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Background Real-world medical environments such as oncology are highly dynamic due to
rapid changes in medical practice, technologies, and patient characteristics. This variability,
if not addressed, can result in data shifts with potentially poor model performance.
Presently, there are few easy-to-implement, model-agnostic diagnostic frameworks to vet
machine learning models for future applicability and temporal consistency.

Methods We extracted clinical data from EHR for a cohort of over 24,000 patients who
received antineoplastic therapy within a distinct year. The label of this study are acute
care utilization (ACU) events, i.e., emergency department visits and hospitalizations, within
180 days of treatment initiation. Our cross-sectional data spans treatment initiation points
from 2010-2022. We implemented three models within our validation framework: Least
Absolute Shrinkage and Selection Operator (LASSO), Random Forest (RF), and Extreme
Gradient Boosting (XGBoost).

Results Here, we introduce a model-agnostic diagnostic framework to validate clinical
machine learning models on time-stamped data, consisting of four stages. First, the
framework evaluates performance by partitioning data from multiple years into training and
validation cohorts. Second, it characterizes the temporal evolution of patient outcomes and
characteristics. Third, model longevity and trade-offs between data quantity and recency
are explored. Finally, feature importance and data valuation algorithms are applied for
feature reduction and data quality assessment. When applied to predicting ACU in cancer
patients, the framework highlights fluctuations in features, labels, and data values over time.
Conclusions The work in this study emphasizes the importance of data timeliness and
relevance. The results on ACU in cancer patients show moderate signs of drift and
corroborate the relevance of temporal considerations when validating machine learning
models for deployment at the point of care.

With the growing use of routinely collected
clinical data, computational models are
increasingly used to predict patient outcomes
with the aim to improve care. However,
changes in medical practices, technologies,
and patient characteristics can lead to
variability in the clinical data that is collected,
reducing the accuracy of the results obtained
when applying the computational model. We
developed a framework to systematically
evaluate clinical machine learning models
over time that assesses how clinical data and
computational model performance evolve,
ensuring safety and reliability. We used our
model on people with cancer undergoing
chemotherapy and were able to predict
emergency department visits and
hospitalizations. Implementing frameworks
such as ours should enable the accuracy of
computational models to be assessed over
time, maintaining their ability to predict
outcomes and improve care for patients.

The widespread adoption of electronic health records (EHR) offers a rich,
longitudinal resource for developing machine learning (ML) models to
improve healthcare delivery and patient outcomes'. Clinical ML models are
increasingly trained on datasets that span many years’. This holds promise
for accurately predicting complex patient trajectories and long-term out-
comes, but it necessitates discerning relevant data given current practices
and care standards.

A fundamental principle in data science is that the performance of a
model is influenced not only by the volume of data but crucially by its
relevance. Particularly in non-stationary real-world environments, more
data does not necessarily result in better performance’. Selecting the most
relevant data, however, often requires careful cohort scoping, feature
reduction, and knowledge of how data and practices evolve over time in
specific domains. This is further complicated by temporal variability, i.e.,
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fluctuations of data quality and relevance for current-day clinical predic-
tions, which is a critical concern for machine learning in highly dynamic
environments™"’.

Clinical pathways in oncology evolve rapidly, influenced by factors
such as emerging therapies, integration of new data modalities, and disease
classification updates (e.g., in the AJCC Cancer Staging System). This
leads to i) natural drift in features, because therapies previously considered
standard of care become obsolete; and ii) drift in clinical outcomes, e.g.,
because new therapies might reduce the number of certain adverse events
(AE) like hospitalizations due to anemia, while giving rise to autoimmune-
related AEs*>"". These shifts in features, patient outcomes, and their joint
distribution are often amplified at scale by EHR systems. For example, the
introduction of new diagnostic tests and therapies frequently necessitates
updated data representations, coding practices (e.g., due to billing and
insurance policies), or data storage systems'>"”. This is exemplified by the
switch of ICD-9 to ICD-10 as coding standard in 2015, leading to a series of
model (re)validation studies'"°. Finally, the onset of the COVID-19 pan-
demic, which led to care disruption and delayed cancer incidence, is a
primary example for why temporal data drifts follow not only gradual,
incremental, and periodic/seasonal patterns, but can be sudden'*"".

Together, these temporal distribution shifts, often summarized under
‘dataset shift’'®, arise as a critical concern for the deployment of clinical ML
models whose robustness depends on the settings and data distribution on
which they are originally trained”. This raises the question about which
validation strategies ensure that models are thoroughly vetted for future
applicability and temporal consistency, ensuring their safety and robustness.

In the literature, it is increasingly recognized that training a model once
before deployment is not sufficient to ensure model robustness, requiring
local validation and retraining strategies'™'. Existing frameworks, there-
fore, frequently focus on drift detection post deployment™*’. Other strate-
gies integrate domain generalization and data adaptation strategies to
enhance temporal robustness™. There is a rising number of tools that har-
ness visualization techniques to understand the temporal evolution of
features®. However, there is a lack of comprehensive, user-friendly, fra-
meworks that look at the dynamic progression of features and labels over
time, analyze data quantity-recency trade-offs, and seamlessly integrate
feature reduction and data valuation algorithms for prospective validation—
elements that are most impactful when combined synergistically.

