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Abstract

Background The task of identifying patient subgroups with enhanced treatment responses
is important for clinical drug development. However, existing deep learning-based
approaches often struggle to provide clear biological insights. This study aims to develop a
deep learning method that not only captures treatment effect differences among individuals
but also helps uncover meaningful biological markers associated with those differences.
Methods We introduce DeepRAB, a deep learning-based framework designed for exploring
treatment effect heterogeneity by constructing individualized treatment rule (ITR). In
addition, DeepRAB enables model interpretability by facilitating predictive biomarker
identification. We evaluate its performance using simulated datasets that vary in complexity,
treatment effect strength, and sample size. We also apply the method to the adalimumab
(Humira, AbbVie) hidradenitis suppurativa (HS) clinical trial data, analyzing patient
characteristics and treatment outcomes.

Results In analyses of simulated data under various scenarios, our findings show the
effective performance of DeepRAB for subgroup exploration, and its capability to uncover
predictive biomarkers when compared to existing approaches. When applied to the real
clinical trial data, DeepRAB demonstrates its practical usage in identifying important
predictive biomarkers and boosting model prediction performance.

Conclusions Our research provides a promising approach for subgroup identification and
predictive biomarker discovery by leveraging deep learning. This approach may support
more targeted treatment strategies in clinical research and enhance decision-making in
personalized medicine.

Plain language summary

In order to improve healthcare, matching
patients to effective treatment plans is
needed. This study aims to find better ways to
identify groups of patients who respond well
to certain treatments. We develop a new
method called DeepRAB, which uses artificial
intelligence to find these patient groups and
identify important biomarkers that can predict
treatment response. We test DeepRAB using
simulated data and real patient data from a
clinical trial studying a skin condition called
hidradenitis suppurativa. The results show
that DeepRAB is successful in identifying
meaningful patient groupings and performs
better than existing methods. This new
approach has the potential to help doctors
choose the best treatment options for
individual patients, making healthcare more
personalized and effective.

Hidradenitis suppurativa (HS) is a debilitating, chronic systemic skin con-
dition known for its severe and prolonged symptoms'~. AbbVie Pioneer I &
Pioneer 11 trials’ demonstrate significant treatment difference in achieving
Hidradenitis Suppurativa Clinical Response (HiSCR)’ at 12 weeks
(P-value =0.003 and P-value < 0.001 for Pioneer I and Pioneer II, respec-
tively.) in HS patients treated with Humira for 12 weeks. In 2015, the
European Medicines Agency granted approval for the use of adalimumab
(Humira, AbbVie) to treat active moderate to severe HS in adults who had
not responded to conventional therapies. There is a long-term treatment
strategy included in the European Medicines Agency Summary of Produce
Characteristics for Humira, which provides patients the opportunity to
benefit from extended treatment beyond 12 weeks. This strategic extension
is underpinned by successful identification of specific biomarkers associated

with the heterogenous treatment effect of Humira that leads to successful
subgroup identification”. In precision medicine, these biomarkers asso-
ciated with treatment effect heterogeneity are often referred to as predictive
biomarkers. For pharmaceutical development, the exploration and inter-
pretation of predictive biomarkers is one of the most intriguing scientific
questions. With respect to statistical modeling, the exploration and inter-
pretation of predictive biomarker is closely connected with the causal
inference due to its targeted association with treatment effects®. The fun-
damental challenge of causal inference lies in the unobservable nature of
counterfactuals (the clinical outcome of a patient if he/she receives an
alternative treatment). Therefore, there is an urgent need to develop
methods that combine traditional machine learning and causal inference
frameworks for predictive biomarker identification and individualized
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treatment rule (ITR) exploration. Various existing methods have been
proposed for this topic, including Meta-learning’, Q learning”'' and
D-learning". Although these frameworks have been applied across various
machine learning models for predictive biomarker identification, the
exploration of Deep Neural Networks (DNNGs) for this purpose is still in its
early stages.

DNNs has shown success in handling complex biomarker-treatment
response relationship, as well as in addressing diverse biomedical tasks,
including genomics", genome-wide association studies'* and promoters".
Meanwhile, some DNN-based causal inference methods aim to predict
outcomes across multiple treatments and dosages'®, yet they do not expli-
citly frame ITRs nor do they focus on biomarker selection. While DNNs
have been employed in exploring ITR", this method often take an indirect
approach by being pre-trained on existing models. This limitation hampers
their ability to directly evaluate predictive biomarkers. Other studies have
explored DNN-based techniques for feature selection, such as Concrete
Autoencoder (CAE)"*. However, it should be noted that these methods can
only be extended to the identification of prognostic biomarkers due to their
specific focus on the relationship between covariates and disease outcomes
instead of the relationship between individual treatment effects. Hence, the
need for a DNN model to streamline predictive biomarker selection is
pressing.

To tackle the aforementioned challenges, we introduce a DNN archi-
tecture called deep learning-based ranking method for subgroup and pre-
dictive biomarkers identification (DeepRAB). By utilizing the DNN’s
capacity to approximate any continuous mappings, DeepRAB can poten-
tially model complex biomarker—causal effect relationships (e.g., linear,
non-linear, multi-level interactions, etc.). Furthermore, our approach
integrates the A-learning technique into the loss function'’”’, allowing for
the direct estimation of ITRs. Unlike the non-transparent DNN models, our
approach employs CAE techniques to select predictive biomarkers,

rendering our model interpretable. Taken together, the DeepRAB proce-
dure offers several distinctive features: (i) it enjoys the DNN properties,
thereby achieving superior performance in capturing complex data repre-
sentations; (ii) it demonstrates resilience even in the presence of weak effect
signals; (iii) it exhibits robustness when detecting interactive treatment
effects; (iv) it can handle both continuous and binary endpoints.

Our methods have been successfully applied to identify HS patient
subgroups that exhibit varying responses to extended Humira treatment
using biomarkers, clinical data, and demographic information. This appli-
cation underscores the potential of DeepRAB in personalizing Humira
treatments for patients. Additionally, we showcase the power of DeepRAB
by demonstrating its superior performance compared to existing methods
using simulated data. Overall, DeepRAB offers important implications not
only for developing HS treatment strategy but also for the broader landscape
of clinical drug development.

