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Abstract

Background Many relationships between pathogens and human disease are well-
established. However, only a small fraction involve diseases considered non-
communicable (NCDs). In this study, we sought to leverage the vast amount of newly
available electronic health record data to identify potentially novel pathogen-NCD
associations and find additional evidence supporting known associations.
Methods We leverage data from The UK Biobank and TriNetX to perform a systematic
survey across 20 pathogens and 426 diseases, primarily NCDs. To this end, we assess the
association betweendisease status and infection history proxies using a logistic regression-
based statistical approach.
Results Our approach identifies 206 pathogen-disease pairs that replicate in both cohorts.
We replicate many established relationships, including Helicobacter pylori, with several
gastroenterological diseasesandconnectionsbetweenEpstein-Barr virus andbothmultiple
sclerosis and lupus. Overall, our approach identifies evidence of association for 15
pathogens and 96 distinct diseases, including a currently controversial link between human
cytomegalovirus (CMV) and ulcerative colitis (UC). We validate the CMV-UC connection
through two orthogonal analyses, revealing increased CMV gene expression in UC patients
and enrichment for UC genetic risk signal near human genes that have altered expression
upon CMV infection.
Conclusions Collectively, these results form a foundation for future investigations into
mechanistic roles played by pathogens in the processes underlying NCDs. All results are
easily accessible on our website, https://tf.cchmc.org/pathogen-disease.

Humans are exposed to infectious agents throughout life. Many of the
communicable diseases associated with specific infectious agents are well-
characterized1. In acute infection, virus-driven mechanisms are clearly and
predominantly seen as the agent of disease. For example, respiratory syn-
cytial virus (RSV) causes an upper-respiratory disease that can be life-
threatening in young infants and causes cold-like symptoms in adolescents
and adults2. Likewise, varicella zoster virus (VZV) causes varicella (chick-
enpox) upon primary infection. This infection typically occurs during

childhood and is well tolerated. However, if primary infection occurs in
infants, adults, or the immunocompromised, the viral infection is less well
contained, and the virallymediatedpathology can be life-threatening3. Even
after primary infection, VZV lies dormant for decades, reactivating in a
portion of adults with the lytic virus directly leading to zoster (shingles)3.

The role of infectious agents in non-communicable diseases (NCDs) is
much less well-explored, although several associations are well-known. For
example,Helicobacter pylori infection is the strongest risk factor for gastric
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Plain Language Summary

Pathogens can hide in our bodies for years
after initial infection. For example, the
chickenpoxviruscancauseshinglesdecades
after infection. Likewise, certain pathogens
maycontribute to thedevelopmentor severity
of subsequent conditions that are not
contagious, referred to as non-
communicable diseases (NCDs). Our study
analyzed a vast number of electronic medical
records to discover potential pathogen-NCD
connections. We identified 206 such links.
Future research based on these findings
could revolutionizehealthcarebyenabling the
development of vaccines targeted against
these pathogens. For example, approaches
similar to the introduction of the human
papillomavirus vaccine which has led to
declining cervical cancer rates. The develop-
ment of vaccines for the pathogens identified
in this study could potentially enable dramatic
reductions in the NCDs linked to these
pathogens.
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cancers4. Likewise, multiple studies have demonstrated an important role
for both hepatitis B (HBV) and C viruses (HCV) in the development of
cirrhosis and other chronic liver diseases5,6. Further, certain strains
of human papillomavirus (HPV) are known to cause a large proportion of
cervical cancers and a smaller proportion of several other cancers7. Each of
the aforementioned pathogens, as well as several others, have been classified
as biological carcinogens by the International Agency for Research on
Cancer (IARC)8. Indeed, it is estimated that up to 15% of all new cancer
diagnoses are attributable to these and other infectious agents9. More
recently, strong epidemiologic and mechanistic links have been identified
betweenEpstein-Barr virus (EBV) infection andmultiple sclerosis (MS)10–12,
following decades of suggestive epidemiological andmolecular evidence13,14.
Many unknown pathogen-NCD connections likely remain yet to be
discovered.

NCDs are often chronic diseases and have complex etiologies. Unlike
acute viral infections, the virus itself might not contribute to the full etiology
of virally associated NCDs. While many individuals might be exposed and
mount an immune response to a virus, virally associated NCDs often occur
only in a small subset of individuals in the context of specific genetic factors
and other environmental exposures15.

Historically, connections between pathogens and diseases have been
made one pair at a time. However, the recent establishment of large-scale
national biobanks and the general shift to electronic health records (EHRs)
enables the concurrent analysis of many pathogen-disease pairs. Here, we
leverage biobank data from The UK Biobank (UKB) and EHR data from
TriNetX, LLC (TNX), resources containing both serologic and diagnostic
records, enabling the systematic detection of associations between multiple
pathogens and multiple diseases simultaneously. Using a discovery-
replication approach, our analysis reveals 206 replicated pathogen-disease
associations, including previously established pathogen-disease links and
many potentially novel or previously suggestive relationships. In particular,
we identify strong evidence for the currently controversial connection
between cytomegalovirus (CMV) infection and ulcerative colitis (UC).
Orthogonal analyses of this relationship reveal that: (1) patients with UC
have elevated CMV mRNA levels in intestinal tissue samples compared to
healthy controls, and (2)UCgenetic risk loci are enrichednear humangenes
that change expression upon CMV infection in two independent datasets.
Collectively, these results implicate multiple pathogens in dozens of non-
communicable human diseases, providing a unique and powerful resource
for future studies of the mechanistic roles played by these pathogens in
disease development.

Methods
UK Biobank cohort
The UK Biobank (UKB) is a prospective cohort study containing medical,
sociodemographic, and genetic data for nearly 500,000 adults from across
the United Kingdom16. In this study, diagnoses for all participants were
extracted from two UKB fields: (1) “First Occurrences” [UKB Category
1712], which is a synthetic field generated by UKB analysts that collates
diagnoses from primary care, hospital inpatient, death registry, and self-
reported records; and (2) “Type of Cancer – ICD10” [UKB Field 40006],
which contains cancer diagnoses extracted from national cancer registries
for linked participants. The first occurrences data are limited to 3-character
International Classification of Diseases 10th revision (ICD10) codes, e.g.,
M32.9 is recorded asM32, so the cancer registry diagnoseswere truncated to
match. Analyses were limited to diseases with at least 17 cases and 187 total
samples within the cohort (see power calculation below).

Data for 45 antibody titer levels representing immune responses to 20
unique pathogens [UKB Category 1307] were downloaded and Log10
transformed before analysis. Antibody titer measurements were performed
using a multiplex serology approach based on the enzyme-linked immu-
nosorbent assay (ELISA) concept as described byMentzer et al.17. Similar to
Mentzer et al., a series of 10 additional health-related and sociodemographic
variables that could potentially be associated with both disease status and
antibody titer level were collected to test for confounding during analyses.

The continuous covariates, age andbodymass index (BMI),were scaled by a
factor of 10, while all other covariates were either already categorical or were
discretized (Supplementary Data 1). The scikit-learn IterativeImputer
method, based on the Multivariate Imputation by Chained Equations
(MICE) algorithm, was used to imputemissing covariate values. Thirty-two
participants were missing BMI values and eight were missing Townsend
deprivation index values.

