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Abstract

Plain Language Summary

Background Studies show associations between air pollution exposure and coronavirus
2019 (COVID19) hospitalizations, but have not substantially explored regional differences. In
this study, we estimate associations between shorter-term exposure to fine particulate
matter (PM,_s) and hospitalization among individuals with SARS-CoV-2 infection.
Methods This study utilized data from 72,385 patients (78,504 hospitalizations) with a
hospital-confirmed SARS-CoV-2 infection between January 1, 2020 and December 31,
2020. Daily PM, 5 concentrations from ground-based monitors were averaged to generate
2,5, and 21-day average exposures prior to hospitalization. We used a time-stratified case-
crossover approach to estimate associations between PM, 5 and COVID19-related
hospitalizations in 57 Core Based Statistical Areas (CBSAs) across the United States (US).
We subsequently conducted nationwide and region-specific random effects meta-analysis.
Results In the random effects meta-analysis, a 1 ug/m3 increasein 2,5, and 21-day average
PM 5 are associated with a 0.61% (95% Confidence Interval [CI] =0.12, 1.11); 0.91%
(Cl1=0.15,1.67); and 0.04% (Cl = —2.70, 2.85) increase in COVID19-related hospitalization
risk, respectively. We observe substantial heterogeneity in the associations by region with
the largest adverse associations in the South.

Conclusions Higher concentrations of PM, 5 are associated with higher risk of COVID19-
related hospitalizations. Given the geographic heterogeneity observed, studies exploring
factors, such as PM, 5 exposure, that could explain differences in COVID19 risks may help to
understand the COVID19 pandemic and aid in preparing for future ones.

The public health impact of the SARS-CoV -2 global pandemic has been
tremendous, and specific populations have been disparately impacted'.
In the United States (US) alone, there have been 96 million confirmed
COVID19 cases and over 1 million COVID19-related deaths’. At dif-

Exposure to air pollution is shown to have a
negative impact on human health. For
example, air pollution increases the risk of
cardiovascular- and respiratory-related hos-
pitalizations and deaths. Little is known about
how air pollution might affect the health of
individuals with COVID19. Using hospitaliza-
tion data from 57 cities across the United
States (US), we assess whether individuals
who tested positive for COVID19 were more
likely to be hospitalized after multiple days of
higher air pollution exposures. We find that
higher levels of fine particulate matter, a
common air pollutant, are associated with
increased likelihood of COVID19-related
hospitalization, and that the relationship
between particulate matter and COVID19
differs across the US regions and cities we
examine. The short- and long-term health
impacts of air pollution exposure in individuals
with COVID19 merits further research and
should be considered in public health inter-
ventions and planning health care capacity.

disproportionate burden of the health consequences of COVID19 in
terms of viral infections, hospitalizations, and mortality
same populations may also be exposed to environmental hazards such as

5,6

.Many of these

air pollution7, vulnerable to adverse health effects of environmental
exposures™’, or both". As a ubiquitous and potentially modifiable
exposure'"'”’, understanding the role of air pollution with respect to

ferent phases of the pandemic, populations including, elderly
individuals’ and rural communities’ in the US have borne a
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COVID19 may help address the public health burden of the COVID19
pandemic'"".

Exposure to ambient air pollution adversely affects respiratory, car-
diovascular, and immune health’™'° and may exacerbate severity of SARS-
CoV-2 infection, worsen prognosis, and/or increase risk of long-term health
impacts”. A limited number of US-based studies have examined associa-
tions between air pollution and health among individuals with COVID19
(COVID19 positive/COVID19 + ); generally, findings suggest air pollution
is related to health outcomes (e.g., hospitalizations, mortality) in those with
COVID19'**, For example, a study in Southern California found that near-
roadway air pollution exposures in the year prior to COVID19 diagnosis
were associated with hospitalization and mortality among COVID19-+
individuals™. Similarly, PM, 5 exposure in the year prior to diagnosis was
associated with increased risk of hospital admission and mortality among
COVID+ individuals in New York City’'. There have been a few studies of
COVIDI19 and shorter-term air pollution exposure. Kim et al (2022)
observed positive associations between 21-day average PM,s and
COVID19 mortality in Chicago”. A similar study done in Queens, New
York but only examining the time period of March 1 - April 20, 2020 also
chose to examine 21-day average PM, 5 and found a negative association
between PM, 5 and COVID19 cases and mortality. This study also exam-
ined ozone and found a negative association with mortality but a positive
association with COVID19 case counts in Queens County”. This study did
have the limitation of only having county-level information. In a nationwide
study of county-level data, positive associations were seen between PM, 5
(up to 14-day lag) and SARS-CoV-2 infection™. Interestingly, associations
were stronger after excluding counties in New York state, which they
excluded due to the severity of the pandemic and the fact that including
severely affected areas in previous, similar analyses had been shown to
strongly alter observed associations.

Most studies of COVID19 and air pollution (including those cited
above) have not used individual-level health data, or have been conducted in
geographically constrained, predominantly urban samples that do not
explore regional differences in associations, which may be driven by
demographics, air pollution exposure distribution or composition, and
other factors’>>***. To date, nationwide investigations of short-term
ambient air pollution exposure and COVID19-related health outcomes in
the US are limited to ecological studies of particulate matter
< 25um (PM,5) and COVID19-related case counts or mortality”****".
However, ecological studies cannot adjust for individual-level risk factors
and are subject to the ecological fallacy”’. Relationships between air pollu-
tion and health in COVID19+ individuals have not yet been studied with
individual-level data at a national scale in the US, and this represents a
critical gap in research.

