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Volumetric spline-based Kolmogorov-
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transformers, and graph networks for
Parkinson’s disease detection
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Abstract

Background Parkinson’s Disease diagnosis remains challenging due to subtle early brain
changes. Deep learning approaches using brain scans may assist diagnosis, but optimal
architectures remain unclear. This study applies Convolutional Kolmogorov-Arnold
Networks (ConvKANs), which use flexible mathematical functions for feature extraction, to
classify Parkinson’s Disease from structural brain scans.
Methods We implemented the first three-dimensional ConvKAN architecture for medical
imaging and compared performance against established deep learning models, including
Convolutional Neural Networks, Vision Transformers, and Graph Convolutional Networks.
Three publicly available datasets containing brain scans from 142 participants (75 with
Parkinson’sDisease, 67 healthy controls) were analyzed.Modelswere evaluated using both
two-dimensional brain slices and complete three-dimensional volumes, with performance
assessed through cross-validation and independent dataset testing.
Results Here we show that two‑dimensional ConvKAN achieved an AUC of 0.973 for
Parkinson’s‑disease detection, outperforming a pretrained ResNet (AUC 0.878, p = 0.047).
On the early‑stage PPMI hold‑out set, the three‑dimensional variant generalised better than
the two‑dimensional model (AUC 0.600 vs 0.378, p = 0.013). Furthermore, ConvKAN
required 97% less training time than conventional CNNs while maintaining superior
accuracy.
Conclusions ConvKAN architectures offer promising improvements for Parkinson’s
Disease detection from brain scans, particularly for early-stage cases where diagnosis is
most challenging. The computational efficiency and strong performance across diverse
datasets suggest potential for clinical implementation. These findings establish a framework
for artificial intelligence-assisted diagnosis that could support earlier detection and
intervention in Parkinson’s Disease.

Parkinson’s Disease (PD) is the second most common neurodegen-
erative disorder, affecting over 10million people worldwide1. Clinically,
PD is characterized by motor symptoms such as tremor, rigidity, and
bradykinesia, as well as non-motor symptoms including cognitive
impairment and depression2. The prevalence of PD increases with age,

and as the global population ages, the burden of PD is expected to
increase substantially.

Early and accurate diagnosis of PD remains challenging, as current
diagnostic criteria rely on subjective clinical assessment ofmotor symptoms,
which often emerge only after significant neurodegeneration has occurred3.

A full list of affiliations appears at the end of the paper. e-mail: chrystalina.antoniades@ndcn.ox.ac.uk

Plain language summary

Parkinson’s disease affects millions of people
worldwide, impacting movement, thinking,
mood, and daily life. Doctors struggle to
diagnose it early because brain changes are
subtle. We tested whether artificial intelligence
could detect Parkinson’s disease from brain
scans. We applied a new type of AI model
calledConvKAN, recently developed for image
analysis, to brain imaging for the first time. We
compared this approach against established
AI methods including conventional neural
networks, vision transformers, and graph-
based models, testing both two-dimensional
brain slices and complete three-dimensional
brain volumes. Similarly to finding a melody in
hours of noise, these models identify only the
most important patterns that distinguish Par-
kinson’s disease.We evaluated all approaches
using brain scans from 142 people. The
ConvKAN model showed excellent ability to
distinguish between patients and controls
(achieving a score of 0.97 out of 1.0). By
focusing on key patterns rather than proces-
sing everything, it worked 97% faster than
conventional approaches while excelling at
detecting early disease. This could help enable
earlier diagnosis, when treatments may be
more effective.
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Misdiagnosis rates can be as high as 25% in early stages, highlighting the
need for objective biomarkers to support clinical decision-making4,5. While
various imaging modalities have been explored, structural magnetic reso-
nance imaging (MRI) is not part of any PD diagnostic criteria due to the
subtle and heterogeneous nature of early brain changes6.

Deep learning has emerged as a powerful methodology for medical
image analysis, demonstrating success across various domains, including
neuroimaging7,8. Convolutional neural networks (CNNs) have been widely
applied toMRI analysis, using their ability to capture hierarchical features9.
CNNs’ rigid structure may limit their ability to model non-linear relation-
ships in high-dimensional data10.

Vision transformers (ViTs) have recently emerged as a powerful
alternative to CNNs in computer vision tasks, demonstrating state-of-the-
art performance across numerous benchmarks. By replacing convolutional
operations with self-attention mechanisms, ViTs can capture long-range
dependencies in images more effectively than traditional CNN archi-
tectures. In medical imaging, ViTs have shown promising results for tasks
including tumor segmentation and disease classification, though their
application to volumetric neuroimaging data remains underexplored, par-
ticularly in the context of PD detection using structural MRI.

Graph-based approaches have recently gained traction in the deep
imaging community, with graph convolutional networks (GCNs) offering a
framework for modeling the inherent structural relationships in medical
imaging data, including inPD11. By representing an image or scan as a graph
of interconnected nodes, GCNs can capture both local and global context,
potentially overcoming some limitations of traditional CNNarchitectures12.
However, the applicationofGCNs inneuroimaging is still an emergingfield,
with limited studies exploring their potential for PD classification.

TheKolmogorov–Arnoldnetwork (KAN), introduced earlier this year,
represents a significant departure from traditional CNN architectures13.
Based on the Kolmogorov–Arnold representation theorem, KANs replace
conventional weight matrices with learnable spline functions, offering
enhanced flexibility in modeling complex, non-linear relationships.

Building upon the KAN framework, the convolutional
Kolmogorov–Arnold network (ConvKAN) was recently proposed as a
fusion of KAN principles with convolutional architectures14. ConvKANs
integrate spline-based functions into convolutional layers, combining the
flexibility of KANs with the spatial invariance of CNNs. While ConvKANs
have shown promising results in 2D image analysis tasks, their application
to 3D imaging data, such as volumetric MRI scans, represents a previously
unexplored step, to the best of our knowledge15.

The dimensionality of input data is another critical consideration in
imaging analysis. Studies comparing 2D and 3D approaches have yielded
mixed results, with some favoring slice-based methods for their computa-
tional efficiency and larger effective sample sizes, while others advocate for
3D analysis to capture spatial relationships and avoid information loss16,17.
The relative performance of different architectures across 2D and 3D
implementations also remains unclear, with few studies conducting com-
prehensive comparisons18.

To address these knowledge gaps, we present a comprehensive eva-
luation of deep learning architectures forMRI-based PD classification, with
a focus on the novel application of ConvKANs (to the best of our knowl-
edge). We compare the performance of ConvKANs, ViTs, CNNs, and
GCNsacross both2Dand3D implementations, usingmultiple open-source
datasets to assess within-dataset performance and cross-dataset general-
izability. Pretrained convolutional architectures like ResNet and VGG have
demonstrated strong performance across medical imaging tasks, offering
transfer learning benefits from natural image domains. Furthermore, we
introduce the first 3D implementation of ConvKANs, exploring their
potential for volumetric MRI analysis.