Methods

Cohort data set

The analysis population in this study comprised AbbVie PIONEER I
(ClinicalTrials.gov numbers: NCT01468207) and II (ClinicalTrials.gov
numbers: NCT01468233) patients who are re-randomized to either con-
tinuation of adalimumab weekly dosing or withdrawal from adalimumab
(placebo) in period B after initial treatment of adalimumab weekly dosing
for 12 weeks, Fig. 1. The proportion of female participants is 63.8% in
PIONEER I and 67.8% in PIONEER II. The mean (standard deviation) age
of participants is 37.0 (11.1) years in PIONEER I and 35.5 (11.1) years in
PIONEER 1II. A total of 199 patients (99 continued adalimumab weekly
dosing, 100 withdrawn from adalimumab weekly dosing) in period B on the
integrated data from the two studies were included for this analysis. Based
on the study team discussion, clinically relevant candidate biomarkers are
included: % reduction in AN count at week 12, AN count at week 12, AN
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Fig. 1 | Study design for the hidradenitis suppurativa clinical trial and its role in
modeling. In Period A, patients received induction dosing: 160 mgat Week 0, 80 mg
at Week 2, and 40 mg starting at Week 4. Week-12 HiSCR responders entered Period
B and continued treatment through Week 36 or until loss of response (defined as a
>50% decrease in AN count gained between baseline and Week 12). Non-
responders at Week 12 continued through at least Week 26, and up to Week 36. Re-

randomization in Period B for patients initially treated with adalimumab was
stratified by Week-12 HiSCR status and baseline Hurley Stage (II vs. III).

Stratification in PIONEER I and II also considered concomitant antibiotic use.
Patients could enter a multi-center, 60-week open-label extension (OLE) study
following Period B. The design informs the modeling analysis by providing a fra-
mework for identifying treatment benefit subgroups based on response trajectories
and baseline clinical features. HiSCR: Hidradenitis Suppurativa Clinical Response;
AN: abscesses and inflammatory nodules; OLE: open-label extension; HS: hidra-
denitis suppurativa; LOR: loss of response. ew: every week; eow: every other week.
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count at week 0, draining fistula count at week 0, draining fistula count at
week 12, reduction in draining fistula count at week 12, abscess count at
week 0, reduction in abscess count at week 12, Hurley stage at week 0,
smoking status, abscess count at week 12, initial HiSCR responder status at
week 12 and concomitant use of antibiotics.

Ethics approval and informed consent

The two clinical trials included in this study are conducted in accordance
with the International Conference on Harmonisation guidelines, applicable
regulatory requirements, and the principles of the Declaration of Helsinki.
The study protocols (AbbVie protocol number M11-313; EudraCT number
2011-003400-20) are developed collaboratively by the investigators and the
sponsor (AbbVie) and are approved by the independent ethics committee or
institutional review board at each participating site. Written informed
consent is obtained from all participants prior to enrollment, and this
consent included permission for secondary analyses of data collected during
the clinical trials. While the names of the specific review boards and insti-
tutions are not publicly disclosed in full, ethical oversight and site partici-
pation details are documented in the original publication of the trials* and
on file with the study sponsor (AbbVie).

Subgroup identification framework
We denote the observed data by {(Xi, A, Y;),i =1, ..., n} consisting of n
independent patients, where Y, denotes outcome, X; and A; represents
covariate of biomarkers and treatment assignment for ith subjects. We adopt
the Neyman-Rubin potential outcome framework in causal inference’***. In
this framework, only one of the potential outcomes can be observed, that is,
Y, =1(1+A)Y,(1)+3(1 — A) Y,(=1), where Y; (1) and Y; (-1) are the
potential outcomes if the patient i receives a treatment (A; = 1) and a
control (A; = —1), respectively. Let (X, A, Y) denote identically distributed
copies of observed data, the completely unspecified regression model is
formulated as follows:
E(Y|A,X) = Z(X)A + H(X) (1)
where Z(X) =1[E(Y|A=1,X)—E(Y[A=—1,X)] is a contrast
function that reflects treatment effects given X and H(X) =
%[E(YIA =1,X)+ E(Y|A = —1, X)] is a function that reflects the prog-
nostics effect of X. The estimator of Z(X) is our interest in subgroup
identification, as it reflects treatment effect heterogeneity. Our goal is to
estimate the treatment difference Z(X) as the metric for summarizing ITRs
without the need to estimate H(-), then biomarker importance can be
assessed based on their influence on Y only via Z(X). Nonetheless, it’s
important to note that not all subgroup identification methodologies are
designed to target Z(X); instead, certain methods might focus on deriving a
useful transformation of Z(X)'**.

We construct a personalized benefit scoring system, defined as f(X)
with the following two properties: i) f(X) is monotone in the treatment
Z(X);1i) it has a threshold value c, such that when f{X) > ¢, it implies that the
treatment is more effective than control. In this work, we consider ¢ = 0.
Therefore, the sign {f(X)} can be used to construct optimal ITRs and predict
which of two treatments will have a better outcome. When sign {f (X)} >0,
patients are assigned to treatment group. The importance of each biomarker
can be assessed regarding its contribution to the predictive modeling of
ITRs. To ensure the identifiability of ITRs, we make following two
assumptions by using the standard strong ignorability condition™ .
{Y(1)—, Y(—-1)} L A|X and 0 < P(A = 1|X) < 1 for all x.

