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The metformin mediated MAPK signaling
pathway influences D-Xylose regulation
during diabetic kidney disease therapy

Check for updates

Dandan Xie1,3, Yongjun Zhu1,3, Sifan Guo1,3, Hao Li1,3, Zhibo Wang1, Xian Wang1, Ying Cai 1,2,
Jinxuan Chai1, Yan Wang1, Zhencai Hu1, Shiwei Wang1, Lasi Chen1 , Shi Qiu1 , Yiqiang Xie1 &
Aihua Zhang 1,2

Abstract

Background: Diabetic kidney disease (DKD) is a major cause of end-stage renal disease.
Although metformin is widely prescribed, the mechanisms underlying its renoprotective
effects remain incompletely understood.
Methods: We integrated multi-omics approaches—including network pharmacology,
phosphoproteomics, and targeted metabolomics—in both db/db mice (male) and human
patients. Analyses were performed on blood and kidney tissue frommice and paired blood/
urine samples from DKD patients to identify conserved therapeutic targets and metabolic
pathways.
Results: Metformin treatment improves glycemic control and renal function (reduced
creatinine and urea nitrogen) in DKD mice. Network pharmacology and phosphoproteomic
analyses reveal metformin’s engagement with the MAPK pathway, specifically through
MAPK1 and MAPK3. Targeted metabolomics identifies four carbohydrate metabolites
(mannitol, D-arabitol, D-mannose, and D-xylose) associated with DKD risk in humans.
Cross-species validation in mice supports D-Xylose as a potential key biomarker for
metformin’s therapeutic effects in DKD, with proximal tubule bicarbonate reclamation and
alanine, aspartate and glutamate metabolism as key metabolic pathways.
Conclusions: Metformin alleviates DKD through multi-modal mechanisms, modulating the
MAPKsignaling pathway andcarbohydratemetabolites—notablyD-xylose. As far asweare
aware, these findings provide new mechanistic insights and suggest potential biomarker-
driven strategies for DKD management.

The increasing incidence of diabetes mellitus (DM) due to an aging popu-
lation and lifestyle changes has become a significant global public health
issue. According to the International Diabetes Federation (IDF) Diabetes
Atlas, the number of adults withDM is projected to rise from 537million in
2021 to 783million by 20451, up to 40% of these individuals are expected to
develop chronic kidney disease (CKD)2, known as diabetic kidney disease
(DKD). DKD, characterized by persistent proteinuria and/or a progressive
decline in glomerular filtration rate, is one of the most prevalent compli-
cations of DMand a leading cause of end-stage renal disease (ESRD)3. Type
2 diabetesmellitus (T2DM) is the primary contributor to the disease burden

related to DKD2. Persistent hyperglycemia induces metabolic disturbances,
leading to renal inflammation, oxidative stress, apoptosis, autophagy, and
abnormal expression or activation of related signaling molecules and
pathways, ultimately resulting in renal fibrosis and DKD4.

Metformin is a cornerstonemedication for controlling hyperglycemia,
known for its efficacy, safety, and tolerability5,6. It also possesses multiple
extraglycemic benefits, such as cardiovascular and renal protection. Several
guidelines7–9, including the American Diabetes Association (ADA),
recommend metformin as the first-line hypoglycemic agent for patients
with T2DM or DKD. Metformin ameliorates hyperglycemia by inhibiting
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Plain language summary

Diabetic kidney disease is a serious
complication of diabetes in which the kidney
becomes damaged. While metformin is a
common medication used as a treatment,
exactly how it impacts the kidneys is not fully
clear. In this study,weanalyzed samples from
mice and humans with diabetic kidney
disease. We found that metformin lowers
blood sugar and alters the behavior of cells.
These results help explain how metformin
treatment can have a beneficial effect on
kidney function and suggests new ways to
monitor the effects of metformin on kidney
function. Our findings may lead to more
personalized strategies formanagingdiabetic
kidney disease in the future.
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hepatic gluconeogenesis, enhancing insulin sensitivity in peripheral tissues,
and increasing intestinal glucose excretion10. Additionally, metformin has
been shown to impact apoptosis, autophagy, and inflammation via the
MAPK/ERK and AMPK-related signaling pathways, thereby improving
energy metabolism in the liver, kidney, muscle, and fat to exert protective
effects11–13. However, the precisemechanism and direct molecular targets of
metformin in the treatment of DKD remain unknown.

Metabolomics, an emerging discipline following genomics and pro-
teomics, utilizes mass spectrometry (MS) technology to qualitatively and
quantitatively analyze metabolites in biological organisms through high-
throughput methods14,15. This field primarily studies small molecules with
molecular weights under 1500Da, such as glucose, amino acids, and lipids.
Analyzingmetabolic changes and interactionsof smallmoleculemetabolites in
pathophysiological processes can help identify disease-related biomarkers and
elucidate potential mechanisms and metabolic networks for drug therapy14,15.

Proteomics is the study of the proteome, focusing on the composition,
expression levels, protein-protein interactions (PPI), and post-translational
modifications (PTMs) of proteins under physiological and pathological
conditions16. DNA is transcribed into mRNA and then translated into
proteinswith specific amino acid sequences to function in the body,most of
which require chemical modification processes such as adding or removing
specific amino acids or chemical functional groups (i.e., PTMs) to dyna-
mically regulate protein function and stability17. Phosphorylation is one of
themost prevalent types of PTMs, where the phosphoryl group at the γ-site
ofATPorGTP is transferred to the aminoacid residuesof substrate proteins
through the catalytic action of a protein kinase, modulating protein struc-
ture, activity, and PPI18. Phosphoproteomics, based on MS and high-
throughput technologies, plays an important role in understanding meta-
bolic pathways, disease development mechanisms and identifying ther-
apeutic targets through the identification and quantitative analysis of
phosphorylation sites19.