By conducting thismulti-cohort, comparative study,we aim toprovide
valuable insights into the optimal approach for deep learning-based PD
diagnosis using structuralMRIusingmultiple open-sourcedatasets to assess
within-dataset performance and cross-dataset generalizability, with rigor-
ous subject-level evaluation methodologies. The identification of robust,

generalizable models could pave the way for AI-assisted diagnostic tools,
supporting early detection and intervention in PD.

Our results indicate that convolutional Kolmogorov–Arnold net-
works (ConvKANs) deliver strong performance for MRI‑based Par-
kinson’s disease classification while remaining lightweight to train. On
the PPMI cohort, the 2‑D ConvKAN reached an AUC of 0.973,
exceeding the best conventional CNN (ResNet‑2D, 0.878; Cohen’s
d ≈ 1.98, p = 0.047, though this did not survive FDR correction,
q = 0.074) and the graph baseline (GNN‑2D, 0.849). When models were
trained on the two external cohorts and evaluated on the early‑stage
PPMI test set, the new 3‑D ConvKAN generalized best (AUC 0.600 vs.
0.378 for its 2‑D counterpart; |d| ≈ 2.47, p = 0.013, q = 0.145) and
outperformed every other architecture. ConvKANs were also compu-
tationally frugal, completing training about 97 % faster than the ResNet
yet matching or surpassing its accuracy. Our findings demonstrate that
ConvKAN architectures provide superior performance for PD detection
from structural MRI while offering significant computational advan-
tages over existing deep learning approaches.

Methods
Dataset description
This study utilized three open-source MRI datasets: the Parkinson’s Pro-
gression Markers Initiative (PPMI), NEUROCON, and Tao Wu19,20.

The PPMI study was conducted in accordance with the Declaration
of Helsinki and Good Clinical Practice guidelines after approval by local
ethics committees at each of the 33 participating clinical sites across the
United States, Europe, Israel, and Australia. The study was also approved
by the Research Subjects Review Board at the University of Rochester,
and written informed consent was obtained from all participants prior to
data collection. The PPMI study is registered at ClinicalTrials.gov
(Identifier: NCT01141023). The NEUROCON dataset was collected with
approval from the University Emergency Hospital Bucharest ethics
committee in accordance with the ethical standards of the 1964
Declaration of Helsinki, with all participants providing written informed
consent.20 The Tao Wu dataset was collected with approval from the
Institutional Review Board of Xuanwu Hospital, Capital Medical Uni-
versity, Beijing, in accordance with the Declaration of Helsinki, with
written informed consent obtained from all participants prior to the
experiment. As this study involved secondary analysis of publicly avail-
able, de-identified data, additional institutional review board approval
was not required.

Each dataset included both Parkinson’s disease (PD) patients and age-
matchedhealthy control subjects, with varying clinical characteristics across
cohorts. The PPMI cohort consisted of newly diagnosed PD patients within
two years of diagnosis, none ofwhomhad started PDmedication at the time
of scanning. From the complete PPMI database, a subset of 59 participants
was selected based on uniform T1-weighted MPRAGE acquisition para-
meters (TR/TE: 2300/2.98ms, voxel size: 1.0 × 1.0 × 1.0mm³) to ensure
imaging protocol consistency.

The NEUROCON (n = 43) and Tao Wu (n = 40) datasets comprised
PD patients with longer average disease durations (4.8 ± 6.2 and 5.4 ± 3.9
years, respectively), most receiving dopaminergic treatments at scan time.
These datasets used standardized MPRAGE protocols (NEUROCON: TR/
TE: 1940/3.08ms; TaoWu: TR/TE: 1100/3.39ms) with comparable spatial
resolution. Sample sizes were balanced across datasets to enable unbiased
cross-cohort comparisons and to maintain consistent scanning parameters
within each cohort.

Patient demographics and clinical characteristics were matched across
datasets where possible, though differences in disease stage and treatment
status were explicitly considered in subsequent analyses. The complete
demographic information and MRI parameters for each dataset are pro-
vided in Table 1.

The decision to maintain native space processing rather than regis-
tration to standard templates (e.g., MNI space) was driven by the hetero-
geneous nature of the acquisition parameters and the potential for
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registration-induced interpolation artifacts to mask subtle disease-related
changes. This approach preserved the original anatomical characteristics
while implementing standardized preprocessing steps.

Image preprocessing
Initial quality control excluded scans with significant motion artifacts or
incomplete brain coverage. While image registration to standard templates
(e.g., MNI space) is common in neuroimaging studies, the heterogeneous
acquisition parameters across datasets and potential interpolation artifacts
that couldmask subtle disease-related changes led to the implementation of
a native-space processing pipeline21.

For 2D analysis, 100 consecutive axial slices were extracted from each
T1-weighted volume, centred on the midbrain based on automated ana-
tomical detection. The midbrain focus was selected due to its established
involvement in PD pathology and early structural changes22. Each slice
underwent bilinear resampling to 224 × 224 pixels to match standard deep
learning input dimensions. Image intensities were normalized using robust
statistical scaling, where the 5th and 95th percentiles of brain tissue inten-
sitiesweremapped to [0, 1] to reduce the impact of outliers. Noise reduction
employed a 2D Gaussian filter (σ = 1mm, kernel size 3 × 3).

Three-dimensional analysis preserved complete volumetric informa-
tion through isotropic resampling to 128 × 128 × 128 voxels using trilinear
interpolation. This resolution balanced computational feasibility with
anatomical detail retention. Intensity normalization followed the same
robust scaling approach as 2D preprocessing. A 3D Gaussian filter
(σ = 1mm, kernel size 3 × 3 × 3) reduced noise while preserving structural
boundaries. Both 2D and 3D preprocessing pipelines were validated
through visual inspection of randomly selected cases to ensure anatomical
consistency.

Figure 1 illustrates the preprocessing outcomes: (a) exemplar midline
slices used in 2D analysis, demonstrating consistent midbrain positioning,
and (b) 3D volume visualization showing preserved structural relationships
across the brain.

Model architectures
Multiple deep learning architectures were implemented to evaluate struc-
tural MRI-based PD classification. The primary investigation centered on
convolutional Kolmogorov–Arnold networks (ConvKAN), with compar-
isons to standard convolutional networks and graph-based approaches,
each in both 2D and 3D variants.

