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Abstract

Plain Language Summary

Background: In benign tumors with potential for malignant transformation, sampling error
during pre-operative biopsy can significantly change patient counseling and surgical
planning. Sinonasal inverted papilloma (IP) is the most common benign soft tissue tumor of
the sinuses, yet it can undergo malignant transformation to squamous cell carcinoma (IP-
SCC), for which the planned surgery could be drastically different. Artificial intelligence (Al)
could potentially help with this diagnostic challenge.

Methods: CT images from 19 institutions were used to train the Google Cloud Vertex Al
platform to distinguish between IP and IP-SCC. The model was evaluated on a holdout test
dataset of images from patients whose data were not used for training or validation.
Performance metrics of area under the curve (AUC), sensitivity, specificity, accuracy, and F1
were used to assess the model.

Results: Here we show CT image data from 958 patients and 41099 individual images that
were labeled to train and validate the deep learning image classification model. The model
demonstrated a 95.8 % sensitivity in correctly identifying IP-SCC cases from IP, while
specificity was robust at 99.7 %. Overall, the model achieved an accuracy of 99.1%.
Conclusions: A deep automated machine learning model, created from a publicly available
artificial intelligence tool, using pre-operative CT imaging alone, identified malignant
transformation of inverted papilloma with excellent accuracy.

Planning for surgery to remove a tumor, and
the preoperative counseling a surgeon gives
to the patient, can be very different,
depending on if that tumor is cancerous or
non-cancerous. Unfortunately, it can be diffi-
cult to always know which it is before actually
getting to the operating room. Here we show
the utilization of a publicly available platform,
Google Vertex Al, and pre-operative com-
puted tomography (CT) imaging of patients
from nineteen separate institutions, to identify
cancerous transformation of a non-
cancerous tumor with excellent accuracy in a
specific tumor type. An automated machine
learning (AutoML) model, created from a
publicly available artificial intelligence tool, by
physicians with little coding background, was
able to differentiate between these types of
tumors with better accuracy than previously
published rates from experts. This tool could
serve to better inform surgical planning for
tumors.

There are dozens of benign tumor types that occur throughout the
body that have the potential for malignant transformation. Adeno-
mas, meningiomas, lipomas, fibromas, endometriomas, chordomas,
and more are examples. When these tumors are adjacent to critical
structures, the ability to know whether the tumor is truly benign or
malignant before surgical resection, which may need to remove cri-
tical structures in order to actually save a patient’s life in the setting
of cancer, is paramount. Inverted papilloma (IP) is the most common
benign soft tissue tumor of the sinonasal cavity. With a 15% chance
of recurrence after surgical resection and a 7-10% chance of con-
version to malignancy (inverted papilloma associated squamous cell
carcinoma, IP-SCC), this benign tumor has been treated with the
respect and care typically afforded to cancer'. Early identification of
malignant transformation is crucial, influencing both treatment

strategy and patient counseling. However, accurate pre-operative
diagnosis of IP-SCC presents a significant challenge. Conventional
modalities such as in-office biopsies, computed tomography (CT)
scans, and magnetic resonance imaging (MRI) yield valuable results,
however, challenges persist, particularly for less-experienced radi-
ologists and surgeons, in accurately diagnosing IP-SCC through these
methods.

The integration of artificial intelligence (AI)-based automated
medical imaging diagnosis has revolutionized diagnostic accuracy,
addressing concerns related to human error. By training diverse
algorithms on annotated datasets, machine learning (ML) equips
them to identify patterns and features relevant to various stages of
medical conditions, thereby facilitating the automatic classification of
previously unseen images.
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Within all fields of medicine and surgery there is growing interest in
harnessing the potential of Al to enhance diagnosis and management of
different pathologies, and the question of differentiating IP from its
malignant transformation is one that could carry significant clinical benefit.

Previously, Al-based diagnostic systems have demonstrated increasing
accuracy in distinguishing between IP and IP-SCC when incorporating MRI
with multiple demographic patient and tumor factors™™, and differentiating
IP from nasal polyps using endoscopic images*’. Unfortunately, many
communities around the world, and even within the United States, do not
have direct access to such costly diagnostic tools as MRI and endoscopy.
However, most communities now have access to CT.

