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Abstract

BackgroundHeart transplant rejection, particularly acute cellular rejection (ACR), remains a
critical post-operative concern, despite declining incidence rates. Current diagnostic
standards rely on invasive endomyocardial biopsy, which presents limitations in sensitivity
and reproducibility. There is an unmet need for noninvasive, accurate biomarkers that can
detect and monitor rejection. This study aims to evaluate whether extracellular vesicle (EV)
surface antigens, analyzed through flow cytometry and interpreted with artificial intelligence
(AI), can serve as reliable biomarkers for ACR detection and monitoring in heart transplant
recipients.
Methods We conducted a prospective longitudinal cohort study involving 24 heart
transplant recipients over amedian follow-up of 303days. A total of 285blood sampleswere
analyzed for EV surface antigens exploiting two flow cytometry-based protocols. An
adaptive AI model (random forest regressor) was developed to interpret EV antigen profiles,
dynamically calibrating thresholds per patient.
ResultsHereweshow that 14EVsurface antigensprogressively increasewithACRseverity.
These changes are evident even before histological diagnosis. The AI model achieves an
accuracy of 93.3% at leave-one-out testing (AUC 0.968), and 78.9% at validation in an
independent cohort (AUC 0.832), with high specificity and negative predictive value. EV
profiling outperforms conventional biochemical markers and provides anticipatory insight
into rejection dynamics.
Conclusions EV profiling, enhanced by patient-specific AI modeling, offers a powerful
noninvasive method for early detection and monitoring of ACR. This approach holds the
potential to reduce reliance on biopsies and tailor immunosuppressive strategies more
precisely.

The incidence of heart transplant rejection has been decreasing steadily in
recent years, with the 1-year risk dropping from 22% (2005–2009) to 11.8%
(2010–2018) after hospital discharge1. These rates still rank among the
highest in solid organ transplantation. Acute cellular rejection (ACR),
occurring in roughly one-third of patients in the first year post-transplan-
tation, is a major barrier to the long-term survival of cardiac allografts2,

emphasizing the need for the development of sensitive and noninvasive
biomarkers to ensure timely detection and intervention. The International
Society for Heart and Lung Transplantation (ISHLT) advises routine sur-
veillance through endomyocardial biopsy (EMB) with standardized histo-
logic grading for ACR3. Despite this, there are challenges, including
invasiveness and high interrater variability in grading rejection. Circulating
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Plain language summary

Heart transplant patients are at risk of their
body rejecting the new heart, which can lead
to serious health problems. Current methods
to detect rejection often rely on invasive
procedures and may not catch the problem
early enough. This study looked at whether
tiny particles in the blood, called extracellular
vesicles, could help detect rejection earlier
and more accurately. Researchers analyzed
blood samples from heart transplant patients
and used artificial intelligence to interpret the
data. They found that changes in these
particles could signal rejection even before
traditional tests did. This non-invasive
method could help doctors treat rejection
sooner, reduce the need for risky procedures,
and improve long-term outcomes for trans-
plant patients.
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biomarkers and molecular diagnostics have demonstrated relevant pre-
dictive value in monitoring rejection, with emerging data suggesting their
potential in the identification of post-transplant complications. Genomic
(cell-free DNA), transcriptomic (mRNA and microRNA profiling), and
proteomic (protein expression quantitation) methodologies have been
evaluated for diagnosing post-transplant outcomes, albeit with varying
levels of evidence4,5. Inmost cases, prospective studies have not consistently
confirmed the clinical utility of molecular markers in monitoring heart
allograft recipients6. Circulating extracellular vesicles (EVs) have emerged as
valuable noninvasive biomarkers for allograft rejection, with the potential to
reduce the number of needed EMB procedures7–9. EV-based biomarkers
have demonstrated the ability to diagnose rejection and its immunological
variants, humoral and cellular rejection, with satisfactory sensitivity and
specificity8,9. However, it’s important to note that these studies are retro-
spective and cross-sectional, introducing a risk of bias.

Confirmation in prospective longitudinal cohorts would be crucial. In
the present study, we have advanced beyond our previous work by con-
ducting a longitudinal prospective exploratory evaluation to further confirm
and expand earlier findings. We enrolled 24 patients for longitudinal eva-
luations, spanning a median follow-up period of up to 1 year. At each visit
concomitant to EMB, we obtained venous sampling resulting in a total of
285 plasma samples. Additionally, we implemented a technological shift in
sample capture, transitioning from antibody-basedmethods tomembrane-
sensing peptides (MSPs)10, which facilitated the capture of circulating EV
from complex biofluids. Finally, through supervised learning, we developed
and internally validated a diagnosticmodel capable of dynamically adapting
to specific patients to detect rejection episodes by profiling EV surface
antigens. Our comprehensive approach blends prospective validation,

advanced technological methodologies, and artificial intelligence (AI) to
create a robust noninvasive diagnostic tool for monitoring heart transplant
recipients.

Materials and methods
Study design and patient selection
Consecutive patients undergoing heart transplants between August 2020
and August 2021 were recruited and longitudinally evaluated for the first
year after transplant. The study protocol (#0062556) was approved by the
local ethical committee (University of Padova), and fully informed written
consent was provided by each participant. A total of 24 patients were
included in the analysis, with 9–17 visits each (visit median interval of 28
days); at each visit patient underwent clinical evaluation, routine bio-
chemical exams, EMB, and blood sampling (blood was collected immedi-
ately before biopsy, thus avoiding confoundings related to the procedure). A
total of 285 samples were collected and analyzed; the investigators who
conducted experimental analysis were blind to patients’ diagnoses (Fig. 1).