ConvKAN implementations extended the original architecture prin-
ciples to MRI analysis through custom KANConv layers. The 2D and 3D
variants (KANConv2D, KANConv3D) integrated traditional convolution
operations with learnable B-spline functions, enabling adaptive non-linear

transformations of inputdata23. Each spline functionutilized cubicB-splines
(degree 3) with empirically optimized parameters. Specifically, 6 control
points were selected based on preliminary experiments; this configuration
provided an optimal balance between model flexibility and overfitting risk,
given the observed intensity distributions in the T1-weightedMRI data. The
knots were equidistantly positioned in the range [−1, 1], with the total
number of knots (n = 10) determined by the standard B-spline formulation:
n = k+ d+ 1,where k represents control points (6) andddenotes the spline
degree (3).

The 2D ConvKAN architecture comprised three SplineConv2d layers
(64, 128, and 256 channels) followed by batch normalization (momen-
tum = 0.1) and max pooling (2 × 2, stride 2). The model concluded with
global average pooling and two fully connected layers (512 and 2 units). The
3D variant employed four KANConv3D layers (32, 64, 128, 256 channels)
with matching normalization and pooling operations, adapted for volu-
metric data. Figure 2 illustrates the key architectural differences between
ConvKAN and traditional CNN approaches, highlighting the spline-based
feature extraction in both 2D and 3D contexts.

For comparative evaluation, standard convolutional architectures
included pretrained models known for strong performance in medical
imaging. The 2D implementations utilized ImageNet-pretrained
ResNet18 and VGG11 networks, fine-tuned for PD classification. The
3D pipeline incorporated a pretrained 3D ResNet (r3d_18), adapted for
volumetric analysis. Each pretrained model maintained its original
architecture, while the final classification layer was modified for binary
PD detection.

We implemented vision transformer (ViT)models in both 2D and 3D
configurations to provide a comparison with current state-of-the-art
architectures. For the 2D implementation, we utilized the ViT-Tiny archi-
tecture from the timm library (Wightman, 2019), featuring 5.7 million
parameters. This model employs 12 transformer layers with an embedding
dimension of 192, 3 attention heads, and processes images using 16 × 16
pixel patches. The pretrained ImageNet-1K weights were retained to har-
ness transfer learning benefits, with input images resized to 224 × 224 pixels
to match the pretrained model requirements.

For the 3D implementation, we developed a custom architecture that
processes volumetric data through slice-wise encoding followed by cross-
slice attention integration. Each axial slice is processed through the same
ViT-Tiny backbone, generating slice-specific feature representations. These
features are then integrated using a 4-headmulti-head attentionmechanism
that captures inter-slice dependencies. The architecture maintains the
computational efficiency of 2D processing while incorporating 3D spatial
context through temporal attention. Global average pooling across slices
produces the final volume representation, which is passed through a

Table 1 | Participant demographics and MRI parameters for each dataset

Parameter PPMI NEUROCON Tao Wu

Total participants 59 43 40

Age (SD) 63.5 (11.1) 68.3 (11.0) 65.0 (5.0)

Number of PD 28 27 20

Number of controls 31 16 20

Age PD (SD) 61.6 (10.4) 68.7 (11.0) 65.2 (4.4)

Age controls (SD) 64.2 (8.7) 67.6 (11.9) 64.8 (5.6)

Disease duration (years, SD) 1.7 (0.8) 4.8 (6.2) 5.4 (3.9)

Number of males 26 21 23

Number of females 33 22 17

MRI sequence (T1) MPRAGE (T1) MPRAGE (T1) MPRAGE (T1)

TR (ms) 2300 1940 1100

TE (ms) 2.98 3.08 3.39

Voxel size (mm) 1.0 × 1.0 × 1.0 0.97 × 0.97 × 1.0 1.0 × 1.0 × 1.0

SD standard deviation, PD Parkinson’s disease, MPRAGEmagnetization prepared rapid gradient echo, TR repetition time, TE echo time,ms milliseconds,mmmillimeters.
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classification head consisting of two fully connected layers with dropout
regularization (p = 0.1).

The ViT models were selected to provide architectural diversity while
maintaining comparable parameter counts to our othermodels (ViT: 5.7M,
ConvKAN: ~8M,CNN: 11.3M), ensuring fair comparison and reducing the
risk of overfitting on limited medical imaging datasets.

Graph convolutional network (GCN) models offered a com-
plementary approach through graph-based representations (Fig. 3). The 2D
GCN utilized the simple linear iterative clustering (SLIC) algorithm to
generate 1000 superpixels per slice24. Node features captured local image
properties: mean intensity, relative area, and centroid coordinates (Fig. 3a).
The 3D implementation extended this approach to 1000 supervoxels per
volume, with corresponding volumetric features (Fig. 3b). Graph con-
nectivity employed k-nearest neighbors (k = 6) based on Euclidean dis-
tances between centroids, with k selected to ensure stable local connectivity
without excessive edge density, as determined through architecture search
experiments.

The GCN architecture consisted of three graph convolutional layers
(64, 128, 256 channels) followed by global mean pooling and two fully
connected layers (512 and 2 units). This configuration was maintained
across 2D and 3D implementations, with appropriate dimensional adjust-
ments for the input graphs.

Validation strategies
Three complementary validation approaches were employed to assess
model performance: isolated dataset analysis, hold-out evaluation, and a
combined dataset analysis was performed to evaluate performance on a
larger, heterogeneous cohort.

Isolated dataset analysis. The isolated dataset analysis utilized dis-
tinct cross-validation strategies for 2D and 3D implementations. For
2D models, five-fold stratified group cross-validation ensured all
slices from an individual subject remained in either the training or
validation set, preventing data leakage. While training occurred at the
slice level to maximize feature learning, evaluation aggregated slice-
wise predictions to generate subject-level classifications. Specifically,
prediction probabilities across all slices from a subject were averaged

to produce a single diagnostic prediction, ensuring clinically relevant
evaluation metrics.

Three-dimensional analysis employed leave-one-out cross-validation
(LOOCV) due to the smaller number of volumetric samples25. This
approach maximized training data utilization while maintaining unbiased
evaluation through complete subject separation between training and
testing sets. For both2Dand3Danalyses, stratificationpreserved the ratio of
PD patients to controls across all folds.

Hold-out analysis. Cross-dataset generalization was assessed through
hold-out analysis, where models trained on two datasets were evaluated
on the third. This process rotated through all possible combinations of
training and test sets, providing insight into model robustness across
different cohorts and scanning protocols. The hold-out strategy eval-
uated both 2D and 3D implementations, maintaining consistent subject-
level evaluation procedures.

Combined dataset analysis. To assess performance on a larger, more
diverse cohort, all three datasets were merged for a unified analysis. This
combined evaluation employed five-fold cross-validation with subject-
level stratification, ensuring balanced representation of each original
dataset across folds. The merged analysis followed the same subject-level
evaluation principles used in isolated dataset testing, providing insight
into model generalizability across heterogeneous data.

Training protocols remained consistent across all validation strategies,
with early stopping monitoring validation set performance to prevent
overfitting.