Our study aims to harness AI technology via an automated machine
learning (AutoML) algorithm to develop a prediction model to differentiate
between IP and IP-SCC to increase the accurate diagnosis and treatment of
these lesions.

Methods

The study was approved by the Institutional Review Board (IRB) of 19
institutions around the world, led by the IRB of Stanford University School
of Medicine. Due to the nature of the study as a diagnostic review, the
requirement for written informed consent was waived. Reporting follows
the TRIPOD guidelines’.

Dataset

Patients with pathology-proven diagnoses of either IP or IP-SCC were
retrospectively identified from 19 academic centers, totaling 958 cases (878
IP and 80 IP-SCC). From these, 41,099 CT scan slices were extracted,
encompassing axial, coronal, and sagittal planes (Fig. 1). These images were
labeled based on pathology results (meaning final pathology based on
complete tumor resection) and used to train a two-dimensional (2D) image
classification model using the Google Cloud Vertex AI AutoML platform.
The dataset included a broad range of scanner types, Slice thicknesses

ranged from 0.5mm to 1mm, with voxel sizes of approximately
0.5-0.6 mm X 0.5-0.6 mm, and imaging protocols varied, reflecting real-
world heterogeneity. No image resizing or segmentation was performed to
preserve original imaging characteristics and improve generalizability
across diverse scan types.

Image processing

The extracted CT scans were anonymized and stored as de-identified Digital
Imaging and Communications in Medicine (DICOM) files, which were
subsequently converted to JPEG format prior to model training. All images
were used in their raw form, with no preprocessing steps applied for artifact
removal, noise reduction, or intensity normalization. No windowing was
performed; the original intensity values were preserved. Additionally, there
was no manual segmentation or annotation of tumor regions—full-frame
slices, including both tumor and normal anatomy, were utilized. Labels were
applied at the scan (exam) level based on final pathology-confirmed diag-
noses of IP or IP-SCC.

To simulate real-world conditions, all axial, coronal, and sagittal slices
from the full sinus CT scans—spanning from the mandible to the skull base
— were included, regardless of whether a tumor was visible in a specific slice.
The dataset encompassed considerable heterogeneity in scanner types, voxel
sizes, imaging protocols, and slice thicknesses across 19 academic institu-
tions. Images were not resized manually; instead, Vertex AI AutoML
automatically standardized image dimensions internally during training.
No data augmentation techniques (e.g., rotation, flipping, or contrast
adjustment) were applied. This approach preserved the real-world varia-
bility of CT imaging and allowed the model to learn under practical clinical
conditions.

Model training
The model was developed using the Google Cloud Vertex AI AutoML
Vision platform for image classification. JPEG-formatted CT slices were

Fig. 1 | CT Image Variability. Different CT scan
cuts, separated into Coronal, Sagittal, and Axial
views, each with different voxel dimensions and slice
thicknesses, demonstrate the variety of images on
which the model was both trained and validated.
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Table 1 | The model split patients and CT scans into training, validation, and test groups

