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Abstract

Background Sleep health comprises several dimensions such as sleep duration and
fragmentation, circadian activity, and daytime behavior. Yet, most research has focused on
individual sleep characteristics. Studies are needed to identify sleep/circadian profiles
incorporating multiple dimensions and to assess their associations with adverse health
outcomes.
Methods This multicenter population-based cohort study identified 24 h actigraphy-based
sleep/circadian profiles in 2667 men aged ≥65 years using an unsupervised machine
learning approach and investigated their associations with dementia and cardiovascular
disease (CVD) incidence over 12 years.
ResultsWe identify three distinct profiles: active healthy sleepers (AHS; 64.0%), fragmented
poor sleepers (FPS; 14.1%), and long and frequent nappers (LFN; 21.9%). Over the follow-
up, compared to AHS, FPS exhibit increased risks of dementia and CVD events (HR = 1.35,
95% CI = 1.02-1.78 and HR = 1.32, 95% CI = 1.08-1.60, respectively) after multivariable
adjustment, whereas LFN show a marginal association with increased CVD events risk
(HR = 1.16, 95% CI = 0.98-1.37) but not with dementia (HR = 1.09, 95%CI = 0.86-1.38).
Conclusions These results highlight potential targets for sleep interventions and the need
for more comprehensive screening of poor sleepers for adverse outcomes.

Growing evidence has linked individual sleep characteristics and disturbed
circadian rhythms with adverse health outcomes in older adults, including
neurodegenerative and cardiovascular diseases (CVDs), two leading causes
of disability and mortality worldwide1–4. However, the literature remains
inconsistent5–8. Some studies have associated both short and long sleep
duration with increased dementia risk9, while others found conflicting
associations7,10,11. Similarly, although some researchhas suggested thatmore
frequent or long naps were associated with a higher risk of CVD4,12, others
showed a protective effect13.

These conflicting findings may be partly due to the lack of con-
sideration of the multidimensional nature of sleep. Research has

primarily examined sleep characteristics in isolation, whereas sleep
involves a complex interplay of multiple dimensions such as duration,
continuity, quality, circadian rhythmicity, and napping14. Adopting a
holistic approach by considering common combinations of sleep char-
acteristics could improve our understanding of multidimensional sleep
patterns and their associations with outcomes.Moreover, such approach
offers key methodological advantages over analyzing sleep character-
istics in isolation, such as capturing interactions between multiple sleep
dimensions and improving differentiation of outcome risks by lever-
aging more homogenous groups. Therefore, investigating these asso-
ciations can provide valuable insights for public health strategies, aiding
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Plain language summary

Although sleep health encompasses multiple
dimensions, most research has evaluated
these features in isolation. We aimed to
identify multidimensional sleep/circadian
profiles and to examine their associations
with the incidence of adverse health
outcomes. Using wearable device activity
data from a prospective cohort of older men,
we identified three profiles: active healthy
sleepers (AHS), fragmented poor sleepers
(FPS), and long and frequent nappers (LFN).
Compared to AHS, FPS had increased risks
of developing dementia and cardiovascular
disease (CVD) events over 12 years whereas
LFN tended to have an increased risk of CVD
events only. These results suggest potential
targets for sleep interventions and
underscore the critical need for
comprehensive sleep health assessment in
clinical practice and research settings.
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the identification of at-risk populations and targeted treatments or
interventions.

In a community-dwelling cohort of oldermen, our objectives were: (1)
to identify actigraphy-derived sleep health profiles based on multi-
dimensional objective sleep and rest-activity variables, by using a novel and
flexible clustering method; and (2) to investigate the longitudinal associa-
tions between these profiles and the incidence of dementia and CVD events
over 12 years.

We identify three common sleep/circadian profiles: active healthy
sleepers (AHS), fragmented poor sleepers (FPS), and long and frequent
nappers (LFN). Compared to AHS, FPS exhibit higher risks of developing
dementia andCVDover 12 yearswhereas LFN show amarginal association
with CVD. These findings highlight potential targets for sleep interventions
and the need for more comprehensive screening of poor sleep health for
adverse outcomes.

Methods
We followed the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) reporting guidelines.

Study design
From 2000 to 2002, the Osteoporotic Fractures in Men Study (MrOS)
enrolled 5994 community-dwelling men aged ≥65 years, able to walk
without assistance, and without bilateral hip replacements, at six clinical
centers across the United States15,16. Among them, 3135 were recruited into
the ancillary MrOS sleep study and underwent a comprehensive sleep
assessment between2003 and 2005 (our study baseline).Menwere screened
for use of mechanical devices, including pressure masks for sleep apnea
(positive airway pressure or oral appliance devices), or nocturnal oxygen
therapy, and were excluded if they reported nightly use of any of these
devices (except for intermittent users, n = 49). We excluded 331 men with
missing actigraphy data or with fewer than 3 days or fewer than 3 nights of
actigraphy data, and 137 with significant cognitive impairment at baseline
(Modified Mini-Mental State Examination (3MS) score <80 or taking
dementia medication), leading to a sample of 2667 participants (Supple-
mentary Fig. 1). All participants providedwritten informed consent and the
studywas approvedby the InstitutionalReviewBoard (IRB) at each site.Our
analytic study was approved by University of California San Francisco IRB.

Actigraphy
Participants wore a SleepWatch-O actigraph (Ambulatory Monitoring,
Inc.) continuously on their nondominant wrist for ≥4 consecutive 24 h
periods.Datawere collected inproportional integrationmode and scoredby
epoch to estimate wake and sleep periods using Action W-2 software and
the University of California, SanDiego scoring algorithm17. Trained scorers
at the San FranciscoCoordinatingCenter edited the data using participants’
sleep diaries to identify time in and out of bed as well as periods when the
interval should be deleted because the watch was removed. Sleep indices
were summarized across the monitoring period using means and standard
deviations (SDs)18,19. Circadian rest-activity rhythm indices were generated
using parametric extended cosine models and nonparametric variables20,21.
A total of 37 actigraphy variables were examined and described in Table 1.
There was a median of 5 (range 3–13) nights of actigraphy.