Diagnosis and grading (from grade 0 to 3A) of ACR were defined
according to guidelines of the ISHLT (see Supplementary Methods for the
classification). Antibody-mediated rejection (AMR) was detected in two
samples (patient #20), which were excluded from further analysis. To avoid
confoundings due to systemic acute/chronic inflammation, samples from
subjects with concomitant infections, active cancer, and/or autoimmune
disease were excluded from the study.

Characterization of EV surface antigens
Blood was drawn into tubes containing EDTA and centrifuged at 1600 × g
for 15min to precipitate cellular components; low-centrifuge speed was

Fig. 1 | Study design. A total of 24 patients were enrolled and longitudinally eval-
uated for a median follow-up of 303 days, with a total number of visits ranging
between 9 and 17 for each subject (total number of visits was 285). At each visit,
patient underwent venous sampling and endomyocardial biopsy (EMB); a plasma
samplewas stored and used for EVprofiling byflow cytometry (FC) according to two
different protocols (see also methods): standardized immuno-capturing bead-based
kit vs. customized EV profiling after capturing by membrane-sensing peptides

(MSPs). From a predefined panel of 37 markers commonly expressed on EV
membrane, we selected 14 EV antigens differentially expressed in rejecting, to be
measured with our customizedmethod (MSP-capturing). Levels of expression of EV
antigens were combined in a biomolecular fingerprint by supervised learning, to
build anAI random forest regressor (rRF)model and predict rejection episodes. Part
of the figure was produced using the Servier Medical Art public domain (https://
smart.servier.com).
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used to prevent platelet activation due to shear-stress−induced. Free-
platelet plasma underwent serial centrifugation cycles to remove cellular
debris and larger EVs: 3000 × g 20min, 10,000 × g 15min, and 20,000 × g
30min at 4 °C. All samples underwent systematic profiling of EV surface
antigens according to two different protocols. A predefined panel of 37
antigenswas evaluated by a standardized commercially available kit (Fig. 2a;

MACSPlex Human Exosome Kit; Miltenyi Biotec, Bergisch Gladbach,
Germany; named “EV profiling after immuno-capturing” throughout the
manuscript)11,12. EV markers differentially expressed in rejecting patients
were then included in an in-house customizedpanel toquantify EVantigens
usingflowcytometry after capture byMSP (named “EVprofiling afterMSP-
capturing” throughout themanuscript; Fig. 3a; see SupplementaryMethods

Fig. 2 | EV surface antigen profiling after immuno-capturing in rejecting reci-
pients. Standardized profiling of surface antigens after EV isolation by immuno-
capturing. Normalized median fluorescence intensity (nMFI; expressed as an arbi-
trary unit, a.u.) is reported for tetraspanins (CD9, CD63, and CD81) and for a
predefined panel of 37markers commonly expressed onEVmembrane (285 samples
included in the analysis). aProtocol for EVprofiling after immuno-capturing.bHeat
map showing EV surface antigen expression in patients stratified for rejection grade
(from 0 to 3A; blue, low fluorescence; red, high fluorescence levels). c, dMedian

expression levels of EV surface antigens differentially expressed in rejecting patients,
after patient stratification for time point of evaluation and rejection grade (n = 285):
after surgery (first sampling after heart transplant); grade 0 (non-rejecting patients);
ACR grade 1A/B; pre 1A/B (time point of evaluation before a diagnosis of ACRgrade
1A/B); ACR grade 2–3A; pre 2–3A (time point of evaluation before a diagnosis of
ACR grade 2–3A). Source data and statistics are reported in Supplementary
Data S2 and S3. Part of (a) was produced using the Servier Medical Art public
domain (https://smart.servier.com).
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and Table S1)10. EV antigen levels were expressed as median fluorescence
intensity (MFI), normalized against the mean levels of tetraspanins CD9,
CD63, and CD81 (normalized MFI, nMFI).

Artificial intelligence, statistics, and reproducibility
IBM SPSS Statistics 26 (IBMCorp, Armonk, NY) and GraphPad Prism 9.0
(GraphPad, La Jolla, CA)were used for descriptive statistics. Parametric and
non-parametric tests, Pearson’s R correlation test, and linear regression
analyses were applied to assess associations between EV markers, bio-
chemical routine exams, EMB parameters, and ACR diagnosis. The diag-
nostic performanceof singleEVmarkerswas assessedby analysis of receiver

operating characteristic (ROC) curves. A P value lower than 0.05 was
considered significant.

AI (supervised learning algorithms) was applied to build a random
forest regressor (rRF) model; Python 3.8.10 (library, scikit-learn 1.3.1)
was used for model development. Supervised learning was exploited at
two levels: (i) to formulate predictions on the primary endpoint (ACR
grade 2–3A) on the base of measured levels of single EV markers
expressed as nMFI after correction for median levels of each antigen in
correspondence of grade 0 episodes for each single patient and reported
as percentage of variation; see Supplementary Methods. (ii) To adapt
thresholds of ACR detection to single patients during the respective