In this study, the hypoglycemic and renal protective effects of met-
formin are confirmed in db/db mice, a model that recapitulates the key
hallmarks of human type 2DKD.Network pharmacology analysis, utilizing
bioinformatics tools and systems biology, predicts potential targets and
signal pathways of metformin treatment for DKD, suggesting amechanism
related to protein phosphorylation. Phosphoproteomics analysis of mouse
kidneys identifies differentially phosphorylated proteins andmodified sites,
followed by functional enrichment analysis. KEGG annotation analysis
suggests that differentially phosphorylated proteins are closely related to
carbohydratemetabolism. Targeted carbohydratemetabolomics analysis of
blood and urine from DKD patients identifies potential biomarkers, which
are validated using mouse blood metabolomics. The combined analysis of
network pharmacology, phosphoproteomics,metabolomics, andmolecular
docking verification suggests that MAPK1 and MAPK3 may represent
potential targets for metformin treatment of DKD. The MAPK signaling
pathway is identified as a potential signaling pathway, D-Xylose as a
potential biomarker, and proximal tubule bicarbonate reclamation and
alanine, aspartate, and glutamate metabolism as potential metabolic path-
ways. This studymay contribute to amore comprehensive understandingof
metformin’s potential mechanisms in the treatment of DKD.

Methods
Materials and reagents
Metformin (Cat: H20023370) was purchased from Merck Pharmaceutical
Co., Ltd. (Jiangsu, China). Carboxymethyl cellulose sodium (CMC-Na)
(Cat: C14456738) was obtained from Shanghai Maclean Biochemical
Technology Co., Ltd. (Shanghai, China). Blood glucose meter (GA-3) was
acquired from Sinocare Biosensor Co., Ltd. (Hunan, China). Creatinine
Assay kit (Cat: 20240530) and Urea Assay Kit (Cat: 20240530) were pur-
chased from Nanjing Jiancheng Bioengineering Institute (Jiangsu, China).

Animals
Seven-week-old male C57BL/KsJ-db/db mice (db/db, 41.2 ± 1.1 g) and
C57BL/KsJ-db/m mice (db/m, 20.0 ± 0.9 g) were procured from

GemPharmatech Co., Ltd. (Jiangsu, China). Male mice were used to avoid
the potential confounding effects of sex hormones and the estrous cycle on
metabolic phenotypes and disease progression. All experimental animals
were housed under standardized specific pathogen-free (SPF) conditions
with environmental enrichment at the Animal Experimental Center of
Hainan Medical University, with a temperature of 25 ± 2 °C, humidity of
65 ± 5%, and a 12 h light/12 h dark cycle, with free access to food andwater.
All procedures in this study were approved by the Ethics Committee of
Hainan Medical University (Ethics No.: HYLL-2023-457) and adhered to
theGuidelines for theCare andUse of LaboratoryAnimals publishedby the
National Institutes of Health (NIH Publication No. 85-23, revised 1996).

Animal treatment
A total of 18 mice were used in this experiment. After a one-week accli-
matizationperiod, db/dbmicewith confirmedhyperglycemia (fasting blood
glucose >11.1mmol/l) and age-matched normoglycemic db/m mice were
included.Micewere randomly assigned to three groups: db/dbmodel group
(Model), metformin-treated db/db group (MET), and control db/m group
(Control), n = 6 per group, using a randomnumber table generated prior to
treatment allocation. Sample sizewas determined based on previous studies
using db/db mice in DKD research and on feasibility considerations20,
sufficient to detect biologicallymeaningful differences while adhering to the
principle of reduction in animal use. To minimize confounders, cage
positions were rotated weekly and the order of treatment administration
and sample collection was randomized. Investigators were blinded to group
allocation during outcome assessment and data analysis. Metformin was
administered at an equivalent dose of 65mg/kg/d based on clinical dosing
guidelines for DKD, while the control and model groups received equal
volumes of 0.5% CMC-Na solution. Humane endpoints included >20%
body weight loss within 48 h or inability to eat/drink. No adverse events or
mortality occurred, and no animals required early euthanasia. All treat-
ments were delivered via intragastric gavage for 4 weeks. Fasting blood
glucose (FBG) levels in each group were measured using a blood glucose
meter. At the end of the experiment, all mice were euthanized, and blood
was collected. After centrifugation, the upper serum was collected and
stored at −80 °C for subsequent metabolomics analyses. Serum creatinine
(SCr) and blood urea nitrogen (BUN) levels in each groupwere determined
according to the manufacturer’s instructions. The left kidneys of mice in
each group were frozen in liquid nitrogen-isopentane and stored in a
−80 °C refrigerator for subsequent phosphoproteomics analysis. The right
kidneys were fixed in 4% paraformaldehyde and stored at 4 °C for histo-
pathological section preparation.

Renal tissue sections were cut for hematoxylin and eosin (H&E) and
periodic acid-Schiff (PAS) staining. Evaluation of glomerular and tubular
damage was performed on PAS-stained paraffin-embedded kidney sections
in a double-blinded manner, as previously described21–23. Specifically, glo-
merular injurywas semi-quantitatively graded on a scale of 0–4based on the
extent of mesangial matrix expansion, thickening of the glomerular base-
ment membrane, and glomerulosclerosis. Tubulointerstitial injury was
scored from0 to 4 according to the severity of tubular epithelial cell damage,
intraluminal cast formation, interstitial inflammation, and extracellular
matrix accumulation.

