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Abstract

Background Drug development and disease prevention of heart failure (HF) and atrial
fibrillation (AF) are impeded by a lack of robust early-stage surrogates. We determined to
what extent cardiac magnetic resonance (CMR) measurements act as surrogates for the
development of HF or AF.
Methods Genetic data were sourced on the association with 21 atrial and ventricular CMR
measurements. Mendelian randomization was used to determine CMR associations with
AF, HF, non-ischaemic cardiomyopathy (NICM), and dilated cardiomyopathy (DCM), noting
that the definition of NICM includes DCM as a subset. Additionally, for the CMR surrogates
of AF andHF, we explored their association with non-cardiac traits potentially influenced by
cardiac disease liability.
Results In total we find that 7 CMR measures (biventricular ejection fraction (EF) and end-
systolic volume (ESV), as well as LV systolic volume (SV), end-diastolic volume (EDV), and
mass to volume ratio (MVR)) associate with the development of HF, 5 with the development
of NICM (biventricular EDV andESV, LV-EF), 7withDCM (biventricular EF, ESV, EDV, and LV
end-diastolic mass (EDM), and 3 associate with AF (LV-ESV, RV-EF, RV-ESV). Higher EF of
both ventricles associate with lower risk of HF and DCM, with biventricular ESV associating
with all four cardiacoutcomes.Higher valuesof biventricular EDVassociatewith lower riskof
HF, and DCM. Exploring the associations of these CMR cardiac disease surrogates with
non-cardiac traits confirms a strong link with diastolic blood pressure, as well as more
specific associations with lung function (LV-ESV), HbA1c (LV-EDM), and type 2 diabetes
(LV-SV).
Conclusions Thecurrent paper identifies keyCMRmeasurements thatmay act as surrogate
endpoints for the development of HF (including NICM and DCM) or AF.

Heart failure (HF) and atrial fibrillation (AF) aremajor cardiac diseases that
cause a considerable burden in termsof healthandeconomic costs, aswell as
mortality1–3. HF is a clinical diagnosis secondary to dysfunction of the right
ventricle (RV) or left ventricle (LV), while AF is defined by uncoordinated
electrical activation and consequently ineffective contraction of the atria.
Both diseases are intricately related, and while the causative relationship

between the two conditions has not been fully determined, it is clear these
two diseases frequently co-occur4.

Despite recent advances in medicines, for example, offered by sodium-
glucose co-transporter-2 inhibitors, drug development for cardiac disease
suffers fromhigh failure rates, often occurring during costly late-stage clinical
testing5–7. Unlike the cholesterol content on low-density lipoprotein particles
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Plain language summary

Heart failure and irregular heart rhythms are
common and serious heart conditions.
Finding early warning signs could help
prevent these diseases or enable the
development of better treatments. This study
looked at heart measurements taken using
heart scans to seewhether these could act as
early indicators of future heart problems.
Using information about the genes people
had inherited, we investigated whether
changes in heart size or function are linked to
a person’s risk of developing heart disease.
We found several measurements that are
strongly linked to later heart failure or irregular
heart rhythms. These findings suggest that
heart-based measurements could help iden-
tify people at higher risk of heart problems
earlier. In the future, this might help guide
treatment decisions or identify new ways to
prevent heart disease.
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for coronary heart disease, drug development for AF andHF is impeded by a
lack of robust early-stage surrogates (or intermediates) for cardiac disease.

Cardiac magnetic resonance (CMR) imaging is the gold standard for
the quantification of atrial and ventricular function and morphology and
has become an integral diagnostic modality for cardiac diseases. It is,
however, unclear to what extent CMR measurements act as surrogates for
the development of cardiac disease in otherwise healthy individuals.

Both HF and AF are associated with multimorbidity, including non-
cardiac diseases, such as stroke, chronic kidney disease (CKD), diabetes
mellitus (T2DM), and neurological diseases, such as Alzheimer’s disease
(AD). BecauseHF andAF are clinicalmanifestations of underlying changes
in cardiac function and structure, patients with similar diagnoses may vary
considerably in underlying pathophysiology and disease progression.
Unlike HF or AF diagnoses, CMR measurements directly reflect cardiac
physiology and therefore, provide an opportunity to explore the effects
changes in cardiac function and structure may elicit in other organs.