DeepRAB model

We introduce a DNN-based method for estimating ITRs and identifying
predictive biomarkers. DeepRAB is a nonlinear model designed to capture
Z(X) using biomarkers values as inputs and disease outcomes as output.
DeepRAB consists of three main components. First, it incorporates the
A-learning approach” into the loss function to optimize ITRs. Second, it
features a biomarker selection layer within the encoder layer, which

compresses the input into a lower-dimensional representation and selects the
biomarkers with the most impact on Y through Z(X). The third component
is a multi-layer perceptron (MLP) known as the hidden layers within decoder
layer. These layers model potentially non-linear effects of the covariates.
Let us set the pre-fixed number of k nodes in the biomarker selection
layer, the output of encoder layer, denoted by 2z, can be expressed as
2V =B9"x, where 2V €R* and B® =[B..0"] €R™. Here,
(1) =B V"% =x, /3(0) +...+x /3(0) fori=1,. krepresents the output of
the ith node. Notably, thls layer is used to select a user-specified set of k
biomarkers that are deemed to be the most informative for predicting f(X).
To accomplish this, we adopt the feature selection technique proyosed in
Balin et al"*. which involves generating a p-dimensional vector B\ using:

exp((loga; +¢,)/T)
>ob_, exp((log o, +g,)/T)

where /3(0) corresponds to the jth element in [350). The vectors « and g are
p- dlmenswnal and training parameters, and all elements of & are strictly
greater than zero, while all elements of g are drawn from a Gumbel
distribution”. The temperature parameter T takes on positive values. In this

[0,0,...1,0,0,...,0]" with probability
Z .. Wesampleak X p dlmenswnal matrix B0 for each of the k nodes

B = ®)

way, we obtain limTHO,B(O)
P =

in a similar manner. As a result, each node in the biomarker selection layer
outputs one selected biomarker, resulting in a total of k selected biomarkers.

The decoder layers take 2" as the input and are composed of i — 1
hidden layers, where h is tunning parameters. The expressions for the

outputs of each hidden layer, denoted by d? where j=1,.,h—1,canbe
formulated as follows:

v = g, (W, 20+ 50, )

0 =g Wi A9V 4800 =2, -1 @)

where 1; and ¢; denotes the number of nodes and activation function in jth
hidden layer, respectively. Then, we can write output f (x):
d® + b2, 5)

f(x) = ¢, (W2, d

1xny,
where ¢, is the activation function which typically a logistic function for
binary outcomes and linear function for continues outcomes. The loss
function of the model is defined as follows:

L050)=3 My @ =@ (0] ©

where 6 = (W(lhx) o - Wil)x o b(lhx) Lo b;ll)xl, @, g) represents the
training parameters, and m(X)=P(A=1 |X) is propensity score. The sign
{f(8,X)} is used to construct optimal ITRs. Of note, the function M(u, v)
varies depending on the outcome Y. In the original work by Chen'’, My, v)
is required to meet the following conditions: 1) M (y, v) is convexin vand 2)
V( y) =M ( ¥, 0) is monotone in y. These requirements are sufficient
for Fisher consistent subgroup identification'"*. In this work, we select
M ( ¥, v) as follows: M(u, v)=(u-v)* for continuous outcomes and
M(u, v)= ulog(1 + exp(—v)) for binary outcomes. It can be readily ver-
ified that these choices fulfill both the convexity in v and the monotonicity in
y conditions. A visual representation of the DeepRAB is presented in Fig. 2.

Propensity scores

The propensity scores 7(X;) is nuisance parameter and unknown in
observational studies. However, in randomized trials, the propensity scores
are often known. The special case is that 77(X;) = L foralli=1,...,n, when the
samples are subjected to a 1:1 randomization ratio. In non-randomized
trials, we employ logistic regression to the data (X, A) to estimate 77(X;).
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Fig. 2 | Overview of the DeepRAB framework and
biomarker selection process. a A schematic illus-
tration of the DeepRAB architecture, which includes
an input layer, a biomarker selection layer imple- 5
mented via a CAE, multiple hidden layers, and an
output layer corresponding to ITR predictions. This
structure enables both subgroup identification and
predictive biomarker discovery. b A mathematical
overview of the biomarker selection layer. The
selection process is driven by the CAE, enabling end-
to-end learning of the most informative biomarkers
for treatment response. The equations shown reflect
how features are selected during model training.
ITR: individualized treatment rule; CAE: Concrete
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Simulation framework

We consider three simulation scenarios: one involving linear functions and
two involving nonlinear functions, introducing greater complexity to the
data. For each scenario, we assess performance using two sample sizes,
N = 1000 and N = 400, with the smaller sample size reflecting conditions
commonly encountered in real datasets.

Simulation scenario |
We first consider a linear simulation design to generate data for a con-
tinuous outcome using the following model:

Y(A) =B{-084+X, + X,}JA+ B(X5 +X,) + ¢

where €~N(0,1) represents error terms, and covariate vector X =
(X,,X,,...X,)" is generated from a multivariate normal distribution with
a mean of 0, variance of 2, and pairwise correlations of 0.2 between each
biomarker. The treatment assignment variable A is drawn from a Bernoulli
(0.5) distribution, with A = 0 indicating subjects in the control group and
A =1 indicating subjects in the treatment group. Under this setting,
(X5,...,X,) are considered as noisy biomarkers, while X, and X, are
regarded as predictive biomarkers. On the other hand, biomarkers X, and
X, are considered as prognostic biomarkers. The constants 8, and f3 are the
strength of prognostic and predictive effects, respectively.

For binary outcomes, we simulate the response Y?(A) ~ Bernoulli
(plogis(Y; (A))), and Yf (A) can be expressed as:

Y{(4) = Y{(1)- A+ Y[(0)- (1 - A)
where plogis(x) = Hmfh(x/z), and all other settings remained consistent
with those used for continuous outcomes.

Simulation scenario Il
In this scenario, we consider a simulation design with quadratic functions.
The outcome

Y is simulated from a nonlinear model:

Y(A) = {—0.8 + X, + X3 + X, X,}A + Bo(X; + X)) + €
We simulate covariates X and error terms as in Simulation Scenario I,
and the binary outcomes are simulated using the same method as in

Simulation Scenario 1.

Simulation scenario lll. In this design, we incorporate interactive terms
within the indicator function, adding more complexity to the simulation.

To simulate data for a continuous outcome, we use the following model:

Y(A) = B{—0.8 + I(X,X,>0)}A + Bo(X5 + X,) + €

All other settings remain consistent with those used in Simulation
Scenarios I and IL.