The National Clinical Cohort Collaborative (N3C) (previously the
National COVID19 Cohort Collaborative) was created to accelerate
understanding of COVID19 by developing a centralized, harmonized,
secure, national-in-scope electronic health record (EHR) data resource from
health systems across the US™. The N3C includes patient-level information
on COVID19 test results, medications, co-morbidities, vital signs, labora-
tory values, demographics, and 3 or 5-digit ZIP code of residence on >6
million people in the US who have tested positive for COVID19 since March
2020. While N3C has gained traction as a key data resource, evidenced by a
growing list of publications™ ™, it has not yet been utilized to examine health
effects of environmental exposures such as air pollution.

We hypothesize that short-term PM, s exposure is associated with
increased risks of hospitalization among individuals with a recent, con-
firmed SARS-CoV-2 infection. Given the likelihood of geographic hetero-
geneity in such associations we also explored region specific associations.
Geographic heterogeneity in associations could arise due to differing
composition of PM, s, differences in the demographic makeup of popula-
tions or even differences in behaviors that could act to alter air pollution-
related health risks. To conduct these analyses, we linked individual-level
data from N3C participants with air pollution exposure data and examined
associations between air pollution and COVID19 by Core Based Statistical

Area (CBSA, an indicator for metropolitan and surrounding areas). Using a
time stratified case-crossover design, we evaluate whether individual-level
characteristics (e.g., age, pre-existing co-morbidities) modify observed
associations, a question that has not been thoroughly explored in previous
studies that lack individual-level data. Results from each CBSA are meta-
analyzed to produce nationwide and region-specific associations. Overall,
we find evidence that PM,s exposure is associated with increased
COVIDI19-related hospitalization risk and observe substantial hetero-
geneity in PM, 5-COVID19 associations by region, with the largest asso-
ciations in the South.

Methods

Health data

National Clinical Cohort Collaborative (N3C). The National Clinical
Cohort Collaborative (N3C) or “N3C Enclave” is a centralized, har-
monized, secure, national-in-scope clinical EHR data resource with
embedded analytical capabilities. It houses EHR data from 78 distinct
health systems (e.g., hospitals, hospital-affiliated primary care providers,
etc.) across the US™. All health systems included in N3C are located in
the contiguous 48 states. However, due to the rapidly unfolding
COVIDI19 pandemic there was not a systematic selection of hospital
systems based on a priori selection criteria as might be ideally done.
Instead, the N3C represents a nationwide surveillance of COVID19
based on those hospitals that agreed to participate. Thus, the N3C has
broad geographical representation across the US but should not be
considered to be a perfectly representative sample of the US. For parti-
cipating institutions, N3C includes COVID19+ individuals (i.e., indi-
viduals who tested positive for SARS-CoV-2 in a hospital setting or had
symptoms consistent with COVID19 from January 1, 2020 onward) and
matched controls (i.e., individuals that were not COVID19+ but mat-
ched on race, sex, and hospital system to someone with COVIDI19
included in N3C). N3C includes records of inpatient and outpatient
visits, and variables such as COVID19 test results and dates, vaccination
status, symptoms, medications, co-morbidities, sex, age, race, ethnicity,
and 5-digit ZIP code (for last known residence), among others™. The
N3C also has “lookback” data, i.e., encounters in the same source health
system beginning on or after January 1, 2018. N3C uses centrally
maintained shared logic sets for common diagnostic and phenotype
definitions. EHR data in the N3C Enclave are harmonized in the
Observational Medical Outcomes Partnership (OMOP) common data
model, v5.3.1°*”. Additional information on the design and infra-
structure of the N3C is available elsewhere™.

Identifying COVID19-positive individuals. The N3C definition of
COVIDI19+ is publicly available at https://national-clinical-cohort-
collaborative.github.io/guide-to-n3c-vl/ and includes patients in the
health systems with any encounter after January 1, 2020, with (i) one of a
set of a priori-defined SARS-CoV-2 laboratory tests; (ii) a strong positive
diagnostic code; or (iii) two weak positive diagnostic codes during the
same encounter or on the same date before May 1, 2020 (i.e., between
January 1, 2020 and May 1, 2020)*. In the construction of our
COVIDI19+ patient hospitalization dataset, individuals age 218 years
with a positive nucleic acid amplification test (e.g., PCR) or positive
antigen test were identified as having a COVID infection. Thus, our
definition of “COVID19 +” is more stringent than that required for
inclusion in the N3C Enclave as COVID19 + **. Specifically, we do not
include individuals solely based on positive diagnostic codes or positive
antibody test, which may detect remote infection rather than active
COVID19 infection.

Identifying COVID19-related hospitalizations. Following the work of
others", we define a COVID19-related hospitalization as an inpatient
hospitalization with an admission date that is 16 days or less following a
positive PCR or antigen test, or an inpatient admission date that is one
day before a positive test.
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Air pollution exposure

Air pollution data consist of daily average concentrations of particulate
matter (PM,s) recorded at ambient air quality monitors at National, State
and Local Air Monitoring Stations. We generated daily estimates of air
pollutant concentrations at 5-digit ZIP Code Tabulation Areas (ZCTA)
using daily monitoring data obtained from the US Environmental Protec-
tion Agency (EPA). A pollution monitor was assigned to a ZCTA if: (i) the
monitor was located within the ZCTA; or (ii) the monitor was within 20 km
of the ZCTA centroid. The 20 km distance, and general methodology, is
based on previous studies, and is designed to maximize the number of
individuals included in the study for whom we can reasonably estimate
pollution exposure*. Daily ZCTA-level PM, 5 concentrations were obtained
from all monitors which provided 24 h PM, 5 measurements. For hourly
monitors we required that a monitor have recorded PM, 5 for each of
24 hours in a given day for data to be considered valid for that day to offset
the risk of using PM, 5 values from a monitor that was malfunctioning and
to avoid bias towards portions of the day. For a given ZCTA, we averaged
PM, 5 values across all monitors and assigned the PM, s value for that day as
the average across all monitors.