The UK Biobank data obtained, under application 47377, does not
require separate clearance, instead operating under the approval granted to
The UK Biobank by The North West Multi-centre Research Ethics Com-
mittee as a Research Tissue Bank. All participants in The UK Biobank
provide informed consent for the collection of data directly by The UK
Biobank, as well as consent for that data to be shared with researchers
working on approved research projects.

TriNetX cohort
TriNetX, LLC (TNX) is a private organization that has built a global medical
research network that enables healthcare organizations to make their
electronic health record (EHR) data more easily accessible to researchers in a
de-identified manner, enabling Real World Data analyses. To prevent
possible outlier values due to results being reported in different units or
encoding errors, continuous laboratory test results were excluded, thereby
limiting our analysis to only binary tests where the results were either positive
or negative. A query built by combining a complete list of Logical Obser-
vation Identifiers Names and Codes (LOINC) codes that corresponded to
binary clinical laboratory tests for our pathogens of interest was run on
02-14-2023 across 73 healthcare organizations on the TNX Research Net-
work. The search resulted in a list of just over 11million unique patients who
had in their EHR a result for at least one of the laboratory tests in our query.
Diagnoses for all participants were collected, and cohorts were automatically
generated for each pathogen-disease pair. The use of GNU Parallel18 made
the processing of the immense amount of TNX data much more tractable.
For a specific pathogen-disease pair, those with a test result for a particular
LOINC code but without the diagnosis of interest were considered controls,
and only those with a test result (positive or negative) before the earliest
diagnosis for the disease of interest in their medical record were considered
cases. We removed those participants with the diagnosis appearing in the
EHR before the laboratory test, as the temporal relationship of infection prior
to disease diagnosis could not be firmly established for them. We attempted
to extract all potential confounding variables considered in the UKB analysis
from the TNX data; however, data for only three of the ten were available.
For situations where a covariate was included in the UKBmodel but was not
available in the TNX data, the covariates were dropped from the TNXmodel
before refitting. After finding few ICD10 B24 cases in TNX (a diagnosis used
in UKB to indicate human immunodeficiency virus (HIV) infection,
“Unspecified human immunodeficiency virus [HIV] disease”), it was
determined that in the United States (the primary source of TNX data) the
ICD10 code B20 appears to be primarily used to indicate HIV infection.
Thus, the TNX results for B20 were merged with the UKB B24 results.
However, this is the only ICD10 code for which this was done.

Use of the data obtained from the TriNetX research network was
accessed through the University of Cincinnati using a previously approved
IRB umbrella publishing protocol (2019-1238). The TriNetX data used in
this study previously existed and were deidentified. Furthermore, our study
involvedno interactionor interventionwithhuman subjects, indicating that
it is a secondary analysis and not human subjects research. Finally, TriNetX
requires each participating healthcare organization to obtain informed
consent from itspatients, including consent for the secondary analysis of the
data collected.

Phecode analysis
Phecodes were generated using UKB and TNX ICD10 data with the Phe-
WASR library (PheWAS v0.99.6.1; R v4.0.2) and aminimum code count of
one following previously published methods19–21. The resulting Phecodes
were filtered to remove those with a disease group of infectious diseases,
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injuries & poisonings, congenital anomalies, or symptoms. We applied the
same statistical analysis to the Phecodes that we used for ICD10 codes,
including the same study design involving both the UKB and TNX cohorts,
requiring the same statistical thresholds to be met (UKB per-Phecode false
discovery rate (FDR) < 0.3 and TNX per-Phecode FDR < 0.01). Due to
technical issues, we were unable to include the requirement for a laboratory
result to be present in the EHR before diagnosis in the TNX cohort. A set of
infectious disease Phecodes was used as positive controls (Tier 1 only) or
negative controls (Expected Negatives) – see Supplementary Data 2.

Establishment of the minimum number of cases and total sam-
ples for analysis
To ensure that the comparisons made had sufficient statistical power to
identify associations if present andminimize themultiple testing correction
burden, we sought to determine what a minimum number of cases and
controls would be. While our analytical strategy used a logistic regression
model, to determine a preliminary power estimate, we opted to consider the
power to detect differences in antibody levels between those with and
without disease for knownantibody-disease pairs. This approach enabled us
to calculate the effect sizes (mean difference between groups divided by
pooled standard deviation) and evaluate the power required to detect such
differences.While the logistic regressionmodels (especially with covariates)
likely have different power estimates, our goal was to identify a pragmatic
threshold for theminimumnumber of cases with a reasonable likelihood of
success.We looked at effect sizes across 14 known positive antibody-disease
pairs in the UKB data, which collapsed to eight pathogen-disease pairs.
These pairs constitute our “Tier 1” positive controls and represent those
infectious diseases that are directly caused by a pathogen, such as “herpes
zoster (HZ)” (ICD10: B02) diagnosis and varicella-zoster virus, the virus
that causes HZ. Effect sizes at the antibody-disease level ranged from 0.1 to
3.9. After collapsing the antibody results to the largest effect per pathogen-
disease pair, effect sizes ranged from 0.2 to 3.9, with a median effect size of
0.72. Using the G*Power 3.1 software package22, we calculated the number
of cases required for 80%powerwith an alpha of 0.05, assuming ten controls
per case, yielding a minimum case number of 17.

We recognize thatmore controlsmay be available, but higher numbers
of controls impact power only slightly (data not shown). Further, using the
median effect size of known positives might underestimate the power for
some pathogen-disease associations; this conservative choice was made to
balance the inclusion of diseases while ensuring sufficient statistical power.

Model development and application
Wemodeled the association between a given disease and pathogen using a
logistic regression model with disease status as the binary outcome and the
pathogen proxy value (continuous for UKB antibody titers, categorical for
TNX positive/negative binary lab tests) as the predictor (Supplementary
Fig. S1a). Since each cohort uses a different type of predictor, we note that
the odds ratio (OR) has a slightly differentmeaning between the two. In the
UKB cohort, the OR represents the increase in odds of developing a disease
per 10-fold increase in antibody titer level. Whereas in the TNX cohort, the
ORrepresents the increase inoddsofdeveloping aparticular disease in those
subjects after infection by a given pathogen. All sex-specific diseases had
controls limited to those participants at risk, e.g., cervical cancer (ICD10:
C53) used only females without a cervical cancer diagnosis as controls. For
all pregnancy and childbirth-relateddiseases, onlypatientswith a recordof a
healthy birth (ICD10 codes O80-O84) were used as controls (i.e., patients
with records of both a healthy birth and the diagnosis of interest were
removed from the analysis to prevent them being used as both cases and
controls).

After adjusting our logistic regressionmodel for all covariates found to
be significantly associated with both disease status and pathogen proxy in
separate two-sided univariate statistical tests (Supplementary Table 1), we
ran a backward elimination procedure (stepAIC, MASS R library),
removing any non-significant covariates from the final model, to mitigate
possible overfitting. We attempted to replicate models that showed

statistical significance in the UKB cohort using the replication cohort by
simply refitting the same model with the TNX data.