Fig. 3 | EV surface antigen profiling after MSP-capturing in rejecting recipients.
Customized profiling of surface antigens after EV isolation by membrane-sensing
peptide (MSP)-capturing. Normalized median fluorescence intensity (nMFI;
expressed as an arbitrary unit, a.u.) is reported for tetraspanins (CD9, CD63, and
CD81) and for a selected panel of 14 EVmarkers differentially expressed in rejecting
recipients (n = 285). a Protocol for EV profiling after MSP-capturing. b Heat map
showing EV surface antigen expression in patients stratified for rejection grade
(from 0 to 3A; blue, low fluorescence; red, high fluorescence levels). c, dMedian
expression levels of EV surface antigens after patient stratification for time point of
evaluation and rejection grade (n = 285): after surgery (first sampling after heart

transplant); grade 0 (non-rejecting patients); ACR grade 1A/B; pre 1A/B (time point
of evaluation before a diagnosis of ACR grade 1A/B); ACR grade 2–3A; pre 2–3A
(time point of evaluation before a diagnosis of ACR grade 2–3A). e Association of
single EV surface antigens with characteristics of endomyocardial biopsy; the slope
indicates a direct or an inverse association, the ellipse radius the P value (a higher
radius corresponds to a lower P value) while colors indicate the strength of the
association (blue for an odds ratio ranging between 0 and 1, red for an OR from 1 to
infinite). Source data and statistics are reported in Tables S2, S3 and S10. Part of (a)
was produced using the Servier Medical Art public domain (https://smart.
servier.com).
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follow-up; at each subsequent visit, the AI model considers only grade 0
episodes encountered at patient’s follow-up until the time point of eva-
luation, evolving and dynamically adapting to that specific patient, and
continuously re-defining the threshold of variation associated with a high
probability of rejection.

To correct for dataset imbalance, three different oversampling
algorithms were applied to the dataset: synthetic minority over-
sampling technique (SMOTE), SMOTE and nearest neighbors, and
random oversampling (RO). A grid search technique was applied to
select the best oversampling algorithm and to tune the hyperpara-
meters of the rRF. At validation, the most accurate rRF model was
composed of 10 classification trees with a maximum number of splits
equal to 10, corrected by the RO algorithm. The AI model was
validated by a leave-one-out algorithm, which randomly selects N−1
patients, trains the rRF into this cohort and tests the trained model
on the remaining subject; the process is reiterated N times (where N
is the number of patients included in the analysis), with the test
subject rotating at each round. Model accuracy at validation results
from the mean of accuracy obtained at each round on the test patient.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Characteristics of the study cohort
A prospective cohort of 24 consecutive patients, who underwent heart
transplant in the same referral center, according to the same protocols, was
enrolled and longitudinally followed with scheduled visits for a median of
303 days (from 9 to 17 visits each, with a median visit interval of 28 days);
mean age was 58 years, and 83.3% were males. At each visit, recipients
underwent clinical evaluation, routine biochemical exams, blood sampling,
and EMB, with a total of 285 assessments (Fig. 1): 181 grade 0 and 104
episodes of ACR (28.1% grade 1A/B, 3.5% grade 2, and 4.9% grade 3A;
Table 1). Graft trajectories are available in Fig. S1: grade 2–3A rejections
occurred in 14 out of 24 enrolled patients, with 3 subjects experiencing 3
episodes (patients #10, #22, and #24). At the first visit after heart transplant,
recipients were normotensive, with a mean BMI of 24.7 kg/m2, a mildly
reduced renal function (mean eGFR 65mL/min), and preserved left and
right ventricular functions.Only onepatient (4.2%) reported thepresenceof
mild symptoms (dyspnea) with slight limitation during ordinary activity
(NYHA class II; Table 1).

Biochemical parameters, immunosuppressive treatment, and char-
acteristics of EMB at follow-up are summarized in Supplementary Data S1,
after stratification for rejection grade. From clinical recordings at time
points corresponding to an ACR grade 2–3A episode (n = 24), we observed
that 91.7% of patients were asymptomatic, whereas one subject was
symptomatic for dyspnea (NYHA class II), and another displayed a wor-
sening of renal retention indices and of cardiac valvular function (mild-to-
moderate mitral regurgitation and severe tricuspid regurgitation). At the
biochemical evaluation, patients displayed higher levels of monocytes and
basophils associated with 3AACR, while no differences were found in other
white blood cell populations, and indices related to liver and renal function.
The immunosuppressive drugs used after heart transplantation (including
cyclosporine, prednisone, mycophenolate, azathioprine, tacrolimus, and/or
everolimus)were the same across the different rejection grades.As expected,
according to histopathologic definition by current recommendations,
inflammatory infiltrate, myocytolysis, myocyte necrosis, ischemic damage,
edema, and vasculitis were observed more frequently in rejecting patients
and specifically in correspondence with grade 2–3A ACR.

Profiling of circulating EV surface antigens in heart transplant
recipients
To pinpoint EV surface immune antigens that consistently reflect the
ongoing cellular inflammatory process associated with ACR, we screened
peripheral plasma samples obtained post-transplant and prior to each EMB
at scheduled visits. EVswere characterized using an indirectflow cytometric
approach. Plasma-derived vesicles were isolated with beads coated with
antibodies targeting specific antigens of interest (37 distinct markers). The
expression of these antigens was assessed in conjunction with the presence
of tetraspanins, and pan-EVmarkers (CD9, CD63, and CD81), following a
previously validated protocol (Fig. 2a)11. We identified 14 differentially
expressed EV antigens (CD2, CD3, CD4, CD8, CD19, CD20, CD24, CD25,
CD45, CD49e, CD62P, CD142, CD209, HLA-I): their median levels pro-
gressively increased in patients experiencing ACR from grade 1A/B to 3A
(Fig. 2b, c; Supplementary Data S2). We independently validated the
selectedEVmarkers using a reversemethodological approach, involving the
EV capture by a novelMSPdesigned to isolate small EVs10,13.MSP-captured
EVs were directly stained with a tailored panel of labeled antibodies tar-
geting tetraspanins and the 14 selected antigens (see methods; Fig. 3a). We
confirmed that levels of expression of all the EV markers included in the
customized panel gradually and significantly increased from non-rejecting
patients to grade 3A (Fig. 3b, c; Table S2).

