal validation experiments, we repeated training and
validation of each model five times and reported the AUROC values of
each experiment, as well as the mean and median (Supplementary
Data 3). With a slight decline in performance for all the models in the
external validation experiment we see that again 3D-ResNet models are
outperforming other models tested. The performance of 3D-ResNet101
is significantly better than most of the other models for both SL and the
centralized data set (Fig. 2B, Table 2, Supplementary Table 10, Supple-
mentary Data 4). 3D-ResNet101 is the highest performing model also in
external validation, despite a slight decrease in performance in com-
parison to the internal validation, reaching an AUROC of 0.770 [+0.021]
for the SL technique and 0.742 [+0.026] for the centralized data set. In
line with the internal validation results, the validation performance of
2D-ResNet50 using SL on the UKA dataset also reached the lowest
performance of 0.578 [+0.049], significantly lower than that of most of
the other models (Supplementary Table 10). Comparing the perfor-
mance of SL and centralized models between internal and external
validation revealed that in SL, the performance drop in external vali-
dation was much less than in centralized models, indicating that SL
models may generalize better than centralized models.

Real-world training and validation in an international SL network
To validate our findings in a real-world scenario, we set up an SL training
network spanning three institutions in three countries: USZ in Switzerland,
CAM in the United Kingdom, and the Duke dataset, residing in Dresden,
Germany. We trained a 3D-ResNet101 model architecture across the three
sites and validated it in two separate sites, Mitera Hospital Athens (MHA) in

Greece and UKA in Germany. Local models trained on either site were also
tested on the UKA and MHA datasets (Tables 3, 4).

We found that on the first external test cohort, UKA, the local models
trained on Duke, USZ and CAM achieved AUROCs of 0.743 [+0.025], 0.538
[£0.033], and 0.703 [£0.025] respectively. In comparison, the models
trained in the SL setup outperformed all the locally trained models, with an
AUROC of 0.807 [+0.024]. The swarm model was significantly better than
the local models (p=0.035, 0.001, 0.001, respectively (Fig. 2C, Supple-
mentary Table 11, Supplementary Data 4). The swarm models validated on
the UKA cohort achieved an F1 score of 0.624 [+0.029], surpassing the local
models at Duke, USZ, and CAM, which attained scores of 0.507 [+0.086],
0.452 [£0.027], and 0.495 [+0.073], respectively.

To investigate the generalizability further, we externally validated all
models on a second test dataset from MHA. Here, the local models trained
on Duke, USZ, and CAM achieved AUROCs of 0.729 [+0.024], 0.520
[£0.040], and 0.673 [+0.036], respectively. Comparatively, models trained in
the SL setup outperformed all the locally trained models, with an AUROC of
0.821 [£0.013]. (Fig. 2D). The swarm model validated on the MHA cohort
had an F1 score of 0.596 [+0.036], which is better than the local models.
Additional matrices for both local and swarm models, such as sensitivity,
specificity, positive predictive value (PPV), and negative predictive value
(NPV), are also documented in Tables 3, 4.

Finally, we assessed the explainability of our models’ predictions using
Gradient-weighted Class Activation Mapping (GradCAM++) and OCA
(Fig. 3, Supplementary Fig. 1, Supplementary Methods). In a manual review
by a radiologist, we found that GradCAM++ often highlighted irrelevant
image regions, and OCA precisely identified malignant enhancing lesions
(Fig. 3A, B). These results support the thesis that the models’ focus is on
tumor areas, with OCA demonstrating more precise localization. Overall,
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Table 2 | Prediction of the performance of different nodes and techniques used for benchmarking breast cancer tumor

prediction on the external validation UKA cohort

Technique Local training (AUROC)

Swarm (AUROC) Centralized Model (AUROC)

Node1 (40%) Node2 (20%)

Node3 (10%)