Dementia incidence
Over 12 years, participants attended four follow-up visits where they
reported any physician-diagnosed dementia and their medication use,
bringing all medications taken within the past 30 days. Dementia medica-
tion use was categorized based on the Iowa Drug Information Service Drug
Vocabulary22. In addition, trained staff administered the 3MS test to assess
global cognitive function. Similarly toprevious studies5,23, incident dementia
at any follow-up visit was defined by meeting at least one of the following
criteria: (i) self-reported physician-diagnosed dementia; (ii) dementia
medication use (verified by clinic staff based on examination of pill bottles);
or (iii) a change in 3MS score of≥1.5 SDsworse than themean change from

baseline to any follow-up visit. Participants were censored at the date of the
diagnostic visit, death, or last visit.

Cardiovascular disease event incidence
Participants were surveyed for incident CVD events by postcard and phone
contact every 4months for ~12 years, with a response rate over 99%.
Relevant medical records and documentation (e.g., laboratory results,
diagnostic studies, notes, and discharge summaries) from any potential
incident clinical events were obtained by the clinical center. For fatal events,
the death certificate and hospital records from the time of death were col-
lected. For fatal events that were not hospitalized, a proxy interview with
next of kin and hospital records from the most recent hospitalization in the
last 12monthswere obtained. These documents were used to determine the
underlying cause of death. For both nonfatal and fatal CVD events, all
documents were adjudicated by a board-certified cardiologist using a pre-
specified adjudication protocol. Inter-rater agreement was periodically
evaluated by one ormore expert adjudicator(s) in a random subset of events
to ensure quality control. Confirmed cardiovascular events were grouped as
follows: 1) Coronary heart disease event: acutemyocardial infarction (ST or
non-ST elevation), sudden coronary heart disease death, coronary artery
bypass surgery, mechanical coronary revascularization, hospitalization for
unstable angina, ischemic congestive heart failure, or other coronary heart
disease event not described above; 2) Cerebrovascular event: stroke or
transient ischemic attack; 3) Peripheral vascular disease event: acute arterial
occlusion, rupture, dissection, or vascular surgery; and 4) All-cause cardi-
ovascular disease event: combines coronary heart disease, cerebrovascular
event, andperipheral vascular disease. Participantswere censored at thedate
of the first CVD event, death, last contact before March 1, 2015, or on
March 1, 2015.

Covariate data
All participants completed questionnaires at baseline, which included items
about demographics, living alone, smoking status, caffeine intake (mg/day),
and alcohol use (>1 alcoholic drink/week). Level of physical activity was
assessed using the Physical Activity Scale for the Elderly24. Participants also
self-reported their medical history, specifically prior physician diagnosis of
heart attack, stroke, diabetes mellitus, and hypertension. The Geriatric
Depression Scale was used to assess depressive symptoms, with higher
scores corresponding to higher levels of depression25. Participants were
asked to bring in all medications used within the preceding 30 days. All
prescription and nonprescription medications were entered into an elec-
tronic database and eachmedication wasmatched to its ingredient(s) based
on the Iowa Drug Information Service Drug Vocabulary (College of
Pharmacy, University of Iowa, Iowa City, IA)22. The use of antidepressants,
benzodiazepines, and other sleep medications (non-benzodiazepines, non-
barbiturate sedative hypnotics) were categorized. A comprehensive exam-
ination includedmeasurements of bodyweight andheight. Bodymass index
(BMI)was calculated as weight in kilograms divided by the square of height
in meters. A subset of participants underwent a single-night in-home
polysomnography (Compumedics, Safiro, Inc., Melbourne, Australia)26.
The apnea-hypopnea index (AHI) was calculated as the total number of
apneas and hypopneas per hour of sleep (accompanied by a ≥ 3% oxygen
desaturation).

Statistics and reproducibility
We conducted a cluster analysis to identify distinct sleep/circadian profiles.
Firstly, we selected variables for inclusion in the analysis, considering the
high correlation among the actigraphy variables (Supplementary Fig. 2).
When the correlation coefficient between two variables was >0.70, we
retained only one of the variables prioritized on clinical meaningfulness,
resulting in a final selection of 20 sleep/circadian variables. Secondly, we
performed a principal component analysis (PCA) on the 20 selected vari-
ables to reduce data dimensionality (while preserving most of the data
variation) and enhance the efficacy of subsequent clustering. The 20 vari-
ables included in the PCA for cluster creation are highlighted in Table 1.
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Table 1 | Description and interpretation of all actigraphy-derived variables

Actigraphy-derived variables Definition Interpretation

Sleep variables

Bed Time Mean of Bed Time.

Midpoint (Bed Interval) Mean of midpoint of Bed to Wake-Up Time.

Midpoint (Onset Interval) Mean of midpoint of Sleep Onset to Wake-Up Time.

Minutes Napping* Mean of minutes napping per day, for only
naps ≥ 5min.

Number of Naps Mean of number of naps per day of duration ≥ 5min.

Sleep Efficiency TST / TIB x 100 Higher value indicates better sleep efficiency.

SD Bed Time Standard deviation of Bed Time. Higher value indicates poorer rhythmicity.

SD Midpoint (Onset interval) Standard deviation of midpoint SleepOnset toWake-
Up Time.

Higher value indicates poorer rhythmicity.

SD Midpoint Time (Bed interval) Standard deviation of midpoint of Bed to Wake-
Up Time.

Higher value indicates poorer rhythmicity.

