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Abstract

Background Effective response to vaccination requires activation of the innate immune
system, triggering the synthesis of inflammatory cytokines. The degree of subjective
symptoms related to this, referred to as reactogenicity, may predict their eventual immune
response. However, the subjective nature of these symptoms is influenced by the nocebo
effect, making it difficult to accurately quantify a person’s physiologic response. The use of
wearable sensors allows for the identification of objective evidenceof physiologic changes a
person experiences following vaccination, but as these changes are subtle, they can only be
detected when an individual’s pre-vaccination normal variability is considered.
Methods We use a wearable torso sensor patch and a machine learning method of
similarity-based modeling (SBM) to create a physiologic digital twin for 88 people receiving
104COVID vaccine doses. By using each individual’s pre-vaccine digital twin, we are able to
effectively control for expected physiologic variations unique to that individual, leaving only
vaccine-induced differences. We use these individualized differences between the pre- and
post-vaccine period to develop amultivariate digital biomarker for objectivelymeasuring the
degree and duration of physiologic changes each individual experiences following
vaccination.
Results Here we show that the multivariate digital biomarker better predicted systemic
reactogenicity than any one physiologic data type and correlated with vaccine-induced
changes in humoral and cellular immunity in a 20-person subset.
Conclusions A digital biomarker is capable of objectively identifying an individual’s unique
response to vaccination and could play a future role in personalizing vaccine regimens.

Immune cell activation is essential to a successful vaccination strategy, with
inflammation being the immune system’s initial response to this activation.
The level of vaccine-induced inflammation plays an essential role in its
tolerability and potentially its efficacy1,2. Presently, the symptomatic track-
ing of reactogenicity—the physical manifestations of vaccine-related
inflammation—is the only measure of acute vaccine response that is
monitored at any scale3. For example, following the second dose of amRNA
based COVID-19 vaccine nearly 70% of individuals participating in the

Centers forDiseaseControl andPrevention’s (CDC)v-safe study (<5%of all
vaccinated individuals in theUS) reported having a systemic symptom such
as fatigue, myalgias or chills4. However, the subjective nature of these data
limit their value as a measure of vaccine-induced inflammation as they are
susceptible to a nocebo effect. An analysis of the placebo arms ofCOVID-19
vaccine randomized trials found that 76% of systemic symptoms experi-
enced after the first dose, and 52% after the second dose could be attributed
to the nocebo effect5
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Plain Language Summary

Researchers have created a newway to track
how people’s bodies react to COVID-19
vaccines using a small sensor patch. Nor-
mally, doctors rely on people describing their
symptoms, but this can be affected by what
they expect to feel. This new method uses
artificial intelligence to first learn each per-
son’s normal body patterns before they get
the vaccine. After vaccination, the sensor
measures any small changes in the body and
compares them to the person’s usual pat-
terns. In a study of 88people, scientists found
that combining different bodymeasurements
into one signal was better at predicting vac-
cine side effects and immune responses than
looking at single measurements alone. This
technology could help doctors better under-
stand howeachperson responds to vaccines
and make vaccination plans more persona-
lized in the future.
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Currently, there are no objective measures of reactogenicity routinely
used. Measuring vaccine-induced inflammation has depended on inter-
mittent and infrequent sampling of blood-based soluble factors such as
chemokines and cytokines6. Most, but not all, of these studies have found
significant relationships between blood-based inflammatory biomarkers
and measures of reactogenicity and/or immunogenicity following vacci-
nation against COVID-19 or other pathogens1,2,7–9. However, due to the
invasive requirements of these studies, sample sizes are limited, and the
frequency and duration of testing are minimized. Non-invasive methods of
measuring changes in soluble inflammatory biomarkers following vacci-
nation, such as through urine and saliva sampling, have been evaluated, but
have yet to be proven effective 6,10.

A potentially novel approach to quantifying the totality of an indivi-
dual’s physiologic response to vaccination could be through wearable sen-
sors that can continuously track individual physiologic and behavioral
changes following vaccination to create a digital biomarker11. Recently, a
range of wearable sensors—wrist wearables, rings and torso patches—have
been shown to be able to detect the subtle physiologic changes following
COVID-19 vaccination12–18. The degree of changes are so small that without
knowledge of a person’s unique pre-vaccine normal levels and natural
variability, the detection of these subtle deviations would not be possible.
Changes that, for example,might be only two beats perminute difference in
resting heart rate—a change that would never be detectable on a population
level due to marked inter-individual variability in resting heart rate12,19. As
much of this prior work has utilized consumer devices, physiologic and
behavioral changes following vaccination have mostly been determined
based on a single daily summary value for each parameter, with most
physiologic measures determined during sleep. Even with this limited data
density, multiple studies have found significant associations between post-
vaccine deviations in physiologic measures, subjective symptoms and
humoral immune response 13,20,21.