This study introduces a model-agnostic diagnostic framework
designed for temporal and local validation. Our framework encompasses
four domains, each shedding light on different facets of temporal model
performance. We systematically implement each element of this framework
by applying it to a cohort of cancer patients under systemic antineoplastic
therapy. Throughout this study, the framework enables identifying various
temporally related performance issues. The insights gained from each
analysis provide concrete steps to enhance the stability and applicability of
ML models in complex and evolving real-world environments like clinical
oncology.

Methods

Study design and population

This retrospective study identifies patients from a comprehensive cancer
center at Stanford Health Care Alliance (SHA) using EHR data from Jan-
uary 2010 to December 2022. SHA is an integrated health system, which
includes an academic hospital (Stanford Health Care [SHC]), a community
hospital (ValleyCare Hospital [ValleyCare]), and a community practice
network (University Healthcare Alliance [UHA]). The study was approved
by the Stanford University Institutional Review Board. This study involved
secondary analysis of existing data, and no human subjects were recruited;
therefore, the research was deemed exempt from requiring informed con-
sent (Protocol #47644).

The unit of analysis of this cohort study is individual patients. We
construct a dataset using dense, i.e., highly detailed, and high-dimensional,
electronic health records (EHR, Epic System Corp) from a comprehensive
cancer center. Eligible patients were diagnosed with a solid cancer disease,

and received systemic antineoplastic therapy, i.e., immuno-, targeted,
endocrine and/or cytotoxic chemotherapy, between January 1, 2010, to June
30, 2022. We excluded patients who were below the age of 18 on the first day
of therapy, were diagnosed with a cancer disease externally, or had a
hematologic or unknown cancer disease.

Time stamps and features

Each patient record had a timestamp (index date) corresponding to the first
day of systemic therapy. This date was determined using medication codes
and validated using the local cancer registry (gold standard). The feature set
was constructed using demographic information, smoking history, medi-
cations, vitals, laboratory results, diagnosis and procedure codes, and sys-
temic treatment regimen information. To standardize feature extraction, we
used EHR data solely from the 180 days preceding the initiation of systemic
therapy (index date) and used the most recent value recorded for each
feature. This provides an efficient, straightforward approach with minimal
assumptions, while allowing balanced patient representation since patients
with longer and more complex medical history are more accurately repre-
sented in EHR systems. We included the 100 most common diagnosis and
medication codes, as well as the 200 most prevalent procedure codes from
each year. All categorical variables in the feature matrix were one-hot
encoded, indicating whether a specific demographic information, tumor
type, procedure, diagnosis code, medication type etc. was applied or
administered in the past 180 days. This approach produced a feature matrix
where each row represents a single patient. If multiple records for a feature
existed, the last value was carried forward (LVCF) or, if a value was missing
fully for 180 days, imputed using the sample mean from the training set. We
further implemented a k-nearest neighbor-based (KNN) imputation
approach for k=5, 15, 100, 1000, which was fit on the training data and
applied to both the training and the test data.

Labels and censoring

The labels for this study are binary. Positive labels (y=1) were
assigned if two criteria were met. First, an acute care event (ACU),
meaning emergency department visit or hospitalization, occurred
between day 1 and day 180 following the index date. We disregarded
events on day 0 (index date) to avoid contamination from in-patient
therapy initiations. Second, the ACU event was associated with at
least one symptom/diagnosis as defined by CMS’ standardized list of
OP-35 criteria for ACU in cancer patients™. To ensure this window
was set correctly, the index date was compared against the therapy
start date in the local tumor registry (gold standard) and observations
were removed if the start date in the EHR deviated more than 30 days
from the start date in the registry. To address censoring and identify
patients treated elsewhere (i.e., presenting only for second opinion),
patients were only included if they (i) had at least five encounters in
the two years preceding the index date (no left-censoring), and (i)
had at least 6 encounters under therapy, i.e., in the 180 days fol-
lowing the index date.

Model training and evaluation

For each experiment, the patient cohort was split into one or multiple
training and test sets. Hyperparameters were optimized using nested, 10-
fold cross-validation within the training set. The hyperparameters from the
model with the best performance were then used to refit the model on the
entire training set. The model’s performance was evaluated on two separate
independent test sets; one emanated from the same time period (internal
validation) as the training data (90:10 split), and the other originated from
subsequent years, constituting a prospective independent validation set. To
guarantee balanced representation of each year in the sliding window as well
as retrospective incremental learning experiments, i.e., set-ups in which
models are trained on moving blocks of years (see below), we sampled a
fixed number (n=1000) of training samples from each year. For all
remaining experiments, the data within the training and test sets were
utilized in their entirety, without any sampling, encompassing the full scope