Recently, CMR measurements of thousands of subjects have been
linked to genetic data and analysed through genome-wide association stu-
dies (GWAS). Aggregate data from GWAS, consisting of variant-specific
point estimates and standard errors, can be used in Mendelian randomi-
zation analyses to ascertain the causal effects a CMR trait may have on
disease. In the current manuscript, we leveraged data from two recent
GWAS of CMR measurements of cardiac structure and function8, and left
atrial (LA) volume9, jointly consisting of 21 measurements conducted in
over 35,000 UK biobank (UKB) participants. These data were used to
conduct Mendelian randomization analyses to determine the potential
association betweenCMR traits and cardiac events, specifically focussing on
AF andHF, as well as the aetiological HF subtypes: dilated cardiomyopathy
(DCM) and non-ischaemic cardiomyopathy (NICM)10,11. Subsequently, we
explored the association of CMR surrogates for HF or AF with 19 clinically
relevant non-cardiac traits, focussing on traits potentially influenced by
cardiac disease liability, such as blood pressure, kidney and lung function
markers, diabetes, and stroke subtypes. In this study,we identify sevenCMR
measures associatedwith thedevelopmentofHF, sevenwithDCM,fivewith
the development ofNICM, and threewithAF.Moreover, wefind thatmany
of these CMR measures are associated with diastolic blood pressure, while
specific individual measures also relate to lung function and glucose
metabolism.

Methods
Genetic data on CMR and cardiac traits
We leveraged aggregate data (i.e. point estimates and standard errors) from
two GWAS of deep-learning derived CMRmeasurements conducted using
UKB participants; please see the Supplementary Methods and the specific
study references for details on the derivation methods. Ahlberg et al.9 pro-
vided measurements on LA volume (LA-V (max) and LA-V (min)), LA
total emptying fraction (LA-TF), LA active emptying fraction (LA-AF), and
passive emptying fraction (LA-PF) from 35,658 subjects. Schmidt et al.8

provided (n: 36,548) data on biventricular ejection fraction (EF), stroke
volume (SV), peak filling rate (PFR), peak atrial filling rate (PAFR) peak
ejection rate (PER), end-diastolic or end-systolic volumes (EDV, ESV), LV
end-diastolic mass (LV-EDM), and LV mass to volume ratio (LV-MVR).
The deep-learning algorithms employed for automated CMR analyses
included outlier detection steps and removing CMRs from the minority of
subjects who were, for example, out of sinus rhythm.

GWAS data were included on the following cardiac outcomes: HF
(52,496 cases)12, NICM (1816 cases)13, DCM (2719 cases)14, and AF (60,620
cases)15. Here, NICM andDCMwere sourced from distinct samples, where
the phenotypic overlap betweenDCMandNICM(withDCMbeing amore
homogenous subgroup of NICM) allowed for indirectly replication of our
findings. The following 19 traits were used in the non-cardiac phenome-
wide scan: five stroke subtypes16, venous thromboembolism (VTE)17,
abdominal aortic aneurysm (AAA)17, systolic/diastolic bloodpressure (SBP/
DBP)18, bodymass index (BMI)19, T2DM20, glycated haemoglobin (HbA1c)
from the Neale UKB analysis (http://www.nealelab.is/uk-biobank),

C-reactive protein (CRP)21, lung function measurement from the Neale
UKB analysis (http://www.nealelab.is/uk-biobank, forced expiratory
volume: FEV1, forced vital capacity: FVC, peak expiratory flow: PEF),
CKD22, estimated glomerular filtration rate (eGFR)22, and AD23; please see
the data availability section for more detail. The original GWA studies
sought to prevent bias due to population stratification or cryptic relatedness
by either removing non-European individuals (based on genetic principal
component analysis), related individuals, or accounting for this through
mixed-effects models such as BOLT-LMM.

Mendelian randomization analysis
Genetic instruments were selected from throughout the genome using an
F-statistic > 24 and a minor allele frequency of at least 0.01. Variants were
clumped to a linkage disequilibrium (LD) R-squared threshold of 0.30, with
residual LDmodelled using a generalized least square (GLS) solution24 and a
reference panel from a random sample of 5000 of white British ancestry
UKB participants. By actively modelling the remaining LD structure, the
employed GLS estimators prevent potential bias in the standard error
estimates due to the correlation between variants while at the same time
optimising precision and stability by including additional variants24. To
maximise the number of available variants, we did not perform any addi-
tional distance-based clumping. Steiger filtering25 was employed to remove
variants with a likely direct causal effect on the outcome instead of on the
exposure (i.e., removing variants affecting the outcome before the change in
exposure occurred: variant -> outcome -> exposure), ensuring the
remaining genetic instruments supported an association model where the
exposure occurred before the outcome.