In the present study, we sought to develop a personalized digital bio-
marker for COVID-19 vaccine-induced reactogenicity utilizing several
advanced technologies; a medical grade patch biosensor able to con-
tinuously capture multiple biometrics, and an analytics platform using a
machine learningmethodof similarity-basedmodeling (SBM),which learns
the dynamic interplay between multivariate input sources22. Combined,
these technologies enabled the development of personalized pre-vaccine
baseline models of each participant’s unique physiologic dynamics—a
physiologic “digital twin.”23 When these models were then applied to post-
vaccination data to remove expected individual variations, continuous
vaccine-induced changes were able to be isolated to create a multivariate,
personalized biomarker of reactogenicity—a multivariate change index of
reactogenicity (MCIR).

Here we report the measured physiologic changes using this novel,
individualized digital biomarker following vaccination against COVID-19
in 88 volunteers who received a total of 104 vaccines in a real-world setting.
We quantify the relationship between that measure and subjective symp-
toms in all individuals, finding a statistically significant correlation that
performed better than any single physiologic data type. In addition, in a
subset of participants, we identified a statistically significant relationship
between MCIR and the humoral and cellular immune responses early fol-
lowing vaccination. These results provide preliminary support for the
potential value of amultivariate digital biomarker to objectively quantify the
totality of individual reactogenicity following vaccination.

Methods
Clinical setting
Participants were recruited through one of two study protocols. The
majority of participants were enrolled through the Vaccine-Induced
Inflammation Investigation (VIII) study protocol. The second protocol
was the Continuous Physiologic Monitoring for Immune Response via
Wearable Sensor Data (COmMON SENS) study. The VIII study was
approved by the Sterling IRB (ID# 8842-SRSteinhubl) in April of 2021.
Clinicaltrials.gov registration number was NCT05237024. The

COmMON SENS study was approved by the Purdue University IRB
(ID# IRB-2021-453) April 2021.

For the VIII study, individuals who were already voluntarily planning
to receive a vaccine against COVID-19 were recruited from the general
population primarily via email outreach disseminated by employees of the
study sponsor, physIQ (Chicago, IL, USA, but since purchased by Prolaio,
Scottsdale, AZ, USA). Employees were encouraged to further disseminate
recruitment information to their family and friends. The choice by any
potential participant to get a vaccine was entirely voluntary and only people
already planning to be vaccinated were approached to enroll in the study.
Participants in the immunogenicity substudy of the VIII study were
recruited in a similar manner with outreach disseminated by CellCarta
(Montreal, Qc, CA), the cellular immunogenicity lab. All participants
provided written informed consent prior to enrollment.

In the COmMON SENS study, Purdue University students, staff, and
faculty were recruited via advertising to the general university population,
affiliates, and friends.Again, only individualswhowere voluntarily planning
to receive a COVID-19 vaccine were recruited.

Inclusion and exclusion criteria
Any individual over age 18 (participants between age 12 and 17 were
allowed in the VIII study, although none were recruited) who was planning
to receive any of the 3 FDA-approved vaccines against COVID-19 were
eligible for enrollment. The only exclusion criterion was known allergy to
the adhesive of the sensor patch.

Study methods
Individuals enrolled were asked to wear a patch sensor for ~12 to14 days
surrounding vaccination. Participants could agree to monitor themselves
during more than one vaccine dose. Volunteers were asked to place the
patch on themselves and begin monitoring 5 days prior to their planned
vaccination and continuing for a total of up to 14 days. As the battery life of
each disposable patch was ~7 days, each participant was asked to sequen-
tially wear two patches at the time of each vaccine.

All participants received a locked-down Android phone with a pre-
loaded app to enable patch and survey data capture. The app enabled
participants to mark the day and time they received each vaccine dose and
respond to daily survey questions for up to 7 days following vaccination to
track all subjective symptoms and to document if they took any anti-
inflammatory analgesic agent.

Immunogenicity sub-study
Participants in the immunogenicity sub-study followed the identical pro-
tocol as all study participants with the exception of agreeing to a series of
blood draws. For participants who had yet to receive their first vaccination
(n = 3), there were 4 scheduled blood draws. The first ~5 days prior to their
first vaccine, the second ~14 days after their first dose, the third ~14 days
after their second dose, and their final blood draw ~60 days after their
second vaccine dose. The majority of participants underwent only 3 blood
tests - ~5 days before their second or third vaccine dose, and again ~14 days
and ~60 days after that dose. Immune response was determined based on
the change from the 5-day pre-vaccine level to the 14-day post-vaccine level.

Wearable sensor
TheVitalPatchTM byVitalConnect (San Jose, CA) is an FDA510(k)-cleared,
wearable, disposable adhesive patch with an integral one-time use battery
and integrated electronics. The battery life of each patch lasts 7 days. The
patch was self-applied by the participant to their left upper chest. Guidance
for placement and confirmation of connectivity was provided via the app.