Training and evaluation
Training protocol. All models (CNN, ConvKAN, GCN, and ViT) were
trained using the Adam optimizer with an initial learning rate of 1e−4
and weight decay of 1e−5. Model training employed cross-entropy loss
with label smoothing (0.1) and class weights inversely proportional to
training set frequencies. Early stoppingmonitored validation loss with 15
epochs patience and a minimum delta of 1e−4. Training utilized NVI-
DIA A100 GPUs with batch sizes of 32 for 2D models and 8 for 3D
implementations, reflecting memory constraints of volumetric data.

Fig. 1 |MRI preprocessing approaches for 2D and 3Danalysis. aExample of single
slices centered on the midbrain used individually to classify between PD and HC in
the two-dimensional analyses. b Entire volumetric MRI scan used in the three-

dimensional analyses. Gaps are inserted at regular intervals to help visualize the
inner structure, but are not implemented in the analyses.
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Prediction aggregation. For 2D models, slice-level predictions were
aggregated to subject-level classifications using a confidence-weighted
voting system. The aggregation methodology assigned exponential
weights to individual predictions based on their distance from the deci-
sion boundary (0.5). Final subject-level classifications considered the top

33% most confident slice predictions, with probabilities weighted by
confidence scores normalized to the range [0, 1]. This approach provided
robustness against poor-quality slices while maintaining diagnostic
accuracy. Three-dimensional models generated predictions directly at
the subject level, requiring no additional aggregation.

Fig. 2 | Comparison of ConvKAN splines and CNN convolutional filters in 2D
and 3D dimensions. a 2D representation: The gridded square represents a single
MRI slice. The colored 3 × 3 region within the grid illustrates an example CNN filter
(red), while the green curve demonstrates a B-spline used in ConvKAN, with green

dots indicating knots. b 3D representation: The cube represents a volumetric MRI
scan. The red 3 × 3 × 3 region within the cube shows a CNN filter, while the curved
surface represents a 3D B-spline used in ConvKAN, with green dots marking
the knots.
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Fig. 3 | Graph creation processes for GCN analysis. a 2D graph creation using
superpixels, demonstrating alignment with anatomical features. b 3D graph repre-
sentation of volumetric MRI, with nodes as supervoxels and edges as spatial

relationships. Each node (sphere) represents a supervoxel, with node size indicating
relative volume and color representing mean intensity. Edges (lines) connect
neighboring supervoxels in 3D space.
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Performance metrics. Model performance was evaluated through
multiple complementary metrics. Area under the receiver operating
characteristic curve (AUROC) served as the primary metric, providing
threshold-independent assessment of classification performance. Addi-
tional metrics included accuracy, F1 score, sensitivity, and specificity at
the optimal operating point determined by Youden’s index.

Model calibration. Temperature scaling optimized prediction calibra-
tion, with temperature parameters initialized at 1.5 and refined during
training. Gradient clipping (maximum norm 1.0) prevented gradient
explosion, while a linear warmup schedule (5 epochs) stabilized early
training. Learning rates were reduced by a factor of 0.5 after 10 epochs
without validation improvement.

Statistics and reproducibility
Performance differences between architectures were evaluated using z-tests
adapted for comparing proportions when only summary statistics (means
and confidence intervals) are available. Z-statistics were computed as:
Z = (μ1−μ2)/√[(CI1²/3.84)+ (CI2²/3.84)], where CI represents the full
width of the 95% confidence interval and 3.84 = 1.96².

The Benjamini–Hochberg procedure controlled false discovery rate
across multiple comparisons, with adjusted p-values computed for all
pairwisemodel evaluationswithin eachanalysis type anddataset. Effect sizes
were quantified using standardized mean differences.

For each comparison, the pooled standard deviation was derived from
confidence intervals: σpooled = √[(CI1²+CI2²)/(3.84)] where CI1 and CI2
represent the confidence interval widths of the compared metrics. Effect
sizes were then calculated as (μ1−μ2)/σpooled, with 95% confidence
intervals computed analytically.

Confidence intervals for performance metrics were computed using
bootstrap resampling with 1000 iterations to ensure robust estimation of
uncertainty, where n represents the number of subjects in the evaluation set.

Model consistency assessment utilized relative confidence interval
width: RCW= (CIupper−CIlower)/(2 × μ) where CIupper and CIlower
represent the upper and lower bounds of the 95% confidence interval.

Statistical power calculations were performed a priori to determine the
sample size adequacy for detecting performance differences. These calcu-
lations targeted a minimum detectable standardized effect size of 0.8 at
α = 0.05, accounting for multiple comparison correction.

All models were trained using NVIDIA A100 GPUs via a publicly
accessible cloud computing platform. Average training and inference times
for each model were recorded and reported across multiple trials to ensure
reproducibility.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Dataset characteristics
This study utilized three open-source datasets: the Parkinson’s Progression
Markers Initiative (PPMI) MRI dataset, NEUROCON and Tao Wu
(Table 1)19,20. While all three datasets included both PD patients and age-
matched healthy control subjects, there were differences in patient char-
acteristics. The PPMI cohort was restricted to newly diagnosed PD patients
within 2 years of diagnosiswhohadnot yet started anyPDmedications. The
NEUROCON and Tao Wu datasets included PD patients with longer
average disease durations, most of whom were already receiving treatment
with dopaminergic medications such as levodopa.

We evaluated 2D and 3D implementations of deep learningmodels for
Parkinson’s disease classification, including convolutional neural networks
(ResNet), convolutional Kolmogorov–Arnold networks (ConvKAN),
vision transformers (ViT), and graph convolutional networks (GCN).
Models were tested under three distinct analysis paradigms: Isolated
(trained and tested on individual datasets), Combined (trained on pooled

data), and Hold-out (evaluated on independent test sets). For 2D analyses,
our large sample sizes provided adequate statistical power. The 3D analyses,
constrained by computational resources, used smaller samples but offered
complementary insights into volumetric feature extraction.

AUC performance across analysis types. In isolated analysis, 2‑D
ConvKAN demonstrated superior performance across all datasets,
achieving the highest AUC in PPMI (0.973, 95% CI 0.964–0.981) and
NEUROCON (0.926, 95% CI 0.881–0.973). Performance exceeded pre-
trained architectures, including ResNet (PPMI 0.878, p = 0.047; NEU-
ROCON 0.512, p = 1.49 × 10⁻⁶), though differences with vision
transformers were not statistically significant (PPMI 0.839, p = 0.248;
NEUROCON 0.648, p = 0.272). ConvKAN significantly outperformed
VGG networks (PPMI 0.501, p = 5.61 × 10⁻¹²; NEUROCON 0.500,
p = 7.33 × 10−⁷), with these differences surviving FDR correction. The
2‑D GCN showed intermediate performance with AUC values of 0.849
(PPMI) and 0.539 (NEUROCON). Notably, ViT‑3D achieved competi-
tive performance on PPMI (0.926, 95% CI 0.880–0.971) but showed
limited effectiveness on other datasets (NEUROCON 0.459, Tao
Wu 0.591).