In the rare situation where a categorical pathogen test (TNX) had five
or fewer patients in one of the cells of the pathogen-disease contingency
table, we altered our model slightly. For example, for the diagnosis of
“herpesviral [herpes simplex] infections” (ICD10: B00) and the herpes
simplex virus 1 (HSV1) test with LOINC code 93439-8, there is only one
disease control with a positive test result for HSV1, the cause of this disease.
This represents a strong association that would be lost with a standard
logistic regression model. Thus, in these situations, we instead employed
Firth’s bias-reduced logistic regressionmethod23 (R library logistf), which is
appropriate in such situations.

Apermutationprocedurewasperformed to verify the robustness of the
UKB model results. Briefly, 10,000 permutations were run for each
antibody-disease pair (45 total pairs per disease), where disease status was
randomly shuffled amongst the participants while keeping the number of
cases and controls and the model itself, i.e., confounders adjusted for,
constant. Next, all permutation results for a particular disease were pooled
into a larger per-disease null distribution now containing 450,000 permu-
tation results. Empirical p-values for each antibody-disease pair were cal-
culated by comparing the nominal p-value from our analytical model to the
respective per-disease null distribution.

We applied a per-disease Benjamini–Hochberg (BH) false discovery
rate24 at the pathogen-disease level to control for multiple testing. Since we
were using a discovery-replication model, we used a lenient FDR threshold
of 0.3 for our discovery cohort to reduce the likelihood of false negatives that
might occur due to the smaller size of the discovery cohort. Despite the
smaller number of subjects, theUKB cohort has the advantage of systematic
measurements of antibody titers. We therefore applied a much more
stringent FDR threshold of 0.01 to our larger replication cohort tominimize
false positives. Our Tier 1 analysis drove the choice of a precise 0.3 cutoff in
our discovery cohort. All eight Tier 1 associations were significant in the
UKB data at this cutoff, which is expected given their well-accepted causal
relationships. We emphasize that many Tier 2 associations identified by a
semi-automated literature search might be incorrect or might represent
weaker associations that are harder to detect. We therefore did not require
all Tier 2 associations to be significant in theUKBdata and instead expected
an intermediate replication rate for the Tier 2’s between the Tier 1 and
Expected Negatives.

Model assessment
To assess the model’s performance, we calculated associations for a set of
positive and negative control pairs.We used the Tier 1 controls as described
above for the positive controls. Six infectious diseases are included in the
Tier 1 controls, two of which can be caused by two different pathogens
included in this study (“herpesviral [herpes simplex] infections” by herpes
simplex virus 1 or 2 and “unspecified viral hepatitis”byhepatitis B (HBV) or
hepatitis C (HCV)). The negative control set, termed “Expected Negatives”,
represents the complement of the Tier 1 controls, e.g., a herpes zoster
diagnosis paired with HBV instead of the causal agent, varicella zoster virus
(VZV). As an additional assessment, a second set of positive controls using
only non-communicable diseases (NCDs) (“Tier 2”) was collected using a
semi-automated literature mining approach. In brief, we employed the log
product frequency (LPF), a previouslypublishedmethod for quantifying the
co-occurrence of search terms in PubMed25,26. Specifically, we employ a
negated form of LPF to rank pathogen-disease pairs by the number of
PubMed co-citations (disease and pathogen), normalized by the number of
citations of each separately (Supplementary Fig. S1b). The negation rotates
the LPF values around the origin, allowing us to deal with LPFvalues greater
than zero, whereas regular LPF values are all less than or equal to zero. The
closer the LPF value is to zero, the more the disease and pathogen were co-
cited as opposed to cited individually.

Searches of PubMed were conducted using the Entrez functions from
the Python library Biopython using default settings on 8/11/2020. The top
175 results ranked by LPF (SupplementaryData 3) weremanually reviewed
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byM.L. The evidence column in SupplementaryData 3 contains one of four
levels used to gauge the literature support found for a particular pathogen-
disease pair during the manual review. Briefly, a rating of “High” indicates
that at least one published meta-analysis supporting the association was
found, or the connection is textbook knowledge (e.g., Hepatitis B causes
hepatitis). “Medium” signifies that some cross-sectional or longitudinal
studies were found supporting the pair’s association. An evidence level of
“Low” indicates that only a handful of case reports pointing to a possible
association were found. “None”means no papers were found indicating an
association.

After limiting pairs to only those with a “high” evidence grade, wewere
leftwith83pathogen-diseasepairs,makingupour “Tier 2”positive controls.
Pairs with less evidence and thus not rated as “high”were classified as either
“medium”, “low”, or “none”, for several reasons, all of which were excluded
from theTier 2 list. For example, D50, “iron-deficiency anemia” pairedwith
Merkel cell polyomavirus (MCV), ranked 22nd by LPF, was marked as
“none” after manual review. Notably, the acronymMCV can also stand for
“mean corpuscular volume”, a blood measurement that can indicate iron-
deficiency anemia, which is likely the cause for the high ranking. Further,
K58, “irritable bowel syndrome (IBS)” pairedwithH. pylori, ranked 138th by
LPF, was classified as having low evidence by M.L. after the manual litera-
ture review. Althoughmany studies have examined this association, the two
most recent, i.e., published before our literature search, meta-analyses27,28

have found no significant association between the two. Further, since the
initial literature review, two additionalmeta-analyses found non-significant
associations between IBS and H. pylori as well29,30.

This semi-automated approach was required because a manual lit-
erature review for (20 pathogens x 426 diseases = 8520) pathogen-disease
pairs was intractable. The raw automated queries and results, including the
number of citations and PubMed ID (PMID) lists for pathogen-disease co-
citations, pathogen only, and disease only, can be found in Supplemen-
tary Data 4.

Orthogonal validation of CMV-UC association
We attempted to validate two of our replicated findings using two dis-
tinct ‘omics-based methods.

First, to capture differences in viral gene expression levels between
cases and controls for the diseases of interest, we used publicly available
RNA-seq data from case/control cohorts (Supplementary Data 5) and the
bioinformatics tool VIRTUS v1.2.131 using default parameters except
reducing the default “hit_cutoff” from 400 to 0 since we were only inves-
tigating a small number of pathogens. Briefly, VIRTUS is a pipeline that
takes an input RNA-seq FASTQ file and aligns the reads to a reference
human genome (hg38;GCF_000001405.39) using STAR32. It then attempts
to align anyunaligned reads to a secondpre-compiled indexfile containing a
user-specified set of viral genomes, here Epstein-Barr virus (EBV)
(NC_007605.1) and human cytomegalovirus (CMV) (NC_006273.2). The
resulting number ofmapped reads for each viruswasfirst normalized by the
pathogen’s genome length, then normalized by the number of mapped
human reads in the RNA-seq sample, providing the flexibility to compare
results across both different samples and experiments as well as different
pathogens. Finally, the non-parametric Mann–Whitney U test was used to
statistically compare the normalized read counts for a particular pathogen
between cases and controls.