The patch transfers biosignal data over Bluetooth low-energy protocol
to themobile app. Once themobile app has received the biosignals from the
VitalPatchTM, the biosignals are uploaded to a cloud-based server using
digital cellular or Wi-Fi networks. No personal identifiers were stored or
transmitted with the data either from the sensor or from the mobile app.
Upload via digital cellular network was secured with Transport Layer
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Security (TLS) cryptographic protocol between the mobile phones and the
server. The platform was securely hosted in the Google cloud and the
analytics server stored the raw physiological telemetry data captured by the
study device. All the telemetry waveform data were stored only by partici-
pant ID. The data could only be obtained or viewed via secure
authenticated login.

Study platform and personalized physiology analytics
The cloud-based analytics platform used a general machine learning
method of similarity-based modeling (SBM), to analyze collected data.
SBM models the behavior of complex systems (e.g., aircraft engines,
computer networks, or human physiology) by learning tandem patterns
among system variables as they are periodically sampled together22.
Personalized baseline models of each participant’s unique physiologic
dynamics are established, creating a “digital twin,” which when com-
pared to new input data following a possible immune-stimulator,
removes expected variations, ideally then leaving only vaccine-induced
differences. These differences are the residuals. These residuals are
combined into an Multivariate Change Index of Reactogenicity (MCIR),
which is updated on a 15-minute basis, allowing for the tracking of the
onset, offset and degree of physiologic changes. Patch data was filtered
for quality using an ECG-based signal quality index (SQI), that is graded
0-1 with 1 as highest quality.

Uni-parametric analysis. Patch ECG-derived cardiorespiratory features
were filtered with a threshold of SQI > 0.9. Since activity level and skin
temperature derived from the patch are not related to the ECG signal,
they were not filtered with SQI, however any skin temperature values
below 33 °C and above 42 °C were ignored. Five, 3-hour aggregate
parameters were derived from 1-min derived features after baseline
normalizing using z-scoring on an individual participant basis. Themean
and standard deviations used for the z-scoring, were calculated from
feature data generated during the 48-hour window prior to a vaccine
dose. (Supplementary Fig. 1) The corresponding post vaccine dose
aggregate data for each participant were used to identify cases where at
least one standard deviation of change from baseline occurred.

Multiparametric (MCIR) analyses. The multivariate MCIR is a perso-
nalized modeling algorithm that uses coincident heart rate, heart rate
variability, respiration rate, activity level and skin temperature derived
from the patch device as input. A unique model was trained for every
participant based on data collected prior to vaccine doses. For data to be
used as input to MCIR, activity level had to be less than 0.05 g (a level
corresponding to normal walking), skin temperature between 30 °C and
40 °C, and SQI ≥ 0.9. Additionally, during training, heart rate was
required to be between 40 bpm and 250 bpm, and respiration rate
between 8 and 35 breaths per minute. To train an individual MCIR
model, 2500 one-minute samples of input variables were required to be
available prior to vaccination and that the 1-min samples had to be
distributed over 3 days.

MCIR total response. The metric defined for assessing MCIR total
reactogenicity response (“MCIR Total Response”), employed an area
under the curve (AUC) approach. The metric is defined for a fixed, 72 h,
window of time starting from the time of administration of a vaccine
dose. The MCIR Total Response was defined as Ai/AT as illustrated in
Supplementary Fig. 2, where AT is the total rectangular area within the
time window and Ai is the area under the curve for MCIR during the
window.

MCIR detectable response. A detectable response was defined as a
collection of MCIRs with persistent, non-zero MCIR values within the
fixed 72-h window following a vaccine. The 72-h window was selected to
capture as much of the vaccine-induced physiologic response and
minimize any potential noise. In addition to being a persistent trend

(non-zero MCIR trend > 1 h), the MCIR response had to satisfy condi-
tions that were designed to rule-out small magnitude, random fluctua-
tions that are likely due to noisy arbitrary inputs. Detectable response was
defined as the presence of at least 50% of 15-minute steps within a 6-hour
slidingwindowwith anMCIRs > 0.10. If any of such occurrences has been
found in the fixed 72-hour window following a vaccine the individual has
a detectable physiologic change. In this way we identified 66 (63.5%)
vaccine doses for which an identifiable physiologic deviation from their
expected ‘normal’was of detectable size. To estimate the false positive rate
of defining “detectable” as above, we selected an independent dataset
consisting of 76 participants from two different, healthy, non-vaccine,
non-infection cohorts, with each individual having amean of ~25 days of
total monitoring time with an identical patch sensor, to serve as a control
group. This cohort was composed of 55 individuals undergoing pro-
spective monitoring for COVID infection and 21 healthcare workers
participating in a worker burnout study. Of the 54 individuals with
available demographic data, 33%weremale with amean age of 38 (±12.1)
and range of 20 to 60 years, making them comparable to the study
population. These data were processed in the same way as the current
data set to generate MCIRs. From each of these 76 individuals100 dif-
ferent 72-h periods of MCIR data were randomly selected and tested for
the presence of a 6-hour sliding window that met the above definition of
“detectable.” Each chunk of 72-hour data was labeled as a positive or
negative decision depending on whether a 6-h window of MCIR met
the definition of detectable. In each of 1000 bootstraps we randomly
selected 76 estimated decisions (one per each vaccine dose) and
compare them to decisions labeled as negative for the control group and
66 positive from the VIII study cohort to estimate the performance of
“detectable response”-identification algorithm and corresponding 95%
confidence intervals (CI); True Positive Rate (TPR) = 100%, Specificity
(SPC) = 67.7% (67.4%, 68.0%), False Positive Rate (FPR) = 32.3% (32.0%,
32.6%), Positive Predictive Value (PPV) = 73.0% (72.8%, 73.2%), Nega-
tive Predictive Value (NPV) = 100%, Acceptance (ACC) = 82.7%
(82.5%, 82.9%).