SD Sleep Onset* Standard deviation of Sleep Onset Time. Higher value indicates poorer rhythmicity.

SD Wake-Up Time* Standard deviation of Wake-Up Time. Higher value indicates poorer rhythmicity.

Sleep Latency* Mean of minutes from Bed to Sleep Onset Time.

Sleep Maintenance TST / TOW x 100 Higher value indicates better sleep maintenance.

Sleep Onset Time* Mean of Sleep Onset Time.

Time from Onset to Wake-
Up (TOW)

Mean of minutes from SleepOnset toWake-Up Time.

Time in Bed* Mean of minutes from Bed to Wake-Up Time.

Total Sleep Time (TST)* Mean of minutes of sleep from Bed Time to Wake-
Up Time.

Wake After Sleep Onset* Mean of minutes awake after sleep onset. Higher value indicates more sleep fragmentation.

Wake-Up Time* Mean of Wake-Up Time.

Circadian activity rhythm variables

Parameters computed from extended cosine model (ECM)

Acrophase* Time of peak (i.e., highest) activity. Later value indicates later peak of activity and may reflect a more delayed phase.

Alpha* Width of peaks relative to troughs. Higher value indicates that the peaks are narrow (shorter period of activity) and the
troughs are wide (longer period of inactivity/sleep).

Amplitude Peak to nadir difference. Higher value indicates higher overall rhythmicity.

Beta* Steepness of the rise and fall of the fitted curve. Higher value (more square-shaped curve) indicates steeper rise and fall andmay reflect a
more constant level of daytime activity.

Down-Mesor Time of switch from high to low activity (below to
above mesor).

Later value indicates later time of declining activity.

Mesor* (Minimum + Amplitude) / 2; mean level of activity. Higher value indicates higher average level of activity.

Minimum* Minimum value of activity. Higher value indicates more nighttime activity.

Pseudo-F* Goodness of model fit. Higher value indicates greater robustness of the RAR and overall rhythmicity.

Up-Mesor Time of switch from low to high activity (above to
below mesor).

Later value indicates later time of increasing activity.

Nonparametric parameters

Interdaily stability (IS)* Consistency of the 24 h RAR between days. Higher value indicates better consistency of the 24 h RAR between days.

Intradaily variability (IV)* Within-day fragmentation of the 24 h RAR. Higher value indicates a more fragmented RAR within-day.

L5 Mean activity level during the least active
consecutive 5-h.

Higher value indicates less restful sleep.

M10 Mean activity level during the most active daily
consecutive 10-h.

Higher value indicates a more active wake period.

Midpoint of L5* Midpoint time of L5. Indicates whether a person goes to bed earlier or later in the day.

Midpoint of M10 Midpoint time of M10. Indicates whether a person is most active earlier or later in the day.

Start of L5* Start time of L5. Indicates the phase of the most restful hours.

Start of M10* Start time of M10. Indicates the phase of the most active hours.

Relative amplitude (RA) (M10 – L5) / (M10+ L5). Higher value indicates a more robust 24 h rhythm; reflecting higher activity during wake
and relatively lower activity during night.

* Variables used to create the clusters
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The number of principal components (PCs) was determined according to
the Kaiser-Guttman criteria27, considering PCs with eigenvalues > 1, and
complemented by visual inspection of the scree plot to identify the elbow
point in the eigenvalues distribution (Supplementary Fig. 3)28. Thirdly,
sleep/circadian profiles were identified using Multiple Coalesced General-
ized Hyperbolic Distribution (MCGHD; MixGHD package in R) mixture
models based on the six PCs derived from the PCA29,30. This method, as
opposed to standard clustering approaches, was chosen for its ability to
accommodate potentially skewed and/or asymmetric clusters, an important
consideration given the skewed distributions often observed in actigraphy
data (distributions are described in Supplementary Fig. 4). We explored
models comprising one to five clusters, using k-medoids as the starting
criterion, and determined the optimal number of clusters by examining the
Bayesian InformationCriteria (BIC), theAkaike InformationCriteria (AIC)
and the Integrated Complete-data Likelihood (ICL) (higher values indi-
cating a better fit for the data). The optimal number of clusters was deter-
mined by selecting solutions displaying an elbow in the AIC and BIC plots
and/or a subsequent drop in ICL. To assess the stability of the clustering
solution, we applied a subsampling approach in which 5% of participants
were randomly excluded, and the clustering algorithm was rerun on each
subsample (n = 100). The similarity between each subsample clustering and
the original full-sample clustering was quantified using the Adjusted Rand
Index (ARI), which ranges from −1 (less agreement than expected by
chance between two clusterings) to 1 (perfect agreement) with 0 indicating
random agreement.

Sleep and circadian characteristics were compared across clusters
using the Kruskal-Wallis test. We calculated effect sizes using the eta-
squared (η2) statistic to characterize the magnitude of cluster differences.
The effect was considered small for η2 < 0.06, moderate for
0.06 ≤ η2 < 0.14, and large for η2 ≥ 0.1431. In post-hoc analyses, we per-
formed multiple pairwise-comparisons using Dunn’s test adjusted for
multiple comparisons with the Bonferroni correction. The sleep and
circadian characteristics with the largest effect sizes were presented in
radial plots for each sleep profile (Fig. 1). In a sensitivity analysis, clusters
were re-determined after excluding participants who intermittently used
nightly mechanical devices during sleep (n = 37) to assess their influence
of the clustering results.

We performed unadjusted and multivariable adjusted Cox propor-
tional hazardsmodelswith age as time scale to investigatewhether identified
sleep profiles were associated with the incidence of dementia and CVD
events over 12 years. Covariates were selected based on potential biological
plausibility, and included study site, race/ethnicity, education, smoking

status, caffeine intake, alcohol use, physical activity, BMI, history of diabetes
mellitus and hypertension, depressive symptoms, and sleep-related medi-
cations use. We assessed the proportional hazard assumption for each
independent variable by examining the Schoenfeld residuals. If a variable
violated the assumption,we carried out a stratifiedCox regressionmodel for
that specific variable.