Mendelian randomization was conducted using the GLS imple-
mentation of the inverse-varianceweighted (IVW)estimator, aswell aswith
an Egger correction to protect against horizontal pleiotropy26. To further
minimize the potential influence of horizontal pleiotropy, we excluded
variants with a leverage value of more than 3 times the mean or an outlier
Chi-square statistic above 11, with the Q-statistic identifying possible
remaining violations27. Noting the lack of power of the Egger intercept test,
we instead report the p-value of the Q-test27. The Rucker model selection
framework was applied to select the most appropriate estimator (IVW or
MR-Egger) for each individual exposure-outcome relation27,28. To ensure a
sufficient number of variants were available to accurately explore possible
horizontal pleiotropy effects, we droppedCMRmeasurementwith less than
5 variants. The influence of the horizontal pleiotropy assumption was
additionally evaluatedusing theweightedmedian estimator, which assumes
at least 50% of the information is derived from valid instruments. Impor-
tantly, other than assuming at least 50% of the variants are valid instru-
ments, themedian estimator does notmake any specific assumptions on the
type of horizontal pleiotropy affecting the invalid genetic instruments. The
weighted median estimator, therefore, provides a middle ground between
the IVW estimator (which assumes the complete absence of horizontal
pleiotropy) and the MR-Egger estimator (which allows for 100% of the
variants acting through a horizontal pleiotropy pathway)29,30. Given that the
Median estimator does not allow for the inclusion of correlated variants, the
genetic instruments used in this analysis were pruned to an
R-squared of 0.05.

Previous Mendelian randomisation studies have often applied a p-
value threshold of 5 × 10-8 (approximately equal to an F-statistic of 30) to
identify instruments with a sufficiently strong exposure association. While
this conservative threshold does protect against weak-instrument bias,
applying a lower F-statistic threshold may beneficially increase the number
of available variants and thereby decrease the type 2 error rate. We ensured
the presented results remained sufficiently protected against the potential
influence of weak-instrument bias by applying a reasonably high F-statistic
threshold and by prioritising outcome GWAS with limited overlap with
UKB data used by the CMR studies31. Nevertheless, the following outcomes
were basedonGWASwhere over 50%of theparticipantswere sourced from
the UKB: AF, NICM, SBP&DBP, BMI, HbA1c, lung functionmetrics. It is
therefore important to note that in large sample size settings (where the
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estimated F-statistic converges to the true F-statistic) the multiplicative
inverse of the estimated F-statistic approximates the amount of bias in one-
sample settings (with complete sample overlap), in our cases this implies the
average amount of potential bias with complete sample overlap is
about 4%31.

Where appropriate, results were presented as odds ratio (OR, for
binary traits) with 95% confidence interval (95%CI) or mean difference
(MD, for continuous traits). Given the close interrelationship betweenCMR
traits themselves, as well as between the considered cardiac traits (e.g., with
HF, DCM, and NCIM reflecting closely related diseases) we sought to
identify the subset of CMR traits with strong support for cardiac involve-
ment. Importantly, because of the aforementioned phenotypic inter-
relationship, associations with multiple cardiac traits should be viewed as
supportive rather than penalised. We, therefore, applied a two-stage
approach to address multiple testing. First, individual associations with
cardiac outcomeswere declared significant using the standard alpha of 0.05.
Next, following Storey32, multiplicity was addressed by using Kolmogorov-
Smirnov “KS”-tests to de-prioritise CMR traits for which the p-value dis-
tribution followed a uniform distribution indicative of an overall null-
association. Focussing on the CMR traits that were rejected by the KS-tests
we conducted a targeted phenome-wide scan to explore their potential
association with the aforementioned non-cardiac traits, applying a multi-
plicity corrected alpha of 2.63 × 10-4 (correcting for the 10 remaining CMR
traits and 19 exposure).

As outlined in the supplementarymethods, we additionally investigate
the extent to which increased HF liability is associated with a rise in drug
prescriptions33, which might act as mediators.