Individuals residing in a ZCTA with PM, s monitoring data (i.e., at
least one monitor located within the ZCTA or within 20 km of the ZCTA
centroid) were assigned PM, 5 exposures based on their ZIP code of resi-
dence using an existing ZIP-to-ZCTA crosswalk (https://udsmapper.org/
zip-code-to-zcta-crosswalk/). For each inpatient encounter, daily ZCTA-
level PM, 5 concentrations were averaged to create 21-day lagged exposure
estimates for the 21 days preceding the individual’s hospitalization. Addi-
tionally, 2-day and 5-day lagged exposure estimates were also generated. For
2- and 5-day average exposures we required the relevant monitor(s) to have
measurements for all days in the averaging period; for 21-day averages, a
maximum of 3 missing days were allowed.

Covariate Data

Meteorological data. Meteorological conditions such as temperature
and humidity are potential confounders of the association between short-
term air pollution exposure and hospitalizations. Daily estimates of
temperature and humidity were obtained from the Parameter-elevation
Relationships on Independent Slopes Model (PRISM). PRISM uses
variables such as measured temperature and humidity at weather sta-
tions, location, elevation, coastal proximity, and topographic features to
estimate temperature, humidity, and precipitation across the con-
terminous US”™ and has been used in previous epidemiological
studies**”. Daily estimates of temperature, precipitation, and humidity
reported at the 5-digit ZIP code level were joined with individuals based
on their ZIP code of residence. Meteorological covariates were chosen to
adjust for potential confounding by weather patterns which may covary
with both PM, 5 and COVID19-related hospitalizations.

US Census data. The Census classifies geographic areas into Core Based
Statistical Areas (CBSAs) as well as Regions and Divisions. CBSAs consist
of 560 micropolitan and 362 metropolitan statistical areas based on
location within county or county equivalents in the US. Metropolitan
statistical areas have at least one urbanized area with a population of
50,000 or more with adjacent territory measured by commuting ties.
Micropolitan statistical areas have at least one urban cluster with a
population between 10,000 and 50,000 with socially and economically
integrated adjacent territory as measured by commuting ties*’. For CBSAs
in the analysis, we obtained the percentage of individuals with incomes
below the federal poverty line and percentage of individuals with a high
school or more education from the 2020 Census. Census regions consisted
of North, South, Midwest, and West as defined by the US Census (https://
www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf).

Urbanicity. Rural-Urban Commuting Area (RUCA) codes were used to
classify ZIP codes as urban, suburban, or rural using 10 primary and
21 secondary designations™.

Counts of COVID19 cases. National daily county-level COVID19
community transmission data, including counts of new COVID19 cases
and running totals from January 22, 2020 forward were obtained from the
USA Facts database™".

Statistical analysis

Differences between inpatient hospitalizations included in the final ana-
Iytic cohort and those that were excluded were characterized using stra-
tified descriptive statistics tables. We report means and standard
deviations for continuous variables and counts and percentages for
categorical variables. Reported p-values are based on t-tests (for con-
tinuous variables) and Chi-square tests (for categorical variables). In large
datasets such as those in N3C, p-values may be deceptively small. Thus,
standardized mean differences (SMD) were also calculated to quantify the
magnitude of differences between strata®”. The level of observation for
the case-crossover analysis was the patient encounter, meaning individual
patients could enter the analysis at multiple timepoints. We restricted our
analyses to 2020 as this was the timeframe of available air pollution data in
N3C at the time of data analysis and as this was the timeframe prior to
widespread vaccinations. As individual-level vaccination information is
only available for a small subset of N3C we considered this restriction
necessary.

Exposures considered were 2, 5, and 21-day average PM,s con-
centrations. Each exposure was associated with COVID19-related hospi-
talization using conditional logistic regression models (survival package)
implemented in R software version 3.5.1°*, within a time-stratified case-
crossover design. For each patient, the case day was defined as the date of
admission for each COVIDI19-related inpatient hospitalization. Repeat
admissions determined to be part of the overall same hospitalization
(termed macrovisit) are grouped into a single hospitalization within N3C,
preventing repeat analyses of the same overall hospitalization. Details on the
creation of the macrovisit concept in N3C have been published elsewhere™”.
Control days were defined as the same day of the week and calendar month
of the case day (index). Case-control groups were accounted for as strata in
the regressions while repeated measures for multiple hospitalizations for the
same patient were accounted for with cluster robust standard errors, with
the cluster defined as the individual patient. While time-invariant variables
do not confound in case-crossover studies by design, exposures that are
time-varying (e.g., meteorology) can still confound associations. Therefore,
we adjusted for mean temperature, dewpoint, and precipitation corre-
sponding to the case and control dates within the models.

To account for potential confounding by local COVID19 dynamics, we
included a one-week lagged average count of new infections in the county of
residence starting from the date 16 days prior to the index case (or control
date), with the 16-day lookback meant to account for the period of time in
which the individual may have been infected prior to hospitalization. As the
COVID19 pandemic did not begin everywhere at the same time we also
adjusted for a CBSA-specific measure of days from the first case reported in
the patient’s CBSA.

Initial analyses indicated significant heterogeneity in associations
across the nation and potentially region-specific associations which have not
been previously explored. To address this, we performed CBSA-specific
analyses followed by random effects meta-analysis (as implemented in the
metafor R package)™ to account for heterogeneity in the associations across
CBSAs. For data privacy and regression stability, we required that CBSAs
have atleast 50 index cases to be included in the CBSA-specific analysis. This
follows similar approaches used in the literature to understand spatial
heterogeneity in case-crossover analyses™. Point estimates and 95% con-
fidence intervals from the random effects meta-analysis were compared
with those from the individual-level data analysis (which did not account for
heterogeneity between CBSAs) to understand how heterogeneity impacts
observed associations. We also performed Census region (Northeast,
Midwest, South, and West) specific random effects meta-analyses to address
the unexplored research gap of region-specific associations between PM, 5
and COVID19-related hospitalizations. For Census region meta-analyses
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those CBSAs that spanned multiple census regions were placed within the
census region containing the metropolitan core.