Statistical analyses
Population level daily summary changes. To test for a difference in the
pre- and post-vaccination levels for physiologic and behavioral bio-
metrics over the entire study population, medians were calculated using
all available pre-vaccine data and 5-day post vaccine data. Statistically
significant differences were determined based on Wilcoxon signed
rank test.

Post-vaccine objective reactogenicity by vaccine and individual
characteristics. The probabilities that the two data sets come from
different continuous distributions at the 5% significance level are
obtained using Kolmogorov–Smirnov (KS) test.

Relationship of MCIR to subjective reactogenicity. We compared the
AUCMCIR between the two populations—those that reported systemic
symptoms and those that reported having no symptoms or local symp-
toms only—using a two-sample Kolmogorov–Smirnov goodness-of-fit
hypothesis test (KS test) to see if there is a significant difference between
the two populations in MCIR response. We also carried out similar
analyses for each individual parameter (HR, HRV, temperature and RR)
to compare their relationship to predicting reactogenicity to that of the
multivariate biomarker, MCIR.

Relationship of MCIR to immunogenicity. The vaccine-associated
change in anti-spike protein IgG and CD4+ /IL-21+ and CD8+ /
IFNγ+ T-cells was determined by subtracting each participants’ levels at
5-days prior to that vaccine dose from their levels at 14-days after vac-
cination. These vaccine-related changes were compared toAUCMCIR to
assess the Spearman correlation between the two. In case of 2nd doses, the
baseline values are those obtained prior to vaccine dose two (post 1st
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vaccine) while in case of 3rd doses the baseline values were obtained from
blood samples drawn prior to third dose (post 2nd vaccine).

One participant was excluded due to insufficient wearable data.
The reasoning for removal of another 3 participants’ data in evalu-
ating the relationship between AUC MCIR and cellular immuno-
genicity and 2 participants’ data for humoral immunity is explained
in Supplementary Fig. 3.

The fitted lines were obtained with a robust fit method which is an
alternative regression in the presence of outliers or influential observations
making it less sensitive to outliers than standard linear regression. In cases
(a) and (b) of Fig. 5 we used Welsch weight function and for (c) we used
Andrews weight function, all with the same tune parameter 0.8. The choice
of tuning parameter affects the number of data points used in fitting pro-
cedure and themodel statistics. Eachdata point isweighteddifferently based
on how it affects the model statistics i.e., based on the magnitude of the
residual for that data point.

Immunogenicity studies
Initial processing of blood samples to isolate peripheral bloodmononuclear
cells (PBMCs) and blood plasma occurred within 2 h of blood draw.When
possible, 1.5ml of plasma was removed from the top of each spun sample
tube prior to buffy coat isolation. Aliquots of plasma were stored at -80oC.
PBMCs, with a target concentration of 10.0×106 PBMC/ml/vial, were
cryopreserved in liquid nitrogen until batch analysis.

Flow cytometry-based T-cell assays. Intracellular cytokine stain
assay was performed at CellCarta Bioscience, Inc. (Montreal, QC,
Canada) similar to as previously described24. For each sample, 4
conditions were used: DMSO, S peptide small pool, non-S peptide
pool and staphylococcal enterotoxin B as a positive control. PBMCs
were rested and then stimulated for 16–18 h at 37 °C, 5%CO2 in the
presence of secretion inhibitors. After the stimulation, cells were
stained with fixable Aqua dead cell stain as well as surface antibodies,
followed by intracellular staining with cytokine (e.g. IFNγ, IL-2, IL-4,
and IL-21) or cytotoxicity marker (perforin) using BD Cytofix/
Cytoperm protocol. We selected IL21+ cells as they play a critical
role in B-cell activation and correlate with post-vaccine humoral
response25. “While the circulating level of these cells are low, existing
literature supports the ability to accurately measure them and their
changes with the methodology used 24,26.