Institutional review board approval
Aside from the UKB LD reference data, the current study exclusively uses
summary-level GWAS statistics, with download URLs provided in the data
availability section. For all included GWA studies, all participants provided
informed consent, and study protocols were approved by their respective
local ethical committee. The UK Biobank has ethical approval from the
North West Multi-centre Research Ethics Committee to handle human
participant data. Written informed consent was obtained from all partici-
pants, and all data was deidentified for analysis. This research has been
conducted using the UK Biobank Resource under Application Number
12113. Given that the current study uses aggregate GWAS data, we did not
seek further ethical approval.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Biventricular andatrialCMRassociationswithcardiacoutcomes
We employed Mendelian randomization to determine the potential asso-
ciationbetweenCMRtraits and the liability ofAF,HF,DCM, and/orNICM.
Due to the limited number of available variants (fewer than 5), the following
CMR parameters were excluded from the analysis: LA-PF and LA-TF,
biventricular PAFR and PFR, as well as LV-PER.

Prioritising the initialRuckerbasedMRanalysis (SupplementaryFigs. 1,
2, Data 1) on results which passedmultiplicity filtering (Fig. 1), we identified
10 CMR traits which were associated (multiple) cardiac outcomes: biven-
tricular EF, ESV, EDV, LV-SV, LV-EDM, LV-MVR, LA -V (min). We
subsequently compared theseRucker-basedpoint estimates to thoseobtained
using theweightedmedian estimator (whichassumeshorizontal pleiotropy is
absent in at least 50% of the used genetic variants), which showed strong
agreement: Spearman’s correlation of 0.86 (p-value 1.10 × 10-11); Figs. 2,
3, Data 2.

Focussing on the subset of estimates with a constant association
across the considered MR estimators, we found that increased biven-
tricular EF associated with lower risk of HF and DCM, with LV-EF
additionally associated with lower risk of NICM. Similar biventricular

associations were observed for EDV (lower risk of NICM, DCM), and
ESV (higher risk of AF, HF, DCM, NICM). Additionally, higher LV-
EDM was associated with higher DCM risk (OR 3.93, 95%CI 1.43;
10.83), and higher LV-SV was associated with higher HF risk (OR 1.33,
95%CI 1.06; 1.67). Contrary to the Rucker MR analysis, in the MR-
median analysis, LA-V (min) did not associate with cardiac disease;
Figs. 1–3.

Associations of CMR-derived indices of cardiac function and
structure with non-cardiac traits
Focusing on the same 10CMRmeasurements, we next exploredwhether
changes in cardiac function and structure could be associated with non-
cardiac traits. We note that the correlation between the Rucker-based
point estimates and weighted median-based estimates was lower for

Fig. 1 | Kolmogorov-Smirnov test results, and CMR association counts with
cardiac and non-cardiac traits. Nota bene: the bar chart in (a) represent the -log10
(p-value) of Kolmogorov-Smirnov test results, were a significant p-value indicates
the associations are unlikely driven bymultiple testing. The horizontal line indicates
the significance threshold of 0.05/14 – representing the 14 CMR traits with at least
five available variants in the cardiac outcome analysis. The bar chart (b) represents
the counts of significant Mendelian randomization CMR effects grouped by
chamber. These counts disregard CMRs which did not pass the Kolmogorov-
Smirnov test for multiplicity, and are based on the weighted median results. The bar
chart in (c) represents the counts of significant Mendelian randomization CMR
effects on the considered phenome-wide traits. Results are based on theCMRswhich
passed Kolmogrov-Smirnov test for multiplicity, with the Rucker selected (IVW/
Egger) results depicted as the wider yellow bars, and the thinner red bars repre-
senting the weightedmedian results. The following abbreviations were used, LV left-
ventricle, RV right-ventricle, RA right-atrial, LA right-atrial, HCM hypertrophic
cardiomyopathy, DCM dilated cardiomyopathy, AF atrial fibrillation, T2DM type 2
diabetes, CKD chronic kidney disease, VTE venous thromboembolism, AAA
abdominal aortic aneurysm, SBP/DBP systolic/diastolic blood pressure, BMI body
mass index, CRP c-reactive protein, FVC forced vital capacity, FEV1 forced
expiratory volume, PEF peak expiratory flow, eGFR: estimated glomerular filtration
rate, HbA1c glycated haemoglobin, CE cardioembolic, LA large artery, IS ischaemic,
SV small vessel, AD Alzheimer’s disease. See Data 1–4 for the underlying data.
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non-cardiac trait associations: 0.54 (p-value 2.06 × 10-14), suggesting
the specific horizontal pleiotropy assumption was more influential.
In line with this the weighted median-based estimator identified sub-
stantially fewer significant associations with non-cardiac traits
(Figs. 1 and 4, Data 3, 4, Supplementary Fig. 3, 4). Focussing on the-
subset of non-cardiac traits with concordant results between
estimators identified five CMR traits which were strongly
associated with a decrease in DPB (LV-EF, LV-SV, LV-EDV, RV-EDV,
and LV-EDM), as well as single CMR traits associating with FEV1,
HbA1c, and T2DM.