In addition to region specific analyses we also performed subgroup
analyses to ascertain whether relationships between short-term PM, 5
exposure differed for individuals with risk factors for severe COVID19
infection, including: race (Black, White, Asian or Pacific Islander [API],
Alaskan Native or American Indian [ANAI], and Other or Multiple Races),
age (<65 years, 265 years); and pre-infection histories of medical condi-
tions, namely, cardiovascular diseases (CVD), respiratory disease (RD), or
metabolic disease (MD). For CVD, we included a broad spectrum of cardiac
and vascular diseases to broadly capture vascular dysfunction which may
exacerbate COVID19-related health risks. CVD was defined as the presence
of any of the following chronic cardiac or vascular diseases: cardiomyo-
pathy, cerebrovascular disease, congestive heart failure, coronary artery
disease, hypertension, pervious myocardial infarction, or peripheral vas-
cular disease. RD was defined as the presence of emphysema or chronic
bronchitis. MD was defined as the presence of Type lor 2 diabetes or obesity.
CBSA-specific subgroup analyses were meta-analyzed to provide overall
and Census region-specific results requiring 50 index cases per CBSA as
before. To formally test for a difference in the regression coefficients between
the subgroups we used a two-sample Z-test as done in similar analyses of
COVID19 health effects and PM, 5 exposure”. Initial analyses included
continuous confounders (temperature, dewpoint, precipitation, county of
new COVIDI9 infections, and days since first reported COVID19 case in
CBSA) as linear terms. However, it is possible these confounders have non-
linear relationships with the outcome, thus as a sensitivity analysis we re-ran
the models using a natural cubic spline with three degrees of freedom for all
continuous confounders except precipitation. We attempted to evaluate
models with a natural cubic spline for precipitation, but such models did not
converge and thus precipitation was left as a linear term even in the sensi-
tivity analyses.

We used a two tailed a < 0.05 as evidence of statistical significance for
subgroup differences. All results are reported as the percent increase in
COVID19-related hospitalizations per 1 pg/m’ increase in PM, 5 along with
the associated 95% confidence interval (95% CI). Code files for cohort
construction and linking to environmental data are archived in Zenodo, an
open research repository that facilitates preservation and dissemination of
research output (https://doi.org/10.5281/zenodo.15990139)".

The N3C data transfer to the National Center for Advancing Trans-
lational Sciences (NCATS) is performed under a Johns Hopkins University
Reliance Protocol # IRB00249128 or individual site agreements with US
National Institutes of Health (NIH). The N3C Data Enclave is managed
under the authority of the NTH; information can be found at https://ncats.
nih.gov/n3c/resources. The Duke University Health System Institutional
Review Board completed an administrative review and found the consent
form for the study to be consistent with DUHS IRB policies. As the research
posed no more than minimal risk and informed consent of individuals was
waived. Additionally, we obtained an approved data use request (DUR) with
N3C (DUR B5-D391).

Results

Study cohort description

In the N3C, there were 1,563,240 observed COVID-19 cases in 2020. Of
these, 174,383 individuals were hospitalized (11.2%). Of these 174,383
hospitalized individuals, 19,747 were excluded for missing age or invalid age
data, age <18 years, or hospitalization occurring in 2021 or later (and thus
outside of the air quality data available for our study). A further 9864 were
excluded due to the hospital system performing date shifting to obscure
exact dates which were required to link hospitalizations to air quality data.
As air quality data was linked by residential ZIP code, 66,081 individuals
were excluded for lack of available ZIP code data or residing in a ZIP code
>20 km from an air quality monitor. Finally, 1885 individuals were excluded
due to missing meteorology confounders. No other confounders had
missing data. This left us with a final sample 0f 78,504 COVID-19 cases from
48 participating hospital systems with all 4 Census regions and 57 CBSAs

represented. A STROBE (STrengthening the Reporting of OBservational
studies in Epidemiology) diagram of patient exclusions is given in Fig. 1 and
amap of the COVID-19 cases is given in Supplemental Fig. 1. A density plot
of the timing of COVID19-related hospitalizations is given in Supplemental
Fig. 2 with a further breakdown by CBSA given in Supplemental Fig. 3.

The average age at the time of COVIDI19 positive test was 62 years
(SD =18 years). Encounters were approximately equal across the sexes
(47.9% female, 52.1% male). Most encounters involved patients that were
either White (50.9%) or Black (23.6%), and 20.1% of encounters were for
patients identified as Hispanic or Latino in their health record. Most
encounters were for patients residing in the Midwest (47.6%) and Northeast
(33.9%) Census regions and the vast majority (99.0%) lived in ZIP code
areas that were classified as urban based on RUCA codes. A majority of
encounters (55.1%) involved patients that had evidence of pre-existing
CVD, with 41.1% having pre-existing MD (Table 1). The median 2-day, 5-
day, and 21-day average PM, s among study participants was 7.0, 7.1, and
7.6 pg/m’ respectively.

