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Sensor-based data collection of human behaviour (digital phenotyping) enables real-time monitoring
of behavioural and physiological markers. This emerging approach offers immense potential to
transform mental health research and care by identifying early signs of symptom exacerbation,
supporting personalised interventions, and enhancing our understanding of daily lived experiences.
However, despite its promise, technical and user-experience challenges limit its effectiveness. This
Perspective critically examines these challenges and provides standardisation strategies, including
universal protocols and cross-platform interoperability. We propose the development of universal
frameworks, adoption of open-source APIs, enhanced cross-platform interoperability, and greater
collaboration between academic researchers and industry stakeholders. We also highlight the need
for culturally sensitive and user-centred designs to improve equity and engagement. By addressing
these gaps, standardisation can enhance data reliability, promote scalability and maximise the
potential of digital phenotyping in clinical and research mental health settings.

Digital phenotyping (DP) refers to the moment-by-moment quantification
of the individual-level human phenotype using data from personal digital
devices such as smartphones and wearables1. It involves the collection and
analysis of behavioural and physiological data to generate insights into an
individual’s mental and physical states in real-time1–3. DP has gained sig-
nificant interest for use in mental health care2,4–6. By leveraging wearable
devices and smartphones, DP offers real-time insights into individuals’
health, enabling the detectionof subtle changes inmental andphysical states
that were previously difficult to detect7–9. This technique shows high sen-
sitivity in detecting early signs ofmental illness6 and can help predict relapse
using smartphone data days before they become clinically apparent10–14.
Recent work has even suggested that DP ‘could support gold-standard
assessment and…predict symptom exacerbations’6. This offers particular
promise, particularly in mental health care, as early intervention can dra-
matically improve outcomes14,15 for conditions such as depression16–18,
anxiety17,19–23, and seriousmental illnesses such as psychotic disorders7,8,16–20.

Despite its potential, DP faces critical technical challenges and usability
barriers that undermines its reliability and scalability24,25. These challenges
are compounded by the absenceof standardisation inmethodologies, which
results in variability across platforms and studies, limiting the reproduci-
bility and generalisability of findings. In this Perspective, we outline these

challenges and propose strategies for developing universal frameworks and
protocols, to enablemore reliable, scalable and impactful applications ofDP.

Addressing technical challenges
Battery life and power consumption
One of the primary technical challenges of sensor-based data collection is
battery life25. Wearable devices and smartphones rely on continuous power
to collect and transmit data25 and data such as GPS tracking26–28,
accelerometers29, and continuous heart rate monitoring30–32 consume sig-
nificant energy25. At a refresh rate of 1 Hz (the number of times the screen
updates per second), smartphones experience rapid battery drainage, with
Samsung devices lasting approximately six hours and iPhones lasting about
5.5 h28. Location services such asGPS tracking consume approximately 13%
of battery life when operating with a strong signal but in areas with weak
signal strength, battery consumption can significantly increase, reaching up
to 38%27,33. Using accelerometer-based continuous sensing apps (CSAs)
such as Google Fit34 increases battery consumption, particularly during
high-mobility activities such as jogging or excercise29. Walking or other
mobility activities such as running can increase battery consumption by up
to 3–4 times29,35. Day-long experiments demonstrated how smartphones
running CSAs experienced increase in battery consumption up to three

1Warwick Medical School, University of Warwick, Coventry, England, UK. 2Warwick Centre for Global Health, University of Warwick, Coventry, England, UK.
3University of Bath, Bath, England. 4Department of Psychology University of Dhaka, Dhaka, Bangladesh. 5Institute of Psychiatry, Psychology & Neuroscience,
King’s College London, London, England, UK. e-mail: Nadia.Alam@warwick.ac.uk