Clinical study
A total of 14 participants were enrolled in this study at the First Affiliated
Hospital of Hainan Medical University, comprising 7 DKD patients and 7
healthy controls. The detailed clinical characteristics of the participants are
provided in supplementary materials (Supplementary Table 3). The study
was approved by the Medical Ethics Committee of the First Affiliated
Hospital of Hainan Medical University (2024-KYL-040). DKD Patients
were diagnosed by clinicians based on the KDIGO 2022 Clinical Practice
Guideline for Diabetes Management in CKD9. Healthy volunteers were
recruited from the health examination center and were matched to DKD
patients in a 1:1 ratio using propensity scorematching based on age and sex.
All healthy volunteers were confirmed to be free of DM or kidney disease.
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All participants, both DKD patients and healthy individuals, had not been
exposed to toxic substances within the past 3 months, had not used drugs
harmful to the kidneys, and had signed informed consent forms. Blood and
urine samples were collected from all participants for targeted metabolic
profiling by ultra-high performance liquid chromatography (UPLC) and
MS using a standardized metabolomics platform. Trial registration: Public
title: The value of the combined omics technique in the early diagnosis of
patients with DKD. Registration date: 26/12/2023. Registration number:
ChiCTR2300079160. Registry URL: http://www.chictr.org.cn.

Network pharmacology analysis
The 3D structure and canonical SMILES of metformin were obtained from
PubChem.Potential targets formetforminwere identifiedusing Swisstarget,
TargetNet, Therapeutic Target Database (TTD), DrugBank, and ChEMBL
databases. The corresponding gene names for the target proteins were
retrieved from the UniProt database (https://www.uniprot.org/).“Diabetic
Nephropathy” or “Diabetic Kidney Disease” were used as keywords to
screen targets in the Online Mendelian Inheritance in Man (OMIM)
database (http://www.omim.org/), Drugbank (https://go.drugbank.com/),
GeneCards database (https://www.genecards.org), TTD and DisGeNET
(https://www.disgenet.org/). The intersection of metformin targets and
DKD disease targets was mapped to identify potential therapeutic targets.
These potential targets were imported into the STRING database with
species set to “Homo sapiens” and a confidence score threshold of > 0.4 to
obtainPPIdata.APPI target networkmapwas constructedusingCytoscape
3.10.1 software, selecting targets with a degree greater than themean as core
targets. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis for core
targets of metformin treatment in DKD were performed using the Metas-
cape data platform (https://metascape.org/gp/index.html) and the bioin-
formatics online tool (https://www.bioinformations.com.cn/).

Phosphorylated proteomics analysis
Lysis buffer (8M urea, 1% protease inhibitor, 1% phosphatase inhibitor,
50 μMPR-619, 3 μMTSA, 50mMNAM) was added to samples from each
group, and ultrasonic lysis was performed, followed by centrifugation. The
protein concentration in the supernatantwasmeasuredusing aBCAkit. For
trypsin digestion, 20% trichloroacetic acidwas added to each sample,mixed
by vortexing, centrifuged, and the precipitate was collected and dried. The
200mM tetraethylammonium bromide was added and ultrasonically dis-
persed, and then digested with trypsin at a 1:50 mass ratio overnight. The
reductionwas carried out using 5mMDL-dithiothreitol at 56 °C for 30min,
followed by alkylation with 11mM iodoacetamide for 15min at room
temperature in the dark. Peptides were dissolved in an enrichment buf-
fer (50% acetonitrile/0.5% acetic acid) and incubated with IMAC beads
under shaking. The non-specifically adsorbed peptides were removed,
elution buffer containing 10%NH4OHwas added, and the collected eluate
containing enriched phosphopeptides was lyophilized for LC-MS/MS
analysis.

Enriched peptides were dissolved in solvent A and separated using a
NanoElute ultra-high performance liquid system (Bruker Daltonics). Solvent
A consisted of 0.1% formic acid and 2% acetonitrile in water, while solvent B
contained 0.1% formic acid in acetonitrile. The liquid gradient was set as
follows: 0–16min, 2–22% B; 16–22min, 22–35% B; 22–26min, 35–90% B;
26–30min, 90%B.Theflow ratewasmaintained at 450 nl/min. Peptideswere
analyzed using the timsTOF Pro 2mass spectrometry with a capillary source.
The ionsourcevoltagewas set to1.7 kV.Dataacquisitionwasperformed in the
data-independent parallel accumulation serial fragmentation (dia-PASEF)
mode. The full MS scan range was 100–1700m/z, theMS/MS scan range was
395–1395m/z, and the isolation window was set to 20m/z.

Metabolomics analysis
Methanol was added to human or mouse samples, followed by cen-
trifugation at 13,200 × g for 10min at 4 °C. The supernatant was con-
centrated and dried, then reconstituted with 2-chloro-L-phenylalanine

(4ppm) solution prepared in 80%methanol-water, finally filtered through a
0.22 μmmicroporous membrane for subsequent analysis.

Each sample group was analyzed using UPLC and MS. UPLC was
performed on a Thermo Vanquish ultra-performance liquid system
(Thermo Fisher Scientific, USA) using an ACQUITY UPLC®HSS T3 col-
umn (2.1 × 100mm, 1.8 µm) (Waters, Milford, MA, USA) maintained at
40°C, with a flow rate of 0.3mL/min and an injection volume of 2 μL. The
mobile phase consisted of phase A (0.1% formic acid in water) and phase B
(0.1% formic acid in acetonitrile). The gradient elution procedure was as
follows: 0–1min, 8% B; 1–8min, 8–98% B; 8–10min, 98% B; 10–10.1min,
98-8% B; 10.1–12min, 8% B.

MS was performed using a Thermo Orbitrap Exploris 120 mass
spectrometer (Thermo Fisher Scientific, USA) with an electrospray ioni-
zation (ESI) source. The positive ion spray voltage was set to 3.50 kV, and
the negative ion spray voltage was −2.50 kV. The sheath gas and auxiliary
gas were set to 40 arb and 10 arb, respectively.