Second, to examine if genome-wide association study (GWAS) loci for
the diseases of interest were enriched near human genes that have altered
expression levels upon infection by the pathogens of interest more so than
unchanged genes, we used our RELI tool11. RELI estimates the statistical
significance of the overlap between a set of input genomic loci and a peak file,
typicallyGWAS loci andChIP-seqpeaks. It does this through apermutation-
based procedure by first counting the number of overlaps between the input
loci and peaks, then permuting the input loci around the genome and again
counting the number of overlaps with the peaks, building a null distribution.
Finally, to calculate significance, RELI compares the total number of overlaps
seen in the input loci set to the constructed null distribution.

WeobtainedGWASdata for ulcerative colitis (UC) and systemic lupus
erythematosus (SLE) from the NHGRI-EBI GWAS catalog (v1.0.2-asso-
ciations_e96_r2019-05-03)33. A genome-wide significance cutoff of 5 × 10−8

was used, and we considered only data from European populations due to
the prevalence ofGWASdata for this ancestry group. Independent lociwere
identified for each phenotype using linkage disequilibrium (LD)-based
pruning with PLINK34 (window size 300,000 kb, SNP shift size 100,000 kb,
and r2 < 0.2). These independent loci were then expanded to incorporate
variants in strong LD (r2 > 0.8) again using PLINK. Next, we downloaded
lists of geneswith expression changes in response toCMVor separatelyEBV
infection from the VExD database (https://vexd.cchmc.org)35 (Supple-
mentary Data 6). Differentially expressed genes (DEGs) are identified in
VExD as those genes with an adjusted p-value < 0.05 and absolute fold
change >2, when comparing infected and uninfected cells of the same type
within a single study. As a null model, for each study, we also identified sets
of genes that, while expressed, do not significantly change upon infection
(adjusted p ≥ 0.05, and fold change <1.2) and randomly selected the same
number of genes to match the corresponding differentially expressed gene
set. We then ran RELI using the GWAS risk loci for each disease as input
against the genomic regions defined by a 200 kb window centered on the
transcription start site of each input gene.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Pathogen-disease data collection in two large independent
cohorts
We employed a discovery-replication experimental design using two newly
available resources, The UK Biobank (UKB) and TriNetX (TNX). For our
discovery cohort, we used the portion of UKB participants that had 45
antibody titers systematically measured, representing immune responses to
20 unique pathogens (9429 UKB participants). Within the set of UKB
subjects with serologic data, setting aside International Classification of
Diseases 10th revision (ICD10) codes A00–B99 covering “Certain infectious
and parasitic diseases”, we found 399 non-communicable diseases (NCDs)
and 27 communicable diseases (ICD10 codes between C00 and O99) for
which we were statistically powered to test (Supplementary Data 7). The
primary focus of this study is on the 399NCDswith a secondary assessment
of communicable diseases that are associatedwith non-causative pathogens.
This discovery cohort (UKB) has the advantage of a carefully controlled
experimental design withmany covariates for the detection of confounding
effects, but it has the disadvantage of a relatively small number of subjects.

We used data extracted from The TriNetX Research Network as our
independent replication cohort. These data contain both the clinical diag-
noses and the serologic test results required for ourmodel for over 11million
individuals. A total of 209 separate binary (positive/negative) clinical
laboratory tests targeting the 20 UKB pathogens were identified in the
medical records provided by TNX. Utilizing the same statistical power
requirements, TNXwas powered to test nearly 75% of the 8616 tested UKB
pathogen-disease pairs. This replication cohort (TNX) has the disadvantage
of a less well-controlled study design involving data from different clinical
tests and sites, with the advantage of a very large number of subjects. The
larger number of subjects enabled the use of an additional restriction
requiring infection status to appear in a participant’smedical record prior to
disease diagnosis (see Methods).

Development of a statistical model with high sensitivity and
specificity
We developed a workflow for systematically detecting and replicating
pathogen-disease pairswithin our discovery and replication cohorts (Fig. 1).
To this end, we used a logistic regression model to test for association
betweenoneof the 426disease statuses of interest andaproxy for ahistoryof
infection by a given pathogen: either one of the 45 continuous antibody titer
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values (UKB) or binary clinical laboratory test results (TNX). To mitigate
potential confounding, we adjusted each model for any of ten additional
sociodemographic andhealth-related variables (SupplementaryData 1) that
were found to be significantly associated with both disease status and the
pathogen proxy in the discovery cohort (Supplementary Table S1). To
prevent overfitting, a backward elimination procedure was used to prune
non-significant covariates before fitting the final model (see Methods). Six
infectious diseases (ICD10 codes between A00 and B99) were also included
as part of a control set. Within the resulting 19,289 separate antibody-
disease tests, we collapsed instances of multiple antibodies to the same
pathogen by selecting the antibody with the most significant association. In
total, this procedure resulted in 8616 pathogen-disease tests.

The most commonly adjusted-for covariates were age, sex, and body
mass index (BMI), included in 35.5%, 31.4%, and 24.4% of the UKB
antibody-diseasemodels, respectively (Supplementary Fig. S2).As expected,
age was most significant in models for diseases that are more common in
geriatric patients, such as “disorders of lipoprotein metabolism and
other lipidaemias”, “other arthrosis”, and “other cataract”. Likewise, the
strongest BMI associations were seen in models for metabolic syndrome
diseases such as “obesity”, “essential primary hypertension”, and “diabetes
mellitus”. Roughly a quarter of models did not require adjustment for any
covariates.

We confirmed the robustness of our analytical model in our UKB
discovery cohort using a permutation-based approach. To this end, we
calculated an empirical p-value for each antibody-disease pair by permuting
disease status across individuals (see Methods). We observed exceptionally
strong correlation (Pearson’s r > 0.99) between the nominal p-value
obtained from our analytical model and the empirically derived
permutation-based p-value (Supplementary Fig. S3).

To reduce themultiple testing burden,we only tested pathogen-disease
pairs in the replication cohort that were statistically significant in the dis-
covery cohort. During replication, we refit the UKB model using the
replication cohort data, adjusting for the same covariates when data were
available. To reduce false negatives during discovery, a lenient per-disease
Benjamini–Hochberg (BH) false discovery rate (FDR) threshold of 0.3 was
applied to the discovery cohort results (see Methods). Then, to reduce false
positives during replication, a much more stringent per-disease FDR
threshold of 0.01 was used in the replication stage. Only pairs with sig-
nificant associations and effects (odds ratios) in the same direction across
both cohorts were considered replicated pathogen-disease relationships.