Communications Medicine | (2025)5:261


www.nature.com/commsmed

https://doi.org/10.1038/s43856-025-00965-w

Article

Framework for Prospective and Local Validation

1. Prospective Validation
upon Single Data Split

2. Evolution of Features and
Labels over Time

3. Sliding Window, Model Longevity
and Progression Analysis
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Fig. 1 | Framework for prospective and local validation. The figure shows the
framework for prospective and local validation and success metrics for different
stages. The model-agnostic framework (a) depicts a sequence of experiments that
researchers and practitioners can follow to validate a prediction model prospectively
before clinical deployment. Each part addresses a separate analysis, including 1.
assessment of model performance upon splitting time-stamped data into retro-
spective training and prospective validation cohorts; 2. temporal evolution of

patient outcomes and patient characteristics, ranked by feature importance; 3.
longevity of model performance and assessment of trade-offs between the quantity
of training data and its recency; and 4. estimated impact of feature reduction and
algorithmic data selection strategies. The presence of red flags (b) highlights
potential risks/failure modes. Each red flag warrants further investigation and
potential application-specific mitigation.

of data for the selected time period. To ensure universality of the framework,
model performance was evaluated using the Area Under the Receiver
Operating Characteristic curve (AUROC), with 95%-bootstrapped con-
fidence intervals (CI).

Model selection and diagnostic framework

Our framework consists of four steps (Fig. 1), each addressing a distinct
issue related to temporal/local validation. The first experiment performs
a single split on the data to divide the longitudinal dataset into a ‘ret-
rospective’ training and ‘prospective’ validation cohort. We trained three
machine learning models suitable for predicting acute care events in
settings with a sparse feature matrix: logistic Least Absolute Shrinkage
and Selection Operator (LASSO)*, Extreme Gradient Boosting
(XGBoost)”, and Random Forest (RF)*. Based on this experiment, we
select the model with the highest AUROC and short run time for use in
subsequent experiments.

The second experiment (Fig. 1, Evolution of Features and Labels over
Time), examines trends in the incidence of systemic therapy initiations and
acute care events (labels), stratified by event type in each month. The third
experiment (Fig. 1, Sliding Window, Model Longevity, and Progression
Analysis) interrogates performance longevity/robustness as well data
quantity-recency trade-offs. This is achieved through two sub-experiments.
First, the model is trained on a moving three-year time window, and its
performance is then analyzed as the temporal gap (between the last time
stamp in the train set and the first time stamp in the test set) widens. Second,
we perform a progression analysis that emulates the real-world imple-
mentation of the model: the model is implemented from the outset, and its
performance is shown both without retraining and with annual retraining
using the cumulative data available up to each year.

The final experiment (Fig. 1, Temporally Validated Feature
Selection and Data Valuation) estimates the impact of strategies to
select features and training samples most valuable for creating a
temporally robust model.

Shapley values and feature reduction

To inspect the evolution of features most important to the model’s
predictions over time, we calculated Shapley values using “TreeEx-
plainer’ from the Python package ‘SHAP’”. For feature reduction in
the final part of the framework, we used scikit-learn to calculate the
importance of each feature (to identify the features most important to
the model’s performance). Models were trained on data from 2010 to
2020 and tested on data from 2021, and permutations were repeated
50 times. We then removed features with negative permutation
importance due to their putative negative impact on performance.
Feature removal was halted once the features had an importance
value of 0. We finally used a second held-out test set from 2022 to
evaluate performance on a future test set.

Data valuation and elimination

For the data valuation and reduction, we used a Random Forest
classifier and data valuation algorithms implemented in the Python
package ‘OpenDataVal™. First, the following algorithms were com-
pared using recursive datum elimination (RDE): KNNShapley”,
Data-Oob®, Data Banzhaf”, and Leave-One-Out (control). We
employed proportional sampling from each class (with and without
ACU event) when removing datapoints, as changes in the class (im)
balance commonly affect model performance™. We subsequently
used the best-performing algorithms from the point-removal
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Table 1 | Baseline Characteristics of Retrospective and
Prospective Cohorts

Retrospective Training Prospective Test
Cohort 2010-2018 Cohort 2019-2022
n=14,353 n=9724

Patients with acute care
events, No. (%)

3266 (22.75) 1961 (20.17)

Emergency 1244 (8.67) 714 (7.34)
department visit

Hospitalization 2544 (17.72) 1553 (15.97)
Time to ACU Event in 58.79 (49.0) 59.6 (51.18)
Days, mean (SD)

Age - years, mean (SD) 61.35 (14.44) 63.25 (14.48)

Sex, No. (%)