Labeled Dataset Patients (n) Total CT Scan Slices Training set (80%) Validation set (10%) Testing set (10%)
IP 878 35,216 28,173 3522 3522
IP-SCC 80 5883 4706 588 589
Table 2 | Patient demographic data testing was performed, as the model was evaluated entirely using the internal
validation and test sets managed by the AutoML framework. Reporting
P IP-SCC follows the Transparent Reporting of a Multivariable Prediction Model for
Patients (n) 878 80 Individual Prognosis or Diagnosis (TRIPOD) guidelines’.
Age (mean + SD, years) 59.26 + 13.68 62.02 + 12.45
Gender (n (%) Male 596 (68) 57 (71) Results
Patient cohort
Female 262(82) 23 29) The study involved a cohort comprising 958 patients. 878 individuals had
Race/Ethnicity (n (%)) ~ Asian 85(10) e benign IP and 80 had IP-SCC. Demographic details of the patients are
White 479 (55) 25 (31) presented in Table 2.
Hispanic/Latino 175 (20) 12 (15) In this study cohort, a comprehensive collection of 41,099 CT scan cuts
—— 7809) 8(10) was analyzed. This encompassed 35,216 images representing benign IP and
5,883 images depicting IP-SCC. The trained model demonstrated strong
QT 130 G performance, achieving an area under the curve (AUC) of 99.8%. Precision
Unknown?® 48 (5) 28 (35) of 99.2% was observed at a confidence threshold 0.5 (Fig. 2). The model
Smoking History Yes 307 (35) 24 (30) exhibited a sensitivity rate of 95.8% in correctly differentiating IP-SCC cases
(n (%)) No 448 (51) 29 (36) from IP, while specificity remained high at 99.7%. (Fig. 3). Overall, the
T— 123 (14 27 b model achieved an accuracy of 99.1%, with an F1 Score of 97%, under-
scoring its efficacy in discerning between IP and IP-SCC. With such strong
:;ri(oo/r )?inus ST es ) £ ) results, care was taken to double and triple check against over-fitting of the
i No 504 (57) 49 (61) model, but the results held up to this scrutiny.
History of IP Yes 123 (14) 17 (21) A .
recurrence (n (%)) No 755 (86) 63 (79) Discussion

“There was missing information from some centers with regard to race/ethnicity mainly due to two
factors. Many centers outside the US do not routinely record this data, and this information was also
not recorded for some US patients.

labeled based on final pathology-confirmed diagnoses of IP or IP-SCC. All
labeled images were uploaded to the AutoML platform, which automatically
performed a random split of the dataset into training (80%), validation
(10%), and test (10%) subsets prior to model training (Table 1). This ensured
that each image was used exclusively in one subset, preventing overlap
between training, validation, and testing phases.

Model architecture selection and hyperparameter optimization were
performed automatically through the platform’s proprietary neural archi-
tecture search. Training was configured for a maximum of 16 node hours,
with a target prediction latency of 200-300 milliseconds. Input images
were used in their original resolution without resizing. Image standardiza-
tion and pre-processing were managed internally by the platform, allowing
the model to accommodate varijability in image dimensions and voxel
intensity.

The dataset was imbalanced (878 IP vs. 80 IP-SCC cases), and Vertex
AI AutoML does not support manual implementation of class weighting or
resampling. The model was trained on that portion of the dataset without
manual adjustments.

Metadata, including training configuration and evaluation metrics, was
retained within the Vertex Al environment (Project ID: cogent-sweep-
424404-f4) for reproducibility.

Statistical analysis

Model performance was evaluated using metrics automatically generated by
the Google Cloud Vertex AT AutoML image classification platform. These
included area under the precision-recall curve (AUPRC), sensitivity, spe-
cificity, accuracy, precision (positive predictive value), negative predictive
value (NPV), and the F1 score (harmonic mean of precision and recall).
Confusion matrices were used to derive true positives, true negatives, false
positives, and false negatives from test set predictions. No manual statistical

In this multi-institutional study, we developed and validated an AutoML
model using preoperative CT images to distinguish between IP and inverted
IP-SCC. The model demonstrated excellent performance, achieving an
AUC of 99.8%, with high sensitivity (95.8%), specificity (99.7%), precision
(99.2%), and an overall accuracy of 99.1%. These findings support the
feasibility of using an accessible Al tool to aid in the noninvasive diagnosis
of sinonasal tumors, potentially improving surgical planning and patient
care, especially in settings where biopsy or advanced imaging may be
limited.

The findings of our study align with the growing body of research that
underscores the potential of Al in enhancing diagnostic accuracy of tumor
diagnosis, but with the recent advent and rapid evolution of AutoML, this
accuracy and prediction capability now far surpasses anything seen prior®™".