We first assessed the sensitivity of our model on a set of positive
controls. “Tier 1” positive controls were identified as infectious disease
diagnoses paired with their causal pathogen, e.g., hepatitis C (HCV) paired
with a diagnosis of “unspecified viral hepatitis” (ICD10: B19). As expected,

Goal:
Test antibody titers for association with disease

Remove:
• Diseases not statistically powered 
       [<17 cases, <187 total samples]
• Infectious diseases
       [ICD10 chapters A, B]

• Participants without Ab data

Include:
• 10 potential confounders

Samples = 9,429

Replicated disease-pathogen pairs

UKB FDR < 0.3

Goal:
Mine EHR to attempt replication of UKB result

Remove:
• Diseases not powered 
       [<17 cases, < 187 total samples]

• Unpowered pathogen tests
       [<187 test results across cases and
       controls]

Include:
• Confounding variables found in UKB model

Antibodies = 45
[Pathogens = 20]

Collapse to Disease-Pathogen Association

TNX FDR < 0.01

Refit UKB Model 

Model Disease-Antibody Association

~

~

Diseases = 426

~
~~

Fig. 1 |Overviewof study design.TheUKBiobank (UKB)was used as the discovery
cohort (left). 426 diseases with sufficient sample counts in UKB (along with positive
and negative controls) were tested for association with the 45 antibody titers
representing immune responses to 20 unique pathogens across 9429 UKB partici-
pants. Models were adjusted for any of ten additional health-related and socio-
demographic variables that were determined to be confounding for a particular

antibody-disease pair. The antibody-disease pair results were collapsed to the
pathogen-disease level by selecting the most significant antibody-disease result to
represent that pathogenʼs association with the disease. Significant pathogen-disease
pairs identified in UKB were tested in the independent TriNetX (TNX) cohort
(right). Pathogen-disease pairs that were significant in both the discovery and the
replication cohort were considered replicated pairs.
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our model found significant associations between the disease “unspecified
viral hepatitis” and both hepatitis B (HBV) and HCV pathogens. It also
identified an association with the BK virus (BKV) at the more lenient dis-
covery cohort threshold. However, upon testing for replication, only the
HBV and HCV results remained significant (Supplementary Fig. S4). To
assess the specificity of the model, we used a set of “Expected Negatives”,
whichwe identified as the complement of theTier 1 positive controls, i.e., an
infectious disease diagnoses with a pathogen that does not cause the disease,
such as “unspecified viral hepatitis” with Epstein-Barr virus (EBV). We
excluded human immunodeficiency virus (HIV) from the Expected
Negative set due to its indirect involvement in many immune-mediated
diseases.

Overall, ourmodel identified significant association for all eight (100%)
of the Tier 1 positive control pathogen-disease pairs in theUKB cohort, and
all eight replicated in TNX (Table 1). Conversely, the model identified only
five (5.68%) of the Expected Negatives as significant in UKB, only one of
which replicated inTNX, adiagnosis of “infectiousmononucleosis” (ICD10:
B27) and human herpesvirus 6 (HHV-6). Upon further investigation, this
replicated Expected Negative pair represents a previously established

relationship: HHV-6 infection can account for up to five percent of infec-
tious mononucleosis (IM)-like syndrome diagnoses in adult patients36.
Considering only the fully replicated pairs as predicted positives, and those
pairs that were either identified as not significant in UKB or failed repli-
cation as predicted negatives, our model has a sensitivity of 1.0, a specificity
of 0.80, and a precision of 0.89.

We next assessed a set of 83 pathogen-NCD pairs with suggestive
literature evidence, the “Tier 2” positive controls, collected via a semi-
automated literature search approach (see Methods). Sixteen (19.28%) of
these Tier 2 pairs were significantly associated inUKB, and 11 of the 15with
available data (68.75%) replicated inTNX. Included in these arewell-known
associations such asH. pylori with several gastroenterological diseases such
as “duodenal ulcer”, “peptic ulcer, site unspecified”, and “gastritis and
duodenitis”37–39. We also replicated connections between particular patho-
gens and hepatic diseases, such as “fibrosis and cirrhosis of liver”withHCV
and “other diseases of liver”with both HBV andHCV40. Finally, our model
validated the now well-established associations of EBV with multiple
sclerosis (MS)10,12,41 andwith systemic lupus erythematosus (SLE)42,43. Taken
together, these results establish that our approach can capture both

Table 1 | Results for all Tier 1 pathogen-disease pairs and other discussed pairs