Samples were acquired on a BD Fortessa X20 cytometer and data was
analyzed using CellEngine software. The frequency of cytokine-producing
antigen-specific T-cells was determined by subtraction of the background
cytokine response in unstimulated control samples from the positive
response in the samples stimulated with SARS-CoV-2 peptide pools. All
negative values after subtraction of background were set to 0. The gating
strategy is described in Supplementary Fig. 4 with flow cytometric plots for
CD4+/IL21+ cells in Supplementary Fig. 5 and for CD8+/ IFNγ+ cells in
Supplementary Fig. 6.

Anti-spike IgG. Humoral immunogenicity was determined from plasma
samples and defined as SARS-CoV-2 anti-spike IgG titers. Anti-spike IgG
concentrations were determined by ELISA (reported as ELISA laboratory
units [ELU]/mL) at Nexelis (Laval, QC, Canada)27. Final concentrations
were determined by calculating the geometric mean of all adjusted
concentrations for each samples’ dilution by interpolation of the optical
density values on the 4-parameter logistic standard curve and adjusted
according to their corresponding dilution factor, with maximal dilution
of 1-in-5000. For below range samples, a concentration of 0 ELU/mLwas
assigned when no points fell on the standard curve below the lower limit
of quantification of 50.3 ELU/ml.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Participants
A total of 107 individuals consented to participate and included 137 vaccine
doses. After excluding individuals with insufficient baseline or post-vaccine
data, 88 participantswere included in this analysiswith a total of 104 vaccine
doses. Forty-two (47.7%) were female and the mean age (±SD) for the
analyzed population was 37.9 (±13.9) years with a range of 19 to 69 years.
Eleven people (12.5%) self-reported prior COVID infection. All partici-
pants, but one, receivedoneof the twoavailablemRNACOVID-19vaccines
—Moderna’s mRNA-1273 (43 doses), Pfizer-BioNTech’s BNT162b2 (48
doses), and for 12 doses participants were not sure which mRNA vaccine
they received. One person received the Janssen viral vector vaccine.
Response to thefirst vaccine dose (including the 1 Janssen vaccine recipient)
was monitored in 15 participants, the second dose in 44 individuals, and a
third dose in 45 people. (See Supplementary Table 1 for participant and
vaccine characteristics) Fourteen people provided data around 2 different
vaccine doses, and one person for three doses.

Wearable data
The torso ECGpatchwasworn for amean (±SD) of 4.2 (± 2.1) days prior to
vaccination and 7.6 (± 3.0) days after. A total of 37,279 h of data were
analyzed out of a possible 38,832 h of total patch wear time (96% data
availability).

At a population level, small but significant changes relative to indivi-
dual pre-vaccine baselines were detectable in heart rate (HR), activity, skin
temperature, heart rate variability (HRV) and respiratory rate (RR) that
deviated frompre-vaccine baseline for ~3 to 4 days after vaccination (Fig. 1).

Uni-parametric physiologic changes from baseline
Individual differences in changes in single physiologic parameters following
vaccination were evaluated by tracking deviations in each z-scored mea-
sured parameter relative to each participant’s 48-hour pre-vaccine dose
baseline period. Among the 85 participants who had data surrounding a
second or booster dose, detectable changes greater than one standard
deviation relative to an individual’s baseline were seen in 28 (33%) of
individuals in skin temperature, 24 (28%) in HR, 11 (13%) in RR, 7 (8%) in
HRV,and1 (1%) in activity level. In total, a change inoneormore individual
parameters of one standard deviation or greater was detected in 46 (54%) of
participants following a second or third vaccine dose.

To demonstrate how the relative degree of post-vaccine change in one
measure did not necessarily predict the relative degree of change in another
parameter in the same individual (e.g. high-temperature changepredicting a
high HR change), Fig. 2, shows relative changes in HR, HRV, RR and
temperature relative to pre-vaccine, with each row an individual’s post-
vaccine response. Supplementary Fig. 1 further highlights the variability in
the onset, duration, and degree of change between individuals in each
parameter andhowaperson’s response in oneparameter didnotnecessarily
predict their response in another parameter.

Multivariate Change Index of Reactogenicity
The individual differences in multiple parameters are combined into a
Multivariate Change Index of Reactogenicity (MCIR), which is a persona-
lized modeling algorithm that uses coincident heart rate, heart rate varia-
bility, respiration rate, activity level and skin temperature derived from the
patch device as input and is further detailed in theMethods section. To best
quantify an individual’s total vaccine-associated reactogenicity, the area
under the MCIR curve (AUC MCIR) was developed, which encompasses
the duration and degree of all measured physiologic changes in the days
following vaccination relative to that person’s pre-vaccine baseline (Sup-
plementary Fig. 2).

The first vaccine dose was associated with a less pronounced AUC
MCIR response relative to those receiving their 2nd or 3rd dose (Table 1 and
Fig. 3a). Sixty-five percent of second or booster doses led to a detectable
increase in MCIR after vaccination compared to only 53% of those after a
first dose, with ‘detectable’ as defined in the Table and in the Methods
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section. The total response in participants who received the mRNA-1273
vaccine tended to be greater and appeared to be of longer duration (Fig. 3b)
as measured by continuous MCIR, than those treated with BNT162b2,
although between group differences were not significant.

