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Abstract

Plain language summary

Background Metabolic dysfunction-associated steatotic liver disease (MASLD) affects
roughly 1 in 3 adults and is a leading cause of liver transplants and liver related mortality. A
deeper understanding of disease pathogenesis is essential to assist in developing blood-
based biomarkers.

Methods Here, we use data-independent acquisition mass spectrometry to assess disease-
state associated protein profiles in human liver, blood plasma, and white adipose

tissue (WAT).

Results In liver, we find that MASLD is associated with an increased abundance of proteins
involved in immune response and extracellular matrix (ECM) and a decrease in proteins
involved in metabolism. Cell type deconvolution of the proteome indicates liver endothelial
and hepatic stellate cells are the main source of ECM rearrangements, and hepatocytes are
the major contributor to the changes in liver metabolism. In the blood, profiles of several
MASLD-associated proteins correlate with expression in WAT rather than liver and so could
serve as suitable liver disease predictors in a multi-protein panel marker. Moreover, our
proteomics-based logistic regression models perform better than existing methods for
predicting MASLD and liver fibrosis from human blood samples.

Conclusions Our comprehensive proteomic analysis deepens the understanding of liver
function and MASLD pathology by elucidating key cellular mechanisms and multi-organ
interactions, and demonstrates the robustness of a proteomics-based biomarker panel to
enhance diagnosis of MASLD and significant fibrosis.

Metabolic dysfunction-associated steatotic
liver disease (MASLD) is a common condition
affecting about 1 in 3 adults. It occurs when
there is too much fat in the liver, and is a
leading cause of death and people needing
liver transplants. To improve early detection,
we studied proteins in the liver, blood, and fat
of people with MASLD. Our analysis revealed
changes in liver proteins and that certain
proteins in the blood could serve as early
indicators of liver disease. Some of the protein
changes in the blood indicated changes in fat
tissue rather than the liver. We propose that
our blood test could be more accurate than
commonly used methods for diagnosing early
MASLD and so could enable better, non-
invasive ways to detect liver disease.

Chronic liver diseases account for more than 2 million deaths annually.
Advanced stages of steatotic liver disease (SLD) gradually impair liver
function, which can result in non-reversible end-stage liver disease (ESLD).
Liver transplantation is currently the only curative treatment for individuals
with ESLD". The most prevalent subtype of SLD, MASLD—formerly known
as non-alcoholic fatty liver disease (NAFLD)’—affects more than 30% of all
adults’. Early stages of MASLD are asymptomatic, making preventive
screening and disease monitoring a difficult task. Currently, accurate
diagnosis relies on a liver biopsy to histologically assess steatosis, lobular

inflammation, and hepatocellular ballooning. Based on the scoring, MASLD
become categorized as metabolic dysfunction-associated steatotic liver
(MASL) or metabolic dysfunction-associated steatohepatitis (MASH)*. In
MASH, tissue repair processes lead to an accumulation of tissue scarring
(fibrosis), giving rise to decompensated cirrhosis and hepatocellular carci-
noma (HCC)".

Liver biopsies are invasive, costly, prone to sampling error, and at risk
of intraobserver variation’. Consequently, many efforts have been made to
utilize readily available biochemistry and clinical information to help grade
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disease progression and thereby reduce unnecessary biopsies. However,
screenings are not standardized and vary depending on the country,
research laboratory, and individual health professionals. Moreover, these
methods, deriving from correlation-based studies, does not consider
interplay with other metabolic disorders and factors of human heterogeneity
such as age, gender, ethnicity, genetics, epigenetics, smoking, alcohol con-
sumption, obesity, gut microbiota, and hormonal imbalances’. As a result,
clinicians face a shortage of tests for precise diagnosis, prognosis, disease
monitoring, prediction, and assessing the effectiveness of interventions”.

Blood sampling is the preferred method in non-invasive diagnostics’,
aiming to measure proteins that end up in circulation either by cell secretion
or cell leakage. This makes proteomics an excellent tool in biomarker
discovery'’. To ensure proteins found in the blood are indeed disease-
specific, consideration must be given to the biological changes in a tissue-
specific context of the proteome'. Previous studies have focused on detailed
transcriptomic profiling of MASLD along with SomaScan analysis of cir-
culating proteins'”. However, no studies have taken a purely proteomics-
based approach to explore MASLD pathogenesis collectively in human liver
and blood samples.

Recent advances in speed and sensitivity of mass spectrometers have
unlocked methods for data-independent acquisition (DIA) proteomics'’.
Compared to conventional data-dependent acquisition (DDA), DIA elim-
inates bias of high abundance peptides, decreases run-to-run variation,
improves sample reproducibility, and decreases required input material, all
of which are vital attributes when analyzing highly variable human samples
from low starting material"*, Furthermore, DIA avoids the bias towards high
abundant peptides and can consistently quantify hundreds even in blood"".
This makes it an exciting platform for discovery of novel blood biomarkers,
and, with increasing instrument speed and automation efforts, this
approach holds a potential for high-throughput screening of blood samples
in a clinical setting.

In this study, we perform DIA-based deep proteomic profiling of liver,
plasma, and adipose tissue samples obtained from patients with >class 2
obesity (BMI > 35) at risk of MASLD. We find that MASLD is characterized
by an increased abundance of proteins involved in immune activation and
extracellular matrix remodeling, and a decrease in metabolic pathways. By
integrating these proteomics data with publicly available single-cell tran-
scriptomes, we link the changes to specific liver cell types, implicating
endothelial cells and hepatic stellate cells in ECM alterations and hepato-
cytes in metabolic dysregulation. In parallel, we observe that several
MASLD-associated blood proteins reflect expression changes in adipose
tissue rather than liver, underscoring the importance of cross-organ inter-
actions. Finally, we develop a multi-protein biomarker panel for identifying
MASLD and significant fibrosis in blood samples, demonstrating the
potential of a proteomics-based approach to improve non-invasive assess-
ment of liver disease.

Methods

Patient cohort

Study design: samples for proteomics were acquired from individuals par-
ticipating in the PROMETHEUS study, a prospective interventional case-
control study focusing on patients who undergo liver biopsy. PRO-
METHEUS is a single center study conducted in Denmark. Inclusion and
exclusion criteria: eligible participants must be in the age range 18-70 and
have a BMI 2 35 kg m . The study excludes individuals with a limited life
expectancy, alcohol consumption above 12 grams daily for women and 24
grams for men, any other chronic liver conditions, or usage of hepatotoxic
drugs. Ethics and registration: the regional committee on health research
ethics has granted approval for this study (S-20170210), which is registered
at OPEN.rsyd.dk (OP-551, Odense Patient data Explorative Network) and
at ClinicalTrial.gov (NCT03535142). Full ethical approval and informed
written consent from participants were documented before initiation of the
study. Data collection: study data include anthropometrics and pharma-
cological treatment information. Data collection was carried out pro-
spectively and managed using the REDCap (Research Electronic Data

Capture) system hosted at OPEN.rsyd.dk, a secure, web-based platform
designed to facilitate data capture for research purposes (https://www.sdu.
dk/en/forskning/open). First sample for the current study was collected on
June 28th, 2018, and sample collection is still ongoing.