Female 6577 (54.53) 6762 (56.27)
Race, No. (%)
White 8244 (57.44) 5427 (55.81)
Asian 3068 (21.38) 2131 (21.91)
Black 2652 (18.48) 1886 (19.4)
Other or Unknown 2237 (18.55) 2301 (19.15)
Ethnicity, No. (%)
Hispanic or Latino 1722 (12.0) 1341 (13.79)
Comorbidities
Charlson Comorbidity 5.27 (3.28) 5.38 (3.39)
Index, mean (SD)
Cancer Type, No. (%)
Breast 3666 (25.54) 2694 (27.7)
Prostate 1309 (9.12) 914 (9.4)
Gastrointestinal (Lower) 829 (5.78) 639 (6.57)
Gastrointestinal (Upper) 399 (2.78) 274 (2.82)
Pancreas 502 (3.5) 322 (3.31)
Lymphatic 1105 (7.7) 637 (6.55)
Lung and Thoracic 1099 (7.66) 789 (8.11)
Head and Neck 1032 (7.19) 539 (5.54)
Hepatobiliary 1141 (7.95) 504 (5.18)
Genitourinary 1036 (7.22) 800 (8.23)
Gynecologic 823 (5.73) 571 (5.87)
Neurologic/Brain 408 (2.84) 280 (2.88)
Sarcoma 374 (2.61) 298 (3.06)
Skin 577 (4.02) 430 (4.42)
Endocrine 53 (0.37) 33 (0.34)

Route, Systemic Therapy, No. (%)

Intravenous 8759 (61.03) 5463 (56.18)
Oral 5829 (40.61) 4134 (42.51)
Subcutaneous 303 (2.11) 506 (5.2)

experiments to calculate the data value averages for each year and
removed the lowest-ranking training years. The residual data set was
used to retrain the model and tested on the second held-out inde-
pendent prospective test set from 2022 (for illustration, see Fig. 1,
Temporally Validated Feature Selection and Data Validation). All
analyses were performed using the computational software Python
(version 3.9.18) and R (version 4.3.1).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results

We identify a total of 24,077 cancer patients who are eligible for the study.
Figure S1 shows the cohort scoping strategy and exclusion criteria for
identifying cancer patients undergoing anti-neoplastic therapy. The feature
set includes a total of 1050 variables including demographics, medications,
vitals, laboratory results, diagnoses and procedures, and systemic treatment
regimen information. Among all patients, 5227 (21.71%) had an acute care
event within 180 days after the index date, with 4097 (17.02%) hospital
admissions and 1958 (8.13%) emergency department (ED) visits. Patients
are on average 61.12 (SD =14.49) years of age, predominantly female
(55.4%), white (57.4%), and non-Hispanic (87.28%). The majority of
patients received intravenous systemic therapy (57.48%). Table 1 shows the
labels and baseline patient characteristics for the retrospective (2010-2018)
and prospective (2019-2022) cohorts resulting from a single, temporal
data split.

Prospective validation upon single data split

To assess the temporal stability of an ML model on retrospective data
(Fig. 2), we perform a single data split and partition the dataset into a
‘retrospective’ training and ‘prospective’ validation cohort. We hypothe-
sized that performing a single temporal data split is effective in assessing the
capability of historical data from earlier periods in sustaining model per-
formance on future time intervals. The results indicate the performance
metrics of the classification model when trained on historical data up to
2018 and hypothetically implemented at the point of care in 2019. Patients
who start antineoplastic therapy between 2010 and 2018 are grouped into
the retrospective cohort, whereas patients starting therapy after December
2018 are assigned to the prospective validation cohort (Fig. 1). We subse-
quently select three classification models based on their capacity for out-
come prediction from a sparse feature matrix: logistic Least Absolute
Shrinkage and Selection Operator (LASSO), eXtreme Gradient Boosting
(XGBoost), and Random Forest (RF). All models were then trained in four
configurations (Fig. 2a-d) and tested on held-out test sets from either the
same time period or a future validation cohort. The results from training and
validation on the retrospective cohort (Fig. 2a) show an Area Under the
Receiver Operating Characteristic (AUROC) of 0.81 [0.79, 0.82] for the
LASSO, 0.80 [0.79, 0.82] for the XGBoost and 0.80 [0.79, 0.81] for the RF.
When testing these models on the prospective cohort (Fig. 2b) performance
decreases slightly, with an AUROC of 0.76 [0.76, 0.77] for the LASSO, 0.78
[0.78, 0.79] for the XGBoost and 0.78 [0.78, 0.79] for the RF. This perfor-
mance is also slightly lower than when training and testing the models on
the prospective cohort (Fig. 2c, LASSO: 0.81 [0.79, 0.82]; XGBoost: 0.81
[0.79, 0.83]; and RF: 0.80 [0.78, 0.82]) as well as data from the entire time
span between 2010-2022 (Fig. 2d, LASSO: 0.78 [0.77, 0.79]; XGBoost: 0.79
[0.78, 0.80]; and RF: 0.79 [0.78, 0.80]). Since repeating all subsequent
experiments for each classifier is impractical, we proceeded with the RF as
our preferred model because of its high performance in the prospective
validation experiment and shorter training time (Fig. 2b).