Baseline models

We consider four baseline models in our analysis. The causal forest (CF) is a
nonparametric model that extends the classic random forest algorithm to
estimate conditional average treatment Effects. It is implemented via R
package “grf””’. The XGBoost with modified loss function (XGboostML)
model is an adaptation of the XGBoost algorithm that integrates the
A-learning loss function. It is implemented via our published R package
“BioPred”™. We also employ two linear regression models: linear regression
with modified outcomes® (LRMO) and linear regression with modified
covariates”” (LRMC), both utilizing Lasso regularization™. Of note, LRMO is
only designed for continuous outcomes, while LRMC is suitable for binary
outcomes. Both linear regression models are implemented by R package
“glmnet”** with lasso penalty.

Evaluating the performance of models
In the simulation settings where the ground truth is known, we consider the
true treatment benefiting group for patients with {i|Y,;(1) > Y,(0)}. Thus, an
individual’s label is set to 1 if Y;(1)>Y; (0) and to 0 otherwise. When we assess
the model’s performance in subgroup identification, we use evaluation
metric of area under the ROC Curve (AUC) for classifying true subgroup
labels. Concretely, our model produces a score f(X) that reflects the like-
lihood of a patient belonging to the treatment-benefiting subgroup. By
varying the threshold on f(X), we obtain distinct pairs of true positive and
false positive rates, forming an ROC curve. We then compute the AUC by
integrating under this curve, in line with the evaluation strategies outlined in
prior studies™". Since XGboostML also incorporates an A-learning function
into its loss, it follows the same approach as DeepRAB for computing the
AUC. For other subgroup identification methods, the output is an estimated
treatment effect. To compute the AUC in a similar way, we vary the decision
boundary (i.e., the cutoff on the estimated treatment effect) and record the
corresponding true positive and false positive rates against the known
subgroup labels, thereby producing an ROC curve and an associated AUC.
To evaluate the model’s efficacy in identifying individual biomarkers,
we rank the importance of each selected biomarker for each method. Spe-
cifically, for the tree-based models, CF and XGboostML, we derive
importance scores using the variable_importance() function in the grf
package and the predictive_biomarker_imp() function in the BioPred
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Fig. 3 | Cross-validation procedure and model evaluation workflow for Dee-
PRAB. This schematic outlines the model evaluation framework for DeepRAB using
10-fold cross-validation. The dataset is randomly divided into 10 equal parts; in each
iteration, DeepRAB is trained on 9 folds while the remaining fold is used for

|-> A-learning loss on 1%t left-out fold —
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Best tunning parameters

Grid search

Identified predictive biomarkers Evaluating model performance

validation. This process is repeated for all folds across a grid of tuning parameter
combinations. The average validation error is computed for each parameter setting,
and the optimal set of parameters is selected based on the lowest average
validation error.

package. In the case of LRMO and LRMC, we base each biomarker’s ranking
on the absolute magnitude of its corresponding coefficient. We consider the
top two ranking biomarkers as identified biomarkers. We define detection
rate as the frequency of each biomarker being chosen as one of the top two
important features across N replications. Moreover, when we examine the
model’s ability in detecting interactive biomarkers in simulation settings, we
consider the model successfully picks out the interactive biomarker when
two true biomarkers are detected as top two ranked biomarkers simulta-
neously for each replication.

Statistics and reproducibility

To optimize the performance of the DeepRAB, we have experimented with
various tuning parameters including the learning rate (#), the number of
layers (h) in decode layer, the dropout rate d, the activation function ¢;, and
the number of nodes (n;,i = 1, ..., h) in each layer.

Optimizing these parameters solely based on the training dataset
often leads to overfitting, where the algorithm performs well on the data
but fails to generalize to other datasets. This issue is particularly pro-
nounced when working with clinical datasets, which typically have small
sample sizes. Therefore, it is a common practice in many machine
learning algorithms to select values of tuning parameters using an
independent validation dataset. When a validation dataset is not avail-
able, as is often the case in smaller clinical trials, cross-validation methods
are employed. To address the overfitting problem, we have divided the
entire dataset into training and test sets in an 8:2 ratio. We advocate
determining the tuning parameters via K-fold cross-validation (CV) on
the training data, recommending K = 10 for practical applications. The
test set is reserved for final model evaluation after the optimal tuning
parameters have been selected. The procedure for deriving the optimal
tuning parameters is as follows: First, the training dataset is randomly
split into 10 folds. DeepRAB is then trained on K-1 folds using different
combinations of tuning parameters, and the error (A-learning loss) is
estimated on the left-out fold. We calculate the average estimated errors
on the left-out folds for each combination of tuning parameters. The best
tuning parameters are identified through a grid search based on the
smallest average errors.

Once the optimal tuning parameters are determined, we first re-train
the entire training set (using both X and Y) to identify the predictive bio-
markers. Next, we input the biomarkers X of the testing dataset into the
optimized DeepRAB model to predict subgroup labels. In the simulation
study, where the ground truth is known, we evaluate model performance

using the AUC for classifying true subgroup labels. This tuning process
ensures that DeepRAB is well-calibrated and minimizes the risk of over-
fitting, thereby enhancing its applicability in clinical settings. The detailed
cross-validation procedure is illustrated in Fig. 3. Specifically, the Adam
optimizer is utilized, # is selected from the set {0.01, 0.05, 0.001, 0.005}, A is
chosen from {1, 2, 3,4, 5}, n; is selected from {4, 8, 16, 32, 64, 128}, § is drawn
from {0.2, 0.4, 0.6}, and ¢. is chosen from ReLU, Leaky ReLU, Sigmoid and
Tanh. In addition, we set the pre-fixed number k equal to the number of
covariates. Regarding the initialization of the temperature (T'), we followed
the approach proposed by Abid et al.”® to ensure effective exploration of
different feature combinations and avoid convergence to suboptimal solu-
tions. We initialize T as T(e) = T,(T,/T,)"*, where T (e) represents the
temperature at epoch number e, and E denotes the total number of epochs
used for training the model. T; and T, are tuning parameters, typically set to
high and low values, respectively. All other baseline models, along with their
associated hyper-parameters, are optimized using the same approach. Each
simulation scenario is repeated 1000 times to ensure a robust and reliable
evaluation of model performance.