Histological staging

Liver biopsies were evaluated by a single trained radiologist (T.D.C), who
was blinded to all other clinical data. The assessment adhered to the NASH
Clinical Research Network (NAS-CRN) classification system'®, with scoring
for steatosis (0: <5%, 1: 5-33%, 2: 33-66%, 3: >66%), lobular inflammation
(0: none, 1: <2 foci per 200x field, 2: 2-4 foci, 3: >4 foci), and hepatocellular
ballooning (0: none, 1: moderate, 2: evident). These scores total to the NAS
score (0-8). The FLIP (Fatty Liver Inhibition of Progression) algorithm and
SAF (Steatosis, Activity, and Fibrosis) scoring system were used to further
categorize patients based on the severity of their condition: no-MASLD
(steatosis <1), MASL (steatosis >1), and MASH (steatosis =1, lobular
inflammation >1, and hepatocellular ballooning >1)". Fibrosis was staged
using the Kleiner classification system, indicating the extent of tissue scar-
ring (FO: none, F1: either perisinusoidal or portal/periportal fibrosis only, F2:
both perisinusoidal and portal/periportal fibrosis, F3: bridging fibrosis, F4:

cirrhosis)".

Sample acquisition

All liver biopsies, WAT biopsies, and blood samples were collected at the
Department of Gastroenterology and Hepatology, Southwest Jutland
Hospital in Esbjerg, Denmark as part of the PROMETHEUS study
described above. Patients were overnight fasting prior to sampling. Blood
samples were collected in the morning prior to liver and WAT biopsies by
specially trained hospital lab staff. Two designated lab techs handled blood
sampling. Standard biochemical testing was done on the Cobas6000
(Roche). Blood components for the ATLAS biobank were frozen in a
—80 °C freezer immediately after aliquoting to secondary tubes. The WAT
subcutaneous tissue sampling was performed at the same location as the
percutaneous liver biopsy, prior to the collection of liver tissue samples. This
was consistently conducted in the midclavicular region of the lower ribcage.
WAT was obtained immediately before the liver biopsy and was, as such,
collected during the liver biopsy procedure through a 2 cm incision in the
liver biopsy needle insertion area. Approximately 2x3cm WAT was
removed with a pair of Metzenbaum dissection scissors, cleaned in a sterile
saline solution, frozen in liquid nitrogen, and then kept at —80 °C. Percu-
taneous liver biopsies from right liver lobe were acquired under sterile
conditions using a 16-18 G Menghini suction needle (Hepafix, Braun,
Germany). The liver biopsy was cleaned in a sterile saline solution. At least
1.5 cm was sent for histologic evaluation, and the rest was used for research
analysis. Liver biopsies for histologic staging (minimum 1.5cm) were
immediately stored in 4% formalin and embedded in paraffin. All biopsies
for proteomics were immediately snap frozen in liquid nitrogen and then
stored at —80 °C. Additional data, such as anthropometrics, were collected
on the same day as biopsies and blood sampling.

Protein purification and digest of biopsies

For quantitative proteomics, biopsies were sliced in two and homogenized
in denaturing buffers (either 8 M guanidine hydrochloride in 25 mM
ammonijum bicarbonate or 5% SDS) by 3-10 s of sonication (20% intensity)
and heated for 5min at 95°C. WAT biopsies had an additional cen-
trifugation step at 13,000 rpm for 10 min to separate and avoid carry-on of
superfluous lipids into the following steps. Pierce™ BCA Protein Assay Kit
(Thermo Fisher Scientific) was used to measure protein concentrations, and
10 pg of protein (5 pug from each lysate) was combined in a 1:1 volume before
diluting 4x with water for a final concentration of 1 M guanidine hydro-
chloride (and 0.625 % SDS). For protein aggregation capture on
microparticles'® we used 70 % (v/v) acetonitrile (ACN), 40 pg of magnetic
HILIC beads (ReSyn Biosciences (Pty) Ltd.) and 30 min incubation at room
temperature with agitation on. Bead-bound protein aggregates were
retained using a magnet while washing with pure ACN, followed by washing
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with 70% (v/v) ethanol. Bead-bound protein aggregates were then resus-
pended in 100 pL of 50 mM ammonium bicarbonate, reduced with 2 mM
DTT for 30 min, and alkylated with 11 mM chloroacetamide for 30 min in
the dark. Proteins were proteolytically digested using 1:200 of LysC (Wako)
for 1 h at 37 °C, followed by 1:100 of trypsin (Promega) overnight at 37 °C.
Samples were acidified (pH 2.0-2.5) using trifluoroacetic acid, loaded onto
in-house prepared C18 StageTips, desalted, and eluted again using 45 pL of
60% ACN in 0.5% (v/v) acetic acid. Finally, eluates were vacuum-dried to
2-3 pL in a speed-vac and re-diluted to ~10 pL using 0.5% (v/v) acetic acid.

Preparation of blood plasma

Blood plasma was first diluted in 50 mM ammonium bicarbonate to a final
concentration of 1 ug/uL. Next, we prepared 10 pg of protein in a 1:10
dilution of 50 mM ammonium bicarbonate, by reduction, alkylation, pro-
tein digest, and desalting on StageTips, as described above.