The combined analysis revealed that 2‑D ConvKAN again obtained
the highest performance (AUC0.817, 95%CI 0.805–0.830)when trained on
the merged cohort, significantly outperforming other architectures (Fig. 4).
VisionTransformers showedmoderate results, withViT‑3D reaching 0.687
(95% CI 0.649–0.724) and ViT‑2D 0.656 (95% CI 0.616–0.696). Three‑di-
mensional implementationsweremixedoverall: ConvKAN‑3Dachieved an
AUC of 0.702 (95% CI 0.535–0.868) and GCN‑3D 0.611 (95% CI
0.433–0.788).

Hold‑out analysis demonstrated distinct generalization patterns. On
the PPMI test set, GCN‑3D showed the best cross‑dataset transfer (AUC
0.642, 95% CI 0.505–0.779), whereas ViT variants generalized poorly
(ViT‑3D0.460;ViT‑2D0.435).TheNEUROCONtest set yieldeduniformly
lower performance across models, including ViTs (ViT‑2D 0.394; ViT‑3D
0.421). In contrast, the TaoWu test set revealed stronger generalization for
ResNet‑3D (AUC 0.796, 95% CI 0.656–0.936), while ViTs again showed
only moderate transfer (ViT‑3D 0.573; ViT‑2D 0.448).

In Isolated analysis (Fig. 5a), 2DConvKANconsistently showedcurves
with steeper initial slopes, indicating superior ability to classify true positives
with minimal false positives. Vision Transformers demonstrated varied
performance, with ViT3D showing strong discrimination on PPMI but
weaker performance on other datasets. The ResNet models demonstrated
intermediate performance.

The Combined analysis curves (Fig. 5b) showed generally lower per-
formance than the Isolated analysis, reflecting the challenges of training on
heterogeneous data. However, ConvKAN maintained the best overall
classification performance, with ROC curves demonstrating better dis-
crimination than other architectures, including Vision Transformers.

Hold-out analysis curves (Fig. 5c) revealed greater variability and
generally lowerAUCs, highlighting the significant challenge of cross-dataset
generalization inneuroimaging classification tasks. Interestingly, 3Dmodels
often showed better generalization curves than their 2D counterparts,
despite their more limited training datasets. Vision Transformers showed
particularly poor generalization in holdout scenarios, suggesting potential
overfitting to dataset-specific features.

In the Isolated analysis (Fig. 6a), 2D ConvKAN showed not only the
highest AUC values but also relatively narrow confidence intervals, indi-
cating reliable performance. Vision Transformers showed mixed perfor-
mance, with ViT3D demonstrating competitive results on PPMI (narrow
CI) but wider intervals on other datasets. The 3D models exhibited wider
confidence intervals, reflecting their smaller training datasets.

The Combined analysis (Fig. 6b) demonstrated narrower confidence
intervals for 2D models due to increased sample size, with 2D ConvKAN
maintaining statistical superiority over other architectures. ViT models
showed intermediate confidence intervals, reflecting moderate but con-
sistent performance. In contrast, Hold-out analysis (Fig. 6c) revealed
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substantially wider confidence intervals across all models, including Vision
Transformers, highlighting the intrinsic variability in cross-dataset
generalization.

Notably, the relationship between sample size and confidence interval
width is clearly visualized across all three analysis types, with 3D models
consistently showing wider intervals than their 2D counterparts.

Statistical comparisonsbetweenmodels. In isolated analysis (Fig. 7a),
the largest ConvKAN‑centered effect sizes were observed when com-
paring ConvKAN to the standard pretrained architectures. On the PPMI
dataset, ConvKAN 2‑D versus VGG 2‑D yielded an effect size d = 6.89
(p = 5.61 × 10⁻¹²). Differences were also found versus ResNet, although
with smaller magnitudes (PPMI d = 1.98, p = 0.047; NEUROCON
d = 4.81, p = 1.49 × 10⁻⁶).

Comparisons involving Vision Transformers showed non‑significant
effects: ConvKAN2‑DversusViT 2‑DonPPMI gave d =−1.16 (p = 0.248).
Among all ConvKAN contrasts, the strongest isolated effect occurred for
ConvKAN 2‑D versus GNN 3‑D on PPMI (d = 6.56, p = 5.36 × 10−¹¹).

In the combined analysis (Fig. 7b), effect sizes remained large and
highly significant for key contrasts. ConvKAN 2‑D retained large advan-
tages over ResNet 2‑D (d = 6.39, p = 1.70 × 10−¹⁰) and VGG 2‑D (d = 5.99,

p = 2.14 × 10−⁹). ConvKAN3‑Dperformedworse thanViT3‑D(d =−4.79,
p = 1.69 × 10−⁶), indicating ViT 3‑D’s superior performance on the merged
cohort. ConvKAN 2‑D showed no significant difference from ViT 2‑D
(d =−1.25, p = 0.211).

Hold‑out analysis (Fig. 7c) revealed fewer statistically significant dif-
ferences becauseof greater cross‑dataset variability.Average effect sizeswere
variable, but several ConvKAN contrasts still reached significance. For
example,ConvKAN2‑Dperformedworse thanGNN3‑Don the PPMI test
set (d =−2.97, p = 0.003). ConvKAN3‑Dalso underperformedResNet 3‑D
on the Tao Wu test set (d =−1.99, p = 0.046).

The directionality of effect sizes showed mixed patterns, with Conv-
KAN excelling in isolated analyses but showing more variable performance
in combined and hold-out scenarios. Based on our comprehensive analysis
of 145 total comparisons, 58 reached statistical significance (p < 0.05), with
the highest proportion of significant results in isolated analyses, followed by
combined and thenhold-out analyses. InHold-out analysis, the patternwas
more varied, with different models showing advantages depending on the
specific test dataset, reflecting the challenges of cross-dataset generalization.

Model consistency evaluation. The coefficient of variation analysis
(Fig. 8a) revealed that 2DConvKAN showed the highest stability in AUC

Fig. 4 | AUC performance metrics across models and datasets. a Isolated dataset
analysis showing individual dataset performance. b Combined dataset analysis with
merged datasets. c Hold-out analysis for cross-dataset generalization. Heatmap

colors represent AUC values ranging from 0.4 (dark blue) to 1.0 (dark red); n = 59
independent subjects (PPMI), n = 43 (NEUROCON), n = 40 (TaoWu) for analyses.
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measurements across analyses, with the lowest coefficient of variation
compared to other architectures. Vision Transformers demonstrated
moderate consistency, withViT2D showing lower variability thanViT3D
across analyses. The 3D implementations demonstrated higher varia-
bility, with ResNet showing the most consistent performance among 3D
models.