For the adalimumab dataset, the optimal tuning parameters for Dee-
PRAB were determined as follows: the learning rate (17) was set to 0.001, with
two hidden layers (h = 2). The first hidden layer contained n, =16 nodes,
and the second hidden layer contained 7, =8 nodes. Leaky ReLU was used
as the activation function for each hidden layer, and a dropout rate (6) of 0.2
was applied to prevent overfitting. Training was initiated with 10 to 100
epochs, and validation loss was continuously monitored. Early stopping was
also implemented to prevent overfitting.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results

DeepRAB overview

DeepRAB has the potential to uncover complex, non-linear relationships
between patients’ characteristics and treatment outcomes, even when the
signal of effect is weak, given that DNNs have been shown to successfully
learn good representations of high-dimensional data in many tasks®™. We
build DeepRAB through several stages, as conceptualized in Fig. 4a. Dee-
PRAB comprises an input layer, encoder layer, decoder layer, and output
layer. The encoder layer performs the biomarker selection, while the
decoder layer serves for data reconstruction.
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For simplicity, for patient i with biomarkers X;, received treatment
assignment A; €{-1,1}, we observed outcome Y; The Neyman-Rubin
potential outcome framework”** allow us to define two potential outcomes
for the patient: Y;(—1) and Y;(1) representing the patient’s outcomes
when they have received a control (A; = —1) and treatment (4; =1)
respectively. Then, we write factual patient outcome as Y; =1(1+ 4))
Y(1)+3(1 —A)Y(—1) (Fig. 4b). Our proposed DeepRAB for-
mulates the conditional expectation as E(Y|X,A) = Z(X)A + H(X),
where Z(X) =1[E(Y|A=1,X) - E(Y|[A=—-1,X)] is a contrast
function that reflects treatment effects given X and H(X) =
1[E(Y|A = 1,X) + E(Y|A = —1,X)] is a function that reflects the main
covariate effect of X. In identifying subgroups of patients who may benefit
from A differently, we are interested in estimating Z(X) (Fig. 4c), as it
reflects heterogenous treatment effect (THE). To optimize ITR, we employ
the A-learning loss function' to quantify the monotonic transformation of
Z(X), denoted as f(X) (Fig. 4d).

The importance of biomarkers is measured within the biomarker
selection layer through the utilization of CAE" (Fig. 4e). On the other hand,
the new treatments are recommended for patients based on the sign of
{f (X)} (Fig. 4f). In contrast to non-transparent DNN with limited inter-
pretability of X, our proposed method ranks variables in X based on their
influence on Y via Z(X) without necessitating the estimation of H(X). As a

result, DeepRAB only selects predictive biomarkers and remains unaffected
by prognostic biomarkers. Another important feature of DeepRAB is its
capability to capture any non-linear representations within Z(X) by lever-
aging the flexibility of DNNs to approximate continuous mappings.

Comparative performance of DeepRAB and competing methods
in Simulations | and 1l

We initiate our analysis with Simulation Scenario I, as detailed in the
Methods section. To assess the performance of each method under varying
conditions of predictive and prognostic effect strength, we use a range of 8
values from the set {0.1, 0.5, 0.7, 1, 2, 3}. Three prognostic effect sizes 3, = {0,
1,2} arealso considered. Our initial evaluations are conducted with a sample
size of N = 1000. Figure 5 illustrates the AUC results for subgroup classi-
fication in Scenario I for continuous outcomes. We observe that the per-
formance of each method improved as f increased. Furthermore, the
proposed DeepRAB method consistently outperforms competing methods
across all conditions. Figure 6 depicts the detection rate for each biomarker.
First, all methods demonstrate the ability to detect true biomarkers even in
the presence of high inter-biomarker correlation. Our proposed model
achieves the highest detection rate for X; and X, when the 8 = 0.1. In other
scenarios, baseline methods attain a 100% detection rate for biomarkers X
and X,, while DeepRAB identifies X, with slightly lower accuracy. Similar
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results are observed with a smaller sample size of N = 400 in Supple-
mentary Fig. 1-2. As expected, the power of all methods to correctly identify
subgroups diminished with the decrease in sample size. Overall, the relative
performance of the methods remains consistent with the larger sample size
results. The results for binary outcomes with sample sizes of N = 1000 and
N = 400 presented in Supplementary Fig. 3—6, showing consistent findings.

In Simulation Scenario II, we augment the complexity of the dataset
from Simulation Scenario I by incorporating quadratic terms. Performance
metrics for subgroup and biomarker identification are detailed in Supple-
mentary Fig. 7-14, which cover both continuous and binary outcomes at
sample sizes of N = 1000 and N = 400, respectively. As anticipated, both
LRMO and LRMC perform poorly due to the inclusion of non-linear terms.
Our results further show that the ability of CF to identify true subgroups
decreases as the f3, increases. In contrast, DeepRAB demonstrates relatively
minimal sensitivity to increasing prognostic effects. For instance, while CF
and DeepRAB achieve comparable AUCs for binary outcomes with N =
1000 when f3, = 0 and § = 3, CF’s performance lags behind DeepRAB
when B, = 2 and B=3. Interestingly, XGBoostML, CF, and LRMC incor-
rectly classify prognostic biomarkers X; and X, as predictive for binary
outcomes when the prognostic effect is strong. In practical scenarios, bio-
markers typically exhibit a degree of both prognostic and predictive value™.
Misclassifying a biomarker as predictive when it primarily holds prognostic
effects is strongly undesirable, as it can entail financial and ethical
consequences”. Our findings highlight that DeepRAB is useful for pre-
dictive biomarker discovery in the presence of strong prognostic
biomarkers.