To further assess the predictive value of differentially expressed EV
markers, we systematically categorized their expression levels at pre-
determined time points. These time points included the first sampling after
heart transplant (recognizing potential effects of surgery on EV sub-
populations due to endothelial damage and inflammation), and samples
collected at visits scheduled in correspondence with histological diagnosis,

Table 1 | Patients’ characteristics at baseline

Variable Study cohort (n = 24)

Sex (ref. Male; n, %) 20 (83.3)

Age at transplant (years) 58 ± 12.5

Weight (kg) 74 ± 15.6

BMI (kg/m2) 24.7 ± 4.73

Systolic BP (mmHg) 119 ± 19.6

Diastolic BP (mmHg) 68 ± 12.4

Heart rate (apm) 90 ± 14.7

Creatinine (μMol/L) 121 ± 69.1

eGFR (mL/min) 65 ± 28.5

AST (U/L) 30 ± 14.7

ALT (U/L) 34 ± 27.7

LV ejection fraction (%) 63 ± 5.0

TAPSE (mm) 18 ± 3.4

sPAP (mmHg) 31 ± 8.9

Valvular diseasea (ref. Yes; n, %) 11 (54.2)

NYHA Class

Class I (n, %) 23 (95.8)

Class II (n, %) 1(4.2)

Follow-up period (days) 303 [248; 362]

Follow-up visit interval (days) 28 [14; 35]

Rejection episodes

Grade 0 181 (63.5)

Grade 1A/B 80 (28.1)

Grade 2 10 (3.5)

Grade 3A 14 (4.9)

Patients’ characteristics at baseline (n = 24; first visit after heart transplantation); the table also
shows percentage and grade of rejection episodes at follow-up (overall number of
evaluations = 285).
BPbloodpressure,eGFR estimatedglomerular filtration rate,LV left ventricular,NYHAclassification
New York Heart Association, sPAP systolic pulmonary artery pressure, TAPSE tricuspid annular
plane systolic excursion.
aAt least mild cardiac valvular disease. Parameters were indicated as mean ± standard deviation,
median [and interquartile range], or absolute number (and percentage), as appropriate.
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distinguishing between non-rejecting episodes (grade 0), grade 1A/B ACR,
andgrade 2–3AACR.Grades 2 and3AACRwere grouped together because
they represent an indication to adjust immunosuppressive treatment,
whereas 1 A/B ACR are usually considered as mild episodes and managed
with a closer follow-up, even if there is no conclusive evidence2,3, and patient
management is left to single-center experience. Additionally, we looked
separately at time points before grade 1A/B ACR (pre 1A/B) and those
before 2–3A ACR (pre 2–3A). This analysis demonstrated a distinct fin-
gerprint of EVs obtained from samples collected at 2–3A episodes. More-
over, we observed that EV markers were already increased at time points
prior to the histological detection of 2–3A rejection, as compared to non-
rejecting patients (whose cardiac biopsies showed no histological signs of
ACR); however, these markers were not increased above the levels detected
during 1A/B episodes (Figs. 2d, 3d; Supplementary Data S3 and Table S3).
Therefore, we compared EV markers after stratification of patients
according to a low vs. high likelihood of moderate/severe grade rejection
(Table S4; 0–1A/B vs. pre 2–3A vs. 2–3A episodes); a significant increase of
CD2, CD24, CD49e, and CD62P was observed at pre 2–3A compared to
0–1A/B, thus suggesting that an EV signature may also serve as a potential
early indicator of rejection, preceding histological assessment.

Detection of ACR using normalized levels of single EV antigens
after MSP-capturing
Given the interindividual variability observed in circulating EV
subpopulations14, we opted for a patient-specific normalization approach to
enhance the diagnostic accuracy of our EV signature. This approach
involved dividing the absolute expression of each EV marker by the
respective median levels recorded during non-rejecting episodes (grade 0)
for that specific marker and patient: the resulting values were then con-
sidered as a percentage increase or decrease compared tograde 0, facilitating
the establishment of reliable cut-offs applicable to a broader cohort.

As expected, normalized levels of EV surface antigens after MSP-
capturing displayed significant increases at ACR grade 1A/B, 2, and 3A
diagnosis as compared to grade 0 (G0-delta percentage variation ranging
between+201 and+314% for grade 1/AB, between+576 and+1094% for
grade 2, andbetween+1788 and4577% for grade 3A;Table S5). In addition,
we observed an increase in EV antigen normalized levels also in corre-
spondence of pre 1A/B episodes (from +4.3% to +131%) and pre 2–3A
(from +82% to +539%; Table S6). Expression levels of EV marker after
normalization for grade 0 levels and for every single patient are reported
in Fig. S2.

Univariate regression analysis confirmed the association of all the
evaluated EV antigens with ACR (grade 2–3A diagnosis). Delta variation
values displayed OR ranging between 1.035 for CD3 and CD8 to 1.369 for
CD142, thus meaning an increase from 3.5 to 36.9% in the likelihood of
ACR grade 2–3A for each 1% increase in median levels of that specific EV
antigen as compared to grade 0 levels for that patient (p < 0.001; Table S7).

The analysis of ROC curves allowed us to identify cut-offs for the
diagnosis of grade 2–3AACRusing absolute values and normalized levels of
each EV antigen; the accuracy was generally very high for all the evaluated
markers, with an AUC ranging between 0.785 and 0.937 for normalized EV
delta variation levels (p < 0.001; Table S8), and sensitivity and specificity up
to 100 and 98.5%, respectively. As an example, a variation equal to or higher
than+429.2% as compared to patient-specific G0 median levels for CD45
displayed a sensitivity/specificity of 83.3/86.6% in the diagnosis of ACR.