Communications Medicine |           (2025) 5:360 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-025-01013-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-025-01013-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-025-01013-3&domain=pdf
http://orcid.org/0009-0002-5235-6490
http://orcid.org/0009-0002-5235-6490
http://orcid.org/0009-0002-5235-6490
http://orcid.org/0009-0002-5235-6490
http://orcid.org/0009-0002-5235-6490
http://orcid.org/0000-0002-3629-1706
http://orcid.org/0000-0002-3629-1706
http://orcid.org/0000-0002-3629-1706
http://orcid.org/0000-0002-3629-1706
http://orcid.org/0000-0002-3629-1706
http://orcid.org/0000-0001-7809-8800
http://orcid.org/0000-0001-7809-8800
http://orcid.org/0000-0001-7809-8800
http://orcid.org/0000-0001-7809-8800
http://orcid.org/0000-0001-7809-8800
mailto:Nadia.Alam@warwick.ac.uk
www.nature.com/commsmed


times higher than those without such apps, particularly during physical
activity29. Significant battery drainage is also seen when using photo-
plethysmography in digital devices36 for heart rate monitoring30–32. Con-
tinuous heart rate monitoring requires high energy due to frequent
processing and wireless data transmission to remote servers31. This limits
smartphone uses in real-world scenarios to approximately 9 h on average,
which inconveniences users as they must recharge their devices during
the day31. Similarly for wearables, due to data transmission requirements,
there is significant battery drainage when using heart rate monitoring30,32.
This limits their utility in long-term studies or real-time monitoring
scenarios, as frequent recharging can disrupt data collection and affect
user compliance24,25.

One approach to improve energy efficiency is adaptive sampling,
which dynamically adjusts the frequency of sensor data collection based on
user activity37. This reduces unnecessary power consumption by lowering
the sampling rate when the user is stationary and increasing it only
during movement38,39. Another strategy is sensor duty cycling, which
alternates between low-power sensors, such as accelerometers, and high-
power sensors, like GPS and heart rate monitors40. By activating power-
intensive sensors only, when necessary, duty cycling conserves battery
life without compromising data quality41. Additionally, the development of
low-power wearable devices, leveraging energy-efficient chipsets42, Blue-
tooth Low Energy (BLE)43 and hardware-based power management algo-
rithms, enables prolonged monitoring while reducing the frequency of
recharging42,44. These innovations can allow DP applications to minimise
battery drain, enhance usability and improve participant compliance in
long-term studies.

Furthermore, researchers may strategically prioritise use and choice of
sensors based on study aims and resource constraints. For instance, short-
term studies that focus on movement may prioritise IMU sensors, while
long-term studies assessing autonomic function may rely on intermittent
heart rate variability (HRV) sampling.

Device selection is another critical consideration. For example, the Polar
H10 chest strap is known for accurate HRV data collection with excellent
battery life (up to 400 h)45,46, while the ActiGraph GT9X offers reliable IMU
data with long-term battery support suitable for week-long recordings47.
Wrist-worn devices such as Fitbit Charge 5 balance HR monitoring with
moderate battery life, approximately 7 days, but may offer lower data gran-
ularity. Selecting devices with built-in power-saving modes or configurable
sampling rates can optimise both data quality and battery performance48,49.

By combining hardware-efficient design, adaptive sampling and
intentional feature prioritisation, digital phenotyping studies canmaintain a
balance betweendata richness andbattery feasibility.These decisions should
be guided by the specific use case, data fidelity requirements and the
anticipated level of participant engagement.

Device compatibility and app development
The heterogeneity of devices and operating systems presents another
technical hurdle50. Smartphones and wearables come from various manu-
facturers, each with unique hardware configurations and software
ecosystems25,50, leading to inconsistencies in data collection and integration,
as certain devices may not support specific sensors or data formats25,50. For
example, some data collection applications for DP only work on iOS51–53 or
Android54, which excludes many participants and data from studies.