Disease name ICD10 Path Group UKB FDR TNX FDR UKB OR TNX OR Rep status

Anogenital Herpesviral Infect A60 HSV-2 Tier 1 1.4E−03 2.6E−298 4.10 11.76 REP

Herpesviral Infect B00 HSV-1 Tier 1 9.5E−04 8.9E−266 2.08 2.93 REP

Herpesviral Infect B00 HSV-2 Tier 1 2.2E−01 1.6E−298 1.36 5.18 REP

Herpes Zoster B02 VZV Tier 1 6.4E−02 4.1E−259 1.43 14.43 REP

Unspec Viral Hepatitis B19 HBV Tier 1 2.4E−04 1.9E−299 2.28 7.20 REP

Unspec Viral Hepatitis B19 HCV Tier 1 6.7E−06 1.9E−299 2.96 11.57 REP

Unspec HIV B24 HIV Tier 1 1.3E−06 8.0E−300 38.21 635.37 REP

Infectious Mono B27 EBV Tier 1 5.0E−02 8.2E−212 2.14 8.39 REP

Iron-Deficiency Anemia D50 H. pylori Tier 2 9.9E−03 1.1E−08 1.17 1.24 REP

Multiple Sclerosis G35 EBV Tier 2 2.5E−01 2.5E−03 2.55 4.45 REP

Duodenal Ulcer K26 H. pylori Tier 2 1.3E−03 1.7E−04 1.73 1.43 REP

Peptic Ulcer Site Unspec K27 H. pylori Tier 2 9.0E−02 5.6E−138 1.60 3.68 REP

Gastritis and Duodenitis K29 H. pylori Tier 2 1.5E−01 7.9E−134 1.13 1.97 REP

Fibrosis and Cirrhosis of Liver K74 HCV Tier 2 7.3E−02 6.7E−299 2.69 4.31 REP

Other Dis of Liver K76 HBV Tier 2 1.6E−02 7.8E−299 1.44 2.97 REP

Other Dis of Liver K76 HCV Tier 2 1.6E−02 7.8E−299 1.47 2.03 REP

Asthma J45 H. pylori Unk 1.8E−02 2.8E−04 0.89 0.80 REP

GERD K21 H. pylori Unk 2.1E−02 2.9E−07 0.88 0.66 REP

Other Dis of Esophagus K22 H. pylori Unk 5.1E−03 1.4E−09 0.68 0.72 REP

Diaphragmatic Hernia K44 H. pylori Unk 2.7E−01 1.4E−06 0.90 0.76 REP

Inflammatory Bowel Dis K58 H. pylori Unk 1.9E−01 6.10E−29 0.91 0.48 REP

Crohn’s Dis K50 CMV Unk 8.7E−01 – 0.86 – DNAR

Crohn’s Dis K50 EBV Unk 8.7E−01 – 1.65 – DNAR

Ulcerative Colitis K51 CMV Unk 2.0E−01 8.6E−06 1.36 2.78 REP

Ulcerative Colitis K51 EBV Unk 3.7E−01 – 0.80 – DNAR

Unspec Noninfective Gastroenteritis/
Colitis

K52 CMV Unk 8.4E−01 – 0.97 – DNAR

Unspec Noninfective Gastroenteritis/
Colitis

K52 EBV Unk 8.4E−01 – 1.04 – DNAR

Systemic Lupus Erythematosus M32 EBV Tier 2 1.8E−01 1.4E−21 3.98 4.96 REP

Systemic Lupus Erythematosus M32 CMV Unk 4.0E−01 – 1.89 – DNAR

The disease name with its 3-character International Classification of Diseases 10th revision (ICD10) code is listed next to the paired pathogen, followed by the electronic health record statistical analysis
results, including the UK Biobank (UKB) per-disease false discovery rate (FDR) and odds ratio (OR), as well as the TriNetX (TNX) per-disease FDR andOR. All eight of the Tier 1 pathogen-disease pairs and
any other pairs discussed are listed.
Column abbreviations: Path Pathogen, Group Control group (Tier 1 control, Tier 2 control, or previously Unknown association (Unk)). Disease name abbreviations: Infect Infection, Unspec Unspecified,
MonoMononucleosis,DisDisease,GERDGastroesophageal reflux disease.ReplicationStatus (RepStatus) abbreviations:REPReplicated (UKBper-diseaseFDR < 0.3ANDTNXper-diseaseFDR < 0.01),
DNAR Did not attempt replication (UKB per-disease FDR > 0.3).
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well-established and suggestive pathogen-disease relationships while
maintaining a substantial degree of specificity.

Identification of 206 replicated pathogen-disease relationships
Encouraged by the performance of our model on our positive and negative
control sets, we next sought to identify, to the best of our knowledge, novel
pathogen-disease relationships. In total, of the 8437 “unknown” (non-Tier
1, Tier 2, or Expected Negatives) pathogen-disease tests that met our
requirements in UKB, 569 were significant. 462 of these pairs had sufficient
data in the TNX cohort to test for replication, and 195 of these were repli-
cated (2.3% of the total 8437 “unknown” pairs that were initially tested)
(Fig. 2a). The 195 replicated pairs represent a diverse collection of diseases
and pathogens, with 15 of the 20 tested pathogens connected to at least one
of 96 distinct diseases, 89 of which areNCDs (Figs. 3, 4, and Supplementary
Data 8). Altogether, the 11 Tier 2 and the 195 “unknown” pathogen-disease
relationships equate to206 replicated associations.While these relationships

are correlations, due to the size of the TNX cohort, we could restrict our
study population to only those with a pathogen test result (positive or
negative) before disease development while remaining statistically powered.
Thus, these “temporal correlations” provide stronger evidence that the
pathogen plays a role in disease development than a simple correlation. In
contrast, the antibody titer data present in the UKBwere obtained from the
near-simultaneous measurement of all 45 antibody titers across all 9429
pilot project participants. Thus, they cannot provide the same temporal
correlations.

Outside of our Tier 1 positive controls, the largest odds ratio (OR)
obtained in the UKB is for systemic lupus erythematosus (SLE) with EBV
(UKB OR = 3.98), which also has a large TNX odds ratio of 4.96. We also
replicated the well-established connection between EBV and multiple
sclerosis (UKB OR= 2.55; TNX OR= 4.45). Overall, HCV and HBV have
the most replicated associations (25) of the pathogens tested (Supplemen-
tary Fig. S5). EBV, HBV, and HCV all have replicated associations in over
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Fig. 2 | Summary of pathogen-disease pairs identified across both cohorts. Bar
charts show the percent of pathogen-disease pairs in each subgroup (“Tier 1 Posi-
tives”, “Tier 2 Positives” (ICD10 analysis only), “Expected Negatives”, and
“Unknown”) that were significant in the discovery cohort (blue bars) and replication
cohort (orange bars). The numbers used to calculate the percentages are indicated
above each bar. All discovery cohort (blue bars) significant pairs were assessed for

replication in the independent replication cohort (orange bars). Note that the total
number of pairs tested for replication may not match the number of significant UK
Biobank pairs due to insufficient data available in the replication cohort. Such cases
are not considered replication successes or failures. a Results using International
Classification of Diseases 10th revision (ICD10) codes. b Results using Phecodes.
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ten different ICD10 chapters, reflecting the often systemic effects of infec-
tions by these pathogens. Human cytomegalovirus (CMV) has the most
associations with an OR indicating risk (21 of its 24 replication associations
have an OR greater than 1). In contrast, Chlamydia trachomatis has the
largest number of protective relationships (15 of its 20 with an OR less than

1). “Other diseases of the urinary system” (ICD10: N39) had the most
replicated associations across all pathogens (10), all ofwhich are predicted to
increase the risk of disease. The 3-character ICD10 code N39 includes both
the communicable diagnosis “urinary tract infection” (N39.0) as well as
several non-communicable forms of incontinence (N39.3, N39.4).
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Fig. 3 | Overview of replicated Tier 1 controls and ICD10 codes C00–J99
pathogen-disease pairs.Heatmap containing all pathogens and diseases, either Tier
1 or with an ICD10 code between C00 and J99, with at least one replicated result.
Pathogens are first grouped by type (microbe or virus) and then sub-grouped by
family if more than one member is present. Diseases are ordered by International
Classification of Diseases 10th revision (ICD10) code, with the Tier 1 positive con-
trols at the top. A histogram opposite to each disease indicates the total number of
replicated associations between that disease and all pathogens investigated. Each
replicated result for a pathogen-disease pair is represented by a triangle either
pointing up (indicating an odds ratio greater than one) or down (indicating an odds

ratio less than one). The size of each triangle represents the discovery cohort (UK
Biobank, UKB) odds ratio (OR) and is capped at a maximum of 5 to account for the
very large effect size between “unspecified hiv disease” and human immunodefi-
ciency virus (HIV) (OR: 38.2). The color of each triangle represents the UKB
negative log base-10 per-disease FDR, capped at a maximum of 2.5 to enable better
visual distinction in the region covering all but the eight most significant pathogen-
disease pairs. Each triangle is marked with a central dot, the color of which indicates
whether the pair is a Tier 1 (gold) orTier 2 (cyan) positive control, ExpectedNegative
(black) control, or an unknown relationship (green).
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To characterize the replicated pathogen-disease pairsmore broadly,we
examined our results at the ICD10 chapter level, normally representing
distinct body systems. H. pylori has the most replicated associations in a
particular chapter: chapter XI (K00–K95), which contains diseases of the
digestive system (Supplementary Fig. S6). In addition to the three Tier 2
positive controls discussed above,H.pylori is predicted to increase the riskof
four additional digestive systemdiseases and to decrease the risk of “irritable
bowel syndrome”, “diaphragmatic hernia”, “other diseases of esophagus”,
and “gastro-esophageal reflux disease” (GERD).

Phecode analysis of pathogen-disease associations
Phecodes are a phenotype encoding scheme developed originally for Phe-
WAS studies44,45. Phecodes are sets of ICD codes bundled together in an
attempt to represent a single phenotype. They also include the use of
exclusion criteria, which helps to reduce the presence of cases in a control
cohort. To demonstrate the robustness of our pathogen-disease associa-
tions, we next repeated our ICD10-based analysis using Phecodes as the
outcome variable instead of individual ICD10 codes. This analysis included
18,820pathogen-Phecode unknownpairs, 10Tier 1 pairs, and 104Expected
Negatives.