Evolution of features and labels over time

Since a decrease in performance can be due to temporal changes in features,
labels, or their joint distribution, we first analyzed the evolution of features
and labels over time. We hypothesized that if there was, for example, a
sudden drift post-2015 (switch from ICD9 to ICD10), this could motivate
including mostly data from the period post-2015 in the training set. To
assess shifts in clinical outcomes, we first calculated the ratio of acute care
events (labels) over the incidence of therapy initiations in each month
(Fig. 3a). The results show that this ratio fluctuates slightly but remains
overall stable. Most acute care events take place in the first 50 days after
initiating chemotherapy (Fig. 3b). Pain, anemia, fever, and nausea are
proportionally the most important diagnoses underlying acute care utili-
zation (Fig. 3c) during 2010-2018 and more recent years (2019-2022).
Except for anemia, there is no quantitative difference larger than 5 per-
centage points in the proportional frequency of diagnoses associated with
ACU between the two time periods.
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Fig. 2 | Prospective validation under single temporal data split. The violin plots
highlight the performance of three machine learning models on held-out test sets in
terms of Area Under the Receiver Operating Characteristic curve (AUROC). Error
bars show 95%-bootstrapped confidence intervals. Panel a shows model perfor-

mance on retrospective cohort, i.e., when models are trained and tested on data from

the same time period (2010-2018). The second panel (b) highlights performance
when testing on future data (2019-2022). The last two panels (c and d) show per-
formance when training and testing on most recent data (2019-2022) or when
training the models on the full time span (2010-2022). The gray arrows indicate
from which periods the train and held-out test set emanate.
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Fig. 3 | Evolution of labels and diagnoses associated with ACU over time. The
smoothed line plot in panel a show the ratio of acute care events (ACU) over therapy
initiations between January 2010 and June 2022. The smoothed line plot in panel
b shows the time to event from therapy initiation, with the mean-normalized
number of events on each day after therapy initiation (index date) on the y-axis. The
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incidence of emergency department (ED) visits and admissions is highest in the first
50 days following therapy initiations. The bar plot (panel ¢) shows the share (fre-
quency in percent) of diagnosis groups associated with acute care utilization, plotted
separately for the retrospective cohort from 2010-2018 (blue) and the prospective
validation cohort from 2019-2022 (red).

To further investigate the projection of features over time, we built
on a previously reported approach™ to create a heatmap that shows the
evolution of features between 2010 and 2022 (Fig. 4). Such heatmaps
provide an intuitive and effective visualization to screen features for their
overall variability and longevity, as well as to eliminate obsolete features
—those that were previously influential but may be irrelevant for a
current model due to discontinued use. We reasoned that understanding
feature evolution is important, as data gathering is expensive and unused
features might harm model performance’. Since displaying all features is
impractical and the screening of more important features should be
prioritized, we further refine this approach by combining it with Shapley
value-based feature reduction. Shapley values are a model-agnostic
approach to measure the importance of each feature for prediction based
on their average marginal contribution”. To illustrate this approach, we
select the top 15 features using the Shapley values from training the RF
on a retrospective cohort (2010-2014). The heatmap displays large
variations for almost all top features. For example, the variable that
records the intention in which a therapy is administered (‘Therapy Goal
Curative’) is frequently used from 2010-2015 and 2018-2022, but barely
used during 2015-2018. Similarly, the distribution of the results from the
lab test for serum albumin shifts to higher means after 2019. Among the
top 15 features, antineoplastic therapy- and laboratory results-related
features are most frequent.

Sliding window, model longevity and progression analysis

As a third step in our framework, we interrogated the performance of the
prediction model on different training and test periods to assess model
longevity/robustness as well as potential trade-offs between data quantity
and data recency. This is achieved through two sub-experiments (Fig. 5).
First, the model is trained on a moving three-year time window and its
performance is then analyzed as the temporal gap between train and test set
widens (Fig. 5a). Second, we perform a progression analysis that emulates

the real-world implementation of the model: the model is implemented
from the outset and its performance is shown both without retraining and
when retrained annually using the cumulative data available up to but
excluding the test set year (Fig. 5b). The results from the sliding window
experiment highlight that depending on which years (fixed training sample
size, n=3000) the model is trained, performance on the future test sets
varies considerably, ranging between AUROC: of 0.64 and 0.76. Rows with
overall dark purple hue highlight training years that lead to comparatively
poor performance. The heatmap further reveals that, except for training on
2013-2015, all models perform as good or better on test data from 2022 than
the two years before (2020-2021).

The results from the real-world progression analysis show that adding
training years at the beginning leads to higher performance on most test
years (vertical reading). At later stages, model performance does not
necessarily increase when adding more recent data. For example, model
performance on test data from 2022 is comparable for the models trained on
the full data from 2010-2019 versus the model trained on full data from
2010-2021. Finally, the experiment of reverse incremental learning (Fig. 5¢),
i.e, when adding a fixed number of data points (n = 1000) from each pre-
vious year retrospectively, shows that the model benefits from integrating
more recent data. When adding data from 2013 (vertical reading), perfor-
mance drops considerably for almost all models.