In sensitivity analyses, models were further adjusted for (i) history of
heart attack and stroke, (ii) baseline AHI, (iii) living alone, and (iv) baseline
3MS score (for dementia analysis). We also excluded participants with
incident dementia at the first follow-up visit to minimize reverse causation
(for dementia analysis), and those with history of heart attack and stroke to
minimize confounding bias (for CVD analysis).

Significance level was set at a two-sided p < 0.05 and statistical analyses
were performed using R version 4.3.0.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
A total of 2667 men were eligible for cluster analysis. At baseline, partici-
pants had a median age of 75 years (interquartile range [IQR] = 72–80),
20.2% had a high school education or lower, and 90.0% were White.
Compared to included participants, excludedmen (n = 468)were older, less
educated, more likely to be non-White and to live alone, and had less
physical activity and alcohol consumption, but higher depressive symptoms
and sleep medication use (Supplementary Table 1).

Sleep profiles
The PCA conducted on the 20 selected variables resulted in six PCs, col-
lectively explaining 75.6% of the variance (Supplementary Fig. 3). The PCA
loadings for each variable across PCs are presented in Supplementary
Table 2.After examining theAIC,BIC, and ICLof theMGHDmodels, three
distinct sleep/circadian profiles were identified (Supplementary Fig. 5):
active healthy sleepers [AHS; n = 1,707 (64.0%)], fragmented poor sleepers
[FPS; n = 376 (14.1%)], and long and frequent nappers [LFN; n = 584
(21.9%)]. The stability of the clustering results, as assessed by the ARI,
indicated moderate to good quality (mean ARI = 0.58, median = 0.55,
Q1 = 0.50, Q3 = 0.74). The three groups had a median of 5 nights of acti-
graphy (IQR= 5–5), and their rangeswere as following: 3 to 11 forAHS, 4 to
13 for FPS, and 3 to 8 for LFN. All sleep characteristics are described in
Table 2.
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Fig. 1 | Radial plots displaying the median quantile rankings of sleep and cir-
cadian characteristics with large effect sizes for each sleep profile. Panels (a−c)
display radial plots for the profiles of active healthy sleepers, fragmented poor
sleepers, and long and frequent nappers, respectively. The values represent the
median quantile rank of each characteristic within the sample, grouped by profile.

The sample’s highest ranked value is represented by the maximum value of 1, the
median ranked value by 0.50, and the lowest ranked value by 0. These values illus-
trate the relative central distributions across each sleep profile. The sample size was
n = 2667. Abbreviations: WASO wake after sleep onset
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Table 2 | Sleep characteristics among the 2667 participants according to identified multidimensional sleep clusters

Active Healthy Sleepers
(n = 1707)

Fragmented Poor
Sleepers
(n = 376)

Long and Frequent
Nappers
(n = 584)

Sleep variables Median (IQR) Median (IQR) Median (IQR) Effect size (η2) p-valuec Post hocd

Variables used to create the clusters

Alphaa −0.40 (−0.50;−0.28) −0.35 (−0.46;−0.22) −0.09 (−0.25;0.10) 0.213 <2.2e-16 LFN > FPS > AHS

Minimuma 234 (3;385) 521 (265;756) 588 (330;781) 0.193 <2.2e-16 FPS,LFN > AHS

Wake After
Sleep Onset

61 (42;85) 126 (97;159) 65 (43;93) 0.188 <2.2e-16 FPS > AHS,LFN

Minutes Napping 34 (16;60) 31 (13;53) 79 (48;127) 0.160 <2.2e-16 LFN > AHS,FPS

Sleep Latency 18 (11;30) 53 (31;96) 19 (11;32) 0.157 <2.2e-16 FPS > AHS,LFN

SD Sleep Onset 0.57 (0.37;0.83) 1.14 (0.80;1.64) 0.58 (0.37;0.90) 0.131 <2.2e-16 FPS > AHS,LFN

Acrophasea 14.38 (13.77;14.98) 14.69 (13.89;15.57) 13.51 (12.90;14.16) 0.114 <2.2e-16 FPS > AHS > LFN

Total Sleep Duration 400 (362;438) 336 (273;395) 381 (342;424) 0.074 <2.2e-16 AHS > LFN > FPS

Pseudo-Fa 1078 (781;1421) 861 (637;1169) 805 (558;1109) 0.065 <2.2e-16 AHS > FPS > LFN

Time in Bed 489 (453;524) 530 (482;570) 475 (440;514) 0.056 <2.2e-16 FPS > AHS > LFN

Start of M10b 8.2 (7.3;9.2) 8.7 (7.7;10.1) 7.6 (6.9;8.6) 0.039 <2.2e-16 FPS > AHS > LFN

Sleep Onset Time 23.1 (22.4;23.7) 23.7 (22.7;24.9) 23.4 (22.8;24.1) 0.037 <2.2e-16 FPS > LFN > AHS

Intradaily
variability (IV)b

0.60 (0.48;0.72) 0.63 (0.51;0.77) 0.70 (0.54;0.85) 0.037 <2.2e-16 LFN > FPS > AHS

Wake-Up Time 6.9 (6.2;7.5) 7.5 (6.6;8.1) 6.9 (6.4;7.5) 0.028 <2.2e-16 FPS > AHS,LFN

SD Wake-Up Time 0.56 (0.37;0.80) 0.72 (0.44;1.16) 0.49 (0.31;0.77) 0.027 <2.2e-16 FPS > AHS > LFN

Interdaily stability (IS)b 0.76 (0.69;0.82) 0.72 (0.64;0.79) 0.73 (0.66;0.80) 0.021 1.59e-13 AHS > FPS,LFN