Beyond hardware and software differences, the choice between cross-
platform and native app development further influences data collection
reliability55. Cross-platform development allows applications to run on
multiple operating systems using a single codebase, leveraging frameworks
such as React Native, Flutter, or Xamarin55. While this approach improves
accessibility and reduces development time, it often comes at the cost of
performance and customisation. In contrast, native development involves
building applications specifically for a single platform or operating system
(e.g., Swift for iOS or Kotlin for Android), allowing deeper integration with
system-level features and optimised performance55,56. Given that DP
applications rely heavily on sensor-based data collection and real-time

processing57, cross-platform solutions may not be the most suitable
approach. Native development provides greater control over data handling,
seamless integration with platform-specific health APIs, and optimised
input/output (I/O) operations, making it a more reliable choice for appli-
cations requiring continuous data monitoring and precise hardware
interaction56.

Recent advances in Generative AI (GenAI), particularly large language
models (LLMs) and diffusion-based architectures, offer new opportunities for
enhancing DP. GenAI can support the automated synthesis and contextual
understanding of unstructured behavioural data such as speech, social media,
journaling and passive text inputs58–60. For example, LLMs such as Generative
Pretrained Transformers (GPT) and Bidirectional Encoder Representations
from Transformers (BERT) variants have been shown to detect depressive or
anxious language patterns with high sensitivity61,62. In clinical research, fine-
tuned GenAI models can assist in generating individualised behavioural
baselines, summarising daily mood reports, or simulating realistic synthetic
data for rarepsychiatricpresentations63–65.Additionally, generativemodels can
support just-in-time adaptive interventions (JITAIs) by tailoring mental
health content or therapeutic prompts based on real-time sensor input and
user preferences66. In DP applications for low-resource settings, GenAI can
improve accessibility through natural language generation in regional lan-
guages and simplification of app interfaces for low-literacy users67. Careful
benchmarking, human oversight and ethical safeguards are necessary for its
responsible deployment in DP.

Interoperability is a critical area for innovation. The development of
open-source frameworks and standardised APIs can facilitate seamless
integration of data across various devices and platforms, fostering colla-
borative research and scalability59,68. Additionally, AI-powered natural
language processing (NLP) and sentiment analysis can unlock new
dimensions of behavioural insights by analysing voice and text data69,70.
These advancements can significantly enhance the ability to detect subtle
changes in mental health status.

To ensure inclusivity, technological development must prioritise
accessibility. This involves designing energy-efficient devices with lower
costs and user-friendly interfaces, making DP feasible for diverse popula-
tions, including those in resource-constrained settings.

Cross-platform interoperability is crucial for integrating data from
various devices and applications. Currently, many wearables and apps
operate within proprietary ecosystems, limiting their ability to share data
seamlessly25,71,72. Theuse ofApplicationProgramming Interfaces (APIs) and
Software Development Kits (SDKs) offers a practical solution73. APIs allow
different software applications to communicate with one another, while
SDKs enable developers to create compatible tools and features for existing
platforms59,68,73. For example, Apple HealthKit and Google Fit provide APIs
that facilitate data integration frommultiple sources, but broader adoption
and further refinement are needed to ensure comprehensive
interoperability73. However, caution is warrantedwhen using data extracted
from such APIs and SDKs. These data are often pre-processed by the
platform providers, and changes in preprocessing algorithms over time can
lead to discrepancies even in historical data74. For instance, identical data
exported at different time points can yield different outputs due to back-end
updates, as reflected in metadata or timestamp inconsistencies75. This
highlights that data from such platforms are not truly raw and should be
interpreted with transparency regarding preprocessing pipelines and
limitations74. Recent consensus guidelines have emphasised the importance
of understanding data provenance and reproducibility in sensor-derived
health data75,76. Developers can also leverage cross-platform frameworks
such as React Native77,78, which allows the use of JavaScript to build apps for
both iOS and Android while maintaining high performance through inte-
grationwith native components78. Similarly, Flutter79, a toolkit developed by
Google, enables developers to create applications for both operating sys-
tems, supporting consistent functionality and user experience across
platforms80.