We first examined the positive control results, finding that 8 of the 10
Tier 1 results are significant in the discovery cohort (UKBdata), all of which
are also significant in the replication cohort (TNX data). As expected, this
fraction of pairs that replicated pairs was much higher than the fraction
observed for the Expected Negatives, 6 of the 104 pairs (Fig. 2b). These
results demonstrate that our Phecode-based model also has the dis-
criminatory capacity to separate positive controls from negative controls.

After assessing themodel performance,wenext analyzed the unknown
pathogen-Phecode pairs. Of the 18,820 unknown pairs, 3289 (589 unique
Phecodes) were significant in the discovery cohort.Wewere powered to test
2784 of these pairs for replication in the TriNetX data, where we found that
1341 pairs (449 unique Phecodes) fully replicated (Supplementary Data 2).
Nearly all of the pairs with a Phecode corresponding to an ICD10 in Table 1
replicate, including multiple sclerosis with EBV, systemic lupus erythema-
tosus with EBV, and ulcerative colitis with CMV, indicating agreement
between the ICD10 results and the Phecode results.

Orthogonal validations of the cytomegalovirus – ulcerative colitis
relationship
We next sought orthogonal evidence supporting the 206 replicated asso-
ciations identified by our approach. Virus-disease relationships are often
reflected by higher expression levels of virus-encoded genes in patients
compared to controls46–50. Likewise, many viruses manipulate host gene
expression patterns51,52, and the molecular processes of most complex dis-
eases are now appreciated to be impacted by alterations to human gene
expression levels53,54.We thus hypothesized that causative pathogen-disease
relationships would be reflected in publicly available gene expression data.
To test this hypothesis, we performed two complementary analyses. First,
we examined viral gene expression levels in patients compared to controls.
Second, we asked if genome-wide association study (GWAS) risk loci were
enriched near human genes with altered expression levels following viral
infection.

As a positive control, we first examined the well-established link
between EBV and SLE. To this end, we identified six publicly available SLE
case/control RNA-seq data sets performed in blood and B cell subsets
(Supplementary Data 5). Collectively, these data contain 378 SLE cases and
74 control subjects.We used theVIRTUS software package31 to identify and
quantify viral read counts in these data. As expected, this analysis revealed
significantly higher EBV transcript levels in SLE cases compared to controls
(p-value = 4.9E−03) (Fig. 5a, Supplementary Data 9).

We next considered ulcerative colitis (UC), a disease with a suggestive
but still unclear role for viral infection55. Ourmain analyses implicated both
HIVandCMV inUCdisease processes, with the replication cohort showing
infection occurred before disease diagnosis. We thus examined RNA-seq
data for a set of 669 UC cases and 59 controls obtained from seven studies

using intestinal biopsies (Supplementary Data 5). Similar to EBV and SLE,
we observe significantly higher levels ofCMV transcripts relative to controls
in these samples (p-value = 2.2E−02) (Fig. 5b, Supplementary Data 9), pro-
viding additional evidence of a role for CMV in UC disease processes.

As a secondorthogonal analysis, we asked ifGWASdisease risk loci are
enrichednear humangeneswith virus-induced expression level changes. To
this end, we used our RELI algorithm11 to relate GWAS risk loci and public
RNA-seq experiments examining virally infected and uninfected cells. In
brief, this procedure uses a permutation-based method to estimate the
significance of the overlap between the genomic coordinates of GWAS-
identified risk loci and 200 kilobase windows around the transcription start
site for genes with virus-altered gene expression levels (see Methods).

As a positive control, wefirst examinedEBVand SLE.As expected, our
analyses revealed significant overlapbetweenSLE risk loci andgenes that are
differentially expressed upon EBV infection, in two independent studies
performed in B lymphocytes and peripheral blood mononuclear cells
(Fig. 5c, purple bars; SupplementaryData 10). In contrast,when considering
genes that did not change significantly upon infection (Fig. 5c, gray bars),
SLE risk loci are not enriched. These results are consistent with our previous
observation that the genomic binding events of the EBNA2 regulatory
protein, encoded by EBV, coincide with approximately half of all SLE risk
loci11. Encouraged by these results, wenext comparedCMV-altered genes to
UCgenetic risk loci. Similar to the EBV-SLE results, we again observe highly
significant overlap between CMV-altered genes and UC risk loci and
insignificant overlap for expressed but unchanged genes (Fig. 5d, purple and
gray bars, respectively; Supplementary Data 10) in two different cell types
(monocytes and dendritic cells). Similar results were obtained for the highly
related Crohn’s disease and inflammatory bowel disease (Supplementary
Data 10).

Collectively, these analyses provide compelling orthogonal evidence
that theCMV-UCconnection identified in both of our independent cohorts
might represent a causative relationship.

Discussion
In this study, we sought a broader understanding of the role played by
pathogens in what are traditionally considered non-communicable diseases
(NCDs). To this end, we developed a logistic regression model and applied
themodel to two large, independent biobank resources. Ourmodel showed
strong discriminatory performance on a set of positive andnegative controls
and replicated many additional well-documented pathogen-NCD associa-
tions. Overall, our results were robust regardless of the choice of Interna-
tional Classification of Diseases 10th revision (ICD10) codes or Phecodes.
We report evidence for over 200 new, to the best of our knowledge, or
previously tenuous pathogen-disease connections, including a role for
cytomegalovirus (CMV) in ulcerative colitis (UC), which was supported by
two orthogonal genomics-based validations, and provide the corresponding
data on a freely accessible and easily browsable web server, https://tf.cchmc.
org/pathogen-disease.

The relationship betweenH. pylori and gastroesophageal reflux disease
(GERD) continues to be debated, with one recent meta-analysis reporting
that the eradication ofH. pylori increases the risk ofGERD, thus indicating a
possible protective effect56 and another recent systematic review rated the
“evidence grade” for the association betweenH. pylori andGERDas low56,57.
Our replicated result indicating that H. pylori has a protective effect adds
additional evidence of this debated association. Outside of ICD10 chapter
XI, H. pylori also has a risk relationship with “iron-deficiency anemia”, an
association that has been published previously58, and a protective relation-
ship with asthma, which has also been previously reported59,60.