Data-independent acquisition mass spectrometry

A total of ~800 ng of digested and purified peptide mixture was loaded onto
an LC-MS/MS system consisting of an EASY-nLC 1000 nanoflow liquid
chromatograph coupled with either a Q Exactive HF-X mass spectrometer
or an Orbitrap Exploris 480 mass spectrometer (all from Thermo Fisher
Scientific)"’. For reverse-phase chromatography we used a 20-cm analytical
column with an inner diameter of 75 pm packed in-house with ReproSil Pur
C18-AQ 1.9 pmresin (Dr Maisch GmbH), paired with an ACN/water (0.5%
acetic acid) solvent system at a flow rate of 0.25uL min~". For peptide
separation of biopsy proteomes, we used a step-gradient from 3 to 8% ACN
for 7 min, followed by a slow gradient to 35% ACN for 86 min, a ramp to
45% ACN for 15 min and a plateau of 95% ACN for 5 min. For peptide
separation of plasma proteomes, we used a step-gradient from 3 to 8% ACN
for 1:22 min:s, followed by a slow gradient to 35% ACN for 16:43 min:s, a
ramp to 45% ACN for 2:55 min:s and a plateau of 95% ACN for 5 min. The
mass spectrometers were operated by sequential window acquisition of all
theoretical fragment ion spectra”. For MS1, we used a 350 to 1400 m/z
survey scan with a resolution of 120,000, a maximum ion injection time of
45 ms, and a normalized automatic gain control target of 300%. This was
followed MS2, fragmentation of precursor ions by higher-collisional dis-
sociation at a collision energy of 28% for each 13 m/z isolation window, and
a 1m/z overlap between sliding windows to sequentially cover the
360.5-1000.5 m/z range by 50 scans. For MS2, resolution was set to 30,000
and the maximum ion injection time to 54 ms. DIA raw files were analyzed
in Spectronaut™ version 18.1 (Biognosys) using default settings, and our in-
house generated spectral library for WAT and liver, and DirectDIA (library
free) for plasma. The report table containing protein identifications and
quantitative values were kept for subsequent data analysis in R.

In-house generated spectral library

Briefly, our in-house spectral library was generated using Pulsar in
Spectronaut™ (Biognosys) from data files of previous analyses of human
liver using high pH fractionation and DDA. In total, our spectral library for
liver contains 8678 unique proteins from 139,207 stripped peptide
sequences (199,022 modified peptides sequences). While our spectral library
for WAT contains 7672 unique proteins from 113,270 stripped peptide
sequences (127,551 modified peptides sequences).

Public single-cell RNA-seq data integration and annotation

For deconvolution, three human single-cell RN A-sequencing (scRNA-seq)
datasets were retrieved from public repositories GSE115469”, GSE136103°,
and GSE158723%. Seurat (v.4.0.3)” was used to process each dataset. Low
quality cells were excluded (200 <# <3000 genes, mitochondrial gene
contributions <20%). Moreover, genes expressed in fewer than 50 cells were
excluded to remove zero count genes. Following cell exclusion, normal-
ization, scaling, and dimensional reduction were performed. DoubletFinder
(v.2.0.3)** was employed to predict and remove doublets. For dataset inte-
gration, the processed datasets were merged, and the principal component
embeddings were corrected using Harmony (v.0.1.0)**. Cell Typist (v.0.1.4)*

was employed for automated cell type annotation of the complete dataset
(trained model reference = Immune All Low). Manual correction of cell
type annotations was performed to increase annotation resolution for
hepatocytes, cholangiocytes, liver sinusoidal endothelial cells, liver endo-
thelial cells, aHSCs, qHSCs, and VSMCs.

Statistics and reproducibility

Software: analysis was performed using the open-source statistics software
R, version 4.3.1 (2023-06-16)—“Beagle Scouts”. Analysis of differential
expression: we first performed quantile normalization of the summarized
protein quantifications after log2 transformation to achieve normal dis-
tribution. We filtered proteins missing in more than half of all the samples
and then performed unsigned network topology analysis, and determined
the optimal power, based on the scale free topology model fit and the mean
connectivity (Supplementary Fig. S1a). We used a power of 11 to calculate
unsigned adjacency, which was then used to calculate the topological
similarity and corresponding dissimilarity matrices, for hclust-based den-
drogram and gene module calculation, using the flashClust, cutreeDynamic,
and labels2colors functions (Supplementary Fig. S1b). We used the
WGCNA R package” to calculate module eigengenes and correlate eigen-
genes to patient characteristics by Pearson correlation (Supplementary
Fig. S1c). Proteins from Black and Greenyellow gene modules, 348 proteins
in total, was kept for further data analysis. Proteins were fitted using robust
regression (MSqRob2 integration of the MASS rlm-function). Test statistics
and Benjamini-Hochberg (BH) correction of p values for all contrasts of
Kleiner fibrosis grade and SAF diagnosis was calculated using the
topFeatures-function in MSqRob2”. The overlap between statistically sig-
nificant proteins (BH-adjusted p value < 0.05) for Kleiner fibrosis grade and
SAF diagnosis resulted in a total of 234 proteins. Pathway enrichment
analyses: we used the ReactomePA R package”. Analysis was performed
using the enrichPathway function and BH correction. Estimation of cell type
contribution: for our deconvolutions, we did a count summarization for
each cell type, followed by feature-wise min-max normalization. Tran-
scriptional regulators: we defined transcriptional regulators based on the
binding analysis for regulation of transcription tool®. Heatmap sorting:
specifically for Fig. 4b, we first performed hierarchical clustering, and then
subsequently sorted each of the three major protein groups according to
their cell type clusters for easier interpretation. The original heatmap can be
found in Supplementary Fig. S9. Statistical significance: for analysis of sig-
nificance for individual proteins shown in the barplots we performed a
Wilcoxon signed-rank test and BH correction method. Logistic regression
models: we performed 20x five-fold cross-validation logistic regression
using random seeds. For each experiment we calculated the AUROC,
balanced accuracy, and F1 score and then reported the mean and standard
deviation. Other models: for the simpler models we used published models
and cutoffs: NAFLD liver fat score’ (cutoff: >—0.640), hepatic steatosis
index” (cutoff: >36), fatty liver index” (cutoff: >60), and APRI* (cutoff:
>0.7). Data visualization: all data visualization were made using ggplot2™,
enrichplot®, corrplot”, VennDiagram®, ComplexHeatmap®, Pathview"’,
and Adobe Illustrator. Sample information: details regarding sample sizes
for each tissue and pathology can be found thoroughly described in Table 1.
All samples within a given tissue/cohort are considered biologically inde-
pendent replicates. Plasma samples in the follow-up cohort are not biolo-
gically independent from the initial cohort.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results

Study design and data collection

Our cohort consisted of patients with a BMI>35 (kgm™) at risk of
metabolic disorder. Most study participants were female, with a median age
in the late 40s and a nearly 50% estimated body fat (Table 1). As part of the
study protocol, all patients had a percutaneous suction needle liver biopsy,
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Table 1 | Patient characteristics