The relationship between dataset sample size and performance
variability (Fig. 8b) revealed a negative correlation, where larger datasets
(e.g., PPMI) produced more stable model performance compared to
smaller datasets (e.g., Tao Wu). This pattern was consistent across both
2D and 3D implementations, though 3Dmodels showed generally higher
variability regardless of dataset size. Vision Transformers followed this

general pattern, with ViT2D showing more stable performance on larger
datasets.

Early-stage PD detection. The PPMI dataset enabled specific assess-
ment of early‑stage PD detection capabilities. In isolated analysis,
ConvKAN 2‑D delivered the best performance (AUC = 0.973, 95% CI
0.964–0.981), outperforming pretrained baselines: ResNet 2‑D (AUC =
0.878, p = 0.047), VGG 2‑D (AUC = 0.501, p = 5.61 × 10⁻¹²), though the
difference with ViT 2‑D was not statistically significant (AUC = 0.839,
p = 0.248). Vision Transformers were nonetheless competitive overall:
ViT 3‑D reached AUC = 0.926 with accuracy = 0.881, whereas ViT 2‑D
attained AUC = 0.839 and accuracy = 0.749. The ConvKAN advantage

Fig. 5 | ROC curves demonstrating model discrimination capabilities.
a–c Isolated analysis ROC curves for PPMI, NEUROCON, and Tao Wu datasets,
respectively. d Combined analysis ROC curve for merged datasets. e–g Hold-out
analysis ROC curves for PPMI, NEUROCON, and Tao Wu test datasets,

respectively. Solid lines represent 2D models, dashed lines represent 3D models.
Colors: orange (ConvKAN), blue (ResNet), green (VGG), purple (GCN), red (ViT);
n = 59 biologically independent subjects (PPMI), n = 43 (NEUROCON), n = 40
(Tao Wu) for analyses.
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persisted across multiple metrics—including F1‑score (ConvKAN =
0.787 vs. ResNet = 0.769 and ViT 2‑D= 0.749) and balanced accuracy
(ConvKAN = 0.824 vs. ResNet = 0.731 and ViT 2‑D = 0.751).

In hold-out analysis focusing on early-stage cases, 3D ConvKAN
showed superior generalization (AUC: 0.600, 95% CI: 0.460–0.740) com-
pared to its 2D counterpart (AUC: 0.378, 95% CI: 0.316–0.345), a statisti-
cally significant difference (d = 2.47, p = 0.013). Vision Transformers
demonstrated limited generalization to early-stage PD in cross-dataset
scenarios (ViT3D: 0.460, ViT2D: 0.435). This finding suggests that volu-
metric analysis better captures subtle structural changes in early PD, though
larger 3D cohorts are needed for definitive conclusions.

Computational Efficiency. Our computational efficiency analysis
revealed significant resource differences between architectures. Con-
vKAN2D trained 97% faster than ResNet2D (10.4 vs. 372.4 s per epoch)
and showed comparable speed to VGG2D (10.4 vs. 11.8 s) while out-
performing GNN2D (10.4 vs. 55.9 s). Vision Transformers showed
intermediate training times, with ViT2D requiring 31.0 s per epoch and
ViT3D requiring substantially more resources at 3157.2 s per epoch. For

inference, ConvKAN2D processed subjects 97% faster than ResNet2D
(0.35 vs. 11.29 s) and marginally faster than VGG2D (0.35 vs. 0.41 s),
while also outperforming ViT2D (0.35 vs. 1.03 s).

In 3D implementations, ConvKAN3D demonstrated even greater
efficiency, with 96% faster training than ResNet3D (5.3 vs. 138.8 s) and
85% faster training than GNN3D (5.3 vs. 35.4 s). Notably, ConvKAN3D
trained 99.8% faster than ViT3D (5.3 vs. 3157.2 s), highlighting the
computational demands of 3D transformer architectures. Inference
speed advantages were similarly impressive, with ConvKAN3D showing
96% faster inference than ResNet3D (0.01 vs. 0.37 s), 98% faster inference
than GNN3D (0.01 vs. 0.85 s), and 99.97% faster inference than ViT3D
(0.01 vs. 52.62 s).

Parameter efficiency was also notable, with ConvKAN2D using fewer
parameters than conventional CNNs, and ConvKAN3D using 88% fewer
parameters than GNN3D. Vision Transformers, with 5.7M parameters for
both 2D and 3D variants, fell between ConvKAN and traditional CNN
architectures in terms of model complexity. These computational advan-
tages, combined with competitive classification performance, suggest
ConvKAN is particularly suitable for resource-constrained settings.

Fig. 6 | AUC values with 95% confidence intervals across analysis types. a Isolated
dataset analysis showingmodel performance with confidence intervals. bCombined
dataset analysis across merged datasets. c Hold-out analysis for cross-dataset gen-
eralization. Horizontal bars represent mean AUC values, with blue bars indicating

2D models and orange bars indicating 3D models. n = 59 independent subjects
(PPMI), n = 43 (NEUROCON), n = 40 (Tao Wu) for analyses. Error bars represent
95% confidence intervals derived from bootstrap analysis.
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Discussion
This comprehensive evaluation of deep learning architectures for Parkin-
son’s Disease (PD) classification using structural MRI reveals important
insights into the potential and challenges of AI-assisted diagnosis in neu-
rodegenerative disorders. The novel application of convolutional
Kolmogorov–Arnold networks (ConvKANs) to MRI analysis represents a
significant contribution to the field, demonstrating promising performance
across both 2D and 3D implementations when compared to established
architectures, including CNNs, Vision Transformers, and GCNs.

In isolated‑dataset analysis, ConvKAN 2‑D demonstrated superior
performance on the PPMI cohort, achieving an AUC = 0.973 (95% CI
0.964–0.981) and accuracy = 0.830 (95% CI 0.811–0.849). This perfor-
mance exceeded that of established pretrained architectures: ResNet 2‑D
(AUC= 0.878, p = 0.047), VGG 2‑D (AUC= 0.501, p = 5.61 × 10−¹²),
though the difference with ViT 2‑D was not statistically significant
(AUC = 0.839, p = 0.248). Notably, although ViT 3‑D achieved a com-
petitive AUC = 0.926 on PPMI, its effectiveness was limited on other
datasets (NEUROCON= 0.459; Tao Wu = 0.591), suggesting data-
set‑specific optimization. The ConvKAN advantage persisted across
multiple metrics, with ConvKAN maintaining the highest F1‑score
(0.787) relative to ResNet (0.769), ViT 2‑D (0.749), and GCN imple-
mentations. This consistent superiority can be attributed to ConvKAN’s
unique architecture, which couples CNN‑style spatial invariance with

adaptive spline‑based nonlinearities—an especially powerful combina-
tion for capturing subtle neurodegenerative patterns.