We compared characteristics between adult COVID19-related inpa-
tient encounters that were included in our final analytic sample to those that
were excluded (e.g., due to date shifting, lack of location data, or lack of
PM, 5 data) to examine characteristics associated with the probability of
selecting into our final sample. There were some differences in racial
(SMD = 0.442) and ethnic (SMD = 0.160) composition between the initial
sample and final analytic sample (Supplemental Table 1). Further, patients
with valid PM, 5 data were more likely to reside in areas classified as urban
(SMD =1.016), due to the existing monitoring network, which has more
coverage for urban areas. Patients with valid PM, s data were also more
likely to be Asian/Pacific Islander, Black, Other/Multiple Races, and His-
panic/Latino (SMD =0.548 for race and SMD =0.320 for ethnicity).
(Supplemental Data 1).

Case-crossover analysis & meta-analysis

Without accounting for heterogeneity between CBSAs, in the full analytic
patient population, a 1 ug/m’ unit increase in 2-day average PM, 5 was
associated with a 0.2% increase in COVID19 hospitalization risk (95%
CI=0.0, 0.4). For 5-day average PM, 5 associations were 0.0% (—0.3, 0.3),
and 21-day average PM, 5 associations were —3.5% (95% CI: —4.2, —2.8)
per 1 pug/m’ increase in PM, s for each averaging period. When we stratified
these results by urbanicity and observed positive associations between PM, 5
and COVID19-related hospitalizations in urban and suburban areas for
2-day average PM, 5 but a negative association for 21-day average PM, 5 in
urban areas (Supplemental Table 2). However, these overall estimates mask
substantial variability between CBSAs in associations between air pollution
and COVIDI19 related hospitalizations for all exposures time periods
(Figs. 2-4). This variability is highlighted by heterogeneity seen through
statistics such as Cochran’s Q and I* which was observed for nearly all
exposures time periods and regions examined (Supplemental Table 3). Since
this study used a case-crossover design and all observations were hospital
confirmed cases of SARS-CoV-2 infection & COVID19 this heterogeneity
cannot be explained by at home testing differences or self-reporting of
COVIDI9.

As detailed in the Methods, we performed a random effects meta-
analysis of all CBSAs to better understand the relationship between PM, 5
and COVIDI19 hospitalizations at national and regional scales while
accounting for heterogeneity across CBSA-specific estimates. We required a
minimum of 50 study participants in a CBSA to analyze its specific effects.
There were 57 CBSAs meeting this requirement which represented 97.8% of
study participants and 97.5% of hospitalizations. When all CBSAs were
meta-analyzed Cochran’s Q was significant (p <0.0001) for all three air
pollution averaging periods (2-, 5-, and 21-day). The I* statistic (repre-
senting the percentage of total variability attributable to intra-CBSA het-
erogeneity) was 68.0% for 2-day average PM, 5, 72.6% for 5-day average
PM, 5, and 90.8% for 21-day average PM, s, further motivating the random
effects meta-analysis and highlighting the need to account for heterogeneity
across CBSAs.
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Fig. 1 | STROBE diagram of cohort selection. The
STROBE (Strengthening the Reporting of Obser-
vational studies in Epidemiology) diagram illus-
trates the sample size of the initial cohort and sample
size of the final analytical sample after implementing
multiple exclusion criteria.
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In the meta-analyses heterogeneity was observed for both averaging
period and region. In the meta-analysis of all 57 CBSAs, we observed
associations for both 2-day (0.61%; 95% CI =0.12,1.11, P = 0.02; Fig. 2) and
5-day average PM, 5 (0.91%; 95% CI = 0.15, 1.67; P = 0.02; Fig. 3), but did
not observe an association for 21-day average PM, 5 (0.04%; 95% CI =
—2.70, 2.85; P=0.98; Fig. 4).

Regional and Subgroup Analyses

The strongest positive associations between PM, 5 and COVID19-related
hospitalizations were observed in the South region, where the association’s
magnitude increased with increasing averaging time (Table 2) and positive
associations were observed for all averaging periods. Other regions showed
greater variability in associations, with some averaging periods having null
or positive associations and a few having negative associations, particularly
for the Northeast (5-day and 21-day average PM, 5) and West regions (21-
day average PM, 5).

We observed several subgroup specific associations that were sugges-
tive of a difference in associations based on race, pre-existing conditions
(CVD, MD, or RD), and age at COVID19 diagnosis. In particular, indivi-
duals with CVD showed strong associations overall as well as in the South
region whereas those without CVD had attenuated or null associations
(Supplemental Data 2). When formally testing for differences in the
regression coefficients, however, there was limited evidence for statistically
significant differences between coefficients. The only statistically significant
differences by clinical or demographic factors were seen for CVD, Black
race, and Other race (representing study participants who did not self-report
as Black, White, Asian or Pacific Islander, or American Indian or Alaskan
Native; Supplemental Data 3). Of these factors, only Black race was seen to
modify associations when considering all CBSAs while other factors were
only seen to modify associations in specific regions (Supplemental Data 3).

We performed a sensitivity analysis evaluating if relaxing the
assumption of linearity for all continuous confounders (with the exception
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Table 1 | Sociodemographic and clinical characteristics of
patients included in analytic cohort

Variable Summary
Patients 78,504
Sociodemographic characteristics
Age (years) at positive test date, mean (SD) 62.3 (18.5)
Gender, n (%)
Female 37,575 (47.9)
Male 40,920 (52.1)

Race, n (%)

American Indian Or Alaska Native, n (%) 314 (0.4)
Asian Or Pacific Islander 3647 (4.6)
Black 18,540 (23.6)
White 39,993 (50.9)
Other or Multiple Races 11,586 (14.8)
Missing/Unknown 4424 (5.6)

Ethnicity, n (%)

Hispanic or Latino 15,756 (20.1)
58,712 (74.8)

4036 (5.1)

Not Hispanic or Latino

No matching concept, Other, or Unknown

Co-morbidities at time of positive COVID test

Cardiovascular diseases, n (%) 43,244 (55.1)
17,122 (21.8)