Collaboration between industry and academia is also vital for
promoting interoperability. Industry stakeholders, including device
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manufacturers and app developers, must align their technologies with
agreed-upon standards59,73. Academic researchers can provide insights into
the practical challenges of implementing these standards.

Inconsistent data transmission, storage and security protocols
The lack of robust data transmission and storage solutions presents critical
challenges as well25,57,81,82. DP often involves the real-time transmission of
substantial data volumes, which can overwhelm existing network
infrastructures57. For instance, studies have shown that high-frequency data
collection fromwearable devices, such as electrodermal activity or heart rate
monitors, can generate datasets exceeding gigabytes daily, especially when
combinedwith continuous geolocation tracking and other sensor data29,32,83.
This high volume of data often exceeds the capabilities of low-bandwidth
networks, resulting in signal loss and transmission failures84.

Inadequate storage systems, particularly those lacking scalability,
struggle to handle the exponential growth of health-related data81. This
challenge is compounded by insufficient encryption protocols, which leave
sensitive health information vulnerable to breaches81,82. A case study in India
on theuseofmobilehealth apps found that insecure storagemechanisms led
to unauthorised access to patient data, raising significant concerns about
privacy and confidentiality85. Similarly, research on mental health mon-
itoring systems noted that improper encryption during data transmission
exposed sensitive behavioural and physiological data to interception,
undermining both participant trust and the overall reliability of the
research86,87.

To address these challenges, KotlinMulti-Platform (KMP), developed
by JetBrains, offers a reliable solution for optimising data transmission88 and
integration across multiple platforms89. KMP enables seamless data pro-
cessing by allowing shared business logic while maintaining native perfor-
mance for both iOS and Android90. Unlike traditional cross-platform
frameworks, which may struggle with customising health data libraries,
KMP ensures efficient data handling and security by supporting encrypted
data transmission instead of raw data transfer89,90. Additionally, by reducing
redundant code and improving database structures across platforms, KMP
enhances scalability and interoperability90,making it a suitable choice forDP
applications that require secure and high-performance cross-platform
compatibility. Labfront, an alternative research-gradeplatform,offers a low-
code environment designed specifically for collecting and analysing phy-
siological and behavioural data from wearable sensors91. Key features
include customisable survey tools, secure cloud-based data storage, real-
time participant involvement monitoring, and built-in analytics
capabilities91,92. Its intuitive designandminimal programming requirements
make it particularly suitable for research teams with limited technical
resources, enabling efficient data management across diverse study
designs91. Choosing the appropriate solution depends on several factors
such as device compatibility, sensor types and data granularity, security
needs, network availability and budget.

Unstable network connectivity remains another major obstacle84,
particularly in LMIC settings where DP applications may operate in
environments with intermittent internet access. Offline data storage with
periodic uploads canmitigate this issue by allowing sensor data to be stored
locally on the device and transmitted to cloud servers only when a stable
connection is available40. This approach reduces the likelihood of data loss
and synchronization issues40. Data compression techniques further enhance
network reliability by reducing the size of transmitted data, conserving
bandwidth and ensuring faster uploads93,94. Similarly, edge computing
which is the processing of data closer to where it is generated rather than
relying ondistant cloud servers enables real-timedata processing directly on
the device, reducing reliance on cloud-based computation93,95. By analysing
and filtering data locally before transmission, edge computing minimizes
network dependency, enhances processing efficiency, and strengthens
privacy protections95.

Integrating energy-efficient sensing and network-independent data
transmission methods is crucial for improving the sustainability and scal-
ability of DP. Future research should continue refining these approaches to

ensure that sensor-basedmonitoring remains reliable, particularly indiverse
and resource-constrained settings.

Addressing user-centred challenges
User engagement and participation
Engaging individuals inDP initiatives requires thoughtful design that aligns
with users’ values, preferences, and lived experiences.