Clinical feature Liver scWAT OWAT Initial plasma Validation plasma (n = 41)
(n=58) (n=58) (n=27) (n=143) (n=28) (n=13)
Gender (% female) 65.5 65.5 741 78.3 78.6 69.2
Age (years) 47.5+(13.6) 46.0 +(13.5) 45.0+(11.9) 46.0+(12.3) 54.0+(11.8) 47.0+(14.7)
BMI (kg m) 42.6 +(6.9) 41.5+(6.9) 41.1+(4.3 41.1+(6.0 39.8+(3.1) 28.8+(3.0)
Body fat (%) 49.9+(5.7) 49.3+(5.6) NA 48.5 +(5.6) 47.8+(4.8) 37.8+(8.6)
Kleiner fibrosis grade
FO 13 10 6 39 6 5
F1 31 33 16 69 15 8
F2 11 10 3 25 6 0
F3 3 4 1 7 1 0
F4 0 1 1 3 0 0
SAF diagnosis
No MASLD 12 16 13 39 9 13
MASL 29 30 11 74 14 0
MASH 17 12 3 30 5 0
Steatosis
0 12 16 13 39 9 13
1 22 27 12 60 11 0
2 17 9 1 28 7 0
3 7 6 1 16 1 0
Hepatocellular ballooning
0 41 46 24 112 23 13
1 16 12 3 29 4 0
2 1 0 2 1 0
Lobular inflammation
0 13 18 13 49 11 12
1 31 28 11 71 16 1
2 11 12 3 21 1 0
3 3 0 0 2 0 0

Patient data for samples analyzed by proteomics shown as medians + standard deviation (s.d.) or summarized counts.

which was assessed by an experienced liver pathologist, using NAFLD
activity score (NAS) and Kleiner fibrosis grade. To determine their MASLD
status, we used the SAF algorithm, which divides patients into no-MASLD,
MASL and MASH". For proteomics, we utilized DIA-MS workflow"
(Fig. 1a) to analyze liver biopsies (n = 58), blood plasma (1 = 143), scWAT
biopsies (1 = 58), and oWAT biopsies (n = 27). Additionally, as a validation
cohort, we had 2-year follow-up blood plasma (1 = 41) from a subset of the
patients, some of whom had undergone bariatric surgery during follow-up.
In liver, we quantified 7096 unique proteins with similar proteome coverage
in each sample (Supplementary Fig. S2a, b). In scWAT and oWAT, we
quantified 6945 and 6979 unique proteins respectively (Supplementary
Fig. S2¢, d). While in plasma, using short gradient DIA, we quantified 578
unique proteins (Supplementary Fig. S2e).

Proteins involved in the innate immune system, extracellular
matrix organization, and metabolism are differentially expressed
in the MASLD liver

Robustly calculating differential expression between disease stages require
complete data. However, MS-based proteomics is inherently prone to
random missingness, and considering human heterogeneity we did not
want to impute any missing values. Instead, we used ridge regression to
prevent overfitting during statistical analysis of differential expression®. To
improve model performance, we first performed an unsigned weighted gene

co-expression network analysis (WGCNA)” to limit feature size and
increase feature similarity in the dataset (Supplementary Fig. S1). Analysis of
differential for Kleiner fibrosis grade and SAF diagnosis resulted in 304 and
256 significantly differentially expressed proteins (DEPs) respectively. To
improve statistical confidence and ensure biological relevance, we carried
out any further analysis using only the 234 overlapping DEPs between
Kleiner fibrosis grade and SAF diagnosis (Fig. 1b).

To verify the relationship between the DEPs and MASLD histo-
pathology, we profiled the protein-wise relative expression after sorting
patients based on increasing severity of MASLD histopathology. After
hierarchical clustering of DEPs, we observed two clusters of proteins per-
taining to being either up- or downregulated in expression (Fig. 1c). Using
pathway analysis, we found the most significantly downregulated proteins
to all originate from various pathways of metabolism, while the upregulated
proteins belonged to pathways related to extracellular matrix (ECM)
organization and immune response (Fig. 1d, e).

Integration of public single-cell data links MASLD proteome
changes to individual cell types

Although single-cell omics play a crucial role in deepening our under-
standing of disease mechanisms, single-cell proteomics has yet to become a
routine methodology. To address this gap, we explored whether single-cell
transcriptomic data from human liver could assist in deciphering our bulk
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Fig. 1 | Identification of proteins related to MASLD pathogenesis. a Workflow of
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grade and SAF diagnosis. ¢ Heatmap for relative expression of the 234 differentially
expressed proteins shared between Kleiner fibrosis grade and SAF diagnosis, shown
as the relative expression across patients (columns). Rows (proteins) were sorted
based on hierarchical clustering, while columns (patients) were sorted according to
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increasing (i) Kleiner fibrosis grade, (ii) SAF diagnosis, and (iii) NAFLD activity
score. Pathway enrichment analysis based on the Reactome pathway database for
proteins downregulated (d) and upregulated (e) with increasing MASLD histo-
pathology. SAF steatosis activity and fibrosis, NAFLD non-alcoholic fatty liver
disease, MS mass spectrometry, m/z mass-to-charge ratio, MASLD metabolic
dysfunction-associated steatotic liver disease, MASL metabolic dysfunction-
associated steatotic liver, MASH metabolic dysfunction-associated steatohepatitis.

proteomics data, aiming to provide insights into the potential cellular ori-
gins of the DEPs. To achieve this, we integrated three publicly available
datasets™**, which we annotated collectively based on cell type-specific gene
expression markers and utilized the results to extrapolate a broad overview
of the cell type-specific context of the DEPs. While RNA and protein levels
generally show some correlation, this analysis should only be used to gauge
broader trends in the data. For RNA species that appear cell type-specific, it
is reasonable to assume that corresponding protein levels are also derived
from that cell type. However, findings for genes expressed in multiple cell
types should be interpreted with caution.

Hierarchical clustering based on the predicted cell type-specific con-
tribution towards the expression of the DEPs resulted in five clusters (Fig. 2a
and Supplementary Fig. S3). As expected, the largest cluster, the HEP
Cluster, consisted of DEPs predicted to be mainly expressed by the hepa-
tocytes. We found the hepatocyte cluster to be the primary contributor of
proteins associated with a decrease in metabolism, specifically in amino acid
and fatty acid metabolism (Fig. 2b). Among the upregulated DEPs in
hepatocytes, we found pathways of MET signaling. The MET receptor
tyrosine kinase signals via classical mitogen-activated protein kinase
(MAPK) signaling cascades but can, after binding to its ligand, hepatocyte
growth factor (HGF), also transactivate other receptors, including the
hyaluronan receptor CD44, ICAM], and integrins*'.