Comparison to HF and AF associations with non-cardiac traits
Next, as comparison, we leveraged genetic instruments associated with a
clinical diagnosis of HF or AF and performedMendelian randomization to
determine the association an increased liability of HF or AF had on non-
cardiac traits (Fig. 4, Supplementary Fig. 4, Data 5, 6). An increased HF
liability was strongly associated with the development of (any/ischaemic)
stroke, as well as an increased blood pressure, increased risk of CKD, and
T2DM. AF liability was strongly associated with the development of car-
dioembolic stroke. Please refer to the supplementary methods and Sup-
plementary Table 1 for additional analyses exploring potential associations
between HF liability and drug prescription.

Discussion
In the currentmanuscript,weemployedMendelian randomizationcombined
with CMRmeasurements to identify surrogate outcomes for the onset of HF
(52,496 cases) and AF (60,620 cases). We showed that biventricular EF was
associated with the development of HF and DCM, with RV-EF additionally
associating with AF. Biventricular ESV was associated with the development
of all four cardiac outcomes, with biventricular EDV associating with DCM
and NICM, and LV-EDV additionally with HF, and LV-EDM associating
with the onset ofDCM. Importantly, we observed strong consistency in terms
of effect direction and magnitude across HF, DCM and NICM, which
represent strongly related cardiac events. We found that the development of
HF orAF reflects a combination of changes in cardiac function and structure.

In total, we identified7CMRmeasures (biventricular EF andESV, LV-
SV, LV-EDV, LV-MVR) associated with the development of HF, 5 with
development of NICM (biventricular EDV and ESV, LV-EF), 7 with DCM

Fig. 2 | Weighted median Mendelian randomization estimates of biventricular
CMRassociationswith the onset of heart failure and atrialfibrillation.Nota bene:
point estimates reflect odds ratios (OR) with 95% confidence intervals presented as
horizontal line segments. CMR measurements that passed the Kolmogorov-
Smirnov test for multiplicity are indicated with a star. LV left-ventricle, RV right-
ventricle, EF ejection fraction, SV stroke volume, PFR peak filling rate, PER peak
ejection rate, EDV/ESV diastolic or systolic volumes, EDM end diastolic mass,MVR
mass to volume ratio. Outcome data were available on HF (heart failure, 52,496
cases), DCM (dilated cardiomyopathy, 2719 cases), NICM (non-ischaemic cardio-
myopathy, 1816 cases), and AF (atrial fibrillation, 60,620 cases). See Data 1 and 2 for
the underlying data.

Fig. 3 | Weighted median Mendelian randomization estimates of atrial CMR
associationswith the onset of heart failure and atrialfibrillation.Nota bene: point
estimates reflect odds ratios (OR) with 95% confidence intervals presented as hor-
izontal line segments. CMR measurements that passed the Kolmogorov-Smirnov
test for multiplicity are indicated with a star. LA left-atrial, V (max) maximum
volume, V (min) minimum volume, AF active emptying fraction, PF passive emp-
tying fraction, PFR peak filling rate. Outcome data were available on HF (heart
failure, 52,496 cases), DCM (dilated cardiomyopathy, 2719 cases), NICM (non-
ischaemic cardiomyopathy, 1816 cases), and AF (atrial fibrillation, 60,620 cases).
See Data 2 for the underlying data. See Data 1 and 2 for the underlying data.
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(biventricular EF, ESV, EDV, LV-EDM), and 3 with AF (LV-ESV, RV-EF,
RV-ESV). This implies that CMRmeasurements may be useful to monitor
disease occurrence in subjects without pre-existing cardiac disease and help
identify high-risk patients in need of preventative measures. Additionally,
our findings suggest that CMR measurement might be used as surrogate
endpoints in early clinical studies, which can assist in prioritizing com-
pounds for confirmatory outcome trials.