3D-ResNet18 0.606 [0.073] 0.642 [+:0.036] 0.534 [+0.038] 0.668 [+0.016] 0.606 [:0.055]
3D-ResNet50 0.610 [£0.089] 0.708 [+:0.033] 0.580 [:0.082] 0.750 [0.019] 0.694 [+:0.038]
3D-ResNet101 0.626 [£0.070] 0.664 [+0.171] 0.548 [+:0.057] 0.774 [+:0.021] 0.742 [+:0.026]
3D-DenseNet121 0.622 [0.028] 0.556 [:0.036] 0.614 [0.040] 0.656 [:0.038] 0.634 [+:0.042]
VIT-MIL 0.604 [0.038] 0.624 [+0.030] 0.546 [+:0.038] 0.660 [0.041] 0.630 [+:0.037]
ViT-LSTM-MIL 0.608 [0.022] 0.610 [+0.047] 0.532 [+:0.036] 0.658 [:0.035] 0.688 [+:0.016]
Att-MIL 0.568 [£0.035] 0.540 [+0.020] 0.482 [+0.037] 0.604 [+0.011] 0.558 [+:0.039]
2D-ResNet50 0.554 [£0.036] 0.576 [+0.032] 0.538 [:0.035] 0.578 [+:0.049] 0.574 [+0.042]

The values of the table represent the mean AUROC, while the errors indicate the standard deviation of AUROC values for each model across five experimental repetitions. The best-performing and lowest

performing swarm and centralized models are highlighted in bold.

Table 3 | Prediction performance of different centers used for benchmarking breast cancer tumor prediction on the external

validation UKA cohort

External Validation on UKA dataset by real-world training with 3D-ResNet101

Duke usz CAM SWARM
AUROC 0.743 [0.025] 0.538 [£0.033] 0.703 [0.025] 0.807 [£0.024]
F1 Score 0.507 [£0.086] 0.452 [£0.027] 0.495 [+0.073] 0.624 [£0.029]
Sensitivity 0.635 [+0.144] 0.430 [+0.06] 0.589 [+0.078] 0.767 [+0.021]
Specificity 0.815 [+0.074] 0.824 [0.077] 0.826 [0.096] 0.813 [£0.028]
PPV 0.404 [+0.099] 0.308 [£0.021] 0.398 [+0.076] 0.559 [£0.023]
NPV 0.840 [£0.068] 0.821 [£0.055] 0.859 [:0.084] 0.831[0.017]

The table values represent the mean of various evaluation metrics, while the errors indicate the standard deviation of each respective metric for the 3D-ResNet-101 model across five experimental

repetitions conducted.

Table 4 | Prediction performance of different centers used for benchmarking breast cancer tumor prediction on the external

validation MHA cohort

External Validation on the MHA dataset by real-world training with 3D-ResNet101

Duke usz CAM SWARM
AUROC 0.729 [+0.024] 0.520 [+0.040] 0.673 [+0.036] 0.821[£0.013]
F1 Score 0.517 [£0.089] 0.537 [0.075] 0.446 [+0.073] 0.596 [£0.036]
Sensitivity 0.645 [+0.132] 0.403 [+0.118] 0.584 [+0.06] 0.744 [+0.02]
Specificity 0.774 [+0.089] 0.796 [+0.108] 0.774 [+0.014] 0.804 [+0.012]
PPV 0.453 [+0.049] 0.395 [+0.025] 0.382 [+0.104] 0.553 [+0.033]
NPV 0.806 [+0.074] 0.840 [+0.05] 0.873 [+0.037] 0.839 [+0.037]

The table values represent the mean of various evaluation metrics, while the errors indicate the standard deviation of each respective metric for the 3D-ResNet-101 model across five experimental

repetitions conducted.

these data show that in real-world SL experiments, swarm models trained on
three cohorts (Duke, USZ, CAM) and validated on external cohorts (UKA,
MHA) demonstrated superior performance and better generalizability
compared to locally trained models.

Discussion

Computer-based image analysis of radiology examinations, particularly
MRI data, is challenging due to the need for time-consuming and expensive
manual annotations of ground truth labels. Additionally, data sharing
between medical institutions often faces obstacles due to patient privacy,
data ownership, and legal requirements. In this study, we aimed to address
these two hurdles by developing DL classification models for radiology. By
utilizing weakly supervised DL—which relies on readily available patient

labels instead of detailed manual annotations—we sought to reduce the
dependency on strong labels. Furthermore, we incorporated SL to enable
collaborative DL model training, as a means to eliminate the necessity for
data exchange between collaborating institutions while still benefiting from
training on each dataset. Applying this combined strategy to breast MRI
datasets, we demonstrated the practical feasibility of integrating weakly
supervised learning with SL for cancer detection.