As described previously24, raw mass spectrometry files were converted
into the common data format (.mzXML) using the MSConvert tool from
the Proteowizard software package (version 3.0.8789). Peak detection, fil-
tering, and alignment of retention time (RT) andmass-to-charge ratio (m/z)
were carried out using the R-based XCMS software package to generate a
metabolite quantification list. Data normalization was performed through
total peak area normalization to correct for systematic errors and enable
reliable comparisons between samples and metabolites. Identification
of secondary metabolites was achieved by matching exact mass values
(<25 ppm) and conducting retrieval and comparison using spectral data-
bases such as the Human Metabolome Database (http://www.hmdb.ca/),
LipidMaps (http://www.lipidmaps.org/), MassBank (http://massbank.jp/),
mzCloud (http://www.mzcloud.org/), and KEGG.

Molecular docking
CB-DOCK2, a semi-flexible molecular blind docking method based on a
complex network, was used to evaluate the binding ability of protein and
ligand according to comprehensive characteristics. CB-DOCK2 online
molecular docking software facilitated the docking of potential DKD targets
with metformin. The binding strength and activity between these targets
and metformin were assessed based on binding energy.

Statistics and reproducibility
Continuous variables are presented as mean ± standard error of the mean
(SEM), and categorical data as counts and proportions. Statistical analyses
were performed using GraphPad Prism (v.10.1.2, San Diego, CA, USA).
Normality and homogeneity of variances were assessed using the
Shapiro–Wilk test and Brown–Forsythe test, respectively. For comparisons
between two groups, an unpaired two-tailed Student’s t test was used. For
multiple comparisons, one-way analysis of variance (ANOVA) followed by
Tukey’s post-hoc test was applied. If data did not meet the assumptions of
parametric tests, non-parametric alternatives (Mann–Whitney U test or
Kruskal–Wallis test with Dunn’s correction) were used. A P < 0.05 was
considered statistically significant. The exact sample size (n) for each
experiment is provided in the corresponding figure legend.

Results
Metformin exhibits hypoglycemic and renal protective
effects in DKD
The efficacy of metformin on DKD was evaluated using a mouse model.
Compared to the control group, the model group exhibited significantly
elevated FBG (P < 0.001), SCr (P < 0.001), and BUN (P < 0.001), alongside a
significantly reduced kidney index (KI; kidney weight/body weight;
P < 0.001). Metformin treatment markedly reversed these pathological
changes, resulting in significantly decreased FBG (P < 0.001), SCr
(P < 0.001) and BUN (P = 0.0013) levels, as well as a significant increase in
KI (P = 0.0337), when compared to untreated DKD mice (Fig. 1a–d).

Histopathological evaluation of kidney tissue sections using H&E
staining and PAS staining, with representative images shown in Fig. 1e–h.
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Mice in the Model group exhibited characteristic DKD lesions,
including pronounced glomerular hypertrophy, mesangial matrix expan-
sion, thickening of the glomerular basement membrane, and vacuolar
degeneration of tubular epithelial cells accompanied by brush border loss.
Cytoplasmic vacuoles of varying sizeswere observed, alongwith focal tubular
epithelial cell degeneration and necrosis, as well as marked tubular dilation.

PAS staining further confirmed these pathological alterations. Com-
pared with the Control group, the Model mice demonstrated substantial
glycogen and collagen deposition, thickening of the glomerular basement

membranes, vacuolar degeneration of tubular epithelial cells, tubular dila-
tion, presence of casts and proteinaceous material within the lumen,
expansion of the interstitial compartment, and inflammatory cell infiltra-
tion. Both the glomerulosclerosis index and tubulointerstitial injury score
were significantly higher in theModel group compared to theControl group
(P < 0.001, Fig. 1g, h). Metformin treatment ameliorated both glomerular
injury (P = 0.0412) and tubular damage (P < 0.001) to varying extents,
supporting that metformin exerts renoprotective effects in the DKD
mouse model.

Fig. 1 | Metformin exhibits hypoglycemic and renal protective effects in diabetic
kidney disease (DKD). a–dMetformin treatment significantly reduced fasting
blood glucose, serum creatinine, and blood urea nitrogen levels, and increased the
kidney index inDKDmodel mice (n = 6). e, fRepresentative kidney sections stained
with hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) from control,
DKD model, and metformin treatment mice (original magnification ×400; scale
bar = 50 μm). Arrows indicate characteristic pathological alterations: glycogen and
collagen deposition (red), thickening of the glomerular basement membrane

(green), vacuolar degeneration of tubular epithelial cells with brush border loss
(yellow), tubular dilation with proteinaceous material (blue) and casts (orange),
inflammatory cell infiltration (black). g, h Quantitative analysis of the glomerulo-
sclerosis index and the tubulointerstitial injury scores (n = 6 mice). *P < 0.05 vs.
control group, **P < 0.01 vs. control group; #P < 0.05 vs. model group, ##P < 0.01 vs.
model group. Statistical analyses: one-way analysis of variance (ANOVA) with
Tukey’s post hoc test (a–d, g, h). Data represent mean ± standard error of the
mean (SEM).
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Target screening and enrichment analysis of metformin on DKD
by network pharmacology
A total of 300 targets for metformin were identified from the SwissTarget,
TargetNet, TTD, DrugBank, and ChEMBL databases (Fig. 2a).