We explored the phenotypic effects that changes in cardiac function
and structure may have on non-cardiac traits (Figs. 1 and 4), finding strong
support for an associationwith diastolic blood pressure. Despite amoderate
correlation between the Rucker-basedMR results and the weightedmedian
results (correlation of 0.54), there was substantial disagreement between the
amount of significant findings. whereas the Rucker-based method sup-
ported more prolific associations between CMR measurements and a sub-
stantial number of non-cardiac traits. The disagreement in terms of
significant findings suggests that the CMR associations with non-cardiac
traits are at least partially influenced byhorizontal pleiotropy. Themoderate
correlation between point estimates does however, suggest that some of the
difference in significance might be due to the lower power of the median

estimator29. By discounting discordant results, we identified the subset of
effect estimates that are relatively robust to the specific horizontal pleiotropy
assumption and are, therefore, less likely to be affected by this type of bias.

We compared the CMR associations with non-cardiac traits to the
associations of HF/AF liability with these same non-cardiac traits, sug-
gesting that the associations of CMR traits and HF/AF liability are distinct.
For example, a higher liability of HF was associated with a higher risk of
(ischaemic) stroke, diabetes, and kidney disease, while a higher AF liability
was associated with a higher cardioembolic stroke risk. While diabetes is a
known risk factor for HF, we found that an increased HF liability was
associated with an increased risk of diabetes. Rather than reflecting a direct
effect of HF, we hypothesize that this association may reflect a mediation
pathway where an increased HF liability is associated with an increased
prescription rate of diabetes associated medicines34,35. To show this, we
conducted an MR analysis of HF liability and its association with drug
prescriptions using a GWAS fromWu et al.33, confirming that an increased
risk of HF is associated with cardiovascular drug prescriptions affecting
diabetes risk such as statins/HMGCR inhibitors; Supplementary Table 1.

The study has a number of limitations that deserve consideration. First,
while we sourced genetic associations with CMRmeasurements taken from
subjectswithoutpre-existing cardiac conditions, a proportionof subjectsmay
have had undiagnosed diseases. The UKB, however, represents a relatively
healthy subset of the UK population, likely minimizing the number of
individuals with latent disease. The potential influence of this is further
limited by employing a two-sample MR design, where the exposure and
outcome GWAS are sourced from (partially) non-overlapping samples with
distinct disease patterns. This two-sample design further ensures that any
potential weak-instrument bias acts towards a null effect. We do emphasise
that a subsetofGWASusedas a sourceofoutcomedatadid includeUKBdata
(Supplemental Table 2), which may have slightly increased anticipated bias
proportional to the sample overlap (or overlap in cases for binary outcomes).
For example31, with 100% sample overlap, our employed F-statistic (used to
select instruments) would result in a small amount of bias 1/24≈ 0.04, with a
sample overlapof 30% thiswould be0.04×0.3≈ 0.01, and zero in the absence
of sample overlap. As such, by combining large sample size GWAS data with
limited sampleoverlap and relatively strong instruments thepresented results
are protected against potential weak-instrument bias. Second, our choice of
CMR measurement was limited by the publicly available data, for example
preventing us from exploring the association between the ratio of measure
(such as PEF/EDV or PFR/EDV) not available in the original GWAS. Third,
whileMendelian randomization is robust against bias due to reverse causality
and confounding, it critically assumes the absence of horizontal pleiotropy,
where the genetic variant only affects the outcome through its association
with theCMRmeasurement. In the current analysis,weperformedautomatic
model selection todecide between an IVWormore robustMR-eggermodels,
removed potentially pleiotropic variants through the identification and
removal of outliers and high-leverage points, and prioritised results with a
significant anddirectionally consistent effect using theMedianMRestimator.
Fourth, the conductedMendelian randomization analyses implicitly assess a
linear trend between CMR and outcome. In the presence of nonlinearity, the
presented Mendelian randomization estimates represent a population aver-
age effect, whichmay not necessarily apply to any single individual but often
offers a reasonable approximation. While non-linear Mendelian randomi-
zation methods have been developed36,37, these require access to individual
participant data, which, even for UKB-sized data, only offers a fraction of the
disease caseswehavebeen able to leveragehere. Finally, due to the cumulative
nature of GWAS, where results from previous studies are typically meta-
analysed in subsequent studies, there was insufficient independent data to
replicate our findings. Potentially, the growing number of non-European
GWAS will provide avenues for cross-ancestry replication.