Several key studies laid the groundwork for the current investigation.
One study provided evidence for the value of human experts using MRI-
based radiomics in distinguishing IP from IP-SCC, achieving a high AUC
with a combined model of radiomic and morphological features'”. However,
in that study, the predictive value of different parameters was able to reach
the high level found in this study only when sacrificing either sensitivity or
specificity, but the predictive capability could not accommodate both.
Following that, another study explored the use of traditional convolutional
neural networks (CNNs) to differentiate IP from IP-SCC based on MRI
images. However, their sensitivity and specificity were lower than the pre-
viously reported human expert capability, and also lower than what this
study achieved with only CT images’. An investigation then ensued to
compare the previously used traditional deep learning model with an
AutoML using a much smaller and different dataset than used herein for this
study (an MRI data set from only two institutions). A comparison of human
expert physician (radiology and otolaryngology) assessment of that same
data set, which demonstrated a sensitivity of 78%, specificity of 100%, and
overall accuracy of 89% to the AutoML which, with that smaller MRI dataset
demonstrated a sensitivity of 75%, specificity of 92% and overall accuracy of
84%, revealed how important “experience” is for success to both humans
and Al algorithms. The human experts had the benefit of years of reading
thousands of prior imaging exams and applying that knowledge to the new
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Fig. 2 | Precision and recall performance of the
AI model. (Left) Precision-Recall Curve showing
the model’s ability to balance precision and recall
across all thresholds. The high values across the
curve demonstrate excellent classification perfor-
mance. (Right) Precision and Recall vs. Confidence
Threshold illustrating how precision and recall
change with increasing model confidence. The
model achieves optimal performance at a confidence
threshold around 0.5, where both precision and
recall remain near peak values.
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Fig. 3 | Test classification performance of the AI model. Confusion matrix heat-
map of test classification performance for the trained model. The model correctly
classified 99.7% of inverted papilloma (IP) cases and 95.8% of inverted papilloma
with squamous cell carcinoma (IP-SCC) cases. Misclassification rates were low, with
0.3% of IP cases incorrectly labeled as IP-SCC, and 4.2% of IP-SCC cases mis-
classified as IP. These results demonstrate the model’s strong diagnostic accuracy.

dataset, whereas the AutoML only had the extremely small number of
images to learn from ref.”.

With the knowledge gained from those studies and the recognition that
a larger dataset would allow for greater accuracy, our study builds
on these findings by utilizing an international, multi-institutional dataset
of CT images, encompassing a wide range of imaging parameters
and conditions. This diverse dataset contributes to the generalizability of
our Al model, which demonstrated an AUC of 99.8%, precision and recall
rates of 99.2%, and an overall accuracy rate of 99.1%. These metrics
surpass that of the previous studies, indicating the potential for this
approach to provide superior diagnostic performance. It is important
to note that while this model can distinguish IP from IP-SCC, it is not
“predicting” transformation, a step further which we could hope to aspire to
in the future.

One of the significant strengths of our study is its international mul-
ticenter nature, involving 19 institutions from around the world and the
large number of CT images with varying dimensions, thicknesses, and voxel
sizes. This variability mirrors real-world clinical conditions more closely
than studies that rely on standardized or homogeneous datasets. The ability
of our AI model to maintain high accuracy despite differences in image
quality and parameters is particularly noteworthy. In real-life clinical set-
tings, images are often taken using different machines and protocols, leading
to variability in image characteristics. As a result, our model’s high

performance across such a diverse dataset suggests that it is well-suited for
real-world application and could potentially reduce the need for invasive
procedures like biopsies and bring high-level diagnostic accuracy to com-
munities currently lacking in this ability.