Additionally, 1529DKD-associated targets were retrieved from theOMIM,
DrugBank, GeneCards, TTD, and DisGeNET databases (Fig. 2b). Interac-
tionmapping betweenmetformin targets andDKD-related targets revealed
86 potential therapeutic targets for metformin in DKD (Fig. 2c). The

Fig. 2 | Network pharmacology analysis of metformin in diabetic kidney
disease (DKD). a Compound targets for metformin obtained from SwissTarget,
ChEMBL, DrugBank, Therapeutic Target Database (TTD), and TargetNet data-
bases. b DKD disease targets predicted from TTD, GeneCards, DrugBank, Online
Mendelian Inheritance inMan (OMIM), andDisGeNET databases. cVenn diagram
of intersection targets between metformin and DKD. d Protein-protein interactions
(PPI) network of 83 common targets between metformin and DKD. Circles repre-
sent targets, with size and color indicating target importance, from dark blue (less

important) to deep red (more important), and larger circles reflecting higher degrees
of connectivity. The seven largest and reddest circles in the center correspond to the
core targets for metformin treatment of DKD, which were identified based on
degree, betweenness, and closeness centrality. e Gene Ontology (GO) enrichment
analysis of potential targets formetformin inDKD (top 10). fKyoto Encyclopedia of
Genes andGenomes (KEGG) enrichment analysis of potential targets formetformin
in DKD (top 20). Statistical analyses: Fisher’s exact test (f).
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common targets between metformin and DKD were analyzed using
Cytoscape software to construct a PPI network (Fig. 2d). Thirty-two targets
with a degree greater than the average were identified as potential targets for
metformin in DKD treatment (Supplementary Table 1). Topological ana-
lysis identified seven core targets based on degree, betweenness centrality,
and closeness centrality: MAPK3, PPARG, PTGS2, BCL2, ESR1, ACE, and
MAPK1 (Fig. 2d, Supplementary Table 2).

GO enrichment analysis of the 32 targets indicated that metformin
mainly affects the negative regulation of protein phosphorylation (BP:
Biological Processes), membrane raft and membrane microdomain (CC:
Cellular Components), and protein kinase binding andMAPkinase activity
(MF:Molecular Functions) (Fig. 2e). These results suggest thatmetformin’s
therapeutic effects in DKD are closely related to the regulation of protein
phosphorylation and protein kinase activity. KEGG pathway enrichment
analysis further revealed that metformin exerts therapeutic effects in DKD
through multiple pathways. The top 20 KEGG pathways include the AGE-
RAGE signaling pathway in diabetic complications, PI3K-Akt signaling
pathway, VEGF signaling pathway, HIF-1 signaling pathway, AMPK sig-
naling pathway, and MAPK signaling pathway (Fig. 2f).

Phosphoproteomic characterization of metformin for DKD
Using 4D-FastDIA quantitative phosphorylation modification proteomics,
we identified 48 phosphorylated proteins and 190 modification sites in the
kidney tissues of the model and metformin-treated mice. Principal com-
ponent analysis (PCA) (Fig. 3a, b), partial least squares-discriminant ana-
lysis (PLS-DA) (Supplementary Fig. 1a, b), and orthogonal partial least
squares-discriminant analysis (OPLS-DA) (Supplementary Fig. 1c, d)
showed significant differences in protein expression between the two
groups, indicating metformin’s regulatory effect on phosphorylated pro-
teins in DKD.

Differentially phosphorylated proteins and modification sites were
identified with P < 0.05 and fold change (FC) > 1.5 or < 0.6725 (Fig. 3c).
Visualization through volcano plots (Fig. 3d, g), heatmaps (Fig. 3f, Sup-
plementary Fig. 1e), and radar chart (Fig. 3i) revealed a total of 19 differ-
entially phosphorylated proteins in the metformin group compared to the
model group, with 11 upregulated and 8 downregulated proteins. The top 5
upregulatedproteinswerePdha1,Map2k2,Map2k1,H3-5, andPgm3,while
the top 5 downregulated proteins were Pkm, Raf1, Mtmr3, Ptk2, and Stk3
(Fig. 3e). The top 5 upregulated and downregulated sites were H3-5_Y100,
Ank3_S935, Pdha1_Y289, Map2k2_S306, Map2k1_T386, and Pkm_S77,
Raf1_S621, Mtmr3_S633, Ank3_S873, Tmem51_S230, respec-
tively (Fig. 3h).

Functional classification and enrichment analysis of differentially
phosphorylated proteins were performed. GO classification (Fig. 4a)
showed that at the BP level, differential proteins were mainly related to
phosphorylation and MAPK cascade; at the MF level, they primarily
affected kinase activity; and at the CC level, they were mainly localized to
focal adhesion and cell-substrate junction. Subcellular structure analysis
(Fig. 4b) and KEGG annotation (Fig. 4c) indicated that differentially
phosphorylated proteins weremainly localized in the cytoplasm and closely
related to carbohydrate metabolism. KEGG pathway enrichment analysis
using chord plots (Fig. 4d) showed that metformin’s treatment of DKDwas
closely associated with theMAPK signaling pathway, withMAP2K2_S306,
MAP2K1_T386, RAF1_S621, andHRAS_S177 being themost significantly
phosphorylated proteins and sites.

Metabolomics characterization of blood and urine in patients
with DKD
UPLC-MS/MS targeted metabolomics was utilized to analyze serum and
urine samples from DKD patients and healthy controls, focusing on
carbohydrate metabolism. PCA, PLS-DA, and OPLS-DA analyses
demonstrated significant separation in carbohydrate metabolic profiles
between the two groups (Fig. 5a–f, Fig. 6a–f). The quality of theOPLS-DA
model was assessed using R2Y and Q2 parameters through permutation
testing, indicating high stability and reliability with values of 0.998 and

0.969 for blood metabolites, and 0.991 and 0.881 for urine metabolites,
respectively.