EV surface signature and clinical correlations
Direct weak correlations were found between several EV antigens (levels
obtained after MSP-capturing), levels of basophils and renal function
(Pearson’s R coefficients ranging between 0.124 and 0.313; Table S9);
interestingly, we did not observe any other significant correlation between
antigens carried by EVs (and differentially expressed in rejecting patients),
and the evaluated biochemical parameters, thus suggesting that EV sig-
nature, but not the conventional biochemical profile, changed during
rejection. On the other side, all the evaluated EV markers were associated

with EMB features related to ACR, including inflammatory infiltrate,
myocytolysis, myocyte necrosis, and edema (OR ranging between 1.01 and
1.16; Fig. 3e and Table S10).

Of note, a multivariate regression model was built to assess the asso-
ciation between single EV antigens and the identification of ACR, after
correction for immunosuppressive treatment (cyclosporine-based vs.
tacrolimus-based regimen). All EV antigens differentially expressed in
rejecting patients were associated with grade 2–3A ACR, independently
from the assumed therapy (Table S11). After diagnosis of grade 2 or 3A
ACR, immunosuppressive regimen was adjusted according to current
guidelines; consistently, the expression of all EV antigens associated with
ACR (except CD8) significantly decreased after treatment variation
(Table S12), mirroring the clinical improvement of patients (see also single
patients’ graft trajectories; Figs. S1 and S2).

Development and validation of an AI model to predict heart
rejection
AIwas applied to develop amodel based on supervised learning algorithms.
This model can identify ACR by analyzing unique EV fingerprints asso-
ciated with grade 2–3A diagnosis. This fingerprint is generated by com-
bining the expression levels of specific EV antigens that are differentially
expressed during rejection as compared to grade 0 within the same patient.
AIwas used to process delta-normalized values obtained at each subsequent
visit: it considers only grade 0 episodes encountered at patient’s follow-up
until the timepoint of evaluation, continuously anddynamically re-defining
the threshold of variation (increase/decrease fromG0 levels) associatedwith
a high probability of rejection for that specific patient (Fig. 1). To this goal,
we used an rRFmodel; rRFwas built to discriminate ACR grade 2–3A from
0 to 1A/B diagnosis, using the 14 EV antigens differentially expressed in
rejecting patients andmeasured by FC afterMSP-capturing. Training of the
AI model, tuning, and validation strategies are described in the methods
section (Supplementary Data S4 and Fig. 4a).

The rRF model generates a coefficient corresponding to the prob-
ability of ACR grade 2–3A for the considered sample; increasing coef-
ficients were directly correlated with the proportion of subjects with
rejection and may be used to define the likelihood of rejection for each
analyzed sample: 9 ± 15% non-rejecting patients (grade 0); 19 ± 27% for
grade 1 A/B; 68 ± 26% for grade 2; 85 ± 18% for grade 3A (Fig. 4b–e and
Table S13). The analysis of the ROC curve demonstrated a reliable
performance with an AUC of 0.968 (95% CI 0.948–0.988; Fig. 4d) and an
accuracy of 93.3% at validation: 248 of 261 G0-1A/B episodes were
correctly classified resulting in a specificity of 95%, and 18 of 24 ACR
grade 2–3A were detected with a sensitivity of 75% (Fig. 4g); positive and
negative predictive values were 31.9% and 96.2%, respectively. The net
benefit of the AI model compared to the use of single EV antigens (see
ROC curve analysis for delta variations in Table S8) was estimated by
comparing their performance in discriminating ACR grade 2–3A: the AI
model applied to EV profiles after MSP-capturing displayed a 15% and
9.9% increase, respectively in mean accuracy and AUC.

The profiling of circulating EVs collected at the visits scheduled before
a grade 2–3A diagnosis at EMB still resulted in a significantly higher risk of
ACR compared toG0 samples (Fig. 4c–f; Table S13);moreover,median rRF
coefficients at time points before a diagnosis of 2–3AACRwere higher, even
if not significantly, compared to ACR 1A/B (Fig. 4f). Consistently, the
unsupervised clustering of EV profiles after MSP-capturing (regardless
EMB) allowed a clear discrimination of themajority of samples according to
their final diagnosis (Fig. S3).

TheAImodelwas then validated in an internal independent validation
cohort of patients (n = 5; Fig. 5 and Table S14), with a follow-up of up to
347 days (57 evaluated samples). The accuracy was 78.9%, with a specificity
of 81.3%, a negative predictive value of 92.9%, and an AUC of 0.832 at
analysis of the ROC curve (Fig. 5a).

The reliability of our EV marker is exemplified by individual patients’
data (Figs. 6 and S2). The EV signature dynamically changes in response to
rejection episodes. While EV markers, such as tetraspanins, CD20, CD24,
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and CD45 increased during the initial episode of ACR grade 1A/B after 63
days, and during subsequent episodes of ACR grade 2 and 3A occurring
after 81 and 263 days, respectively, their expression levels decreased fol-
lowing changes in therapy. This decline reflects the diminished systemic
inflammation resulting from immunosuppressive treatment. The AImodel
accurately predicted ACR grade 2–3A and two out of four grade 1A/B
diagnoses. Additionally, using EV profiling, our AI model can estimate the
likelihood of rejection at each evaluated time point; in this way, we observed
an increased probability of rejection before the occurrence of ACR (e.g.,
increase from 7.5% to 22.8% at day 39, preceding ACR episodes at days 63

and 81). The theoretical application of ourmodelmay lead to select patients
with an increasing probability of rejection at follow-up, for a closer re-
evaluation, thus allowing a potentially earlier detection of ACR.