Next, we assess the ability of each method to detect interactive
biomarkers in Simulation Scenario II. Supplementary Table S1 sum-
marizes the detection rates for each method in continues outcomes.
Notably, DeepRAB outperforms competing methods in scenarios with
weak predictive effects. For instance, DeepRAB achieves a high detection
rate of 74.1% for interactions X, and X, at (8o, )= (0, 0.1) with a sample
size of N = 400, whereas other methods show lower detection rates.
However, under strong predictive effects, CF and XGboostML outper-
form DeepRAB in some cases. Detection rates for interactive biomarkers
in binary outcomes are presented in Supplementary Table S2, showing
similar trends. In summary, DeepRAB demonstrates comparable per-
formance to baseline models in Simulations I and II. Although other
methods achieve higher detection rates in certain scenarios, these results
suggest that there is no single perfect model.

DeepRAB outperforms competing methods in simulation Il

In this section, we examine a more complex simulation scenario involving
interactive terms within the indicator function. Supplementary Figs. 15-18
presents the subgroup and biomarker detection performance in continuous
outcomes with sample sizes of N = 1000 and N = 400. It appears that the
proposed DeepRAB method outperforms the competing methods in all
cases. Remarkably, even in scenarios with weak predictive signals (5=0.1,
0.5, 0,7), DeepRAB attains the highest AUC. In contrast, baseline models
demonstrate lower AUC values. In scenarios with strong predictive effects
(8 =2, 3), DeepRAB performs comparably to CF while outperforming other
methods. In addition, it is evident that LRMO demonstrates the poorest
performance among the evaluated methods, as predicted, due to its inca-
pacity to capture non-linear functions.

Biomarker identification results demonstrate that DeepRAB achieves
highest detection rate for biomarkers (X, X,) in the presence of weak
predictive signals. While alternative methods such as XGboostML and CF
perform well in identifying these biomarkers when f =2, 3, with detection
rates comparable to DeepRAB, but struggle when predictive signals are
weaker (8 =0.1,0.5,0.7). These results highlight the robustness of DeepRAB
in identifying predictive biomarkers at weak treatment effects, further
reinforcing our initial hypothesis. In addition, we note that DeepRAB’s
performance remains stable even in the face of strong prognostic signal
interference, etc., 5, = 1 or 2, whereas other models demonstrate reduced
efficacy.

We now extend our evaluation to binary outcomes with sample size of
N = 1000. Our findings echo the trends observed in the continuous out-
come case, with DeepRAB emerging as the top-performing model (Figs. 7,
8). For instance, DeepRAB achieves a median AUC of 0.79 at ([50 , [3) =(0,1),
slightly better than CF with a median AUC of 0.76, demonstrates superior
performance compared to XGboostML and LRMC when predictive signal is
strong. Moreover, we assess the models’ performance under weak predictive
effects. In these cases, DeepRAB has the highest median of AUC and out-
performs other methods by a large margin. DeepRAB performs better than
other methods in the detection of biomarkers (X, X,) across all settings.
Similar results for a sample size of N = 400 are presented in Supplementary
Fig. 19-20. Collectively, our findings underscore the superior adaptability of
DeepRAB, particularly under conditions characterized by weak predictive
effects and correlative biomarkers, while also acknowledging the compar-
able performance of competing methodologies such as XGBoost and CF
under specific conditions.

Lastly, the detection rates of interactive biomarkers for each method
are presented in Supplementary Table S3-S4. Our results show that Dee-
PRAB emerges as the top performer, with the exception of certain scenarios,
such as when (B, 8) = (0,3) for binary outcomes with sample sizes of
N =400 and N = 1000, where CF achieves the highest detection rate.
These findings suggest that DeepRAB is a promising tool for identifying
interactions in complex data settings. Notably, all methods, except Dee-
PRAB, exhibit difficulty in detecting non-linear interactions under weak
predictive effect (8 = 0.1).

Null scenarios

To assess the model performance in null scenarios where no predictive
biomarkers exist (8 = 0), we have evaluated the AUC for subgroup identi-
fication across three simulation settings (I-III) for both continuous and
binary outcomes with N = 1000. Specifically, we have created a ground truth
by labeling a sample as positive (label=1) if Y; (1) > Y; (0) and negative
label;=0 otherwise. Both Y; (1) and Y; (0) include the same prognostic term
plus independent N(0,1) noise, making AY = Y;(1) — Y,(0) is purely
random. These results are detailed in Supplementary Fig. 21-23. Consistent
with expectations, the subgroups identified by all methods resembled ran-
dom selections, with each method achieving an average AUC of approxi-
mately 50%. This result confirms the hypothesis that, in the absence of true
predictive effects, subgroup classification is equivalent to random chance.

Detection rates for identifying biomarkers are presented in Supple-
mentary Fig. 24-26. When (B, 8) = (0,0), all models exhibit similar
detection rates for biomarkers, approximately 20%. For continuous out-
comes, despite varying prognostic effects (3, = 1, 2), the detection rates for
all models remain near the theoretical threshold of 20%, reflecting the
inclusion of 10 covariates and indicating that all models effectively guard
against overfitting in scenarios without true predictive effects.

However, in the case of binary outcomes, methods such as CF and
XGboostML show a higher detection rate for prognostic biomarkers X, and
X, when the prognostic effect is strong. This result is unexpected, as these
models are designed to detect predictive, rather than prognostic, bio-
markers. Taken together, the results indicate that the selection rate for all
biomarkers, including non-informative ones, remains approximately equal,
suggesting that DeepRAB does not favor any particular biomarker in the
absence of an underlying signal. This pattern reflects random feature
selection under the null scenarios. The results for N = 400 show a similar
pattern.