The variable importance for the projection (VIP) value was employed to
assess the influence and interpretative significance ofmetabolite differences in
the classification and discrimination of sample groups. When VIP > 1, it
indicates that the corresponding variable significantly contributes to the
model, making it a useful criterion for identifying potential biomarkers.With
P < 0.05, VIP > 1, and FC> 1.5 or < 0.67 as identification conditions, 16 blood
differential metabolites were identified by visualizing using volcano plots and
heatmaps (Fig. 5g–i, Supplementary Table 4), among which 10 metabolites
were upregulated such asMannitol, Ribose 1-phosphate, D-Xylose, D-Ribose
5-phosphate, L-Glutamic acid, D-Glucuronic acid, Itaconate, D-Arabitol, (R)
−3-Hydroxybutyric acid and D-Mannose, and 6 metabolites were down-
regulated such as Gluconolactone, Oxoglutaric acid, Glyceric acid,
2-Hydroxybutyric acid, 2-Ketobutyric acid, and Galactaric acid. Differential
metabolites were analyzed by the KEGG metabolic pathway using P < 0.05
and impact > 0.1 as the screening criteria, and the results suggested that DKD
was mainly associated with Proximal tubule bicarbonate reclamation,
Glyoxylate and dicarboxylate metabolism, ABC transporters and Alanine,
aspartate and glutamatemetabolism (Fig. 5j).While there were 14 differential
urine metabolites (Fig. 6g–i, Supplementary Table 5), among which 9 meta-
bolites such as L-malic acid, 1-keto-D-chiro-inositol, mannitol, L-glutamine,
D-arabitol,D-mannose,D-xylose, ribose1,5-bisphosphate, and galactaric acid
were upregulated, and 5metabolites such as itaconic acid, citric acid, sorbitol,
2-dehydro-3-deoxy-D-glucarate, and glucose 6-phosphate were down-
regulated. They were mainly associated with pathways such as fructose and
mannose metabolism, proximal tubule bicarbonate reclamation, citrate cycle
(TCA cycle), and alanine, aspartate, and glutamate metabolism (Fig. 6j).

Metformin regulates blood metabolome in DKDmice
To verify the trend of carbohydrate metabolic profiles in DKD patients and to
investigate the effect ofmetformin treatment on carbohydratemetabolism, we
analyzed mouse serum samples using UPLC-MS/MS targeted metabolomics
technology. Multivariate statistical analysis (PCA, PLS-DA, OPLS-DA)
showed clear separation in metabolic profiles among control, model, and
metformin groups (Fig. 7a–c, Supplementary Fig. 2a, b), suggesting that met-
formin can regulate blood metabolism of DKD. The OPLS-DA permutation
test indicated a stable DKD model (R2Y= 0.994, Q2= 0.913) and potential
therapeutic effects of metformin (R2Y= 0.999, Q2 = 0.792).

With VIP > 1, P < 0.05, and FC > 1.5 or < 0.67 as identification con-
ditions, the top 10metabolites were highlighted by theVIP plot inmodel vs.
control and metformin vs. model, respectively (Fig. 7d). Eight metabolites
changed significantly in the model group compared to controls, with
D-Xylose and Oxalacetic acid upregulated, and Galactitol, D-Glucuronic
Acid, L-Ribulose, (2 R)−2-Hydroxy-3-(phosphonatooxy) propanoate,
D-Fructose and L-Glutamine downregulated (Fig. 7e, f, Supplementary
Table 6).UsingP < 0.05 and impact >0.1 as the screening criteria, theKEGG
pathway analysis associated DKD with metabolic pathways like Proximal
tubule bicarbonate reclamation, Carbon fixation in photosynthetic organ-
isms, and Alanine, aspartate and glutamate metabolism (Supplemen-
tary Fig. 2e).

In the metformin group, 10 differential metabolites (Fig. 7e, f, Sup-
plementary Table 7) were identified compared to the model group,
including upregulation of L-Malic acid, Alpha-Lactose, D-Glucuronic Acid,
Sorbitol, D-Mannose, and L-Glutamic acid, and downregulation of D-
Xylose, Oxalacetic acid, Maleic acid, and Methylmalonic acid. These dif-
ferential metabolites were linked to metabolic pathways such as Proximal
tubule bicarbonate reclamation and Alanine, aspartate, and glutamate
metabolism (Fig. 7g).

Combined analysis of network pharmacology, phosphopro-
teomics, and metabolomics
To further elucidate the mechanism of metformin in treating DKD, we
conducted KEGG enrichment analysis on 19 differential proteins identified
throughphosphoproteomics and 86 core targets identified throughnetwork
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pharmacology. Sankey plot visualization revealed that the MAPK signaling
pathway was the most significantly enriched KEGG pathway (smallest P-
value), with MAPK1 andMAPK3 as the most strongly associated proteins.
These findings suggest that metformin treatment of DKD may involve the

MAPK signaling pathway, with MAPK1 and MAPK3 as potential ther-
apeutic targets (Fig. 8a).

The literature review suggested that MAPK1 and MAPK3 are closely
related to DKD. Molecular docking with metformin was performed using

Fig. 3 | Differentially phosphorylated proteins and modification sites in the
kidney tissues between diabetic kidney disease (DKD) model and metformin
groupmice. a Principal component analysis (PCA) 2D score plot of phosphorylated
proteins in the model and metformin groups. b PCA 3D score plot of phosphory-
lated proteins in the model and metformin groups. c Statistical histogram of dif-
ferentially phosphorylated proteins and modified sites in the model and metformin
group mice. d Volcano plot of differentially phosphorylated proteins in the model
and metformin groups. Each dot represents a protein. Pink indicates P < 0.05 and
fold change (FC) > 1.5 or < 0.67, green indicates FC > 1.5 or <0.67 only, blue indicates
P < 0.05 only. e Top 5 differentially phosphorylated proteins in the model and
metformin groups identified according to FC when P < 0.05. Red represents up-

regulated proteins, and blue represents down-regulated proteins. fCircular heatmap
of differentially phosphorylated proteins in the model and metformin groups. Red
squares indicate upregulation and blue squares indicate downregulation. g Volcano
plot of differentially phosphorylated proteins and modification sites in the model
and metformin groups. Each dot represents a protein, red represents up-regulation,
and blue represents down-regulation.hTop 5 differentially phosphorylated proteins
and modification sites in the model and metformin groups identified according to
FC and P < 0.05. Red represents up-regulation, and blue represents down-
regulation. i Radar chart of differentially phosphorylated proteins and modification
sites in the model and metformin groups. Statistical analyses: two-tailed t test (d, g).
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the CB-DOCK2 online software. The binding energies of MAPK1 and
MAPK3 tometformin were−5.3 kcal/mol and−5.6 kcal/mol, respectively,
indicating good binding affinity.Molecular docking visualization results are
shown in Fig. 8b, c.