Mesora 2102 (1850;2359) 2170 (1863;2433) 2257 (1893;2678) 0.020 2.0e-12 LFN > FPS > AHS

Start of L5b 0.23 (−0.70;1.13) 0.73 (−0.38;1.97) 0.55 (−0.27;1.35) 0.016 1.59e-10 FPS,LFN > AHS

Midpoint of L5b 2.73 (1.80;3.63) 3.23 (2.12;4.47) 3.05 (2.23;3.85) 0.016 1.59e-10 FPS,LFN > AHS

Betaa 8.03 (4.89;17.02) 8.59 (5.02;20.14) 12.33 (4.43;40.20) 0.007 1.79e-05 LFN > AHS,FPS

Other variables

Sleep Efficiency 83 (77;87) 64 (54;72) 82 (75;87) 0.218 <2.2e-16 AHS > LFN > FPS

Down-Mesora 22.0 (21.1;22.8) 22.0 (21.0;23.1) 19.9 (18.9;20.9) 0.202 <2.2e-16 AHS,FPS > LFN

Sleep Maintenance 87 (82;91) 71 (62;79) 85 (79;90) 0.190 <2.2e-16 AHS > LFN > FPS

Relative
amplitude (RA)b

0.86 (0.82;0.90) 0.77 (0.68;0.81) 0.84 (0.78;0.88) 0.169 <2.2e-16 AHS > LFN > FPS

Number of Naps 2.5 (1.3;4.3) 2.3 (1.1;3.8) 5.5 (3.5;8.5) 0.167 <2.2e-16 LFN > AHS,FPS

L5b 292 (217;383) 525 (414;682) 323 (232;442) 0.164 <2.2e-16 FPS > LFN > AHS

SD Midpoint (Onset
interval)

0.45 (0.30;0.63) 0.75 (0.53;1.05) 0.43 (0.27;0.68) 0.089 <2.2e-16 FPS > AHS,LFN

Midpoint of M10b 13.2 (12.3;14.2) 13.7 (12.7;15.1) 12.6 (11.9;13.6) 0.039 <2.2e-16 FPS > AHS > LFN

Midpoint (Onset
Interval)

2.92 (2.37;3.48) 3.48 (2.68;4.36) 3.09 (2.57;3.65) 0.038 <2.2e-16 FPS > LFN > AHS

Amplitudea 3712 (3154;4280) 3294 (2611;3894) 3250 (2591;4125) 0.038 <2.2e-16 AHS > FPS,LFN

Up-Mesora 6.9 (6.3;7.5) 7.4 (6.6;8.1) 7.0 (6.5;7.9) 0.028 <2.2e-16 FPS > LFN > AHS

SD Midpoint (Bed
interval)

0.43 (0.30;0.61) 0.58 (0.37;0.87) 0.40 (0.25;0.63) 0.026 3.06e-16 FPS > AHS,LFN

M10b 4049 (3543;4534) 3884 (3370;4406) 3736 (3111;4332) 0.023 3.49e-14 AHS > FPS > LFN

SD Bed Time 0.51 (0.33;0.75) 0.68 (0.41;1.01) 0.51 (0.31;0.83) 0.020 1.36e-12 FPS > AHS,LFN

Bed Time 22.7 (22.1;23.4) 22.6 (21.8;23.5) 23.0 (22.4;23.7) 0.017 3.09e-11 LFN > AHS,FPS

Midpoint (Bed
Interval)

2.79 (2.24;3.33) 2.95 (2.30;3.73) 2.97 (2.44;3.52) 0.011 1.61e-07 FPS,LFN > AHS

Time from Onset to
Wake-Up

460 (423;495) 453 (387;508) 444 (409;484) 0.009 1.23e-06 AHS > LFN

Abbreviations:AHSActive healthy sleepers,FPSFragmentedpoor sleepers,LFN Longand frequent nappers, IQR interquartile range. a computed fromextendedcosinemodel; b nonparametricmeasures; c

Kruskal-Wallis test was used; d Dunn test adjusted for multiple comparisons using Bonferroni method was used.
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AHS were characterized by normal nighttime sleep duration (med-
ian = 6.7 h), higher sleep quality (median sleep efficiency = 83%, sleep
maintenance = 87%, minimum= 234, L5 = 292), earlier timing of sleep
(median sleep onset time = 23.1, start and midpoint of L5 = 0.23 and 2.73,
midpoint of bed and onset interval = 2.79 and 2.92), stronger circadian
rhythmicity (median amplitude = 3712, pseudo-F = 1078, intradaily varia-
bility = 0.60, interdaily stability = 0.76, relative amplitude = 0.86), and
higher activity during wake periods (median M10 = 4049, alpha =−0.40)
(description and interpretation of all sleep/circadian data are described in
Table 1).

FPS were characterized by shorter nighttime sleep duration (med-
ian = 5.6 h) and longer time in bed (median= 8.8 h), lower sleep quality
(median sleep efficiency= 64%, sleep maintenance = 71), higher sleep
fragmentation (median sleep latency = 53min, wake after sleep onset=
126min, L5 = 525, and median SD for sleep onset = 1.14, bedtime= 0.68,
wake-up time = 0.72, midpoint of bed and onset interval = 0.58 and 0.75),
later timing of sleep and activity (median acrophase = 14.69, wake-up
time = 7.5, start of M10 = 8.7, up-mesor = 7.4, sleep onset time = 23.7,
midpoint of onset interval = 3.48), and weaker circadian rhythmicity
(median amplitude = 3294, relative amplitude = 0.77).