The LEC Cluster consisted of DEPs expressed by liver endothelial cells
(LEC:s), while the HSC Cluster consisted of proteins mainly expressed in
quiescent hepatic stellate cells (QHSCs), activated hepatic stellate cells
(aHSCs), and vascular smooth muscle cells (VSMC:s) (Fig. 2a). High levels of

VSMCs and aHSCs are major hallmarks of MASLD pathogenesis*. Path-
way analysis showed that DEPs expressed by the main resident cell types—
HEP, LEC, and HSC Clusters—largely contribute to the organization of
ECM (Fig. 2b). ECM organization is a convoluted process that involves
many different regulatory networks. Proteoglycans are a major constituent
of ECM and play an important role in cell signaling, e.g., by interacting with
growth factors, cytokines, chemokines, and various pathogens. The archi-
tecture of the ECM provides many innate properties of tissues, and in
MASLD pathogenesis, it is known to play a role in the advancement of
fibrosis. In fact, liver stiffness measurements using elastiometry (ie.,
Fibroscan) is today one of the best techniques in the non-invasive assess-
ment of liver fibrosis*.

To further investigate some of the ECM-related sub-categorization, we
explored the cell type-specific cellular processes (Fig. 2b). For example, we
found laminin interactions primarily in hepatocytes and LECs. Laminins are
known to commonly interact with integrins to control cell-to-ECM adhe-
sion. In connection with this, in the IMX Cluster—mainly immune-related
cytotoxic T-cells and natural killer (NK) cells—we found pathways of cell-
ECM interactions as well as LICAM interactions and RHO GTPase effec-
tors. LICAM interactions are known to be involved in cell-cell adhesion and
RHO GTPases can regulate cell behavior, cell motility, and cytoskeleton
organization*. This suggested a finding of proteins that were directly
involved in the infiltration of immune cells into the tissue, and indeed, we
found many of the proteins involved in the KEGG leukocyte transen-
dothelial migration pathway to be upregulated during MASLD pathogenesis
(Fig. 3a and Supplementary Figs. S4 and 5).
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In the IMX Cluster—an immune cell mixture—we found a large
group of proteins involved in neutrophil degranulation (Fig. 2a). RHO
GTPase-activated Rac2 has been shown to promote primary neutrophil
degranulation of reactive oxygen species (ROS). Among the DEPs, we
also found an upregulation of TP53I3 and GPX3 in the hepatocyte
cluster, both of which are known to modulate ROS. Increased ROS is a
known hallmark in MASLD pathogenesis, and both TP53I3* and
GPX3* have already been suggested as a drug target and a potential
biomarker respectively.

Another interesting observation related to glycosaminoglycan (GAG)
metabolism, which is largely contributed by the HSC Cluster (Fig. 2b).
GAGs mainly consist of hyaluronan (HA; hyaluronic acid) and various
sulfates (dermatan, keratan, heparan, and chondroitin) and act as a

lubricating fluid in the ECM. HA is an anionic, nonsulfated glycosami-
noglycan which has been suggested in multiple papers as a promising
biomarker for MASLD". Production of these GAGs can be activated by
transforming growth factor-p (TGF-p) signaling. TGF-{ signaling through
SMAD2/SMAD3 in hepatocytes has been shown to accumulate free fatty
acids, increase ROS production and mediate hepatocyte death®. Surpris-
ingly, we also found an upregulation of elastic fibers in the LEC and HSC
clusters, which, together with fibrillin microfibrils, can inhibit TGF- sig-
naling. When we checked for proteins related to TGF-{ signaling, we found
many of those to be differentially upregulated, but also many inhibitors of
TGEF-p (Fig. 3b and Supplementary Figs. S6 and 7). This could suggest a
negative feedback mechanism or a mitigating response mechanism from
nearby cells.
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Identification of transcriptional regulators that correlate with
MASLD DEPs

To investigate the transcriptional regulators™ involved in MASLD patho-
genesis, we performed a correlation analysis of all transcriptional regulators
identified in our dataset to various patient characteristics (Fig. 4a and
Supplementary Fig. S8). We then kept the transcriptional regulators with an
accumulative correlation score above 0.45 across MASLD histopathology
(SAF diagnosis, Kleiner fibrosis grade, and NAFLD activity score) and
performed hierarchical clustering of their correlation to the DEPs (Fig. 4b).
Consolidating our earlier finding (Figs. 1 and 2), the expression patterns of
the transcriptional regulators separated the DEPs into three major groups,
group A consisting of pathways related to metabolism, group B relating to
immune response, and group C relating to ECM organization (Fig. 4c—e).
Further highlighting the robustness of the clustering results, we observed a
positive correlation for SMAD2 with proteins involved in the immune
response and a positive correlation between MYH11* and ACTG2”, both
being markers of VSMC. We also noted a positive correlation between the
group of SMARC proteins with pathways of immune response, of which
SMARCCI has already been suggested as a putative prognostic marker for
hepatocellular carcinoma (HCC) and targeted inhibition of SMARCCI has
been shown to reduce immune infiltration™.

Among the transcriptional regulators with overall highest positive
correlation to the DEPs were aryl hydrocarbon receptor (AHR) and pro-
myelocytic leukemia protein (PML) (Fig. 4f, g). AHR is a ligand-activated
transcription factor that was recently suggested as a potential drug target in
patients with MASLD™. However, AHR signaling pathways are not fully
understood, and considering most AHR studies are in mouse models, we
lack evidence for its potential involvement in human diseases. While PML
followed a very similar profile to AHR, it has not yet been described in
relation to MASLD and could potentially be a novel transcriptional reg-
ulator. PML acts as a tumor suppressor and is frequently found in nuclear
bodies and nucleoplasm. However, emerging evidence suggests a multi-
faceted role that could make it important in the regulation of metabolism
and immune response™. Interestingly, it has before been shown that PML
can interact with UBE2I and SMAD2, both of which are among the top
candidates of transcriptional regulators with the highest overall correlation
to MASLD pathogenesis in our data (Fig. 4a).

As a major component of TGF-beta signaling, SMAD2 has already
been linked to hepatic fibrosis, while UBE2I has mainly been associated with

hepatocellular carcinoma (HCC)***. UBE2I is an E2 SUMO-conjugating
enzyme and displayed a negative correlation with DEPs related to meta-
bolism. Increased UBE2I expression has specifically been associated with
autophagy processes and a poor prognosis for patients with HCC™. This
negative correlation with pathways of metabolism could be a ripple effect
from autophagy of dying hepatocytes, thus decreasing overall healthy
hepatocyte function within the bulk of the analyzed tissue.