Another strength of this study that contributes to its wide applicability
is the diverse dataset provided by the multi-institutional nature of the study.
This diversity enhanced the model’s ability to generalize across different
patient populations and imaging conditions. Also, the use of a large dataset
with over 41,000 CT scan slices provides a solid foundation for training and
validating the AI model, reducing the likelihood of overfitting and
improving the model’s reliability. There has been significant study and
discussion on the need for deep and diverse data sets that draw from
populations around the world, if we are to hope to develop Al algorithms
that are truly representative and thus accurate for all patients". It is only in
recent years that researchers have discovered that information long held as
true and applied across all populations in medicine only hold true for the
majority population included in prior studies, for example, myocardial
infarction symptoms differing between male and female populations'. If we
are to hope and expect that AT will do a better job than humans in prediction,
whether in radiology or other domains, we must acknowledge that such an
outcome depends on scientists feeding the highest level of data possible into
these algorithms, which is heavily dependent on how truly representative
that data is. The international collaboration of our study is a major strength
of this research, as it allows for this diversity of included data, and our
algorithm is more accurate and widely useful because of it.

Our study highlights the transformative potential of using AutoML in
developing AI models. The transition to AutoML marks a pivotal shift in
methodology, as evidenced by a recent comparative analysis involving
Google Vertex Al (AutoML) and the traditional All-Net neural network”.
Using the same dataset from two institutions, the AutoML model exhibited
an overall accuracy rate surpassing that of the traditional All-Net model
without the need for specialized graduate-level education in artificial
intelligence. The AutoML models demanded no code, allowing us to test
numerous algorithms simultaneously within a brief timeframe. This cap-
ability enabled us to swiftly pinpoint promising model algorithm classes for
further development, a process that is typically time-intensive in traditional
machine learning. Moreover, the user-friendly nature of AutoML makes it
accessible to healthcare practitioners without extensive programming skills,
paving the way for wider adoption in clinical settings.

In addition to its technical simplicity, AutoML holds clinical promise.
Given the risk of sampling error in IP with focal malignant transformation, a
noninvasive, full-volume imaging assessment via Al may detect malignancy
that limited biopsies could miss. AutoML can therefore serve as a valuable
adjunct to surgical planning. One of the key goals of integrating Al into
clinical workflows is to reduce the number of steps toward diagnosis and
treatment. By decreasing reliance on invasive procedures such as biopsies—
particularly when technically difficult, risky, or inaccessible—AutoML may
help streamline prediction.
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Despite the strong performance metrics of the model, certain limita-
tions merit discussion. Although the model achieved a high sensitivity of
95.8%, approximately 4.2% of IP-SCC cases were misclassified as benign IP,
representing false negatives. This is a critical concern in clinical practice,
where missing a malignant tumor could delay oncologic referral or alter
surgical management. To address this, future work will explore strategies
such as ensemble learning, integration of additional modalities (e.g., MRI,
clinical history, genomics), and cost-sensitive training approaches that
prioritize recall for malignant cases. Additionally, incorporating a
mechanism into the AutoML pipeline to favor malignant classification in
cases of diagnostic uncertainty may further reduce the false negative rate.
This study represents a step toward addressing these challenges, with the
ultimate goal of increasing the precision, safety, and clinical utility of AI-
based diagnostic tools.

Another important consideration for clinical translation is model
interpretability. As a “black box” deep learning system, Google Vertex Al
AutoML does not provide saliency maps, feature attribution, or attention
visualizations, limiting insight into the features driving predictions. It also
does not allow us to know if specific potential confounding variables such as
tumor size, calcification, etc. were the factors being used in diagnosis.
Nonetheless, the model demonstrated strong performance (sensitivity
95.8%, specificity 99.7%, AUC 99.8%), suggesting it learned truly mean-
ingful radiologic patterns, and superceded prior human interpretation
studies of this type of tumor - even with the human study utilizing MRI, an
examination traditionally thought to bring much greater detail and infor-
mation about soft tissue structures. Likely features associated with malig-
nancy include bone erosion, irregular or infiltrative borders, heterogeneous
enhancement, and extension beyond the sinonasal cavity—patterns that
may be subtle or overlooked by the human eye. While this autonomy
enables robust classification, the lack of transparency and lack of head-to-
head comparison of human interpretation may limit clinician trust. Future
work will incorporate explainable AI (XAI) tools, such as Grad-CAM, to
improve understanding of model outputs and better align them with clinical
reasoning, as well as conducting prospective reader studies comparing
radiologist and Al performance on the same dataset.