DeepRAB identifies predictive biomarkers associated with the
heterogeneous treatment effect of Humira

Two double-blind, placebo-controlled pivotal studies, PIONEER I and II,
similar in design and in enrollment criteria®’, are conducted to evaluate the
treatment effect of adalimumab (Humira, AbbVie) for patients with
Hidradenitis Suppurativa (HS), a painful, chronic inflammatory skin dis-
ease. Both studies are powered for the primary endpoint at the end of the
initial 12-week double-blind period (Period A), which is the HiSCR*,
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defined as a reduction of 250% in inflammatory lesion count (sum of
abscesses and inflammatory nodules, referred as AN count), and no increase
in abscesses or draining fistulas when compared to baseline. The results of
the two clinical trials shows significant treatment effect of adalimumab for
HS patients and were published in Kimball et al. Specifically, clinical
response rates at week 12 are significantly higher for patients receiving
adalimumab weekly than for patients receiving placebo: 41.8% versus 26.0%
in PIONEER I (P=0.003) and 58.9% versus 27.6% in PIONEER II
(P<0.001). Per agreement with FDA, a subsequent 24-week randomized
withdrawal period (Period B) is included in each study for exploratory
purposes. Since HS is a chronic disease, the main objective of this period is to
evaluate the long-term benefit of adalimumab to guide physicians and
patients in managing HS beyond 12 weeks. We applied DeepRAB on
responded patients who were re-randomized to either continuation of
adalimumab weekly dosing or withdrawal from adalimumab (placebo) in
period B after initial treatment of adalimumab weekly dosing for 12 weeks
(Fig. 1, yellow shaded boxes in period B) to identify biomarkers for patients
who can benefit from continued adalimumab treatment the most.

Given that the true nature of subgroup is unknown in real data
applications, our primary goal is to identify predictive biomarkers that
discern the most clinically appropriate patient groups for ongoing weekly
dosing of adalimumab versus discontinuation. Secondly, our study involves
a cohort of 199 patients, we have utilized our proposed CV technique across
the entire dataset to address the limitations posed by the small sample size.
The optimal tuning parameters used in the analysis are provided in
the Methods section. Figure 9 shows the result of identified predictive
biomarkers that can predict HS treatment benefit using four distinct
methods. DeepRAB pinpoints the top two biomarkers: CHG_AN and
AN12. Conversely, CF recognizes CHG_AN and ANO as key biomarkers,
whereas XGBoost highlights DFT_OBS_0 along with CHG_AN. LRMC
identifies ITT2RFN and HISCRO as the principal biomarkers. Remarkably,
CHG_AN is consistently selected by DeepRAB, CF, and XGBoost among
their top biomarkers, underscoring its potential relevance in assessing the

benefits of continued adalimumab therapy. This finding aligns with prior
studies®’, which further validate CHG_AN as a key biomarker in this
context. In contrast, LRMC fails to identify this well-validated biomarker.
Furthermore, both DeepRAB and XGBoost recognize ANO among their top
ranked biomarkers, placing it in the top three and five positions respectively,
highlighting its potential importance alongside CHG_AN. This result
indicates that ANO merits further investigation.

In the post-hoc subgroup analysis, we have employed Sequential-
Batting (Seq-Batting)” method to derive the signature of CHG_AN. Speci-
fically, subjects are classified as subgroup-positive if the identified biomarker
met the Seq-Batting threshold, and subgroup-negative otherwise. The overall
HiSCR rates have been previously reported. The proportion of patients
achieving HiSCR by visit is reported in Supplementary Fig. 27. The identified
signature-positive subgroup comprised of patients achieving at least 25%
reduction in ANcount (> AN25) after the initial 12 weeks of treatment,
named PRR population (partial responders and HiSCR responders). The
subgroup results are presented in Fig. 10 are consistent with previously
published regulatory documents. For example, the European Medicines
Agency Summary of Product Characteristics (EMA SmPC) reports that
among patients showing at least a partial response to weekly 40 mg adali-
mumab at Week 12, those who continued weekly dosing had a higher HiSCR
rate at Week 36 compared to those who reduced to every-other-week dosing
or discontinued treatment. Similarly, the Canada Product Monograph
indicates that in patients achieving at least a 25% improvement in AN count
at Week 12, HiSCR response rates at Week 24 were 57.1% for weekly dosing,
51.4% for every-other-week dosing, and 32.9% for placebo. At Week 36, the
respective rates were 55.7%, 40.0%, and 30.1%.

Discussion

The identification of subgroups and predictive biomarkers plays an
important role in shaping clinical decision-making processes. Traditional
deep learning models examine the relationship between disease outcomes
and patients’ characteristics without inherent feature selection capabilities.

Communications Medicine | (2025)5:221

12


www.nature.com/commsmed

https://doi.org/10.1038/s43856-025-00946-z

Article

Fig. 10 | Proportion of patients achieving HiSCR (@
by visit. a Proportion of patients in the PRR popu-
lation achieving HiSCR at each study visit. 100 4
aton ac .1ev1ng 1. a. cach study vist . =@ Continued adalimumab weekly dosing, N=70
b Proportion of patients in the NonPRR population e 6 dali b i T8
achieving HiSCR at each study visit. PRR (Partial api-bes AL rom AR MM W ey C0ING, 2=
Responders and HiSCR Responders) are defined as N
patients with at least a 25% reduction in abscess and
inflammatory nodule (AN) count after the initial R 60 - 54.3 55.7
12 weeks of treatment; NonPRR includes all other g ——a—1f
atients. 2 ~
P 5 40- 493 T
o 0
- 32.9 315 ~0 30.1
24.7
0 T T T T T — T T |
Entry 14 16 20 24 28 32 36
Week 12 Study Week
(®
100 ~
== Continued adalimumab weekly dosing, N=29
80 - =@== Withdrawal from adalimumab weekly dosing, N=27
X 60-
c
2
& 40
20~
AR S
060 ‘/785\7"‘*n'=f“"(’/‘/,/
Entry 14 16
Week 12

Study Week

Although it is theoretically possible to build a DNN-based model for sub-
group identification by incorporating Meta-learners, these approaches face
several limitations. These methods encounter challenges regarding the
interpretability of covariates, limiting their capability for feature selection.
Moreover, their indirect execution of subgroup identification restricts
concurrent biomarker and subgroup identification processes.