In conclusion, we have identified biventricular CMRmeasurements that
mayact as surrogateendpoints for futurecardiacevents, includingheart failure,
cardiomyopathies, and atrial fibrillation.We additionally show that changes in
cardiac function and structure affect blood pressure, as well as identifying
potential associations with lung function and glucose homoeostasis.

Fig. 4 | A targeted phenome-wide scan comparing the effect of changes in cardiac
function and structure to those of a heart failure or atrial fibrillation diagnosis.
Nota bene: p-values passing the 0.05 threshold are indicated by an open diamond,
with stars indicating results passing a threshold of 2.6 × 10−4. Cells were coloured by
effect direction times -log10(p-value); where p-values were truncated at 8 for display
purposes. CMR traits were selected based on the Kolmogorov-Smirnov test for
multiplicity, with effects estimated using the weighted median estimator. The fol-
lowing abbreviationswere used, LV left-ventricle, RV right-ventricle, LA right-atrial,
EF ejection fraction, SV stroke volume, EDV/ESV diastolic or systolic volumes,
EDMenddiastolicmass,MVRmass to volume ratioV (max):maximumvolume, AF
atrial fibrillation, T2DM type 2 diabetes, CKD chronic kidney disease, VTE venous
thromboembolism, AAA abdominal aortic aneurysm, SBP/DBP systolic/diastolic
blood pressure, BMI: body mass index, CRP c-reactive protein, FVC forced vital
capacity, FEV1 forced expiratory volume, PEF peak expiratory flow, eGFR estimated
glomerular filtration rate,HbA1c glycated haemoglobin, CE cardioembolic, LA large
artery, IS: ischaemic, SV small vessel, AD Alzheimer’s disease. See Data 3–6 for the
underlying data.
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Data availability
The sourcedata for Fig. 1 is available asData 1-4, the sourcedata for Figs. 2, 3
is available asData 1-2, the source data for Fig. 4 is available asData 2-6. The
individual variants and their trait associations have been included as Sup-
plementary Data 7. The UKB data can be requested from www.ukbiobank.
ac.uk, conditional on an approved project. Most of the GWAS data are
publicly available from the following download links: for the CMR asso-
ciations from Ahlberg et al. (https://zenodo.org/records/5074929) and
Schmidt et al. (https://www.ebi.ac.uk/gwas/publications/37126556), for HF
(http://results.globalbiobankmeta.org/), for NICM (https://cvd.hugeamp.
org/), for AF, for stroke (subtypes) from GIGASTROKE (https://www.ebi.
ac.uk/gwas/publications/36180795), venous thromboembolism and
abdominal aortic aneurysm from (https://www.globalbiobankmeta.org/),
blood pressure from Evangelou et.al. (https://www.nature.com/articles/
s41588-018-0205-x), glycemic traits, and lung function measurement were
sourced from (http://www.nealelab.is/uk-biobank); type 2 diabetes from
DIAGRAM; BMI from GIANT; CRP from (https://www.ebi.ac.uk/gwas/
publications/30388399); the CKDGen consortium provided GWAS asso-
ciations on estimated glomerular filtration rate, and chronic kidney disease
(http://ckdgen.imbi.uni-freiburg.de/); Alzheimer’s disease data were
sourced from Jansen et.al. (https://ctg.cncr.nl/software/summary_
statistics), and drug prescriptions from (https://www.ebi.ac.uk/gwas/
publications/31015401) Finally, the aggregate GWAS results for DCM
can be requested from the GWAS corresponding authors.

Code availability
Analyses were conducted using Python v3.7.10 (for GNU Linux), Pandas
v1.3.5, Numpy v1.20.3, and Matplotlib 3.3.2. Scripts and data necessary to
generate the illustrations have been deposited: 10.5522/04/2863919338.
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