Our findings highlight the practical application of combining weakly
supervised learning with SL. Weakly supervised DL allows for efficient
processing of radiology images using patient labels that can be semi-
automatically generated, reducing the need for extensive manual annota-
tions. While we observed that larger models with more parameters showed
better performance even with limited data—a trend consistent with
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Fig. 3 | Visualization of the prediction on external
cohorts trained on real-world 3D-ResNet-101 SL
model illustrating the findings of our

scientific study. Each row in the visualization cor-
responds to the best predicted one patient from the
external UKA or MHA cohort. The first column
displays the center to which the patient belongs. The
second column displays 16 slices of the original
subtraction images (i.e., the contrast accumulation).
The third column shows GradCAM + + visualiza-
tions. The last (fourth) column illustrates the results
of the occlusion sensitivity analysis (OCA). A These
are true positive examples. B False positive exam-
ples. While GradCAM+-+ highlights regions of the
image that are irrelevant to the diagnosis, such as the
contrast agent within the heart at the bottom part of
the image, OCA focuses on the contrast-enhancing
lesions and, thus, on the region that a radiologist
would be looking at. B
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observations in other non-medical domains'’. We acknowledge that our
models did not outperform those trained on larger datasets in previous
studies”’. Concurrently, SL facilitated inter-institutional collaboration
without direct data exchange, addressing data privacy and ownership
concerns. Although our approach holds promise for large-scale studies
spanning multiple hospitals, further research with larger and more diverse
datasets is necessary to fully realize this potential.

Our study has several limitations that warrant consideration in future
research. A significant limitation is the relatively small size of our training
dataset compared to other studies”’~* that utilized much larger datasets (e.g.,
over 4000-21,000 patients). This smaller sample size may have impacted
our models’ performance and limits the generalizability of our findings.
Additionally, our models were primarily trained and tested on MRI scans of
patients already diagnosed with tumors, which may not reflect the broader
screening population where the prevalence of non-malignant findings is
higher.

Furthermore, the use of weakly supervised labels—while reducing the
need for detailed annotations—may introduce noise and affect model
performance, as indicated by the modest AUC scores compared to other
studies”*. The three-node SL configuration we employed is relatively
simplistic, and real-world collaborations would likely involve more insti-
tutions with varying data distributions, introducing additional complexities
such as data heterogeneity from different scanners and imaging protocols.

Another limitation is the computational expense associated with
higher-dimensional models like 3D-ResNet, potentially posing challenges in

resource-limited environments. For future research, we aim to address these
limitations by substantially increasing the patient count and including a
broader range of centers worldwide. We acknowledge that other applica-
tions, such as chest X-rays and fundus photography, may also be well-suited
to these techniques and could be explored in future work. We also plan to
investigate strategies to mitigate the impact of noisy labels and improve
model performance. While our study provides a proof of concept demon-
strating the feasibility of integrating SL with weakly supervised learning,
further work is necessary to enhance predictive performance and validate
the approach in larger, more diverse populations before it can be considered
for developing clinical-grade DL systems in radiology image analysis for
MRI-based cancer screening.

Data availability

The datasets used in this study include Duke, UKA, CAM, USZ, and MHA.
The Duke dataset is publicly accessible and can be obtained from The
Cancer Imaging Archive (TCIA) via the link: https://doi.org/10.7937/TCIA.
e3sv-re93. The UKA, CAM, USZ, and MHA datasets are not publicly
available due to privacy and ethical restrictions. These datasets can be
accessed upon reasonable request to the authors at the respective sites,
subject to approval by the local ethics board and the establishment of a
collaboration agreement between the participating institutions. Requests for
these datasets should be directed to the authors from the respective centers
and will be responded to within 4 weeks. The data for different image
acquisition parameters can be found in “Supplementary Data 17 (GR =
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Gradient Echo, SE = Spin Echo, DCE = Dynamic Contrast Enhancement).
The raw data for prediction performance, measured as AUROC, is provided
in “Supplementary Data 2” for experiments conducted with five repetitions
using different nodes and techniques on the internal validation 20% Duke
cohort. Similarly, the raw data for prediction performance (AUROC) on the
external validation UKA cohort, also conducted with five repetitions using
different nodes and techniques, is available in “Supplementary Data 3”. The
source data for Fig. 2 is included in “Supplementary Data 4”.

Code availability

All source code is available at the following link™: https://github.com/
KatherLab/swarm-learning-hpe/releases/tag/odelia_v0.6.0 The code is
based on and requires the Hewlett Packard Enterprise (HPE) imple-
mentation of Swarm Learning, which is publicly available at: https://github.
com/HewlettPackard/swarm-learning/releases/tag/v2.2.0.
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