Maintaining user participation and engagement with wearables and
apps is a persistent challenge. Many individuals choose to disengage not
only because of discomfort, forgetfulness, or lack of perceived benefit96, but
also because the technology may offer little actual value to them, or it may
present physical, cognitive, or contextual barriers97,98. Importantly, these
decisions are not mere lapses in behaviour, but informed acts of disen-
gagement shaped by unmet needs or unaddressed concern99. For example,
studies reported that participants discontinued the use of digital tools due to
sensory discomfort, lack of clarity on the utility of the data, and difficulties
navigating interfaces that were not adapted to their cognitive or literacy
level100. Similarly, barriers such as low digital literacy, mental health
symptoms (e.g., fatigue, paranoia), and physical limitations can significantly
impact a person’s ability to engage meaningfully with DP tools101–103.

Technical interruptions, such as forgetting to charge or wear the
device82,96,104, are often secondary to more complex issues, such as poorly
designed interfaces, lack of support or training, and limited adaptability to
users’ routines and needs105. This introduces challenges in the continuity of
data collection and can compromise the reliability of insights derived from
the data25,106.

To address these challenges, future DP efforts must prioritise partici-
patory design, where users are involved throughout the development pro-
cess to ensure accessibility, relevance and inclusivity. Designs must
accommodate varying cognitive abilities, language proficiency and sensory
needs to support equitable engagement107.

Privacy concerns
Privacy concerns represent a significant barrier to DP technologies3,82,108,109.
These methods inherently involve the collection of highly sensitive data,
including behavioural, physiological and contextual information, which can
providedeep insights into an individual’s health, andhabits108,109.However, the
very richnessof thisdataalsoheightensusers’ fears aboutmisuse, unauthorised
access, and potential breaches of confidentiality82,109. A significant driver of
these concerns is the lack of transparency in data usage policies108.Many users
are unclear about how their data is collected, processed and shared, leading to
scepticism and distrust109. While some companies have made progress in
simplifying their privacy documentation, many users still find it difficult to
understand how their data is collected, processed, stored, or shared53,108,109. For
instance, Fitbit’s privacy policy outlines core purposes for data use such as
improving product functionality, personalising recommendations, enhancing
cybersecurity, and fulfilling legal obligations (e.g., responding to subpoenas or
law enforcement requests)110.

Ensuring robust data security is a significant issue as well108. Cyberse-
curity threats, including data breaches and hacking, can expose sensitive
information to malicious actors109. For instance, real-time data transmis-
sions from wearables or smartphone apps are particularly vulnerable to
interception if not encrypted appropriately82,108,109. Furthermore, once col-
lected, storing large datasets securely remains a challenge, especially for
smaller organisations or research groups with limited resources57,82. These
challenges highlight the urgent need for stronger regulatory frameworks,
user-centric privacy safeguards and transparent data governance to build
trust and ensure the ethical implementation of DP.

Building trust is critical for addressing privacy concerns of DP104,109.
Developers of DP tools must implement stringent privacy safeguards,
including end-to-end encryption, secure data storage protocols and multi-
factor authentication to protect user data109. Further effortsmust bemade to
develop decentralised machine learning techniques to protect user’s data.
Transparent and user-friendly consent processes are equally vital,
empowering users to make informed decisions about their participation108.
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Regular communication about data usage, anonymisation efforts and
security measures can further reassure users about their data’s safety81.
Ultimately, addressing privacy concerns is not just about compliance with
legal standards; it is imperative to respect and protect the rights and
autonomy of those who entrust their data to DP technologies108,109. Building
trust through stringent privacy safeguards, clear consent protocols, trans-
parent AI and anonymisation techniques is essential.