This study has several other limitations, including its retrospective
design and potential selection bias. The use of Google Vertex AI AutoML
introduces additional constraints typical of no-code platforms—limited
control over model architecture, hyperparameters, and source code—as well
as reduced algorithmic transparency and customization. Furthermore,
manual implementation of class weighting or resampling was not sup-
ported, resulting in model training on an imbalanced dataset (878 IP vs. 80
IP-SCC cases), which may have biased predictions toward the majority class.
Although AutoML may internally address class imbalance through pro-
prietary optimization processes, these mechanisms are not user-accessible
or transparently documented. Future efforts will focus on balancing the
dataset, applying weighted loss functions, and restructuring data using
patient-level splitting to improve generalizability and reduce bias. Addi-
tionally, this study employed internal validation using a randomly split
multi-institutional dataset; however, external validation on an independent
cohort was not performed. Future studies are needed to validate the model’s
generalizability across entirely separate patient populations and clinical
settings.

As in any retrospective study, limitations regarding potential selection
bias and lack of ability to control for confounders exist. However, having
each institution simply include all patients with IP or IP-SCC tumors seen
within the prior ten years, if all necessary imaging and data points were
available, protected against selection bias as much as possible.

In addition to technical limitations, practical barriers to implementa-
tion also warrant consideration. Hosting and running models on com-
mercial cloud-based platforms such as Google Vertex Al incurs recurring
infrastructure costs, including compute resources, storage, and main-
tenance. These expenses pose significant challenges for widespread trans-
mission and adoption. Moreover, reliance on proprietary infrastructure
may hinder scalability and long-term sustainability.

Although our initial goal was to develop a free and globally accessible
diagnostic tool, the current deployment model presents financial constraints
that limit broader availability. We are actively engaging with platform
representatives to explore alternative solutions, such as cost-sharing
arrangements or open-access hosting options, to enhance accessibility.
We may eventually need to try and replicate this model with the help of our
computer science and artificial intelligence expert colleagues in academia
with institutional hosting support.

Future work may include a formal cost-benefit analysis comparing
cloud-based deployment with on-premises or open-source alternatives.
Additionally, exploring hybrid deployment models—such as edge com-
puting or federated learning—may offer cost-effective and scalable solutions
for expanding access while maintaining robust performance.

Ultimately, our goal is to advance the field of medical Al by improving
diagnostic accuracy, reducing procedural invasiveness, and democratizing
access to advanced technology. While AutoML represents a significant step
forward, its implementation in clinical practice must be carefully managed,
considering both its advantages and constraints. Future research should
focus on reducing class imbalance, enhancing model interpretability, vali-
dating performance in prospective clinical trials, and incorporating multi-
modal data—such as genomics, proteomics, clinical history, and MRI—to
further improve diagnostic precision. In addition, developing cost-effective
deployment strategies and evaluating real-world implementation in diverse
healthcare settings will be essential to ensure accessibility, scalability, and
clinical adoption.

Finally, although using AutoML models in the clinical setting can
introduce apprehension and hesitancy in physicians, it is imperative that
physicians without engineering or technical coding background begin famil-
iarizing themselves with these types of widely available tools, as they will only
improve in accuracy over time, and those unfamiliar or unwilling to adapt will
find themselves and their patients at a significant diagnostic disadvantage'.

Conclusion

A deep AML model, created from a publicly available Al tool using pre-
operative CT imaging alone, identified malignant transformation of
inverted papilloma with excellent accuracy. By leveraging a large, interna-
tional, multi-center dataset and embracing the inherent variability in clinical
imaging, we have developed a model that is reliable, widely applicable, and
highly accurate. This work paves the way for broader clinical adoption of AI-
based diagnostic tools across all medical specialties, potentially transforming
patient care by reducing the reliance on invasive procedures and enhancing
early detection and treatment planning.

Data availability

The Data Sharing agreement between institutions that provided patient
images and data prohibits the sharing of the datasets and images outside our
institution.
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