Our results implicated both human immunodeficiency virus (HIV)
and CMV in ulcerative colitis (UC). HIV has recently been linked to UC61.
For CMV, a possible role is much less clear, perhaps due to the historical
difficulty of differentiating between CMV colitis and inflammatory bowel
diseases such as UC55. Although the hypothesis that CMVmay be causal of
UC remains contentious62, the ability of CMV to cause UC flare-ups is still
heavily debated63.Our results should aid in these ongoing debates, including
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Fig. 5 | Orthogonal validation of the EBV/SLE and CMV/UC associations.
Orthogonal validation of the Epstein-Barr virus (EBV)/systemic lupus erythema-
tosus (SLE) (positive control) and cytomegalovirus (CMV)/ulcerative colitis (UC)
(new prediction) associations using virus gene expression levels (top) and enrich-
ment of disease risk loci near virus-induced differentially expressed human genes
(bottom). a, b Swarm plots showing viral read counts normalized by the size of the
viral genome and the total number of human mapped reads in that sample, pro-
viding the final ‘Normalized Hit Rate’ calculated by the VIRTUS software package,
referred to on the plots as “Gene Expression Level”. Normalized hit rates were

compared between cases (red dots) and controls (black dots) using a
Mann–Whitney test with the p-values annotated on the plots: SLE versus controls
(panel a) and UC versus controls (panel b). Bar plots indicating the enrichment as a
-Log10(Corrected RELI p-value) of SLE (left, c) or UC (right, d) genome-wide
association study (GWAS) loci proximal to genes with altered expression (purple
bars) or unaltered expression (gray bars) after infection by the viruses EBV and
CMV, respectively. Gene Expression Omnibus (GEO) ID and cell type are provided
below each plot. The black dashed line indicates statistical significance (p = 0.05).
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the replicated associations based on serologic and diagnostic data as well as
our two orthogonal analyses, which all suggest a role for CMV in UC
processes.

A recent study by Levine et al. took a similar approach to ours, with
a specific focus on six neurodegenerative diseases64. Herein, we report
results from an analysis across the disease spectrum. In addition to the
comparatively limited scope of the Levine et al. study, looking at just six
neurodegenerative diseases, there are several additional key differences
between the 2023 Levine et al. study and ours. The Levine et al. study
used hospital diagnosis codes as a pathogen proxy, some of which link to
multiple pathogens, such as viral encephalitis. In comparison, we were
able to pinpoint specific pathogens due to our use of serology data.
Further, by restricting to inpatient hospital databases, the Levine et al.
study focused on patients with infections sufficiently severe enough to
require hospitalization. In contrast, our analyses included systematically
measured titers for select UK Biobank (UKB) participants17, along with
data from TriNetX (TNX), which pulls all available clinical laboratory
test results for each patient, encompassing standard preventative
screenings, outpatient diagnostic workups, as well as panels ordered
during hospital stays. This is likely one reason why the odds ratios we
report are much more modest than those reported by Levine et al. Thus,
although both studies are of great utility, the results of the two studies are
not directly comparable.

Roughly 40% (81/206) of the replicated associations in our study have
odds ratios of less than one, indicating a potentially protective pathogen-
disease relationship. For example, while high-risk strains of human papil-
lomavirus (HPV) such as 16 and 18 are known to cause over 70% of cervical
cancer, our results also suggest thatHPV-16 and−18 canbe “protective” for
diseases such as “seborrheic dermatitis” and “other dermatitis”. Indeed, viral
infections that increase the risk of one phenotype or disease can reduce the
risk for others65–68. More generally, the role of viral infection in shaping the
human immune system and subsequent immune responses has been stu-
died extensively. It is well appreciated that viral infection can rewire the
chromatin of immune cells and shape subsequent responses of a person
toward additional inflammatory insults69,70. For example, a viral response
that results in an interferon-based immune response could be protective in
the context of diseases driven by T cell helper-2 type inflammation71.
Vaccination against a particular pathogenwill protect against infection and,
thus, the disease risks associated with that pathogen. However, further
studies will be required to investigate whether vaccination will confer the
same protective effects against NCDs we report in this study.

The availability of the large datasets from theUKBiobank andTriNetX
enabled this research. The associations identified in our study depend upon
a sufficient number of subjects that have both accompanying diagnostic and
serology data. As additional larger datasets are released, it will be critical to
validate this study’s findings and use the additional statistical power to
examine NCDs for which we were not powered. Identifying potentially
causal etiological mechanisms driving these pathogen-disease associations
will also be important, as recently exemplified by the Epstein-Barr
virus (EBV) –multiple sclerosis (MS) field11,12,69,72,73. Furthermore, the goal
of this study was to attempt to identify connections between pathogens and
non-communicable diseases. Combinations of pathogens can also have
impacts on human disease etiology. For example, Plasmodium falciparum
and EBV have been shown to increase the risk of endemic Burkitt lym-
phoma synergistically74–76. Likewise, genetics likely plays a vital role in
pathogen-host interactions. Future studies applying new methodologies to
much larger cohorts than those presented here will be important for iden-
tifying novel combinations of pathogens and host genetic variant-pathogen
interactions that impact human disease.

Although attempts were made to minimize limitations in this study,
some remain. For example, by their very nature, electronic health records
and biobank data are noisy. We attempted to address this noise by exam-
ining two independent datasets covering vastly separate geographic loca-
tions and requiring a pathogen-disease pair to be significant in both, to be
considered replicated. Another limitation is that the datasets used in this

study are based on cohorts chiefly from only two countries (the United
States and the United Kingdom). Accordingly, the 20 pathogens investi-
gated are largely prevalent and of most importance to the people of those
regions as compared to the rest of the global population. An additional
limitation of the study includes the possibility of cross-reactivity occurring
while testing for a particular pathogen. While each of the serological tests
was approved by the Clinical Laboratory Improvement Amendments
program and used to inform clinical care of patients, it is possible that some
non-viral human protein epitopes cross-reacted with the viral antigens in
the serological tests12,72,77. Finally, not all confounders in the UK Biobank
models could be adjusted for in the replication cohort because the data were
unavailable.

In summary, we present the largest systematic assessment to date of
pathogens in the context of non-communicable human disease. Using
complementary discovery and replication datasets, we identified 206
replicated pathogen-disease relationships, including additional orthogonal
evidence strongly supporting a relationship between CMV infection and
ulcerative colitis. We anticipate that this rich data resource will form the
foundation for future characterization of the many currently unknown
pathogen-disease relationships.

Data availability
The data used for the main analysis from The UK Biobank (UKB) can be
accessed via an application for Tier 2 UKB data. Further, the data from
TriNetX (https://live.trinetx.com, accessed on 14 February 2023) can be
requested directly from TriNetX. In both cases, costs may be incurred,
and a material transfer agreement or data-sharing agreement is required.
The data sources for each figure are as follows: Fig. 1 - None (pictorial
overview of the methods); Fig. 2a - Supplementary Data 8; Fig. 2b
-Supplementary Data 2; Fig. 3 - Supplementary Data 8; Fig. 4 - Sup-
plementary Data 8; Fig. 5a, b - Supplementary Data 9; Fig. 5c, d - Sup-
plementary Data 10; Supplementary Fig. S1 - None (two formulas);
Supplementary Fig. S2 - Supplementary Data 8; Supplementary Fig. S3 -
Supplementary Data 8; Supplementary Fig. S4 - Supplementary Data 8;
Supplementary Fig. S5 - Supplementary Data 8; Supplementary Fig. S6 -
Supplementary Data 8.

Code availability
All code used in this project is available from the Weirauch Lab’s Research
GitHub page, https://github.com/WeirauchLab/pathogen_ncd78. The code
is also stored in Zenodo and can be accessed via the https://doi.org/10.5281/
zenodo.1498596078.
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