Relationship of MCIR to subjective reactogenicity
Participants were asked to voluntarily self-report any symptoms, or a lack of
symptoms, following vaccination via an in-app survey. No data was entered
following 15 of the 104 vaccine doses and were excluded from the analysis.
Reported symptoms were classified as either systemic or local4. Of the 89
doses with post-vaccine symptomdata entered, a lack of any symptomswas
documented following 10 doses (11.2%), local symptoms only following 9
(10.1%)doses, and systemic symptoms following 70 (78.6%)of doses.Of the
70 doses with systemic symptoms, 50 also reported local symptoms.

Compared to vaccine doses associated with only local or no reported
symptoms, those that experienced systemic symptoms had a statistically
significantly greater response as measured by AUC MCIR (median [IQR]
0.043 [0.039] vs 0.078 [0.14], p = 0.008) (Fig. 4). Similar analyses were
carried out for each individual biometric and no significant association was
found between post-vaccine HR change (p = 0.97), HRV change (p = 0.33),
temperature change (p = 0.72) or RR change (p = 0.31) and systemic
symptoms.

Relationship of MCIR to immunogenicity
Twenty-one individuals participated in the immunogenicity sub-study.
Their mean age was 37.2 years, 65% were female, and 45% received the
mRNA-1273 vaccine, and 55% BNT162b2. Twenty of the 21 sub-study
participants had sufficient wearable data to determine their complete

physiologic response following a second or booster vaccine dose. For these
sub-study participants, the median AUC MCIR [IQR] was 0.055 [0.15],
which was comparable to the overall population. Changes in both T-cell
response and SARS-CoV-2 anti-spike protein IgG titers at day 14 post-
vaccine relative to their 5-day pre-vaccine levels were compared to theAUC
MCIR response following vaccination.

The change in SARS-CoV-2 anti-spike protein IgG titer (ELU/mL) at
day 14 following a 2nd or 3rd vaccine dose was significantly correlated with
their AUCMCIR after the vaccine (Spearman ρ= 0.45, one-sided p = 0.03)
for the 19 individuals after exclusion of outliers (Fig. 5a). Similarly, the AUC
MCIR was directly correlated with the increase in frequency of interleukin-
21 expressingCD4+ cells (Spearman ρ=0.56, one-sided p = 0.009) at day 14
but was inversely correlated with the change in interferon-gamma expres-
sing CD8+ cells (Spearman ρ= -0.47, one-sided p = 0.029) for the 17 par-
ticipants after exclusion of outliers (Fig. 5b, c).

Discussion
In this work, we characterized the interindividual heterogeneity in physio-
logic response to vaccination against COVID-19 collected via a medical-
grade, wearable, continuous biosensor. Using these data and similarity-
basedmodeling, we developed a digital biomarker, MCIR, that captures the
entirety of an individual’s unique physiologic response in the days following
vaccination relative to their pre-vaccine baseline and demonstrated a sig-
nificant association betweenMCIR to the reporting of systemic symptoms,
and, in a smaller substudy, humoral and cellular immunity. Reactogenicity,
the physicalmanifestations of the inflammatory response to vaccination, is a
significant contributor to vaccine hesitancy, is strongly influenced by the
nocebo effect, and may directly correlate with the immune protection

Fig. 1 | Population level daily summary changes in multiple vital signs and
activity following vaccination. Heart rate (HR), heart rate variability (HRV),
respiratory rate (RR), activity level (labeled as “trailing activity” (which indicates that
the activity level is filtered using a 20-s moving average at the 1-minute level to

remove higher frequency variability over time), and skin temperature trends are
shown following any vaccination dose relative to pre-vaccine baseline. Significant
changes are circled in red. HR changes are in beats per minute, HRV in seconds, RR
in breaths per minute and skin temperature in oC.
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achieved3,5,28. These considerationsmake the ability to objectivelymeasure a
person’s response to a vaccine important for the enhancement of vaccine
development and deployment.

Immune responses are known to vary greatly between people29. Con-
sistent with that, in the current study we identified substantial inter-

individual variability in the physiologic response to vaccination that was, at
least in part, consistent with known differences in vaccination-induced
reactogenicity, such as less symptoms following a first dose relative to
subsequent doses in people without prior COVID infection, or greater
symptoms in those receiving the mRNA-1273 versus BNT162b2 vaccine4.