Our proposed DeepRAB model addresses this gap by being one of the
first to concurrently perform subgroup identification and predictive bio-
marker selection. Although baseline comparisons are made against estab-
lished subgroup analysis methods, there are currently no deep learning
models that specifically tackle this dual task. Future research will include
comparisons with state-of-the-art deep learning models as they become
available.

When exercising predictive biomarkers identifications, no single
method is universally optimal. We recommend applying a range of models
to any given dataset, allowing for a more comprehensive analysis. Results
can then be synthesized using a consensus approach, such as majority voting
across models. While XGboostML and LRMC showed limitations in some
simulations, additional analyses demonstrated that these models perform
well under specific conditions. This indicates the importance of using
multiple models to uncover robust biomarkers in real-world applications,
where diverse methodologies can provide complementary insights. For
instance, the consistent identification of CHG_AN by DeepRAB, CF, and
XGboostML supports its relevance as a key biomarker for adalimumab
therapy. In our simulations, we select the top two ranked biomarkers for
each method, in line with the known relevance of exactly two biomarkers.
However, in clinical practice, simply choosing a fixed number of features
may be insufficient. Instead, it is crucial to collaborate closely with medical
experts, cross-check findings against prior research, assess reproducibility
using other methods, and ensure alignment with regulatory documents.

These steps are essential to validate whether the identified biomarkers hold
genuine clinical relevance.

In our adalimumab data analysis, preliminary exploratory steps such as
correlation assessments (Supplementary Fig. 28) highlight that clinical
covariates are considerably more complex than simulation-based models
might indicate. Additionally, because no true subgroup labels or indepen-
dent validation datasets are available (unlike in theoretical simulations),
careful cross-validation is essential for ensuring the robustness of identified
biomarkers across multiple algorithms. To address the constraints imposed
by a small sample size, we applied our proposed CV approach to the entire
dataset. Notably, our model successfully uncovers clinically meaningful
biomarkers and corresponding subgroups that concur with regulatory
documentation from the EMA SmPC and the Canada Product Monograph.

Given the exploratory nature of retrospective subgroup identi-
fication, careful interpretation of the results is required, particularly
when considering regulatory approval or changes to clinical
practice“. Successful subgroup identification, therefore, necessitates
cross-disciplinary collaboration from trial design through to inter-
actions with regulatory authorities. For instance, the study design
must accommodate subgroup identification. In the case of HS
example, consideration of natural disease fluctuation and the
unknown response time course led to a clinical development program
that deviated from the traditional randomized withdrawal trial
design. Instead of re-randomizing only initial HiSCR responders, all
patients entering Period B are re-randomized, enabling subgroup
identification. Furthermore, independent validation using a dataset
with a similar and appropriate design would be ideal for confirming
these identified biomarkers and related subgroups. Finally, gaining
support from regulatory agencies, payers, and clinicians often
requires evidence beyond statistical modeling. The candidate
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biomarkers used in algorithms must be clinically relevant; the sub-
group signature should be biologically plausible and easily identifi-
able by clinicians or patients. The success of the Humira HS example
is also driven by the unmet medical need and impact of adalimumab
treatment on patient outcomes.

Our DeepRAB method may hold promising potential for extension
into neuroimaging modalities such as MRI, CT, and PET scans. Deep
learning techniques have been successfully applied across diverse biome-
dical domains, including disease outcome prediction using MRI and PET,
demonstrating their ability to handle the high dimensionality and complex
patterns of imaging data*>*’. While these results are encouraging, extending
DeepRAB to imaging biomarkers would require incorporating layers
designed to capture spatial hierarchies and patterns, such as convolutional
layers commonly used in image-based models. We recognize that further
development will be necessary to adapt DeepRAB for imaging data, and this
represents an important direction for future work. Moreover, an extended
application of the CAE in genome-wide association studies (GWAS) is
explored", motivating us to consider adapting similar techniques to apply
DeepRAB to large-scale omics datasets. This adaptation could facilitate the
identification of predictive genetic or proteomics biomarkers. Furthermore,
recent studies indicate that domain randomization, in which variations in
color, texture, lighting, and other factors are introduced during simulation,
can train neural networks on simulated images that transfer to real images™.
Adopting a similar strategy may help DeepRAB bridge the gap between
simulated data and real-world clinical settings. Finally, future research could
explore extending DeepRAB to accommodate time-to-event outcomes by
adjusting the function M(u, v) to Cox proportional hazards loss function®.

Itis essential to acknowledge certain limitations of DeepRAB. Firstly, in
specific instances, DeepRAB might require more computational time
compared to alternative methods, despite demonstrating superior perfor-
mance based on empirical evidence. DeepRAB’s complexity, defined by
factors such as the number of layers, nodes per layer, and learning rate,
makes it more parameter-intensive than traditional models like LRMC or
CF. However, this added complexity enables DeepRAB to capture non-
linear relationships and intricate feature dependencies, offering a distinct
advantage in handling complex data structures. Secondly, ongoing research
efforts should focus on conducting further investigations into the identified
biomarkers associated with adalimumab treatment. These endeavors are
essential to ascertain the generalizability of DeepRAB across diverse clinical
scenarios.

Overall, our research provides a promising approach for subgroup
identification and predictive biomarker discovery by leveraging deep
learning. Our application to HS clinical trial data demonstrates the method’s
potential utility in real-world clinical research. By supporting more targeted
treatment strategies, our approach may contribute to improved decision-
making in personalized medicine.

Data availability

Company proprietary data used in this work was obtained from the fol-
lowing clinical trials (PIONEER I and PIONEER II with ClinicalTrials.gov
numbers NCT01468207 and NCT01468233, respectively) is not available to
share. The source data underlying Figs. 5-8, S1-526, and Tables S1-54 are
available via https://doi.org/10.5281/zenodo.15491665%. For any questions
or further inquiries regarding the data, readers are encouraged to contact the
corresponding author.

Code availability

The code supporting the findings of this study are available at GitHub:
https://doi.org/10.5281/zenodo.15491665* For any questions or further
inquiries regarding the code, readers are encouraged to contact the corre-
sponding author.
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