32,245 (41.1)

Respiratory disease, n (%)

Metabolic disease, n (%)

Area level characteristics

PM2.5 on day of hospitalization - Mean (SD) 8.0 (5.1)
21-day PM2.5, Mean (SD) 7.9(2.7)
5-day PM2.5, Mean (SD) 8.0 (3.8)
2-day PM2.5, Mean (SD) 8.0 (3.8)
Precipitation, mean (SD) 3.2(7.9)
Mean temperature (Celsius), mean (SD) 10.7 (8.6)
Dewpoint, mean (SD) 4.4 (8.8)

7-day average of new COVID-19 cases from 16 days prior to
hospitalization date, mean (SD)

489.5 (684.6)

Percent of population in ZCTA with poverty status, mean (SD) 16.3 (9.6)
Census Region, n (%)
Midwest 37,336 (47.6)
Northeast 26,641 (33.9)
South 8811 (11.2)
West 5716 (7.3)
Rural-Urban Commuting Area classification, n (%)
Rural 214 (0.3)
Suburban 579 (0.7)
Urban 77,704 (99.0)
SD standard deviation.

of precipitation due to convergence issues) altered associations. Results for
these sensitivity analyses were slightly attenuated from the primary analysis
but still showed positive associations between COVID19-related hospitali-
zations particularly for 2-day average PM, 5 (0.50%; 95% CI = —0.01, 1.02)
and 5-day average PM,s (0.76%; 95% CI=—0.07, 1.59) though these
associations were not statistically significant. Associations remained positive
and statistically significant in the South region for all lag periods even after
allowing for non-linear relationships for meteorological confounders
(Supplemental Table 4).

To better visualize trends in the distribution of confounders across
regions which may drive regional differences we computed the percentile
ranking for all 57 CBSAs for each of the confounders and calculated the
mean percentile ranking for each confounder for each Census region
(Supplemental Table 5). While the West region had CBSAs that ranked the
highest in PM, 5 concentration for all averaging periods the percentile
rankings were all near 0.50 suggesting relatively little difference across the
regions in PM, 5 exposure. In contrast the South region had CBSAs with the
highest proportion of Black study participants, and the lowest proportion of
White study participants and there was substantial difference in the mean
percentile rankings. The South region also had the highest average CBSA
percentile rankings for all three chronic disease categories examined (CVD,
RD, and MD), and it contained the CBSAs with the second lowest average
age at COVID19 diagnosis.

Discussion

Here, we explored associations between short-term PM, 5 exposure and
COVID19-related hospitalizations in a demographically and geo-
graphically diverse sample with individual-level data. This study
encompasses 78,504 unique individual patients representing 48 health
systems and 57 CBSAs spread across all four US Census regions. To the
best of our knowledge, this is the first multi-city study of PM, s and
COVID19-related hospitalizations with national-in-scope individual level
data in the US. Across all observations and without accounting for geo-
graphic heterogeneity as done in the random effects meta-analysis we
observed a positive association between 2-day average PM,s and
COVID19-related hospitalizations, no association with 5-day average
PM, 5, and an inverse association with 21-day average PM, s.

However, associations were much more consistent after accounting for
heterogeneity across the CBSAs via a random effects meta-analysis (Table 2;
Figs. 2-4), an approach that has proven useful in previous case-crossover
studies””. Factors which may have contributed to regional and CBSA
heterogeneity in associations include differences in air pollution composi-
tion, temporal trends in COVID19-related hospitalizations, demographic
differences (including differences in the health systems demographics),
differences in underlying chronic conditions among the population, or
differences in public health policy implementation/adherence which has
been shown to be a factor in regional heterogeneity”. Previous studies of air
pollution-related health effects have also observed differences between
geographic regions driven by some of the same aforementioned factors (e.g.,
population demographics and chemical composition of air pollution)* .
Our results further highlight that failing to account for regional hetero-
geneity could cause misleading inference of the association between air
pollution and health effects — particularly in the context of COVID19-
related hospitalizations.

In the US, only a handful of studies have examined short-term air
pollution exposure and COVID19-related hospitalizations. In a study of
Cook County Illinois, positive associations were seen between short-term
PM, 5 exposure and COVIDI19 mortality, with the strongest associations
seen for cumulative PM, 5 exposure over 21 days". In a study of county-level
COVID19 case counts and short-term PM, s exposure researchers were able
to combine COVID19 case count and PM, 5 data for 554/3143 (17.6%) of
US counties™. Though limited in spatial resolution and lacking individual-
level data this study showed positive associations between PM, 5 exposure
and county-level COVID19 cases, with positive associations seen for
cumulative exposures ranging from 2 to 14-day average PM, s. The authors
observed that associations were strengthened with the removal of New York
state which they justified citing the severity of the COVID19 pandemic in
New York state during their study time period. A 2020 study of COVID19
cases and deaths in Queens county, NY examined associations between 21-
day average PM, 5 and both COVID19 case counts and death counts in the
county and also observed negative associations between PM, 5 and both
outcomes. In our study we also saw an unexpected negative association in
New York which when taken in context of this prior study suggests that
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Fig. 2 | Regression estimates for the association between 2-day mean PM, 5 and COVID-19-related hospitalization, by CBSA and Census Region. Estimates are
presented as percent increase in COVID19-related hospitalizations per 1 ug/m3 increase in PM, 5. CBSA names are obscured to comply with privacy requirements.

evaluations of COVID19 and environmental health risks in New York may
be subject to confounding or other factors not seen across the US and thus
extra consideration may be warranted when comparing environmental
health risks in New York to areas with differing COVID19 severity and
temporal trends.