Temporally validated feature selection and data valuation

Finally, we hypothesized that if features and training points were affected by
ashift or particularly noisy, those could be addressed using feature reduction
and data valuation algorithms. Particularly, since adding 2013 as a training
year results in a considerable performance drop, we hypothesized that the
average data value of this year as well as those during the COVID-19
pandemic would be much lower than those of feature years. In this final
experiment, we develop a ‘denoising’ strategy that would allow us to
selectively narrow down an extensive dataset like ours to temporally robust
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Evolution of Features

Training Set

I

Shapley Values
Therapy Route i.v.: 15.07 H“ ‘
Therapy Alkylating Agent: 12.91
Therapy Antimetabolite: 10.76
Lab Albumin Serum: 7.31
Inpatient Hosp. Care (CPT): 6.1
Lab Hematocrit (%): 6.09
Lab Lymphocytes (%): 5.95
Lab Hemoglobin (abs): 5.63
Therapy Antineoplastic misc: 5.32
Therapy Goal Curative: 5.05

Top 15 Features

Injection of Chemotherapy: 4.5
Emergency Department Visit: 4.44
Tumor Type Breast Cancer: 4.38
Lab Partial Thromboplast. Time: 4.36

Feature class P
B Therapy-related
B Laboratory-related
[ Acute care use (previous)
Tumor entity

Fig. 4 | Evolution of features. The heatmap shows the evolution of the top 15
features (ranked by Shapley values), standardized, and organized into monthly
segments. Feature importance is determined using the training set and evolution is
monitored beyond this period (white vertical line). For illustration, the white rec-
tangle depicts the row-normalized average albumin serum result of patients initi-
ating systemic therapy in April 2015. Changes in color saturation depict variations in

Validation Set

Time [Months]

the standardized means (continuous variables) and frequencies (binary variables) of
a feature and thus highlight shifts in practices, usage of procedure/diagnosis/
laboratory units or distributions of the patient population. Features that transition to
dark purple hue indicate their diminishing usage and potential discontinuation
(categorical variables) or that the mean has decreased (continuous variables).

feature and training sets, while ensuring robust performance on future data.
This is achieved in two steps (Fig. 6).

First, we perform data valuation with validation on a prospective test
set using four data valuation algorithms (Supplementary Fig. S2), including
KNNShapley *', Data-Oob”, Data Banzhaf*’, and Leave-One-Out (con-
trol). Data valuation algorithms enable placing an importance value for
model performance, evaluated on a held-out test set, on each datapoint in
the training set™. To select the top-performing data valuation algorithm, we
first perform recursive data pruning for each algorithm separately on data
from the training period (2010-2020). For all data valuation algorithms, we
use the full feature set. From the comparison of all four data valuation
algorithms, we identify the KNNShapley and Data-Oob as the top-
performing algorithms (Supplementary Fig. S2), which are then used for
data valuation on a held-out prospective test set (2021). The heatmap in
Fig. 6a displays the normalized data values averaged for each month
resulting from KNNShapley and Data-Oob algorithms. The color coding
shows strong consistency between both methods. Months with lower data
value averages are mainly observed for earlier time periods in the training
data. Fig. 6b shows the yearly data value averages determined by the algo-
rithms KNNShapley and Data-Oob for training examples between 2010 and
2020 and the prospective validation set from 2021. The data value averages
show a sharp decline for years before 2014. Based on this result, we train our
final model (Fig. 6d) on training data from 2014-2020.

Second, we use permutation importance to determine feature impor-
tance among our set of 1050 features. Specifically, permutation importance
shuffles a single column (or feature) to measure how important that feature
is for predicting a given outcome™. When used on a model trained on
retrospective data (2010-2020) and tested on future, held-out data (here
2021), permutation importance is a model-agnostic approach to identify
features that truly maintain model performance on future data. In the
presence of correlation, the approach can further be combined with hier-
archical clustering based on the Spearman rank-order correlations. In our
study, we train a Random Forest on data from 2010-2020 and used the year
2021 as a first held-out test set. We subsequently perform stepwise (n = 10)
recursive feature elimination (Fig. 6¢). We then remove all features with
negative signs, i.e., without importance for future test data. We repeat this

experiment three times, each time removing all features with negative signs.
This results in a subset of 405 features. Fig. 6¢ shows the impact on per-
formance when recursively removing features ranked by permutation
performance and at random.

Finally, the model is retrained on the reduced feature set with data from
2014-2020 and tested on the second held-out test set from 2022 that is
independent of all previous data valuation and feature selection (for
approach, see Fig. 1). Supplementary Fig. S3 shows comparable perfor-
mance of all three models (LASSO, XGBoost, and RF) in three configura-
tions: when trained i) on full data, ii) upon data pruning, i.e., after removing
the years with the lowest data value averages (2010-2013), and iii) upon data
pruning and permutation importance-based feature reduction. Supple-
mentary Fig. S4 shows no clear performance differences between models
using a k-nearest neighbor (KNN)-based imputation when trained and
tested on held-out data from 2010-2018, as well as tested prospectively on
data from 2019-2022.