The performance disparity between architectures revealed distinct
patterns across dimensionalities. While 2D ConvKAN excelled in isolated
analyses, three-dimensional implementations showed more varied results,
with ConvKAN 3D reaching an AUC of 0.629 (95% CI: 0.355–0.902) on
PPMI data. These wider confidence intervals reflect the inherent challenges
of volumetric analysis with limited sample sizes. However, the combined
dataset analysis demonstrated 2D ConvKAN’s robust performance (AUC:
0.817, 95%CI: 0.805–0.830) across heterogeneous data, suggesting potential
clinical applicability despite protocol variations.

Interestingly, a notable performance drop was observed when moving
from isolated datasets to the combined analysis, with 2D ConvKAN’s AUC
decreasing from 0.973 on PPMI to 0.817 in the merged dataset. This
reduction likely stems from the inherent heterogeneity across the three
cohorts, including differences in disease stages, treatment status, and ima-
ging parameters. Despite this decrease, ConvKAN maintained superior
performance relative to other architectures in the combined analysis,
demonstrating its robustness to dataset heterogeneity, a critical character-
istic for real-world clinical deployment where patient populations and
imaging protocols often vary significantly across institutions.

The inclusion of Vision Transformers in our analysis provides
important context for evaluating ConvKAN performance against current

Fig. 7 | Statistical effect size comparisons between model pairs. a Isolated analysis
showing effect sizes in AUC comparisons for individual datasets. b Combined analysis
of effect sizes across all datasets. c Hold-out analysis effect sizes for generalization
assessment. Horizontal bars represent Cohen’s d effect sizes, with blue bars indicating
2D vs. 2D comparisons and red bars indicating 3D vs. 3D comparisons. Significance

markers: *p < 0.05, **p < 0.01, * **p < 0.001. Exact p-values and corresponding effect
sizes for all comparisons are reported in Supplementary Tables 10–13. Sample sizes:
n = 59 independent subjects (PPMI), n = 43 (NEUROCON), n = 40 (Tao Wu) for
isolated and hold-out analyses. All comparisons shown are same-dimension compar-
isons (2D vs. 2D or 3D vs. 3D) with conservative z-test p-values.
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state-of-the-art architectures. While ViTs have revolutionized computer
vision through self-attention mechanisms that capture global image
context, our results suggest that the local-global feature extraction bal-
ance achieved by ConvKANs’ spline-based activations may be particu-
larly well-suited for detecting subtle neuroanatomical changes in PD. The
parameter efficiency of ViT-Tiny (5.7M parameters) made it an appro-
priate choice for our medical imaging datasets, though the performance
gap between ViTs and ConvKANs indicates that architectural innova-
tions beyond attention mechanisms may be necessary for optimal PD
detection from structural MRI.

Statistical comparison betweenmodels revealed substantial effect sizes
when comparing ConvKAN to traditional architectures, with effect sizes
reaching up to 6.89 (p = 5.61 × 10−¹²) against VGG networks and 6.56
(p = 5.36 × 10−¹¹) against GNN networks. This magnitude of difference
provides robust statistical evidence for ConvKAN’s architectural advantage.
The largest effects were observed in isolated analyses on the PPMI dataset—
ConvKAN2D vs. VGG2D (d = 6.89, p = 5.61 × 10−¹²) and ConvKAN2D vs.
GNN3D (d = 6.56, p = 5.36 × 10−¹¹), highlighting clinically meaningful
performance differences where diagnostic specificity and sensitivity are
critical.

The relationship between dataset size andmodel performance stability
emerged as a significant finding from our analysis. The negative correlation
observed between sample size and performance variability across both 2D
and 3D implementations highlights the critical importance of large, diverse
datasets for developing reliable clinical AI tools. This pattern was particu-
larly pronounced in 3D models, where computational constraints limited
sample sizes and consequently producedwider confidence intervals.Despite
these limitations, the superior generalization of 3DConvKAN to early-stage
PD suggests that volumetric approaches may ultimately prove more valu-
able as computational resources and dataset availability improve, allowing
the full three-dimensional manifestation of neurodegeneration to be
captured.

The confidence-weighted voting system for subject-level pre-
diction aggregation represents a methodological advancement over
traditional averaging approaches (see Supplementary Methods 6 for
detailed methodology). By considering the top 33% most confident
slice predictions and employing exponential weighting based on
decision boundary distance, this system provides robustness against
poor-quality slices while maintaining diagnostic accuracy. This
approach more closely mirrors clinical decision-making processes
where multiple views inform final diagnoses.

The decision to maintain native-space processing rather than regis-
tration to standard templates was driven by careful methodological con-
siderations. While standardized space facilitates cross-study comparisons,
the heterogeneous acquisition parameters across datasets and potential
interpolation artifacts could mask subtle disease-related changes crucial for
early-stage detection. This trade-off between standardization and pre-
servation of original characteristics represents an important consideration
for future multi-center studies.

Cross‑dataset generalization revealed distinct patterns between archi-
tectures and dimensionalities. In hold‑out analysis on the early‑stage PPMI
cohort, ConvKAN 3D achieved an AUC of 0.600 (95% CI ≈ 0.47–0.73),
outperforming its 2D counterpart (AUC 0.378, d =−2.47, p = 0.013).
Vision Transformers showed limited transfer, with hold‑out AUCs ranging
from 0.394 (ViT2D, NEUROCON) to 0.573 (ViT3D, Tao Wu)—sub-
stantially below their isolated‑dataset scores, pointing to over‑fitting to
cohort‑specific features. These findings suggest that volumetric analysis can
better capture subtle structural changes, although larger 3D cohorts will be
required for confirmation. Consistency metrics supported this view: in
isolated analyses, 2DConvKANexhibited the lowest coefficient of variation
for AUC (CV ≈ 6.4%), whereas 3D models showed markedly higher
variability once evaluated across unseen sites.

These results advance previous findings in PD classification, where
traditional CNNs have reported AUCs ranging from 0.75 to 0.85 in

Fig. 8 | Model consistency and robustness across experimental conditions.
a Coefficient of variation analysis showing AUC measurement stability across analyses.
Blue bars represent 2D models, red bars represent 3D models, showing coefficient of
variation values (left y-axis). Individual AUC values used to calculate each CV are
overlaid as scatter points (right y-axis), demonstrating the underlying performance

measurements across different analysis types. b Relationship between dataset sample
size and performance variability. Blue circles represent 2D models, red circles represent
3D models, with dashed trend lines in corresponding colors. Dataset labels indicate
PPMI (n= 59 subjects), NEUROCON (n= 43 subjects), and Tao Wu (n = 40 subjects).
Error bars in a represent the standard error of the mean across analysis types.
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comparable single-center studies. The superior performance of ConvKAN,
particularly in early-stage detection, suggests that architectural innovations
targeting non-linear feature relationships may be especially valuable for
subtle neurodegenerative changes.