In the blood and urine samples from clinical subjects, Mannitol,
D-Arabitol, D-Mannose, and D-Xylose showed consistent changes
and were associated with DKD risk. The main metabolic pathways
involved were Proximal tubule bicarbonate reclamation and Alanine,
aspartate and glutamate metabolism. In mouse blood samples,
three common metabolites—D-Xylose, Oxalacetic acid, and
D-Glucuronic acid—exhibited significant changes after metformin
treatment, with the involved metabolic pathways related to Proximal

tubule bicarbonate reclamation and Alanine, aspartate and glutamate
metabolism.

Using a Venn plot (Fig. 8d), we were surprised to discover that
D-Xylose showed a consistent trend in both clinical subjects and mouse
samples, suggesting its potential as a biomarker formetformin treatment of
DKD. The potential metabolic pathways were Proximal tubule bicarbonate
reclamation and alanine, aspartate and glutamate metabolism (Fig. 8e).

Discussion
DKD is a chronic kidney disease caused by DM, where prolonged hyper-
glycemia causes kidney damage, contributing to increased all-cause and
cardiovascularmortality26.With the rising prevalence ofDM,DKDhas also

Fig. 4 | Functional classification and enrichment analysis of differentially
phosphorylated proteins and modified sites in the kidney tissues between dia-
betic kidney disease (DKD) model and metformin group mice. a Gene Ontology
(GO) enrichment analysis of differentially phosphorylated proteins in themodel and
metformin groups. From outside to inside, the first circle indicates the GO classi-
fication, yellow for biological process, blue for molecular function, and green for
cellular component; the second circle represents the number and the P value of
background proteins in this classification, the more proteins the longer the bar and
the smaller the P value the redder the color; the third circle represents the number of

differential proteins; and the fourth circle represents the Rich Factor value in each
GO classification. b Subcellular localization annotation of differentially phos-
phorylated proteins in the model and metformin groups. The outer ring color
represents different subcellular structures, while the inner ring shows upregulated
proteins in pink and downregulated proteins in blue. cKyoto Encyclopedia of Genes
and Genomes (KEGG) pathway annotation for differentially phosphorylated pro-
teins in the model and metformin groups. d KEGG enrichment chord plot of dif-
ferentially phosphorylated proteins and sites. Red represents up-regulation, blue
represents down-regulation, and the larger the fold change (FC) the darker the color.
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Fig. 5 | Characteristics of carbohydratemetabolites in blood fromdiabetic kidney
disease (DKD) patients and healthy controls. a–fMultivariate statistical analysis of
carbohydrate metabolism in DKD patients and healthy controls: a Principal com-
ponent analysis (PCA) 2D score plot; b Partial least squares-discriminant analysis
(PLS-DA) 2D score plot; c Orthogonal partial least squares-discriminant analysis
(OPLS-DA) 2D score plot; d PCA 3D score plot; e PLS-DA 3D score plot; f OPLS-
DA 3D score plot. Each dot represents a subject, with blue indicating healthy con-
trols (HC) and red indicating DKD patients (DN). g Volcano plot of differential
metabolites in DKD patients and healthy controls. Each dot represents a metabolite,

red represents up-regulation, and blue represents down-regulation. h Top 5 dif-
ferential metabolites in the DKD patients and healthy controls identified according
to fold change and P < 0.05. Red represents up-regulation, and blue represents
down-regulation. i Heatmap of differential metabolites in the DKD patients and
healthy controls. Pink squares indicate upregulation and olive squares indicate
downregulation. j Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic
pathway analysis of differential metabolites in the DKD patients and healthy con-
trols. Statistical analyses: two-tailed t test (g) and Fisher’s exact test (j).
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Fig. 6 | Characteristics of carbohydratemetabolites in urine fromdiabetic kidney
disease (DKD) patients and healthy controls. a–fMultivariate statistical analysis of
carbohydrate metabolism in DKD patients and healthy controls: a Principal com-
ponent analysis (PCA) 2D score plot; b Partial least squares-discriminant analysis
(PLS-DA) 2D score plot; c Orthogonal partial least squares-discriminant analysis
(OPLS-DA) 2D score plot; d PCA 3D score plot; e PLS-DA 3D score plot; f OPLS-
DA 3D score plot. Each dot represents a subject, with blue indicating healthy con-
trols (HC) and red indicating DKD patients (DN). g Volcano plot of differential
metabolites in DKD patients and healthy controls. Each dot represents a metabolite,

red represents up-regulation, and blue represents down-regulation. h Top 5 dif-
ferential metabolites in the DKD patients and healthy controls identified according
to fold change and P < 0.05. Red represents up-regulation, and blue represents
down-regulation. i Heatmap of differential metabolites in the DKD patients and
healthy controls. Pink squares indicate upregulation and olive squares indicate
downregulation. j Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic
pathway analysis of differential metabolites in the DKD patients and healthy con-
trols. Statistical analyses: two-tailed t test (g) and Fisher’s exact test (j).
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become a significant global public health challenge26,27, being a leading cause
of CKD and ESRD worldwide28,29. Effective DKD treatment emphasizes
early intervention and comprehensive management, including lifestyle
adjustment and control of blood glucose, blood pressure, and lipids. Blood
glucose control is particularly crucial, as it significantly affects the onset and

progression of DKD. Early control can delay urinary protein increase and
renal function decline in DM patients30, for instance, a 40% increase in the
risk of microalbuminuria is associated with a 10% decrease in time in range
(TIR), which reflects blood glucose fluctuation31. Metformin, a primary
antidiabetic drug for T2DM, is excreted unchanged in the urine and has