Ethicsmust be a guiding principle in the development and deployment
of DP technologies. The vast amounts of personal and sensitive data col-
lected pose significant privacy risks3,109. Transparent and user-centric data
governance models are crucial to building trust82,109. These models should
include clear consent mechanisms, robust anonymisation protocols, and
stringent data encryption standards81,82. Using research-focused platforms
such as Labfront bypasses commercial manufacturer servers entirely. Data
from compatible devices (e.g., Garmin wearables) is transmitted directly to
Labfront’s secure cloud, enabling compliancewith academic standards such
as the Health Insurance Portability and Accountability Act (HIPAA) and
Institutional Review Board (IRB) protocols91,92. These design choices reduce
exposure to commercial data pipelines and provide researchers with greater
control over data governance and participant confidentiality.

Cultural and socioeconomic barriers
The accessibility of sensor-based technologies varies widely across cultural
and socioeconomic contexts111. High costs of devices and limited digital
literacy in underserved populations can restrict participation in DP
initiatives4,82,111. For example, in a study conducted in the United States
among participants at a federally qualified health centre, cost was ranked
relatively low among the barriers to adopting wearable technologies112, but
this might not be the case in other settings. Furthermore, cultural attitudes
towards technology and data sharing may affect willingness to engage4,113.
Tailoring interventions to specific populations and ensuring equitable
access are critical for global scalability.

Cultural sensitivity is a vital ethical consideration114. Mental health is
profoundly influenced by cultural beliefs and practices, necessitating the co-
design of interventions with local stakeholders114,115. Engaging communities
in the development and testing of tools ensures their relevance, acceptability
and effectiveness104. Additionally, emphasising transparency and inclusivity
throughout the design and deployment process can foster trust among end-
users and stakeholders alike104,109.

Lack of standardisation and strategies
Absence of universal protocols
The lack of universal protocols for data collection, processing and analysis
represents a significant challenge for DP25. This absence of standardisation
hinders the scalability, reproducibility and generalisability of research
findings, creating barriers to the broader adoption and implementation of
these technologies25,71. Currently, DP studies exhibit wide variability in key
parameters such as data formats, sampling rates, device types and quality
metrics71,72. Similarly, data formats vary across platforms and devices,
complicating efforts to integrate and analyse datasets frommultiple sources.
This lack of consistency undermines the comparability of findings across
studies, limiting opportunities for meta-analyses and cross-contextual
validation25,71,72.

The variability also poses challenges for interpreting results and
replicating studies. Without standardised protocols, it becomes difficult to
determine whether differences in findings are due to true variations in the
phenomena being studied ormethodological inconsistencies25,71. Moreover,
the absence of universal guidelines creates inefficiencies in data sharing and
collaboration57,71. Researchers must often invest significant time and
resources in reformatting andpreprocessingdata tomake it compatiblewith
their tools and methodologies. This inefficiency not only slows down the
pace of advancement108,116,117 but also increases the risk of errors and
misinterpretations71,72.

Addressing these challenges requires standardised guidelines and fra-
meworks for DP to be established. These protocols should define best

practices for data collection, including optimal sampling rates and accep-
table device specifications, to ensure consistent data quality. They should
alsoprovide guidance ondatapreprocessing, feature extraction, andanalytic
methods, enabling more reliable and comparable outcomes. Ultimately,
establishing universal protocols is not merely a technical necessity but a
foundational step toward building trust in DP as a reliable and scalable tool
for advancing personalised health and precision medicine. By promoting
consistency, reproducibility and transparency, standardised guidelines can
unlock the full potential of this emerging field.

Variability in methodologies across studies and platforms
Methodological variability is a significant obstacle in the advancement of
DP, particularly in sensor-based data collection25. The use of diverse
applications, devices and analytical approaches across studies amplifies
these challenges, limiting the generalisability and scalability offindings25,71,72.
Different studies often employ distinct apps and platforms for data collec-
tion, each with its own set of capabilities, data formats and compatibility
requirements71,72. This diversity can result in inconsistencies in the types and
quality of data captured.