From a clinical perspective, several key challenges emerged. The
variability in model performance across datasets emphasizes the need for
robust validation across diverse cohorts. The computational advantages of
ConvKAN, requiring 97% less training time than equivalent CNNs while
maintaining superior performance, suggest practical benefits for clinical
deployment. However, the current reliance on slice-based analysis for 2D
models, while computationally efficient, may not fully capture the three-
dimensional nature of neurodegenerative changes.

The computational advantages of ConvKAN are particularly striking,
with our analysis showing that ConvKAN2D trained 97% faster than
ResNet2D (10.4 vs. 372.4 s per epoch) and performed inference 97% faster
(0.35 vs. 11.29 s per subject). ConvKAN also demonstrated superior effi-
ciency compared to Vision Transformers, with ConvKAN2D training 66%
faster than ViT2D (10.4 vs. 31.0 s) and performing inference 66% faster (0.35
vs. 1.03 s). The efficiency gap was even more pronounced in 3D imple-
mentations, where ConvKAN3D trained 99.8% faster than ViT3D (5.3 vs.
3157.2 s per epoch) and performed inference 99.97% faster (0.01 vs. 52.62 s
per subject). These dramatic improvements in computational efficiency,
combined with superior classification performance, make ConvKAN par-
ticularly suitable for resource-constrained clinical environments where rapid
model training and deployment are essential, especially when compared to
the computational demands of transformer-based architectures.

Study limitations include the relatively small sample size for 3D ana-
lyses, reflected in wider confidence intervals. The binary classification
approach, while providing clear performancemetrics, may oversimplify the
complex spectrum of Parkinsonian disorders. Additionally, the inherent
black box nature of deep learningmodels raises questions about the specific
features driving classification decisions.

It is important to note that the three datasets used in this study—PPMI,
NEUROCON, and Tao Wu—differ significantly in terms of disease stage,
treatment status, and imaging protocols. For example, the PPMI dataset
primarily consists of newly diagnosed, medication-naïve PD patients,
whereas NEUROCON and Tao Wu include patients with longer disease
durations who are undergoing dopaminergic treatment. These variations
likely introduce domain shifts that can affect model performance and
generalizability. Our hold-out analyses suggest thatmodels trained onmore
homogeneous cohortsmaynotperformas robustlywhen applied todatasets
with different clinical profiles. This observation underscores the need for
future studies to incorporate larger, multi-center datasets with standardized
acquisition protocols to better capture the heterogeneity of PD and enhance
the reliability of deep learning-based diagnostic tools.

Despite avoiding registration to standard templates due to interpola-
tion concerns,wenonetheless employed interpolationduring image resizing
(224 × 224 for 2D, 128 × 128 × 128 for 3D). This decision reflects important
distinctions between registration and resizing interpolation. Registration
typically requires spatially varying non-linear deformations that can distort
subtle tissue contrasts critical for detecting early PD changes. In contrast,
resizing applies uniform scaling that preserves relative spatial relationships
and tissue contrast patterns. Additionally, the heterogeneity of our datasets
—with varying acquisition protocols and resolutions—resulted in regis-
tration failure rates of 15–20% in preliminary testing, which would have
substantially reduced our sample sizes.

This native-space approach has important implications for result
interpretation. Without anatomical normalization, our models cannot
provide voxel-wise comparisons across subjects or identify specific anato-
mical regions driving classification. Instead, they must learn features suffi-
ciently robust to discriminate PD regardless of individual anatomical
variation.While thismaymiss subtle region-specific changes apparent with
perfect alignment, it potentially enhances generalization to the anatomical
diversity encountered in clinical practice. The strong cross-dataset perfor-
mance, particularly 3D ConvKAN’s AUC on early-stage PD data, suggests

our models have successfully learned anatomically invariant disease mar-
kers despite these preprocessing limitations.

Future work should explore hybrid approaches balancing anatomical
correspondence with native-space robustness, such as lightweight affine-
only registration or learning-based methods trained specifically on PD
cohorts. The consistent performance across heterogeneous datasets
demonstrates that robust PD detection is achievable without perfect ana-
tomical alignment, though optimal performance likely requires carefully
designed preprocessing that balances standardization needs with pre-
servation of disease-relevant tissue characteristics.

Our study’s focus on binary classification between PD patients and
healthy controls, while a common approach,may oversimplify the complex
spectrum of PD and fail to account for other neurodegenerative conditions
such as atypical parkinsonian disorders. Future work should explore multi-
class classification to better reflect the clinical reality of differential diagnosis
in movement disorders.

The inherent “black box” nature of deep learning models, combined
with this binary classification approach, raises the possibility that our
modelsmaybeusingnon-PD-related changes for classification.These could
include global atrophy associated with normal aging or overlapping con-
ditions present in the patient cohort, rather than PD-specific markers.
Future studies should incorporate explainableAI techniques to elucidate the
features driving model decisions, enhancing clinician trust and potentially
uncovering novel PD biomarkers.

In conclusion, this study offers a thorough evaluation of deep learning
architectures for MRI-based Parkinson’s Disease classification, with the
novel development and validation of ConvKANs marking a significant
advancement in the field. Although MRI is not currently a primary diag-
nostic tool for PD, our findings demonstrate that with careful model
selection and refinement, MRI analysis could become an integral part of a
multimodal diagnostic approach. The superior performance of ConvKANs
in isolated dataset analyses and the promising generalization of 3D Conv-
KANs in hold-out testing underscore the potential of this architecture in
neuroimaging. However, the observed variability in performance across
datasets and between isolated and hold-out analyses highlights the need for
robust validation across diverse cohorts to ensure reliability in clinical
applications.

As personalized medicine advances in the treatment of neurodegen-
erative disorders, the integration of advanced imaging techniques with
clinical expertise offers significant potential to enhance patient outcomes
throughmore accurate diagnosis, prognosis, and treatment planning in PD.
Future research should address the limitations identified in this study,
particularly by increasing the sample size for 3D analyses, exploring multi-
class classification to better represent the full spectrum of Parkinsonian
disorders, and developing methods to improve the interpretability of deep
learning models for use in clinical settings.

Data availability
This study utilized three open-source datasets for model development
and validation: the Parkinson’s Progression Markers Initiative (PPMI)
MRI dataset, the NEUROCON dataset, and the Tao Wu dataset. All
datasets are publicly available and can be accessed through their
respective online repositories: PPMI dataset: https://www.ppmi-info.
org; NEUROCON and Tao Wu datasets: https://fcon_1000.pro-
jects.nitrc.org/indi/retro/parkinsons.html Source data for Figs. 4–8 are
provided as Supplementary Data files 1–5.

Code availability
All code for model implementation and analysis is available at https://
github.com/salilp42/KAN-MRI and archived with https://doi.org/10.5281/
zenodo.1635569726.
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