EMB and blood sampling corresponding to episodes of AMR were
excluded from our analysis. Nevertheless, even if not trained for this scope,
we tested our AI model on EV profiling of 13 patients with AMR from a
previous study9 (Table S15). Of the 14 EV antigens differentially expressed
in ACR, CD2-CD8-CD19-CD20-CD25-CD45-HLA-I were increased also
in patients with a diagnosis of AMR compared to their baseline levels. The
AI model correctly discriminated 76.8% of samples, with a specificity and

Fig. 4 | AImodel to longitudinally predict rejection episodes. Supervised learning
was used to build a diagnostic predictive model based on artificial intelligence to
detect rejection episodes exploiting EV surface antigen profiling performed after
membrane-sensing peptide (MSP)-capturing (285 samples included in the analysis).
aA random forest regressor (rRF)model was trained, tuned, and validated through a
leave-one-patient-out strategy (see methods). The rRF model combines levels of
expression of EV antigens in a biomolecular fingerprint, based on normalized
fluorescence intensity after correction for median levels of each antigen in corre-
spondence with non-rejecting episodes (G0) for each single patient, and reported as
a percentage of variation. The AI model considers, at each subsequent visit, only the
G0 episodes encountered during the patient’s follow-up until the time point at which
the patient is evaluated, evolving, and dynamically adapting to that specific patient,
and continuously re-defining the threshold of variation associated with a high
probability of rejection. b, c Likelihood of rejection after stratification of patients for

rRF coefficients. d ROC curve analysis; area under the curve (AUC) together with
95% confidence interval (CI) is reported for rRF coefficient discriminating ACR
grade 2–3A from G0-1A/B episodes. e Median values of rRF, distribution, and
likelihood of rejection of patient stratified according to rejection grade (from0 to 3A;
n = 285). f Box plot and interquartile range for rRF coefficients in patients stratified
according to the time point of evaluation and rejection grade (n = 285): after surgery
(first sampling after heart transplant); grade 0 (non-rejecting patients); ACR grade
1A/B; pre 1A/B (time point of evaluation before a diagnosis of ACR grade 1A/B);
ACR grade 2–3A; pre 2–3A (time point of evaluation before a diagnosis of ACR
grade 2–3A). g Diagnostic performance (sensitivity, specificity, accuracy, positive
and negative predictive values) at rRFmodel validation. Source data and statistics are
reported in Supplementary Data S4 and Table S13. Part of (a) was produced using
the Servier Medical Art public domain (https://smart.servier.com).
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negative predictive value of 84.6 and 73.3%, respectively, and an AUC of
0.787 (Fig. 5b).

As a technical assessment and to evaluate the reproducibility of EV
profiling in the detection of ACR, the AI model was applied to median
fluorescence levels obtained by EV profiling after antibody-mediated cap-
turing, showing similar performance; rRF was able to effectively stratify most
subjects according to their likelihood of ACR (Fig. S4a–e and Table S16),
with a still reliable accuracy (AUC 0.854; accuracy of 85.6%, sensitivity/
specificity of 62.5/87.7%, and positive/negative predictive value of 31.9/
96.2%; Fig. S4f). The analysis of Bland-Altman plots confirmed a relatively
low inter-assay variability (Table S17 and Fig. S5), with a 3% overestimation
in tetraspanins MFI levels of MSP-capturing approach over immuno-
capturing (quadratic and linear R coefficients of 0.561 and 0.555—p < 0.001,
respectively, at correlation analyses; Fig. S5c); a 6.2% mean overestimation
was observed when considering nMFI for all the other EV antigens.

The final refining of our AI model included the evaluation of its
accuracy at the increase of the number of G0 episodes encountered in the
graft trajectory of every single patient (from 85.4% for 2–5 G0, to 98.6% for
10–14 G0 episodes; Fig. S6a). The overfitting effect was relatively low (2.9
and 7% for MSP-capturing and immuno-capturing, respectively; Fig. S6b).
The application of oversampling strategy resulted in an increase of sensi-
tivity with a slight decrease in specificity, maintaining a comparable accu-
racy (after MSP-capturing: from 52.4/97.9/94.4% to 75.0/95.0/93.3% of
sensitivity/ specificity/accuracy without and with oversampling, respec-
tively; after immuno-capturing: from 8.3/98.9/91.2% to 62.5/87.7/85.6% of
sensitivity/specificity/accuracy without and with oversampling; Fig. S6c),
and the transfer learning applied to the two protocols resulted in a still
acceptable performance (91.1%accuracywhen themodelwas trainedonEV
profiling obtained byMSP-capturing and validated on data from immuno-
capturing, and 82.8% with the reverse approach; Fig. S6d). A comparison
between the accuracy of our AI model applied to EV profiling and the
already available standard of care exploiting AlloMap and characterization
of double-strand cell-free DNA, demonstrated superior performance and
comparable performance, respectively (Table S18).

Discussion
The key findings of this exploratory study are as follows: (i) The levels of
specific EV-associated surface markers show a progressive increase from
non-rejecting patients (grade 0) to ACR grade 3A diagnosis, offering a
comprehensive understanding of the evolving dynamics of rejection. In
contrast, traditional biochemical profiling struggles to differentiate rejection
episodes, revealing only minor differences, mainly in monocytes and
basophils, in correspondence with grade 3A episodes. (ii) The predictive
capacity of EV markers at time points preceding the EMB identification of
an ACR grade 2–3A suggests their potential for anticipating histological
detection of rejection. (iii) We implemented an adaptive AI model that
dynamically adjusts to each patient, normalizing EV antigens fluorescence

levels and continuously refining cut-offs to discern rejection probabilities,
thus overcoming the intrinsic variability of EV profiling due to patient
characteristics, instrumental settings, and potential batch effects.