LFN were characterized by longer (median = 79min) and more fre-
quent naps (median = 5.5), normal nighttime sleep duration (median =
6.4 h), good sleep quality (median sleep efficiency = 82%, sleep main-
tenance = 85%), earlier timing of activity (median acrophase = 13.51, start
and midpoint of M10 = 7.6 and 12.6, down-mesor = 19.9), and more frag-
mented circadian rhythmicity (median pseudo-F = 805, intradaily varia-
bility = 0.70, interdaily stability = 0.73, amplitude = 3250).

All sleep and circadian variables differed significantly across the three
profiles (p < 0.0001). Among the cluster analysis variables, large effect sizes
were found for the following (ordered by descending order of contribution):
alpha (η2 = 0.213), minimum (η2 = 0.193), wake after sleep onset
(η2 = 0.188), minutes napping (η2 = 0.160), and sleep latency (η2 = 0.157).
Other variableswith large effect sizes included sleep efficiency, down-mesor,
sleep maintenance, relative amplitude, number of naps, and L5 (Table 2).
Sleep profiles based on the largest contributors were illustrated in Fig. 1.

Compared to AHS, FPS were more likely to live alone, to be less
educated and less physically active, while LFNwere slightly older. Both FPS
and LFN were more likely to be non-White, smokers, to have a history of
hypertension and a higher BMI. AHS consumed less caffeine than FPS
(Table 3).

Exclusions of participants who intermittently used nightly mechanical
devices during sleep (n = 37) showed similar sleep/circadian profiles (Sup-
plementary Table 3).

Dementia incidence
Among the 2562 men with dementia data, 461 (18.0%) incident dementia
cases were identified (annual incidence rate = 27.6/1000 person-years) over
12 years of follow-up (median = 6.1 [IQR= 3.2-10.5]). Kaplan–Meier
curves are shown in Fig. 2. In unadjustedmodels, FPS had an increased risk
of dementia (hazard ratios (HR) = 1.34, 95% confidence intervals (CI) =
1.03-1.74) compared to AHS. There was no association with dementia risk
for LFN (HR = 1.11, 95%CI = 0.89-1.39). After adjusting for demographics,
behaviors, comorbidities and sleep medication use, results were similar
(HR = 1.35, 95%CI = 1.02–1.78 for FPS andHR = 1.09, 95%CI = 0.86–1.38
for LFN). Sensitivity analyses adjusting for different set of covariates dis-
played comparable findings (Supplementary Tables 4–7) as well as the
exclusion of incident dementia cases identified at the first follow-up visit
(HR = 1.42, 95%CI = 1.01–1.98 for FPS andHR = 1.20, 95%CI = 0.90-1.61
for LFN; Supplementary Table 8).

CVD event incidence
Among 2606 men with CVD data, 839 (32.2%) incident CVD events were
identified (annual incidence rate = 42.4/1000 person-years) over 12 years of
follow-up (median = 9.7 [IQR = 4.5-10.5]).Kaplan–Meier curves are shown
in Fig. 2. In unadjusted models, both FPS and LFN were significantly

associated with a higher risk of CVD events compared to AHS (HR = 1.44,
95%CI = 1.19–1.74 andHR = 1.21, 95%CI = 1.02–1.42, respectively). After
multivariable adjustment, FPS were significantly associated with a higher
risk of CVD events compared to AHS (HR = 1.32, 95% CI = 1.08-1.60),
while LFN showed a borderline association (HR = 1.16, 95%CI = 0.98-1.37,
p = 0.08). Results remained consistent in the sensitivity analysis after further
adjustment (Supplementary Tables 4–6 and 9), although the association for
LFNwas strongly attenuated after exclusion of participants with a history of
heart attack or stroke (HR = 1.07, 95% CI = 0.87-1.31; Supplementary
Table 9).

Discussion
In a prospective cohort of older men, we identified three distinct multi-
dimensional sleep/circadian profiles using machine learning: active healthy
sleepers [AHS], fragmented poor sleepers [FPS], and long and frequent
nappers [LFN]. Compared to AHS, FPS had increased risks of developing
dementia and CVD events over 12 years whereas LFN tended to have an
increased risk of CVD events, but not dementia. These results suggest that
poor sleep and disrupted circadian rhythms may be risk factors or pre-
clinical markers of dementia and CVD and highlight potential target
populations for sleep interventions.

Few studies have used clustering32–34 or latent class35–37 analyses to
discern sleep profiles in older adults. Moreover, these studies faced
important limitations, including cross-sectional design32, reliance on self-
reported sleep data32,35,36, lack of rest-activity variables32,34–36, and a focus on
clinical populations34. To the best of our knowledge, this study is the first to
identify objective sleep and circadian profiles in community-dwelling older
men using both sleep and rest-activity parameters with prospective follow-
up for health outcomes. We identified three sleep profiles with high het-
erogeneity, as evidence by the wide range of values and the significant
differences in all actigraphy-derived variables across the groups (p < 0.0001
for all). The AHS group was themost common profile (64%), characterized
by a combination of favorable characteristics: normal nighttime sleep
duration, higher sleep quality, and stronger circadian rhythmicity. The LFN
(21.9%) were characterized by longer and more frequent naps, alongside a
combination of favorable and unfavorable dimensions: normal nighttime
sleep duration, good sleep quality, andmore fragmented circadian rhythms.
The third groupwas the FPS (14.1%)whohad a combination of unfavorable
characteristics: shorter nighttime sleep duration, lower sleep quality, higher
sleep fragmentation, delayed sleep/activity timing, and weaker circadian
rhythmicity. Although each cluster is characterized by distinct main fea-
tures, it is important to acknowledge that some overlap exists between the
profiles. For instance, LFN’s nighttime sleep efficiency and duration are
comparable to those of AHS, suggesting shared good sleep quality between
AHS and LFN, while FPS and LFN exhibit similar levels of circadian
rhythmicity. This overlap indicates that the clusters represent a continuum
of sleep and circadian behaviors, highlighting the complexity of sleep health.
Compared toprior research, our study provides a deeper characterization of
nighttime and daytime sleep patterns by using a broader set of objective
parameters, including extensive analysis of circadian rhythms. This pro-
vided a more nuanced and complete understanding of participants’ mul-
tidimensional sleep and circadian patterns. Additionally, the advanced
machine learning technique has further enhanced classification accuracy.