Table1 | Total post-vaccine response following104vaccinesasdeterminedby theAreaUnder theMCIRcurvebasedonvaccine
dose, vaccine type, sex and age

Demographic and vaccine
categories

n (%) with a detectablea

response
Median (IQR) area under the
MCIR curve

p-valueb of comparisonof areaunder the
MCIR curve

Vaccine Dose 1st Dose (n = 15) 8 (53.3) 0.043 (0.04) 1st vs 2nd dose: p = 0.01
1st vs 3rd dose: p = 0.06
2nd vs 3rd dose: p = 0.412nd Dose (n = 44) 31 (70.5) 0.083 (0.18)

3rd Dose (n = 45) 27 (60.0) 0.063 (0.13)

Vaccine Typec mRNA-1273 (n = 36) 26 (72.2) 0.116 (0.19) p = 0.06

BNT162b2 (n = 41) 24 (58.5) 0.055 (0.096)

Sexc Females (n = 41) 25 (61.0) 0.070 (0.15) p = 0.60

Males (n = 48) 33 (68.8) 0.065 (0.14)

Age by Tertilec Lowest Tertile Age (range
19–28) (n = 31)

21 (67.7) 0.070 (0.13) Lowest vs Middle Tertile: p = 0.99
Middle vs Highest Tertile: p = 0.13
Lowest vs Highest Tertile: p = 0.08

Middle Tertile Age (range
28–45.8) (n = 26)

20 (76.9) 0.056 (0.12)

Highest Tertile Age (range
45.8–69) (n = 29)

16 (55.2) 0.077 (0.20)

aDetectable was defined as the presence of at least 50% of 15-min steps within a 6-hour sliding window having a MCIRs > 0.10.
bp-values obtained using Kolmogorov–Smirnov (KS) test.
cIncludes only second doses or higher.

Fig. 2 | Individual variability in the relationship
between the degree of change in specific physio-
logic parameters following vaccination. Features
averaged over 4 days for each of 70 participants with
systemic symptoms and normalized to their pre-
vaccine baseline. Relative scaling is [−1 to 0] for
negative change and [0 to 1] for positive change for
each feature separately.
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We too found significantly greater objective reactogenicity, as measured by
AUCMCIR, following a second dose relative to a first dose, and, similarly,
mRNA-1273 treated individuals had a numerically greater inflammatory
response compared with those receiving the BNT162b2 vaccine, although
the difference was not statistically significant. While prior studies have
found female versus male sex and younger versus older age to be associated
with greater reactogenicity30, we were only able to show similar direction-
ality for a sex difference, but not statistically significant differences in
responses for sex or age, likely due to our small sample size.

In our small sub-study, we also found that an individual’s AUCMCIR
response following vaccination was significantly associated with both
humoral and cellular immune response at 14 days after vaccination. These

results are consistent with multiple studies that have correlated higher
degrees of reactogenicity with a greater immune response31–34, although
other studies have not supported this relationship35–37. These inconsistent
findings, and the known confounding by the nocebo affect5, highlight the
need for objectivemeasures of reactogenicity.While it is possible tomeasure
serum inflammatory biomarkers to directly determine inflammatory
changes after vaccination, due to their invasive nature these studies are
limited in size and number. Two such studies in individuals receiving the
BNT162b2 vaccine found a correlation between the level of increase of
serum inflammatory biomarkers and subsequent Spike antibody levels 7,38.

Multiple prior studies have also shown that subtle, individualized
physiologic changes associated with vaccination against COVID-19 are

Fig. 3 | Heatmaps showing inter-individual variation in the onset, degree, and
duration of the multivariate change index of reactogenicity (MCIR). a All 104
vaccine doses, each an individual row, aggregated by first, second or third vaccine

dose. b Similar heatmaps following 91 vaccine doses, grouped by vaccine type for 43
Moderna and 48 Pfizer/BioNTech vaccine doses.
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detectable through wearable sensors. Most of these studies used sensor data
from consumer devices, with biometrics typically summarized as a single
data point per day. The majority used wrist- or ring-wearable data, evalu-
ating changes post-vaccine in heart rate12,13,15–17, respiratory rate13,15, per-
ipheral temperature13, HRV13,15–17, sleep12,15, and activity12. One additional
study used a multiparametric sensor patch that in addition to the above
parameters also included oxygen saturation, blood pressure, cardiac output
and systemic vascular resistance14. Our study adds to this prior work in
several ways. First, we used a medical-grade patch sensor that provided
high-fidelity, beat-to-beat data that were processed to produce 17 source
signals at a one-minute sampling rate. These continuous data enabled a
person’s unique physiologic characteristics, and how they vary over time
and during different activities, to be precisely defined. Our analytics
incorporated all data streams and their simultaneous interactions using a
machine learning method of similarity-based modeling to create a ‘digital
twin’ of each participant39. This allowed us to continuously compare
monitored physiological signals with each participant’s baseline model of
their unique dynamic physiologic patterns, which effectively removed

expected activity-related, circadian and other personalized variations and
left only vaccine-induced differences.