Pre-processing steps,whichare critical forpreparing rawdata for analysis,
further contribute tovariability24,71,72.Different studiesadoptdiverse techniques
forhandlingmissingdata, outlier detectionandnoise reduction25. For instance,
some research may use imputation methods to fill gaps in data, while others
may discard incomplete data altogether, potentially biasing results71,72. Varia-
tions in feature extraction approaches, such as the choice of time windows or
signal processing algorithms, further complicate cross-study comparisons25,72.
The challenges extend into themachine learning pipeline. Variability inmodel
selection, training protocols and evaluation metrics can lead to divergent
findings, evenwhen analysing similar datasets71,72,94. Additionally, the choice of
algorithms ranging from traditional statistical models to complex prediction
models, can introduce further inconsistencies25.

Collaborative efforts to align methodologies and share best practices
are essential to overcome these challenges. Standardised protocols for data
collection should prioritise interoperability across apps and devices,
ensuring that data from multiple sources can be seamlessly integrated.
Establishing guidelines for preprocessing steps, such as unified approaches
to handling missing data and feature extraction, would help reduce varia-
bility and improve the comparability of datasets. In the machine learning
domain, adopting shared evaluation frameworks and benchmarking prac-
tices would promote consistency. Researchers could benefit from using
open-source platforms and repositories to share pre-trained models,
annotated datasets and pipelines.

Strategies for standardisation
The advancement of DP as a reliable and scalable field requires robust
strategies for standardisation across data collection, processing and analysis
methodologies71. Standardisation ensures consistency, reproducibility and
interoperability, ultimately enhancing the generalisability and utility of
findings. This section explores three key strategies for achieving standar-
disation: developing universal frameworks, promoting cross-platform
interoperability, and leveraging pilot projects for validation.

Developing universal frameworks
Establishing universal frameworks is foundational for standardising DP.
Examples from other fields, such as Open mHealth and HL7 FHIR (Fast
Healthcare Interoperability Resources), provide valuable blueprints118. Open
mHealth offers standardised schemas for health data, allowing developers to
integrate diverse datasets seamlessly118,119. HL7 FHIR, widely used in clinical
informatics, standardises the exchange of electronic health records across
healthcare systems, ensuring data compatibility and accessibility120. Adopting
similar frameworks forDPcanaddress thevariability indata formats, sampling
rates and quality metrics that currently hinder the field118.

Proposals for universal data formats, protocols and reporting stan-
dards are essential. A universal data format would specify how data from
wearables, apps and other devices should be structured, annotated and
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stored, making it easier to integrate and analyse datasets from different
sources118,120,121. Protocols should define best practices for data collection,
such as recommended sampling frequencies and minimum data quality
thresholds, ensuring that studies generate comparable and reliable data.
Reporting standards would ensure transparency in methodologies, making
it easier for researchers to replicate studies and evaluate findings118.

Global implementation and standardisation
Expanding the impact of DP globally requires coordinated efforts in stan-
dardisation and implementation. Standardisation provides a foundation for
large-scale, cross-cultural research by ensuring consistency in data collec-
tion, storage and analysis24,72. Harmonising methodologies across studies
will improve reproducibility, reduce variability and foster meta-analyses
that yield generalisable findings71.

Standardisation efforts by creating universally accepted guidelines and
protocols is important. For instance, adopting unified metrics for data
quality, sampling rates and feature extraction can help bridge methodolo-
gical gaps122. Platforms such as Open mHealth and HL7 FHIR offer pro-
mising frameworks that can be adapted for DP118,119.

Moreover, global implementation necessitates culturally adaptive
solutions. Collaborations between researchers, policymakers and local
communities can ensure that DP tools align with cultural norms and
address linguistic and literacy barriers114,123. For example, apps designed for
specific regions could incorporate local languages, cultural references and
intuitive visual cues, promoting user engagement and participation. Equi-
table access is a pressing concern in global implementation114.