Long-term exposure studies of air pollution and COVID19 in the US
have also faced some of the limitations of short-term exposures studies
including limited geographical coverage or ecological analyses based on
county-level counts of COVID19 cases or deaths. For example, a study in

Southern California cohort found that 1-year PM, 5 exposure was associated
with increased odds of hospitalization, as well as other measures of infection
severity among COVID19+ patients (e.g., intensive respiratory support,
intensive care unit admission)”’. A related study, also in Southern California,
observed that 1-month and 1-year PM, 5 exposures were associated with
increased risk of hospitalization, and this association persisted even in fully
vaccinated patients“. A study in Cincinnati, Ohio, observed associations
between long-term (10-year) PM, 5 exposures and elevated odds of hospi-
talization among individuals who tested positive between March and
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Fig. 3 | Regression estimates for the association between 5-day mean PM, 5 and COVID-19-related hospitalization, by CBSA and Census Region. Estimates are
presented as percent increase in COVID19-related hospitalizations per 1 pg/m’ increase in PM, 5. CBSA names are obscured to comply with privacy requirements.

September 2020”. Air pollution may impact COVID19 in multiple ways
including its incidence (risk of developing COVID) or severity. A recent
review noted that of 116 articles on COVID19 and air pollution only 11
examined non-fatal severity (as we have here) and of those none were
nationwide studies”. Importantly there was significant heterogeneity
among these studies with some only observing associations in individuals
with chronic disease’ and others noting significant regional heterogeneity
as we also observed”.

A biological explanation for associations seen among individuals with
COVID19 is increased biological frailty due to environmental exposures,
e.g. a weakened cardiovascular system making COVID19 cardiovascular
effects more severe. This has also been called the double hit hypothesis and
put forward in a previous study of associations between air pollution and
mortality among COVID19 patients™. This previous study of long-term air
pollution exposure specifically hypothesized that PM, 5 exposure induced
overexpression of the ACE-2 receptor. A study of short-term PM,s
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Fig. 4 | Regression estimates for the association between 21-day mean PM, s and COVID-19-related hospitalization, by CBSA and Census Region. Estimates are
presented as percent increase in COVID19-related hospitalizations per 1 pg/m’ increase in PM, 5. CBSA names are obscured to comply with privacy requirements.

exposure in mice also showed increased expression of ACE-2 receptor in the
lung”". Increased ACE-2 expression was also observed when cells tank from
the lungs of individuals with idiopathic pulmonary fibrosis (a progressive
lung disease) were exposed to PM, s, further suggesting that short-term
PM, 5 exposure may induce ACE-2 receptor expression individuals with a
compromised pulmonary system”. In addition to upregulating ACE-2
expression in the lung, short-term PM, 5 exposure is known to increase
inflammation as well as trigger acute respiratory and cardiovascular
responses which may also contribute to the associations observed here’””””

Given the often limited sample size and ecological study design for
existing studies of short-term PM, s and COVID19, few have examined how
associations differ by region or geographic group. In a 21-day average PM, 5
study of COVID19 mortality in Cook County, Illinois authors observed that
associations differed by race and ethnicity with higher estimated effects for
Black individuals (particularly Black males)”’. We also observed larger
associations with increasing length of lag period in some census regions
(South, Midwest), and found some evidence for differences in associations
by race and pre-existing conditions. For example, consistent with the
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Table 2 | Random Effects Meta-analysis of all CBSAs in Study Cohort

Region 2-day PM, 5 5-day PM, 5 21-day PM, 5

Overall 0.61(95% CI=0.12,1.11; P=0.02) 0.91 (95% Cl=0.15, 1.67, P=0.02) 0.04 (95% Cl = —2.70, 2.85; P =0.98)
South 1.43 (95% Cl=0.72,2.14, P=7.1 x 1079 2.77 (95% Cl=1.30, 4.26; P=2.0x 107%) 6.67 (95% Cl=2.34, 11.2; P=0.002)
Midwest 0.68 (95% Cl=-0.17,1.55, P=0.12) 0.83 (95% Cl=—-0.26, 1.94; P=0.14) —0.11 (95% Cl = —2.61, 2.46; P = 0.93)
West —0.24 (95% Cl=-0.76, 0.27, P = 0.35) —0.10 (95% Cl = —0.68, 0.48, P =0.73) —3.44 (95% Cl = —6.98, 0.24; P =0.07)
Northeast 0.28 (95% Cl=—-0.80, 1.37, P =0.61) —1.77 (95% Cl=-2.51, —1.02; P=3.7 x 107%) —13.0 (95% Cl=-25.1,1.19; P=0.07)

Results are given as a percentage change as described in the Methods. C/ confidence interval

Chicago-based study, we found larger effect sizes for PM, s and COVID19-
related hospitalizations among Black study participants compared to White
individuals (Supplemental Data 2; Supplemental Data 3). Additionally,
associations between PM, 5 and COVID19-related hospitalizations among
individuals with CVD were larger in magnitude than associations among
other subgroups examined, particularly for 5-day average PM, s exposure in
the South. We did not see differences by pre-existing respiratory or meta-
bolic disease or age at COVID19 infection, highlighting the need for deeper
investigations into the factors that may modify associations between PM, 5
and COVIDI09. To better understand whether there were differences in the
confounders which may explain some of the regional differences seen in this
study we examined the mean percentile ranking for each confounder at the
CBSA level. The South region was enriched for CBSAs that had the highest
proportion of Black study participants as well as the highest rates of chronic
disease (Supplemental Table 5). The West region had the highest PM, 5
concentrations and the Northeast region the lowest. Chronic disease is
known to increase sensitivity to air pollution exposure’, and minority
populations are often impacted by multiple social stressors which may also
act to increase sensitivity to poor air quality’””’. From a public health
standpoint, understanding how poor air quality can contribute to worsened
health outcomes during the COVID19 pandemic can have important
implications for responding to and managing the next pandemic. Under-
standing how clinical and demographic factors, may cause environmental
risks to be worsened in some areas of the country as compared to others also
has important implications for predicting how the health effects from
pandemics manifest across the country and the best means to allocate
limited resources in order to minimize adverse health effects. While specific
policy recommendations are outside of the scope of this manuscript, we
believe the data presented here support the idea that environmental risks
contributed to health effects during the COVID19 pandemic and should be
considered in responses to future pandemics.