Discussion

Our study advances a diagnostic framework aimed at identifying and
adjusting for temporal shifts in clinical ML models, crucial for ensuring
their robust application over extended periods. This approach, developed
through analyzing over a decade of data in oncology, emphasizes the
difficult balance between the advantage of leveraging historical data and
the disadvantage of including data of diminishing relevance due to
changes in medical practice and population characteristics over time. By
focusing on the temporal dynamics of clinical data, our framework
promotes the development of models that are robust and reflective of
current clinical practices, thereby enhancing their predictive accuracy
and utility in real-world settings. This is accomplished by delineating a
framework comprising essential domains, readily applicable yet fre-
quently overlooked or omitted in local validation processes”. This
methodology not only enables inspection of temporal shifts in data
distributions but also provides an approach for the validation and
implementation of clinical predictive models, ensuring they remain
effective and relevant in rapidly evolving medical fields—especially when
deployed at the point of care.
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The work in this study emphasizes the importance of data timeliness
and relevance and advocates for a data-centric approach with rigorous
prospective local validation, followed by strategic feature and data selection
for model training*~**. This is critical to improve data quality, reduce the
need for complex architectures, and train ML models with the data that
reflect contemporary clinical protocols and patient demographics™*. This

approach allows researchers to apply a models of their choice within the
framework. The results from the feature evolution and incremental learning
experiments show that relevance of data is as important as its volume.
Simply increasing the volume of data, i.e., including more data from the past,
does not necessarily enhance performance. This challenges some traditional

beliefs that accumulating larger datasets guarantees improved accuracy™*.

Communications Medicine | (2025)5:261


www.nature.com/commsmed

https://doi.org/10.1038/s43856-025-00965-w

Article

a Monthly Averages of Standardized Data Values over Time
. 2
KNNShapley | | 1 H ‘ T B
\ \ | | 0
ataOob |
| i
S «&*4 P
Time
b Ranks of Data Values by Year
[%2]
s
G
E !
T R A
: ! | N R S
5 75001 i { 1 =
X >
C
g 7000 —
- -e- DataOob
§ + KNNShapley
N X 9 > X o © \ ® > N
N N N N N N N N N N %
® P P P ® ® ® P P ® P
Year
c Model Performance under Importance-based Feature Removal

Feature removal: 1st Cycle

Feature removal: 2nd Cycle

Feature removal: 3'd Cycle

T
0.80
Q o075 - W
o N
o ~\
2
0.70
1 Random Selection
065 | EI Importance-based Selection
i
0.60 + Nremoved =351 1 Nremoved = 183 Nremoved = 94
o AN L AN O O O N O O N O
KN AD & & o & © © NS N o © O Q

Number of Training Samples

Fig. 6 | Temporal data valuation, feature reduction, and data pruning. The
heatmap in a displays the normalized datum values averaged for each month after
calculation by KNNShapley and Data-Oob on each training datum from 2010 and
2020 and tested on data from 2021. Bins with green hues depict months with, on
average, the most valuable training data for predicting on the prospective cohort.
Red hue indicates that a month is composed of at least some training data that is less
valuable when training a model. b shows the ranked data values group by each year,
based on the data valuation algorithms KNN-Shapley and Data-Oob for training

examples between 2010 and 2020. Data values are converted to rank space for
comparability. Error bars denote 95%-bootstrapped confidence intervals. ¢ shows
performance evolution under recursive feature elimination based on permutation
importance in terms of Area Under the Receiver Operating Characteristic curve
(AUROC) with 95% bootstrapped confidence intervals (shading). The dashed line
displays the point at which all features with negative signs are removed. This process
is repeated three times.

The swift progress in fields like oncology, highlighted by breakthroughs
in immunotherapies, illustrates how an entire treatment landscape can
experience multiple paradigm shifts within a single decade. Thus, relying on
extensive historical data spanning 10 to 15 years can result in a model that is
narrowly tuned to non-representative, old care episodes, thereby degrading
its real-time applicability and performance. In highly dynamic clinical set-
tings, the need for heightened vigilance in identifying data that remain
relevant under current practices and care standards becomes paramount™.
This complexity is exacerbated as individuals frequently move between
various healthcare systems and providers.

Developing a nuanced understanding of how outcomes, features, and
health practices evolve over time is critical for selecting the most relevant
data for ML models. This is an increasingly important challenge that has

been widely acknowledged across fields and is addressed in many dimen-
sions by this framework™*", Models trained on historical data often
experience performance deterioriation*, a phenomenon that underscores
the necessity for periodic retraining or updating’”"*. As shown in the
sliding window experiment, the suitability of certain training years over
others can be a decisive factor for the model’s success when deployed at the
point of care”. This is relevant beyond baseline model training as the
question of how and when models should be retrained, once deployed, has
received much attention in recent years™*".

The potential for data to become outdated implies a trade-off between
the recency and the volume of data, prompting researchers to prioritize
more recent datasets. However, some treatment regimens and patient dis-
tributions may remain stable for extended periods, rendering data from a
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broader timespan applicable for model training. Thus, identifying the date
beyond which data becomes irrelevant for training ML models is a key
challenge®. Understanding patterns of drift is also relevant for data pro-
cessing steps such as imputation. If drift is strong but gradual, using a KNN
approach with small k might be advantageous as the imputation is likely to
rely primarily on (more recent) neighbors that are less affected by drift. In
contrast, when there is moderate gradual drift combined with severe,
temporary drift, we might want to increase k. Using a larger number of
neighbors from more distant years will then be used for imputation and can
offset more recent (and potentially sudden) trends. Imputation approaches
are particularly important if missingness affects many variables. In this
study, more than half of the features were curated using procedure and
diagnosis codes, which are prone to high levels of missingness due to shifts in
medical practices and coding standards. This highlights the need for an
effective imputation strategy in medical applications.