In addition to technical harmonisation and culturally adaptive solu-
tion, collaboration between industry and academia is crucial to achieve true
cross-platform standardisation. Industry stakeholders, such as device
manufacturers, OS developers and app creators must commit to aligning
their products with emerging universal standards for data interoperability,
transparency, and security. Without such alignment, even the most robust
academic standards will face limited uptake. Conversely, academia brings
domain expertise, ethical oversight, and implementation experience that
can guide responsible technology design. Initiatives such as Open mHealth
and HL7 FHIR exemplify how cross-sector cooperation can produce fra-
meworks that are both technically sound and practically scalable71,118.
Ongoing dialogue, co-creation, and shared governance between sectors are
essential to ensure that DP tools are interoperable, equitable and responsive
to end-user needs5,67,124.

Pilot projects and validation studies
Pilot projects and validation studies play a critical role in demonstrating the
feasibility andbenefits of standardisation efforts125.Case studies of successful
standardisation initiatives can provide actionable insights and serve as
models for broader implementation126. For instance, the RADAR-CNS
(Remote Assessment of Disease and Relapse— Central Nervous System)
project has successfully integrated data frommultiple wearable devices and
apps, demonstrating the potential for standardised data collection and
analysis in the context of mental health research124.

Iterative testing is essential to refine protocols and address practical
challenges125,126. Pilot studies should test the compatibility of proposed
data formats and protocols across different devices and platforms, iden-
tifying any gaps or inconsistencies59,71,126. Validation studies can assess the
reliability and accuracy of standardised methods in real-world settings,
ensuring that they meet the needs of researchers, clinicians and partici-
pants alike126. These studies also provide opportunities to incorporate user
feedback, ensuring that standardised approaches are practical and user-
friendly104,126.

Outlook
Sensor-baseddata collection forDP represents a transformative approach to
monitoring mental health and other conditions2,3,127. However, realising its
full potential requires addressing critical challenges, including technical
limitations25, user compliance82,104, privacy concerns82,109 and the lack of

standardisation71. These barriers not only hinder the scalability and relia-
bility of DP but also limit its adoption in diverse contexts, from high-
resource settings to low- and middle-income countries.

Among these challenges, the absence of standardised methodologies
stands out as a fundamental issue71,72. Variability in data formats, sampling
rates and analytic techniques across studies creates inconsistencies that
undermine reproducibility and comparability25. Without universal proto-
cols, the field risks perpetuating fragmentation, slowing progress and
reducing the generalisability of findings71,72. Standardisation offers a path-
way to overcome these obstacles by fostering interoperability, enhancing
data quality and enabling large-scale, cross-cultural research.

The role of standardisation extends beyond technical considerations. It
has the potential to bridge divides between diverse stakeholders, including
researchers, clinicians, policymakers and industry leaders. By adopting shared
frameworks and open-source platforms, the field can facilitate collaboration
and knowledge exchange, driving innovation and inclusivity71. Initiatives like
Open mHealth and RADAR-CNS provide valuable blueprints, highlighting
the feasibility and benefits of standardised approaches118,119,121,124.

The path forward calls for collective action. Researchers must work
alongside technology developers to ensure that tools are interoperable and
user-friendly. Policymakers should prioritise funding for standardisation
initiatives and establish regulatory frameworks that promote transparency
and equity. Industry players, including device manufacturers and app
developers, must align their technologies with standardised guidelines to
maximise their impact. Equally, end-users—patients, caregivers and com-
munity members—must be engaged throughout the development process
to ensure solutions are culturally relevant and ethically sound.

By leveraging technological innovations, fostering global collabora-
tion and embedding ethical principles, the field can evolve to provide
scalable, reliable and culturally sensitive solutions for mental health care.
In conclusion, sensor-based DP holds immense promise for advancing
personalised health care and mental health interventions. By addressing
the challenges of data collection and embracing the critical role of stan-
dardisation, the field can unlock its transformative potential. Collabora-
tive efforts to establish universal frameworks will not only enhance the
reliability and scalability of DP but also ensure its benefits are equitably
distributed across populations. This shared vision will pave the way for a
future where DP becomes an integral tool in improving global health
outcomes.
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