Compared to AHS, FPS had a higher risk of dementia, consistent
with variable-centered research linking short sleep duration, sleep frag-
mentation, poor sleep efficiency, and weak circadian rhythms with
dementia incidence2,6,38–40. This result is also in line with our previous
work demonstrating the association between a multidimensional mea-
sure of sleep health and long-term cognitive decline41. Our result extends
those of a recent cross-sectional, person-centered study that used self-
reported sleep, which found that the poor sleepers group performed
worse on several cognitive tests compared to the healthy sleepers group32.
Potential underlying mechanisms include accumulation of amyloid-beta
and tau proteins, disturbed glymphatic clearance, metabolic dysfunction,
inflammation, and disrupted 24-h melatonin rhythms42–45. Given

https://doi.org/10.1038/s43856-025-01019-x Article

Communications Medicine |           (2025) 5:306 6

www.nature.com/commsmed


Table 3 | Baseline characteristics according to identified sleep clusters among the 2,667 participants

Active Healthy Sleepers
(n = 1707)

Fragmented Poor Sleepers
(n = 376)

Long and Frequent Nappers
(n = 584)

Characteristics Median (IQR)
or No. (%)

Median (IQR)
or No. (%)

Median (IQR)
or No. (%)

p-valuea Post hocb

Age (years) 75 (71;79) 76 (72;80.3) 76 (72;81) 0.002 LFN > AHS

Education, ≤High school 313 (18.3) 92 (24.5) 134 (22.9) 0.005 FPS > AHS

Race/ethnicity 0.0002

White 1575 (92.3) 327 (87.0) 523 (89.6)

Black/African American 36 (2.1) 24 (6.4) 22 (3.8)

Other 96 (5.6) 25 (6.6) 39 (6.7)

Living alone 191 (11.2) 66 (17.6) 62 (10.6) 0.001 FPS > AHS,LFN

PASE score 145 (101;190) 125 (84;176) 138 (96;183) 4.07e-05 AHS > FPS

GDS score, ≥6 90 (5.3) 28 (7.5) 38 (6.5) 0.20 -

Smoking status 0.01

Never 704 (41.3) 125 (33.2) 225 (38.5)

Past 976 (57.2) 238 (63.3) 347 (59.4)

Current 26 (1.5) 13 (3.5) 12 (2.1)

Caffeine intake (mg/day) 184 (36;368) 214 (48;405) 136 (0;356) 0.009 FPS > LFN

Alcoholic drink per week, >1 937 (55.2) 207 (55.5) 308 (52.9) 0.61 -

Body mass index (kg/m2) 26.6 (24.4;28.8) 27.6 (25.3;30.7) 27.0 (24.8;29.6) 3.73e-08 FPS, LFN > AHS

History of heart attack 288 (16.9) 67 (17.8) 95 (16.3) 0.82 -

History of stroke 56 (3.3) 9 (2.4) 28 (4.8) 0.10 -

History of diabetes mellitus 207 (12.1) 60 (16.0) 85 (14.6) 0.08 -

History of hypertension 802 (47.0) 208 (55.3) 314 (53.8) 0.001 FPS,LFN > AHS

Current sleep medication 185 (10.8) 57 (15.2) 62 (10.6) 0.05 -

Antidepressants 111 (6.5) 37 (9.8) 39 (6.7) 0.07 -

Benzodiazepine 69 (4.0) 16 (4.3) 22 (3.8) 0.93 -

Other sleep medications 32 (1.9) 8 (2.1) 10 (1.7) 0.90 -

AHI (n = 2,414) 12.4 (6.1;23.2) 18.1 (8.9,32.0) 15.0 (6.4;28.2) 6.05e-09 FPS > LFN > AHS

Abbreviations: AHI apnea-hypopnea index, GDS Geriatric Depression Scale, IQR interquartile range, PASE Physical Activity Scale for the Elderly.
a Kruskal-Wallis test was used for continuous variables, Chi-square test for categorical variables. b Dunn test adjusted formultiple comparisons usingBonferronimethodwas used for continuous variables,
pairwise comparisons with Chi-square test adjusted for multiple comparisons using Bonferroni method was used for categorical variables.

Fig. 2 | Kaplan–Meier curves depicting the probability of dementia-free and
cardiovascular disease-free survival between sleep profiles. P-values are derived
from Wald tests based on unadjusted Cox proportional hazards models, using the
Active healthy sleepers profile as the reference group. a, b correspond to
Kaplan–Meier plots for dementia incidence and cardiovascular disease events

incidence, respectively. Green, blue, and yellow lines correspond to Active healthy
sleepers, Fragmented poor sleepers, and Long and frequent nappers profiles,
respectively. The sample size was n = 2562 for dementia outcome and n = 2606 for
cardiovascular disease outcome. Abbreviations: CVD cardiovascular disease, No.
number
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melatonin’s neuroprotective effects -such as reducing amyloid-beta pro-
duction, mitigating tau hyperphosphorylation, alleviating oxidative stress,
and enhancing blood-brain barrier function- its dysregulation may further
link poor sleep health to increased dementia risk45. However, we cannot
exclude the fact that preclinical dementia-related changes may also influence
sleep and circadian patterns46–48. FPS also had an increased risk of CVD
events, in line with several prior studies of individual sleep parameters49–51.
Increase sympathetic activity and blood pressure, disrupted endothelial
function, and inflammatory processes may explain in part this association52.
Interestingly, AHI differed across the three groups, with the FPS group
exhibiting the highest median AHI (Table 3). Adjusting for baseline AHI
slightly attenuated the association between FPS and dementia risk (Supple-
mentary Table 5), but the effect size and confidence intervals remained
largely unchanged. This suggests that sleep apnea may partially mediate this
relationship whereas the association between FPS and CVD remained robust
after adjusting for AHI, highlighting the importance of other mechanisms.
Taken together, these results showed that FPS were associated with poor
incident cognitive and cardiovascular health.