Detecting pivotal junctures poses an intricate task, especially in exten-
sive data sets and without historic knowledge of the data. By methodically
evaluating model performance and data relevance, we delineate a strategic
cut-off point for the inclusion of training data in such highly dynamic
environments. While one might instinctively consider excluding data from
2015 and before due to the known transition from ICD-9 to ICD-10 coding
standards, our findings reveal a notable decline in data values and in per-
formance in the incremental learning experiment in 2013. Overall, training
the model on older data still yields reasonable performance on future test
years. This may be due to the presence of many stable features (with low
variation) as illustrated in the heatmap, moderate baseline drift, and/or
model robustness. Moreover, sudden external shocks such as the COVID-19
pandemic may introduce drift in more recent data. This may result in
additional variability that offsets the relative benefits of adding more recent
data to the training process. This research shows that older data can still yield
strong model performance, reducing the need for frequent retraining,

Moreover, the utilization of incremental learning techniques also
enables us to understand the actual impact of sudden events, such as the
COVID-19 pandemic, on model performance. The average data value for
training data in 2020 exhibited a moderate decrease compared to the peak
values observed in the preceding years of 2017-2019. Our framework, thus,
offers the advantage to contrast data values and performance during periods
of drift with those outside such periods (e.g., just before or after the pan-
demic). The known care disruption and delayed (cancer) incidence under
the COVID-19 pandemic can strongly affect model performance in many
areas”. Detecting performance issues and quantifying the value of data
during such periods provides more clarity on how to address such years, i.e.,
whether to remove them as a potential safeguard against model overfitting
on unique, non-recurring distributions”.

In addition to external shocks, novel therapies can suddenly lead to
changes in the distribution of clinical outcomes, adverse events, and patient
demographics. This corroborates the need for local validation strategies that
also monitor more recent data and explains why simply excluding old data
might not always be enough. Our framework supports the need for adaptive
model training and offers the potential to design more nuanced model
(re)training schemes for clinical machine learning as well as other
disciplines.

Our application included several outcomes (ED visits and hospital
admissions), tumor types (and thus diseases), disease stages, and data types
(e.g., ranging from demographic data to treatment-specific information),
and an extended time span for sudden and gradual temporal drift. This
complex and multifaceted application was intentional to allow for easy
adaptation to less complex scenarios, promoting generalizability.

Our study further advances the management of acute care utilization
(ACU) in cancer patients under systemic therapy and demonstrates that ML
models effectively discriminate between patients with ACU within 180 days
of initiating systemic therapy and those without. Identifying individuals at
high risk for acute care use is increasingly recognized in the literature as
clinically important for reducing mortality, enhancing the quality of care,
and lowering cost”. In this study, we illustrate the methods by which

algorithms can undergo local and prospective validation, a crucial step in
facilitating their transition to clinical application and bridging the gap
between the development and implementation of models*.

The study should be interpreted in the context of its limitations. Our
cohort was a population from Northern California and, despite the inclusion
of diverse practice sites, may not be generalizable to other populations.
While our framework is designed to be a generalizable local validation
strategy, its broader utility across various medical domains, data environ-
ments, and care settings is yet to be demonstrated. Oncology represents a
noisy, highly variable data environment, which is well-suited for studying
time-related performance aspects of clinical machine learning models.
Extending the framework to other domains, data types (e.g., imaging or
genome sequencing data), and care settings with seasonal influences (e.g.,
infectious diseases) may require additional adjustments to account for dif-
ferent clinical contexts and domain-specific data sources*****.

This framework provides a stepwise approach for prospective valida-
tion and leverages data valuation methods to assess temporal drift. Our
framework combines a suite of visualization approaches with temporally
validated feature reduction and data selection strategies. This offers a
strategy to select the most pertinent training data from datasets spanning
over a decade™*. Understanding when relevant drifts occur and which data
to select for model training is a challenge that is critical beyond the field of
oncology. For example, models to predict cardiovascular outcomes for
patients with hypertension might be affected by drift that is caused by the
change in hypertension diagnosis criteria (>130/80 mmHg) in 2017*. Such
changes in diagnostic criteria are likely to result in a shift in the baseline
characteristics of patients diagnosed with hypertension and can thus affect
model performance. By showcasing the framework’s utility across diverse
domains, we will gain further evidence of its broader applicability and
generalizability.

Data availability

Due to privacy and ethical restrictions, the data supporting this study cannot
be made publicly available as they contain protected health information
(PHI). Researchers interested in collaboration or further inquiries may
contact the corresponding author. The source data for the final plots are
available at https://doi.org/10.5281/zenodo.15344733.50.

Code availability

Code and scripts for visualization are available at https://github.com/su-
boussard-lab/temporal-validation-ml* and at https://doi.org/10.5281/
zenodo.15344733.50.
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