This innovation addresses two critical aspects: it first overcomes
potential biases introduced by using data from different instruments, pro-
tocols, and settings; secondly, it mitigates relevant risks associated with
treatment delays or unnecessary interventions, stemming from the limita-
tions of histologic grading in predicting a patient’s clinical course. Through
the utilization of a longitudinal approach, the AImodel provides a nuanced
“personalized” understanding of the evolving rejection process, rather than
a simple binary “yes/no” answer. This is a valuable insight into rejection
dynamics, potentially reducing delays in intervention or untailored varia-
tion of immunosuppressive therapy, bymirroring the evolution of rejection
trajectories and treatment responses. This is exemplified by the clear
dynamic correspondence observed in single patient data for EV surface
antigenprofiling.Thenormalized levels of expressionofEVsurface antigens
exhibited substantial increases during rejection episodes (ACR grade 1A/B,
2, and 3A) compared to the baseline (G0). Conversely, when immuno-
suppressant therapy was introduced or adjusted, the level of expression
decreased accordingly, reflecting clinical improvement of patients and graft
trajectories.

The diagnostic and predictive value of EVs lies in their ability to
promptly reflect the dynamic changes occurring in the intricate cellular
processes associated with ACR. The orchestration of graft tolerance and
rejection involves various immune cells. Initially, antigen-presenting cells
(APCs) work with CD4+ helper cells to activate CD8+ cytotoxic T cells,
whichmigrate to the graft. Target cell recognition is facilitatedbyMHCclass
Imolecules, leading to apoptosis inducedbyperforin andgranzymeB, along
with TNF-α secretion. Allo-specific CD4+ T cells, activated by APCs,
release pro-inflammatory factors like IL-1, IFN-γ, andTNF-α. These factors
attract monocytes, macrophages, and eosinophils, which produce harmful
agents causing graft damage. By profiling circulating EV, the active role of
APCs is highlighted by the presence of dendritic cell-specific intercellular
adhesion molecule (CD209) vesicles, and the progressive involvement of
cytotoxicT cells ismirroredby a gradual increase in the level of expressionof
specific markers such as CD2 and CD3. The progressive involvement of
cytotoxic T cells is confirmed by the predominant correlation of conven-
tional T-cell markers with grade classification15. In our study this is evident
by the gradual increase in the expression levels of specific markers such as
CD8, CD2, and CD3. CD3 and CD8 have been identified as effective
diagnostic markers in ROC curve analysis, aligning with findings from
immunohistochemical counting of inflammatory cells in EMB by Bocchi
et al., which demonstrated a robust correlation between cellular rejection
grade and CD3+ cell counts16. Furthermore, patients exhibiting poor
responses to treatment inACRgrade 2displayedhigherCD3+ cell counts16.
This was recently confirmed by proof-of-concept studies applying a state-
of-the-art, fully quantitative, multiplex immunofluorescence methodology

Fig. 5 | Validation of the AI model applied to EV profiling after MSP-capturing.
The AI model was tested on a an independent cohort of patients (n = 5) followed up
to 357 days (57 samples), and b a separate cohort of subjects with a diagnosis of
antibody-mediated rejection (AMR; n = 13). Diagnostic performance (sensitivity,

specificity, accuracy, positive and negative predictive value) are reported together
with ROC curve analysis (area under the curve, AUC, with 95% confidence interval)
and P value for the comparison with referral line. Source data and statistics are
reported in Tables S14 and S15.
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showing that high-grade EMB exhibit significantly elevated levels of CD3+
and CD8+ cells compared to low-grade EMB17. Similarly, regardless of
grade classification, severe, clinically evident rejection events show higher
proportions ofCD3+ andCD8+ cells compared to clinically silent rejection
events17. All these findings taken together provide further insights toward a
tailored patient-centered approach, and even if beyond the scope of the
present study, the change in EV patterns after ACR and as a response to an
adjustment of immunosuppressive regimen may suggest new therapeutic
options, including circulating EVs as potential targets.

It is noteworthy thatwhile the utility of detecting conventionalmarkers
at thehistological level inEMB17 andon circulating cells (as evidencedby the
absence of significant correlation between lymphocytes and grade of
rejection in our study) is limited in distinguishing between cases with and
without serious clinical rejection syndromes, these samemarkers associated
with circulating EV effectively discriminate between ACR grade 2–3A and
G0. Indeed, the ability of EV to capture changes in surface antigen
expression of activated cells adds a layer of precision to rejectionmonitoring
that conventional biochemical methods fail to achieve. Moreover, the high
negative predictive value observed for ourAImodel highlights, as a potential
application, the identification of non-rejecting patients to be deferred over
time, reducing the number of potentially unnecessary EMB. Overall, by
overcoming the limitations of histologic grading, which include the lack of
long-term risk stratification and the difficulty in customizing surveillance
testing and immunosuppression-weaning protocols to individual patients’
ACR risk profiles, EV profiling has the potential to assist clinicians in
optimizing patient care, minimizing unnecessary interventions, and
enhancing overall outcomes in heart transplant recipients. Moreover, the
dynamic shift in EV antigens measured with our assay from grade 1 to 3A
episodes, when compared toG0, underscores the potential of thesemarkers
in detecting also milder forms of rejection, enabling closer patient
monitoring.