As of August 2024, approximately 5.63 billion people (~71% of the
world’s population) have received a vaccine against COVID-1940. The
overwhelming majority of these people received the same dose, or series of
doses, depending on the vaccine type, and unrelated to their individual
underlying immune state. This is despite the fact that a host of personal
characteristics influence the immune response to vaccination including age
and sex41, race42, genetic and epigenetic factors43,44, gut microbiome45, sleep
before, and time of day of vaccination46, previous immune system
exposures47, and much more known and unknown48. The inability to
objectively measure a person’s physical response to vaccination is a major
unmet need. Recent multi-omics and high-level transcriptional profiling
studies in hundreds of individuals before and after vaccination have con-
firmed the complexity and broad heterogeneity in immune response to
vaccination44,49. This complexity in individual response was confirmed in a
study involving 820 adults receiving one of 13 different vaccines as nearly
two-thirds of the transcriptome variance was unexplained by identifiable
clinical or vaccine characteristics 49.

Recognizing that a person didn’t experience the expected reponse after
a vaccine could potentially influence the timing or frequency of a booster
dose. This might be especially important as personalized cancer vaccines
continue to be developed50. Following further validation, the personalized
digital biomarker described here could enable a method for objectively
tracking an individual’s physical manifestations of their inflammatory
response to vaccination, which could help guide vaccine development and
eventually, potentially help guide individualized dosing regimens.

As we are detecting physiologic changes in an individual relative to
their pre-vaccine normal, it is possible that systemic changes beyond those
associated with vaccine-induced inflammation, such as vaccine-induced
anxiety, can also contribute to MCIR. Future work that can disambiguate
these conflicting contributors will be important.While there are advantages
to the real-world study design in terms of eventual implementation, there
are also multiple limitations. The largest limitation, especially for the
developmentof abiomarkerdesigned to identify thephysicalmanifestations
of vaccine-induced inflammation, is the lack of serum biomarkers to con-
firm that the physiologic changes detected post-vaccination are due solely to
inflammatory changes.Another limitation is that our analysis is restricted to
a patch sensor data. While the ECG provides higher quality heart rate data
and its derivatives than do wrist- or ring-based photoplethysmography-
based sensors, we are unable to determine if the greater data availability
improves the clinical value in terms of quantifying reactogenicity or pre-
dicting immunogenicity. Although no participant documented that they
took an anti-inflammatory agent in post-vaccine period, it is possible that

Fig. 5 | Relationship between an individual’s area under the curve (AUC) for the
multivariate change index of reactogenicity (MCIR) and their immunogenicity.
aAUCMCIR total response versus change from baseline of Anti-SARS-CoV-2 anti-
spike protein IgG titer in 19 participants following a 2nd or 3rd mRNA vaccine dose.
The individual designated by the star had a lower titer at day 14 than at baseline.

b AUC MCIR total response versus change from baseline of frequency of
interleukin-21 (IL-21+) expressing CD4+ cells and (c) MCIR AUC total response
versus change frombaseline of frequency of interferon-gamma (IFN-γ+) expressing
CD8+ cells in 17 participants14 days following 2nd or 3rd mRNA vaccine dose.

Fig. 4 | Distribution of individuals’ Area Under the Curve (AUC) for the mul-
tivariate change index of reactogenicity (MCIR) level and their own self-reported
reactogenicity. Data from 89 doses with reported symptoms classified by whether
they were associated with the participant reporting systemic symptoms (n = 70) or
just local or no symptoms (n = 19). KS = two-sample Kolmogorov–Smirnov
goodness-of-fit hypothesis test.
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some did, andwewere unable to account for their effects. Another potential
limitation is that we were limited to analyzing vaccine-induced cellular
immunity changes in only 2 T-cell subpopulations—CD4+ /IL-21+ and
CD8+ /IFNγ. Finally, the inverse relationship between MCIR-detected
reaction and interferon-gamma expressingCD8+ cells is difficult to explain
physiologically, which might suggest it is a chance finding.

There is an unmet need for a noninvasive method to objectively
measure the totality of reactogenicity. In this work, we describe the devel-
opment of a personalized digital biomarker for vaccine-induced reacto-
genicity by combining medical-grade wearable sensor data and machine
learning-enabled digital twin technology in the setting of real-world vacci-
nation against COVID-19. We found that our digital biomarker, MCIR,
correlated with subjective reactogenicity better than any single physiologic
parameter and, in a small substudy, with immunogenicity. If confirmed in
further studies, a personalized digital biomarker for reactogenicity could
play an important role in improving vaccine safety and efficacy.

Data availability
Data used to develop the Figures is available in the provided Supplementary
Data files 1 through 5. Requests for de-identified summary data from this
study can be made by submitting a written request with an analysis plan to
the corresponding author for review. Only de-identified individual-level
data may be shared to protect participant privacy, and contingent on IRB
approval.

Code availability
Machine learning algorithms and the Prolaio platform are proprietary, and
FDA cleared. The Prolaio platform, including the MCIR and other bio-
marker algorithms, can be accessed through partnership with Prolaio, Inc.
Researchers interested in collaboration should contact the corresponding
author for further information.
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