Identification of MASLD-associated proteins in blood plasma
There is an urgent need to find robust, non-invasive biomarkers of MASLD.
To test if any of the DEPs identified in the liver could also be found in the
blood of the patients, as a result of cellular secretion or cell leakage, we
analyzed 184 plasma samples from obese individuals by DIA MS-based
proteomics (Table 1). First, we performed a correlation analysis of plasma
proteins to MASLD histopathology and then ranked them based on their
correlation to Kleiner fibrosis grade and SAF diagnosis (Fig. 5a, b). While
there was an overlap between the top 10 most positively and negatively
correlating proteins for Kleiner fibrosis grade and SAF diagnosis, they dis-
played unique signatures. For example, C7 and COLEC11 were specific in
advancement of fibrosis but were not as important in determining MASLD.
COLECI1 is known to be involved in activating the lectin complement
pathway and generally recognizes pathogen cell surface sugars and apop-
totic cells, guiding immune cell migration to clear microbes and heal
injury®. C7 is also part of the complement system, being part of the
membrane attack complex on target cells, and was differentially expressed in
both significant and severe fibrosis (Fig. 5¢). Another protein important for
fibrosis was the negatively correlating IGF2 (Fig. 5a, d). A known tran-
scriptional repressor of IGF2 expression is CTCF, which we also identified in
our list of transcriptional regulators of MASLD pathogenesis (Supple-
mentary Fig. $9). In relation to IGF2, we also found IGFALS, IGFBP3,
IGFBP5, and IGF1 all being among the most downregulated in progression
of liver fibrosis (Fig. 5a). IGFBP3 is known to interchangeably carry IGF1
and IGF2 in the circulation until they are released in the target tissue.
When considering the top 10 most positively and negatively correlating
proteins in relation to SAF diagnosis, we found ALDOB to be the most
positively correlating candidate (Fig. 5b, e). ALDOB deficiency and ALDOB
depletion, has been shown to result in increased intrahepatic accumulation
of fatty acids and promoting hepatocellular carcinogenesis™**. Interestingly,
while IGF2 was most negatively correlating to Kleiner fibrosis grade
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Fig. 4 | The role of transcriptional regulators in progression of MASLD.

a Correlation between all identified transcriptional regulators and patient char-
acteristics, ordered by the sum of correlation to Kleiner fibrosis grade, NAFLD
activity score, and SAF diagnosis. Cutoff was arbitrarily selected. b Hierarchical
clustering of above cutoff transcriptional regulators with their correlation to the
234 significantly differentially expressed proteins of Kleiner fibrosis grade and
MASLD. The columns (234 proteins) were first hierarchically clustered (Supple-
mentary Fig. $9a), generating three clusters and then subsequently sorted within
each of these three clusters by their cell type cluster (Fig. 2a). Proteins found in both
the row and column (perfect correlation) has been grayed out. Squares indicate
proteins with a higher correlation and were primarily chosen based on their

correlation to the highest-ranking transcriptional regulators. The full figure con-
taining all protein names can be found in Supplementary Fig. S9b. c-e Pathway
enrichment analysis based on the Reactome pathway database for proteins in each of
the column-wise clusters. f, g Fold change in protein expression for a selected subset
of transcriptional regulators according to increasing f SAF diagnosis and g Kleiner
fibrosis grade. Boxplot are shown in the style of Tukey (median, hinges: Q1 and Q3,
and whiskers: 1.5x of IQRs from Q1 and Q3) and statistical significance calculated
using Wilcoxon signed-rank test and BH correction method. SAF steatosis, activity,
and fibrosis, NAFLD non-alcoholic fatty liver disease, IMX immune cell mixture,
MMC macrophages and monocytes, HEP hepatocytes, HSC hepatic stellate cell,
LEC liver endothelial cells, BH Benjamini-Hochberg.

specifically, for SAF diagnosis, it was IGF1 (Fig. 5b, f). In many cancers,
including non-islet cell tumor hypoglycemia™, colorectal adenomas® and
cancers”’, the molar ratios of IGF2/IGF1, IGF1/IGFBP3, and IGF2/IGFBP3
have already been used in diagnostics.

WAT contributes to the plasma level differences of proteins
associated with MASLD

Metabolic disorders are inherently complex, often emerging from inter-
organ crosstalk and multifaceted dysfunction across organs®’. Among the
blood plasma proteins correlating to MASLD histopathology (Fig. 5a, b), we
find several that were absent in our liver-derived DEPs. This observation
highlights the potential cross-organ dynamics related to MASLD. To
explore this further, we first checked the expression differences for all blood

plasma proteins against their expression profiles in the liver (Fig. 5g). Here,
we found several examples of MASLD correlating proteins showing a dis-
crepancy between blood plasma and liver. To highlight a few, GPX3 was
downregulated in blood plasma while being upregulated in liver, and
ALDOB was highly upregulated in blood plasma, while showing no changes
in the liver (Fig. 5h, i). We also found an inverse relationship for CD163
where CD163 is downregulated in liver but upregulated in blood plasma,
corroborating previous findings®.

Recognizing the pivotal role of adipose tissue in metabolic disorders®,
we investigated if blood plasma proteins that did not correlate with changes
in theliver proteome, could instead be explained by changes in the proteome
of the adipose tissues. We therefore performed DIA MS-based proteomic
analysis of OWAT and scWAT from the same patient cohort and compared
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Fig. 5 | MASLD-related profiling of blood plasma. a, b Pearson correlation
between all identified blood plasma proteins and patient characteristics (n = 184
biologically independent samples), with top 10 most positively and negatively cor-
related proteins displayed according to increasing a Kleiner fibrosis grade and b SAF
diagnosis. Boxplots of proteins most positively and most negatively correlating with
¢, d Kleiner fibrosis grade and e, f SAF diagnosis. Comparisons of the log2 fold
change in protein expression across MASLD progression, using all shared proteins
between g blood plasma and liver, j blood plasma and scWAT, and k blood plasma
and oWAT. Proteins highlighted with black represent those from the top and bottom
10 proteins most correlating to Kleiner fibrosis grade and SAF diagnosis from the
Pearson correlations. h, i, 1, m Boxplots displaying relative fold change in expression

for three proteins selected based on no correlation or a negative correlation between
blood plasma and liver during progression of MASLD, for each of the four tissues;
h blood plasma; i liver; 1 scWAT; m oWAT. Boxplot c—f are shown in the style of
Tukey (median, hinges: Q1 and Q3, and whiskers: 1.5x of IQRs from Q1 and Q3) and
statistical significance calculated using Wilcoxon signed-rank test and BH correction
method. SAF steatosis, activity, and fibrosis, NAFLD non-alcoholic fatty liver dis-
ease, BMI body mass index, HOMA-IR homeostatic model assessment for insulin
resistance, MASLD metabolic dysfunction-associated steatotic liver disease, MASL
metabolic dysfunction-associated steatotic liver, MASH metabolic dysfunction-
associated steatohepatitis, WAT white adipose tissue.

the change in expression for all blood plasma proteins against the changes
observed in adipose depots during MASLD pathogenesis (Fig. 5j, k). Indeed,
for some of the MASLD-related proteins that could not be explained by
changes in the liver proteome, we could correlate to levels in adipose tissues.
For example, ALDOB and CD163 were specifically upregulated in oWAT,
matching the profiles observed in blood plasma for these proteins, while
difference in expression for GPX3 was better matching the profiles observed
in scWAT (Fig. 51, m). These findings highlight the importance of con-
sidering multi-tissue interplay when studying complex diseases such as
metabolic disorders.