We did not observe an association between LFN and dementia inci-
dence. This finding contributes to the ongoing debate on napping and
dementia. Some studies have reported that longer or more frequent naps
were linked to a higher risk of dementia and faster cognitive decline5,53, while
others have found a lower risk54,55 or no association7,56. Our study demon-
strated that long and frequent napping, when combined with good night-
time sleep dimensions, might not affect the risk of dementia. This
underscores the importance of clustering analysis and considering combi-
nation of sleep and circadian dimensions, as longer andmore frequent naps
alone were associated with a higher risk of dementia in our sample. Fur-
thermore, this is in linewith a previous clustering studywhich showed that a
high sleep propensity group (characterized by long naps) was protective
against all-causemortality,while napping alonewas associatedwith ahigher
risk33. Interestingly, LFN were linked to increased risk of CVD events,
although the association was of marginal significance. Prior research on
napping and CVD has been mixed, with several studies suggesting a higher
risk of CVD associated with more frequent or longer naps4,12, while others
suggested a protective effect13. Daytime napping may result from short or
poor nighttime sleep (as a compensatory mechanism) or indicate poor
overall health, both of which can contribute to increase CVD risk. However,
these hypotheses do not fully explain our findings since LFN had normal
nighttime sleep duration with good sleep quality, and LFN did not differ
from AHS regarding sociodemographic factors and comorbidities.
Although the exact reasonswhy LFNmight be associatedwithCVDbut not
dementia are notwell-understood, assumptions include autonomic nervous
system disruptions or other metabolic changes not examined in this
study57,58, which may impact more the cardiovascular risk. It may also
involve cardiovascular mechanisms that do not relate to dementia risk or
have a less direct effect on it. Further research, includingmediation analyses,
is needed to better understand the role of napping in relation to adverse
health outcomes and their underlying mechanisms.

Our findings have important clinical and public health implications. By
identifying common multidimensional sleep and circadian patterns in older
men using advanced machine learning techniques, this study enhances our
understanding of the interrelations between numerous sleep/circadian
parameters and underscores the critical need for comprehensive sleep health
assessment in clinical practice and research settings. Both FPS and LFN
exhibited poor circadian activity rhythmicity, emphasizing the importance of
this dimension of sleep health. Future studies should incorporate circadian
rhythms when examining adverse outcomes. Moreover, our results highlight
specific at-risk groups that could benefit from sleep interventions and pre-
vention efforts, and support poor sleep patterns as a marker or risk factor for
cognitive and cardiovascular health. Public health initiatives may consider
prioritizing the screening andmonitoring of older adults with weak circadian
rhythms combined with poor nighttime sleep or with high daytime napping.

Strengths of this study include a 12 year longitudinal design with high
retention rates, a multidimensional measure of sleep and rest-activity

rhythmsusing objectivemeasures, and consideration of numerous potential
confounders. We also used an innovative machine learning approach
capable of detecting clusters with flexible shapes, which standard clustering
methods cannot achieve. However, there are also limitations. Although we
applied a prespecified algorithm previously used inMrOS studies5,23, which
aligns with approaches from other cohort studies11,59, the diagnosis of
dementia relied on both objective (e.g., dementia medication, cognitive
tests) and self-reported data (e.g., self-reported physician diagnosis), which
may lead to outcome misclassification. Moreover, the timing of dementia
incidence was based on study visit dates, which may not reflect the actual
onset of dementia, and information on dementia subtypes was lacking. Due
to the lack of biomarkers of neurodegeneration in this study,wewere unable
to determine whether specific sleep profiles are associated with distinct
neurodegenerative pathways. Future research should incorporate objective
biomarkers, such as phosphorylated tau (p-tau)217, p-tau181, or white
matter hyperintensities, to better understand their relationship with sleep
profiles. CVD events assessment relied in part on self-report potentially
introducing bias, but this approach was completed with rigorous, objective
assessments and expert confirmation, making it a well-established and
widely accepted method in the literature60,61. Additionally, actigraphy data
were available only at baseline, with a median duration of 5 nights. Future
research should use longer actigraphy recordings to more robustly assess
circadian rhythmicity and examine changes in sleep over time to identify
dynamic profiles and minimize potential bias due to single-time-point
assessments. This study predominantly involves White older men, limiting
the generalizability of the results. Future research should replicate these
methods in more diverse samples. Lastly, as an observational study, we
cannot assume causal relationships between sleep profiles and dementia or
CVD events.

Conclusions
In older men, we identified three multidimensional actigraphy-derived
sleep/circadian profiles. Compared to AHS, FPS were associated with less
favorable cognitive and cardiovascular health over 12 years, while FPS were
linked to increased risk of CVD events, but not dementia. These results
suggest potential targets for sleep interventions and prevention efforts and
emphasize the need for careful screening of poor sleepers for adverse out-
comes. Moreover, our study highlights the importance of future research to
consider combinations of sleep characteristics.

Data availability
The data supporting the findings of this study are openly available at https://
mrosonline.ucsf.edu15,16. The source data underlying Fig. 1 are provided in
Supplementary Data 1, and those underlying Fig. 2 in Supplemen-
tary Data 2.

Code availability
Code for identification of clusters is accessible at https://zenodo.org/
records/1579252162.
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