On the other side, we were unable to perform a patient-matched,
side-by-side comparison of our EV-based method with established

screening methods for rejection, such as gene expression profiling and
donor-derived cell-free DNA. However, when comparing performance
with previous studies, our AI model demonstrated effectiveness com-
parable to that of cell-free DNA-based techniques in identifying ACR18–20,
while showing slightly superior performance compared to the results
reported in the literature for gene expression profiling21. These approa-
ches have become accepted standardized screening methods for allograft
heart rejection.

Another notable strength of the model lies in its technical validation
through two distinct approaches. The system was tested with a change in
capture technology, moving from antibody-based methods to utilizing
sensing peptides10, alongside modifications in the analysis workflow. With
the use of immuno-capturing beads, each conjugated with specific anti-
bodies, different subpopulations of EV were enriched, but this approach
lacked an exhaustive view of the circulating vesicles. In contrast, employing
MSP-coated beads facilitated the pan-capturing of the entire population of
circulating EVs, which were then stained for specific markers. This method
primarily relied on the frequency of these EV-marker pairs rather than on
their expression levels within specific subpopulations, which could be
influenced by the number of captured EVs. Remarkably, the model
demonstrated high specificity and accuracy in both scenarios, underscoring
its generalizability across different technical approaches and instruments.
The adopted normalization approach ensures that each patient’s response is
assessed relative to their own baseline. This reduces the influence of inter-
patient variability and minimizes potential biases caused by confounding
factors; additionally, it addresses the limitations associatedwith longitudinal
evaluations involving repeated measures on a restricted number of indivi-
duals. With regard to clinical translatability of our model, the turnaround
time from sampling to data analysis ranges between 12and 14 hdown to 5 h
according to the applied protocols22, with a coefficient of variability between
5.8 and 20.7%, from previous studies validating the immuno-capture
approach using alternative protocols, instruments, type, and amount of
biological sample11,23,24.

Fig. 6 | Application of AI to monitor cellular rejection after heart transplant.
Artificial intelligence (AI) and the profiling of circulating extracellular vesicles (EVs)
by MSP (membrane-sensing peptide) -capture are applied to monitor patient #10, a
64-year-old male who underwent a heart transplant and was followed for 361 days
after the heart transplant. Days (D) after transplant, result of the endomyocardial
biopsy (EMB), and immunosuppressive therapy are reported for each evaluated time

point, together with levels of EV surface antigens (tetraspanins, CD20, CD24, and
CD45, are showed as exemplary representation) and output of the AI model (like-
lihood of ACR grade 2–3A according to the EV signature, basing on normalized
levels of EV antigens with dynamic adaptation of decisional thresholds for this
specific patient; see methods). Part of the figure was produced using the Servier
Medical Art public domain (https://smart.servier.com).
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The exclusion of AMR represents the main limitation of the study:
AMR is a distinct form of rejection with its own pathophysiology. The
exclusion of AMR from the analysis may hamper the full translation of our
AI model in clinical practice, thus failing to provide a comprehensive
understandingof this typeof rejection; anyway, the retrospective application
of AI to EV profiling from a previous study9 demonstrated an acceptable
diagnostic performance, suggesting the feasibility of future studies dedicated
to the identification of AMR. A second limitation of our study is the lack of
external validation. While we employed a leave-one-out validation
approach and further validated the AImodel using an independent internal
cohort of patients, including those with AMR, validation using data from
external cohorts and/or laboratories would enhance the robustness and
generalizability of our findings. Such validation would provide deeper
insights into the impact of immunosuppressive regimens beyond cyclos-
porine and tacrolimus, as well as inter-laboratory variability in measure-
ments. Moreover, patients with concomitant infections, active cancer, and/
or autoimmune disease were excluded, thus hampering the possibility to
assess if the diagnostic reliability would be preserved in these categories of
patients. Finally, even if the employment of a predefinedpanel of EVsurface
antigens represents a standardizable approach and is easily translatable to
clinical practice, it may have missed potentially relevant biomarkers that
could have been assessed by an unbiased proteomic approach.

In conclusion, we demonstrated that EV profiling may represent a
noninvasive tool to monitor recipients of heart transplants; we provided
evidence of consistent performances in detecting allograft rejection through
a leave-one-out validation approach and at internal validation in indepen-
dent cohorts of patients displayingACRorAMR,with accuraciesup to 93.3,
78.9, and 76.9%, respectively. Technical replicability was assessed using
different protocols for EV isolation and characterization (MSP- and
immuno-capturing) and by application of transfer learning. Our AI model
could be integrated into a user-friendly interface requiring input of mea-
suredfluorescence levels for single EVantigens,with the rejection likelihood
as output: patientswith ahigherprobabilityof rejectionmaybe selected for a
closer follow-up, while in case of low probability, the follow-up will be
delayed. This will allow an early and tailored treatment, potentially
increasing the survival of cardiac allografts. The application of AI, which
dynamically adapts to individual patients and refines thresholds for iden-
tifying rejection with each new assessment, demonstrates strong utility in
identifying non-rejecting patients.While the positive predictive value of our
AImodel is relatively low, its ability to effectively rule out rejection enhances
its potential for precision medicine, supporting more targeted and indivi-
dualized patient management.

Data availability
All data needed to evaluate the conclusions in the paper are present in the
paper and/or the SupplementaryMaterials. Additional informationmay be
obtained from corresponding authors upon reasonable request. Source data
for Fig. 2 is in Supplementary Data S2 and S3; source data for Fig. 3 is in
Supplementary Tables S2, S3 and S10; source data for Fig. 4 is in Supple-
mentary Data S4 and Table S13; source data for Fig. 5 is in Supplementary
Tables S14 and S15.

Code availability
The underlying code for this study is publicly available on GitHub at the
following link: https://github.com/ABurrello/EV-HT25.
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