Predicting MASLD pathogenesis from blood plasma

Strategies relying on a single protein marker have not been very suc-
cessful in diagnosis of MASLD-related pathologies. We therefore tested
whether a proteomics-based model can be used as a “multi-protein panel
marker” approach for predicting liver disease progression. For this
purpose, we utilized the quantitation we had already attained using
short-gradient DIA MS-proteomic analysis in plasma. We generated two
20-protein proteomics models, one designed to predict significant
fibrosis (2F2) and one for MASLD. These two proteomics models are

based on the 10 most positively and 10 most negatively correlating
proteins found for Kleiner fibrosis grade and SAF diagnosis, respectively
(Fig. 5a, b). We also made a simplified version of the two 20-protein
proteomics models consisting of only five proteins each—C7, ALDOB,
ICAM1, CTSD, and IGF2 for significant fibrosis, and AFM, APOF,
ALDOB, PRG4, and IGF1 for MASLD (Supplementary Fig. S10). These
two simplified proteomics models were based on the five proteins—from
the 20-protein candidate list—with the highest individual AUROC. We
chose simple logistic regression for its ease of interpretability, and stress-
tested the performance using 20x five-fold cross-validation. To evaluate
model performance, we reported the area under the receiver-operating
characteristic (AUROC), balanced accuracy, and F1 score (Fig. 6a—c, e).
Our proteomics-based models, the 20-protein panel and the simplified
5-protein version, showed very similar results both performing better
than models based on existing frequently used metrics for predicting
MASLD and fibrosis, as well as logistic regression models de novo-
generated based on the popular FIB-4 and APRI”.

In addition to our initially screened plasma samples, we also received
2-year follow-up blood plasma from a subset of the cohort (Table 1). From
this subset, several patients had drastically reduced their body fat, with 13
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Fig. 6 | Performance evaluation of proteomics biomarkers for MASLD and >F2.
Performance metrics for the logistic regression models after 20x five-fold cross
validation (APRI, FIB-4, 2x Proteomics models one for significant fibrosis (=F2) and
one for MASLD based on proteins from Fig. 5a, b respectively, and 2x Proteomics
simplified models one for >F2—C7, ALDOB, ICAM1, CTSD, and IGF2—and one
for MASLD—AFM, APOF, ALDOB, PRG4, and IGF1). a-c, e Covers performance
metrics of our initial cohort (1 = 143 biologically independent samples), and

d, f covers our validation cohort (n = 41 biologically independent samples) con-
sisting in follow-up blood samples. a, ¢ Model performance on predicting MASLD
from our initial cohort and d again using the same model and model parameters on

our validation cohort. b, e Model performance on predicting >F2 from our initial
cohort and f again using the same model and model parameters on our validation
cohort. a, b The receiver-operator characteristic (ROC) curve. c-f The balanced
accuracy (left) and the F1 score (right). Bar plots show the mean across all one-
hundred evaluations, dots show performance for each evaluation, and error bars
show the standard deviation. a, b Faded area in the ROC curves show the 95%
confidence interval. Coloring for the ROC curves matches the bar plots. MASLD
metabolic dysfunction-associated steatotic liver disease, AUROC area under the
receiver operating characteristic curve, NAFLD non-alcoholic fatty liver disease,
APRI aspartate aminotransferase to platelet ratio index, FIB-4 fibrosis-4.

out of 41 losing more than 10 BMI points due to bariatric surgery. Moreover,
31 out of the 41 patients had changes in their histopathology, of which 18
had improved their liver pathology scoring. We then used these 41 plasma
samples as a validation cohort to evaluate the stability of our initial models’
performances in response to drastic phenotypic shifts within the initial
cohort. We tested each individual model during the 20x five-fold cross
validation on this cohort using the exact same parameters. The performance
of the simplified 5-protein model was slightly lower compared to the 20-
protein panel, however both proteomics-based models again performed
similarly or even better compared to the frequently used metrics, which in
general had a greater degree of instability (Fig. 6d, f). These results clearly
substantiate the notion that such proteomics-based models relying on
disease-specific protein panels are indeed very robust and suitable strategy
for characterization of complex diseases like MASLD.

Discussion

In this study, we took a proteomics-centric approach to explore MASLD in
humans. We found an upregulation of immune response and extracellular
matrix organization as key hallmarks of disease pathogenesis, accompanied
by a downregulation of metabolism which could likely be a consequence of
cellular reprogramming, loss of hepatocyte identity, and cell death®. We
thoroughly explored the cell type-resolved signaling pathways and tran-
scriptional regulators in MASLD pathogenesis, which we expect to be a
valuable resource for future studies aiming to further investigate the cellular
mechanisms in MASLD pathogenesis. Importantly, our findings reveal
distinct expression patterns across liver, blood plasma, and WAT, high-
lighting the importance of considering interorgan crosstalk in under-
standing MASLD. Moreover, our disease-specific proteomics models
generally performed better than existing diagnostic methods, offering a
more accurate and reliable tool for predicting disease progression. Although
rather speculative at this stage, we could envision similar strategies to replace
the widely used single marker predictions in the clinics.

Previous studies have predominantly focused on a genomic and
transcriptomic understanding of MASLD in humans. Here, we expanded
the current understanding of MASLD from a proteomics perspective, while
leveraging our findings for improving diagnostics. Interestingly, the dif-
ference in performance between our comprehensive 20-protein model and
the streamlined 5-protein model was minimal. This suggests that good
model performance hinges on its ability to capture essential disease aspects.
With further optimization and the adoption of more sensitive quantification
methods, we expect that the performance of our simplified models can be
improved even further. By integrating comprehensive proteomic profiling
across organs, we also uncovered potential crosstalk between liver and
adipose tissues, specifically through proteins like ALDOB, CD163, and
GPX3, whose differential expression suggests a nuanced mechanism of
disease manifestation not previously studied. Indeed, only six of the proteins
found in our 20-protein proteomics models, which was purely based on
proteins correlating to disease progression, were also found in our list of 234
liver DEPs.