This study is, to the best of our knowledge, the first study to utilize EHR
from the N3C to study environmental health risks. The N3C has become a
widely utilized resource to study health outcomes related to the COVID19
pandemic, however this study establishes that its utility also extends into the
environmental domain, giving environmental epidemiologists a new tool to
understand how the environment shaped the pandemic. This study is not
without limitations. Demographically, the N3C contains data from across
the US but is not a perfect representation of the US population. Previous
N3C studies have shown that there is underrepresentation of the Western
US, Southwestern US, and rural areas in general3 ® Another limitation is that
although there were individuals residing in non-urban areas in the N3C
EHR, the limited availability of monitoring data in less urban areas pre-
cluded our ability to perform informative analyses focused on rural areas.
Additionally, EHR data is generally skewed towards patients who more
frequently use health care systems and is further skewed towards individuals
with more severe symptoms or disease as they are more likely to use the
hospital system. Uninsured patients, those with limited access to care, or
those with historical distrust of hospital systems may be underrepresented in
any EHR cohort. Despite these limitations, studies using EHRs have been
shown to be consistent with findings from data resources with regional or
national representativeness’’, making them a valuable tool for environ-
mental health studies. Although this study population was not drawn from a

nationally representative population, we replicated results seen in previous
studies including positive associations nationally and unexpected negative
associations in NY which has also been seen in studies just focusing on NY*.
Within our study, we evaluated differences between individuals included vs
excluded from the final sample and found the two to be generally con-
cordant (Supplemental Table 1 and Supplemental Data 1).

The analytic approach (time stratified case-crossover) has both
strengths and limitations. A strength of this approach is it effectively
controls for time-invariant and long-term time trends by design. A lim-
itation of this approach is that without continuous serum sampling
(unavailable for virtually all studies) we cannot verify that people were
continuously infected with COVID19 for all referent time periods, leading
to the potential sampling of non-at risk time periods. This is a known bias
within such designs (and common in case-crossover studies of mortality
where the post-death time period may be sampled), and has been shown to
be typically small and less than the bias introduced by using unbalanced,
ie. unidirectional, designs®*'. Additionally, given the dynamics of
COVID19 infections it is likely that our referent selection covers the at-
risk period for many participants®. However, this remains a limitation
that could be addressed using alternative study designs with different
structures in future analyses. Also, as stated before our study observed
similar associations as seen in studies which did not use a time-stratified
case-crossover design suggesting these associations may be robust to the
analytic model chosen.

A limitation of this study is that we utilized ambient monitoring data, a
choice necessitated by the lack of high-resolution (e.g,, 1 km?”) daily ambient
air pollution exposure models covering the same time period as our data.
However, at least one previous study found that associations between air
pollution and COVID19 mortality were similar when pollution was esti-
mated at ZIP code vs. residential latitude/longitude'”. Finally, we specifically
focused on hospitalizations in 2020, which pre-dated mass vaccinations
within the US population; vaccination information and COVID19 strain are
available for only a subset of the N3C population which means including
these variables would have limited our sample size. However, a recent study
in Southern California found that vaccination did not impact associations
between PM, 5 and COVID19-related hospitalizations, suggesting that poor
air quality may impact COVID19 health risks via a pathway independent of
those acted on by vaccines®. There are a number of avenues for future work,
including the potential impact of vaccination and COVIDI19 strain on
COVID19-related environmental health risks. Future work should consider
other health endpoints beyond hospitalization and mortality, as well as
exposure to: air pollutants beyond PM,s; air pollutant mixtures; and
interactions between air pollutants and social stressors, especially at the
individual level.

Air pollution - and PM, 5 specifically - is a ubiquitous and potentially
modifiable exposure'"'” that is harmful to human health; understanding its
role with respect to COVID19-related health outcomes may help address
the public health burden of COVID19, and prepare for future pandemics.
There continues to be a need for robust, large-scale studies of air pollution
and COVID19 with demographically and geographically diverse indivi-
duals which can reveal the linkages between environmental exposures and
exacerbation of COVID19 as well as other potential factors that also con-
tributed to the severity of the COVID19 pandemic.
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Data availability

The health data for this study is stored in the secure environment for the
National Clinical Cohort Collaborative (N3C) and cannot be exported per
data access agreements. All data from N3C used in this study is available
through the N3C Enclave to approved users. See https://covid.cd2h.org/for-
researchers for instructions on how to access the data. We used N3C data
from version 152 (2023-12-07). Environmental data, including air pollution
and temperature data; Census data; urbanicity data; and information on
COVIDI19 cases are publicly available and obtained from sources as
described in the manuscript.

Code availability

The code to construct the cohort and perform the analyses is available at:
https://github.com/acp18/1_Base_Covid_Positive; https://github.com/
acp18/2_Covid_Positive_Person_Fact; https://github.com/acp18/4_Visits;
https://github.com/acp18/5_Local_Infections_and_Policies; https://github.
com/acp18/6_Pollutants;  https://github.com/acp18/7_Cohort_Building;
https://github.com/acp18/8_Cohort_Narrowing and_Analysis_v2. Code
files used to generate the cohort and attach air pollution estimates are
available in Zenodo: https://doi.org/10.5281/zenodo.15990139.
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