Proteins comprise 75% of all drug targets approved by the FDA and are
the primary source of biomarkers’. By advancing our understanding of
MASLD at a proteomic level, our work lays the foundation for improving
diagnostic and therapeutic strategies. The correlation of adipose and plasma
proteins with liver pathology not only aids in understanding MASLD
mechanisms but also facilitates the development of targeted therapies. Our
analysis highlighted proteins involved in the immune response and ECM
organization, such as CD163 and GPX3. These proteins represent potential
targets for new therapeutic interventions aimed at mitigating the inflam-
matory and fibrotic pathways in MASLD. Targeting GPX3, which is
involved in the regulation of oxidative stress, could help in designing anti-
oxidant therapies to reduce liver damage. Similarly, interventions that
modulate CD163 activity could potentially limit the inflammatory
responses, offering a therapeutic strategy to slow disease progression.
Moreover, the identification of transcriptional regulators such as PML and
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AHR that correlate to GPX3 expression adds a layer of complexity and
opportunity. Understanding these regulatory mechanisms further, can
potentially lead to the precision therapies that target these pathways more
effectively. Furthermore, our diagnostic proteomics-based biomarker
models pave the way for non-invasive, cost-effective methods that could
transform current practices by decreasing reliance on liver biopsies and
enhancing early disease detection. They also provide a more nuanced insight
for identifying MASLD. Leveraging differential expression patterns in key
proteins, could potentially be utilized to predict disease trajectory in
patients, which could enable more tailored interventions based on the
projected course of the disease.

The strengths of this study include consistency in methodology across
tissues and a well-described cohort with histological scoring for all samples.
All samples across tissues were prepared using the same sample preparation
procedure, processed in the same lab, same instrument setups, and using
DIA-MS to vigorously fragment all eluting peptides. Using DIA-MS, we
could use remains from the same biopsy that was used for histological
scoring which would not have been feasible previously at such a depth.
Moreover, conventional DDA would have suffered from high sample var-
iance in human heterogeneity, introducing even more missingness and
making the results more difficult to interpret. Being proteomics-based helps
the translational potential of our findings in future diagnostic and ther-
apeutic efforts.

A major limitation to our study is the relatively small cohort size
combined with cohort biases which can strongly limit the interpretability
and applicability of our results to the broader population. Furthermore, we
have very few samples from more advanced fibrosis stages, which are
typically of greater clinical interest. To address some of these limitations, we
took a conservative approach to the statistical analysis and overall prioritized
more emphasis on the less-explored early stages of the disease. Lacking
comparators for predicting the early disease stages, we decided to also
generate de novo logistic regression models optimized for our cohort based
on the vastly popular FIB-4 and APRI scores. However, it should be noted
that these metrics were not originally designed for detection of early disease
stages, and therefore, comparisons to these metrics should be interpreted
with some caution. While DIA-MS offers robust quantification and
reproducibility, we did not consider post-translational modifications which
play a huge role in cellular mechanisms and could be crucial in under-
standing MASLD pathogenesis. Given the discrepancy between RNA and
protein expression levels, it should be expected that our cell type decon-
volutions have a margin of error. Although our biomarker panel clearly
correlates to disease progression, it does not necessarily reflect liver-specific
mechanisms as already highlighted. MASLD is a multifaceted disease and
investigating the direct mechanisms is outside the scope of this study.
Analyzing multiple tissues adds complexity to the data interpretation, and in
a human study like this we cannot derive any direct evidence for interorgan
crosstalk. Moreover, we do not consider total abundances between different
tissues which could be crucial for explaining the origin of changes observed
in the blood proteome. Discrepancies between liver and plasma proteomes
in MASLD pathogenesis could also be partly explained by morphological
changes in the liver, such as cellular leakage from dying hepatocytes. Finally,
mass spectrometry-based equipment is not commonly used in the clinics
yet, thus limiting the general applicability of our biomarker panel in its
current state.

Future research directions should employ longitudinal studies to
monitor the dynamics throughout MASLD progression across relevant
organs, and potentially explore even more organs than what we did here.
Incorporating single-cell proteomics will also help delineate the cellular
origins and functionalities of crucial proteins, providing mechanistic
insights into therapeutic targets. Moreover, by integrating multiple omics
we can develop a more comprehensive model that captures the intricate
biological interplay underlying MASLD. Finally, by further optimizing our
proteomics models and improving assay sensitivity, can advance the
development of robust cost-effective non-invasive diagnostic tools, to
reduce the need for liver biopsies.

In summary, we here provide exploratory proteomics-based study of
MASLD, covering over 7000 unique proteins in human liver biopsies
from 58 obese patients with various degrees of liver disease progression.
Using single-cell transcriptomic information to deconvolute our pro-
teomics dataset, we linked many of the proteins associated with disease
progression to individual cell types and the potential transcriptional
regulators responsible for their expression changes in the disease states.
The analyses uncovered more depth of the mechanisms related to the
immune response and the extracellular matrix organization, including
HSC differentiation, laminin and integrin interactions, RHO GTPase
signaling, cell-ECM interactions, remodeling of LECs to accommodate
transendothelial migration of immune cells, production of ROS, GAG
metabolism, and regulation of TGF-P signaling. While being a liver-
centric study, we nevertheless highlighted the multi-organ effects of
MASLD in metabolic dysfunction trough quantitative proteomics ana-
lysis of sSsWAT and oWAT biopsies from the same 58 patient to a similar
depth of ~7000 unique proteins in each tissue. Last but not least, we
utilized short-gradient DIA MS-proteomic approach for the analysis of
184 blood plasma samples and indicated that our proteomics marker
models performed similarly or better than existing frequently used non-
invasive methods in diagnosing MASLD. Overall, our findings provide
rich and reliable resource, strengthening previous knowledge and
bringing new insights that could help understanding normal liver
function and MASLD pathology.

Data availability

The mass spectrometry proteomics data have been deposited to the Pro-
teomeXchange Consortium via the PRIDE” partner repository with the
dataset identifier PXD051911. Relevant metadata and protein quantitation
tables for each tissue has also been added as Supplementary Data for ease of
accessibility. Supplementary Data 1-5 (1, meta data and biochemical data; 2,
liver protein quantification table; 3, batch-corrected plasma protein quan-
tification table; 4, scWAT protein quantification table; and 5, oWAT protein
quantification table).

Code availability

All bioinformatic analyses were performed in the open-source statistics
software R, version 4.3.1 (2023-06-16)—“Beagle Scouts”. We have made a
dedicated GitHub repository with our codes for the predictive proteomics-
based models publicly available (https://doi.org/10.5281/zenodo.
14904437)*". Additional R scripts use existing code examples from popu-
lar R packages and have been described in the “Methods” section.
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