Fig. 7 | Profiling of carbohydrate metabolites in serum from diabetic kidney
disease (DKD) model mice. a–c Principal component analysis (PCA), Partial least
squares-discriminant analysis (PLS-DA), and Orthogonal partial least squares-
discriminant analysis (OPLS-DA) score plots among the control, model, and met-
formin treatment groups. d The variable importance for the projection (VIP) score
plots illustrating the differences between the control andmodel groups, and between
the model and metformin treatment groups. e Volcano plots depicting differential
metabolites between the control, model, andmetformin groups. Each dot represents
ametabolite, with blue denoting downregulation and red denoting upregulation; left

panel shows model vs control, while right panel shows metformin vs model com-
parison. f Heatmap displaying the differential expression of metabolites across the
control, model and metformin groups. Pink squares indicate upregulation and olive
squares indicate downregulation. g Kyoto Encyclopedia of Genes and Genomes
(KEGG) metabolic pathway analysis of differential metabolites between the model
and metformin groups. The smaller the P value the longer the bar and the more
metabolites in the pathway the larger the dot. Statistical analyses: two-tailed t test (e)
and Fisher’s exact test (g).
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been shown in several clinical studies, including the United Kingdom
Prospective Diabetes Study, to reduce all-cause mortality and slow ESRD
progression inpatientswithT2DMandDKD5,6,32,33. Both in vitro and in vivo
experiments also suggest metformin’s beneficial effects on the kidney34.

This study confirmed metformin’s hypoglycemic and renal protective
effects on DKD through animal experiments. Network pharmacology,
along with GO and KEGG enrichment analyses, predicted potential targets
ofmetformin inDKD treatment, suggesting amechanism related to protein
phosphorylation. Phosphoproteomic analysis of DKDmodel mice kidneys
identified differential proteins and modification sites. Subcellular structure
and KEGG annotations indicated that the differentially phosphorylated
proteinswere primarily located in the cytoplasm and closely associatedwith
carbohydrate metabolism. Blood and urine analysis of DKD patients
identified potential biomarkers and metabolic pathways, further validated
through blood metabolomics of DKD model mice. Integrating network
pharmacology, phosphoproteomics, targetedmetabolomics, andmolecular
docking revealed the following main findings: (1) Metformin effectively
reduces FBG, SCr, and BUN levels in DKD model mice; (2) MAPK1 and
MAPK3 are potential targets of metformin in DKD treatment, with the

MAPKsignaling pathway as a potential signaling pathway; (3)Mannitol,D-
Arabitol, D-Mannose, and D-Xylose are associated with DKD risk; (4)
D-Xylose is a potential biomarker for metformin treatment of DKD, with
Proximal tubule bicarbonate reclamation and Alanine, aspartate and glu-
tamate metabolism as potential metabolic pathways.

Metformin has been used clinically for T2DM for over 50 years. In
recent years, accumulating evidence has revealed multiple extraglycemic
effects, such as anti-inflammatory35, anti-aging36, and renal protection6,33

have been gradually discovered. Zhou et al. found that37 the expression level
of tenascin-C (TNC) in the serum of T2DM patients, DKD rats, and rat
mesangial cells stimulated by high glucose increased. Metformin could
protect the kidney in DKD by regulating the inflammation and fibrosis
process through the TNC/TLR4/NF-κB/miR-155-5p inflammatory loop37.
Kim et al. found that38 metformin attenuated endoplasmic reticulum stress
and renal fibrosis by decreasing glucose-related protein 78 and phos-
phorylated eukaryotic initiation factor-2α, possibly related to protein
phosphorylation39. Our study’s findings align with these results, showing
metformin’s hypoglycemic and renal protective effects in DKDmodel mice
and suggesting a mechanism involving protein phosphorylation.

Fig. 8 | Combined analysis of network pharmacology, phosphoproteomics, and
metabolomics. a Potential targets and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways for metformin treatment of diabetic kidney disease (DKD). The
left panel presents a Sankey diagram illustrating enriched KEGG pathways and
associated proteins, with bar lengths reflecting enrichment levels; the right panel is a
dot plot, where dot size indicates the number of background proteins in the pathway,

and color represents the P value, with redder dots indicating smaller P-values.
Molecular docking of metformin with MAPK1 (b) and MAPK3 (c). d The common
metabolites observed in theHuman_Blood,Human_Urine,Mouse_Control/Model,
and Mouse_Met/Model. e The metabolic pathways observed in the Human_Blood,
Human_Urine, Mouse_Control/Model, and Mouse_Met/Model. Statistical ana-
lyses: Fisher’s exact test (a, e).
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Proteins execute vital bodily functions, often requiring PTMs like
phosphorylation to function properly. Phosphorylation, a well-studied
PTM, typically occurs in the nucleus or cytoplasm and dynamically reg-
ulates protein phosphorylation anddephosphorylation throughkinases and
phosphatases40, influencing processes such as apoptosis, immune response,
and cell metabolism, and is closely related to diseases such as tumors and
DKD40. MAPKs are a group of highly conserved serine/threonine protein
kinases that transmit extracellular stimulation signals such as oxidative
stress, DNA damage, high glucose, and high osmotic pressure from the cell
surface to the interior of the cell nucleus41. TheMAPK signaling pathway, a
crucial pathway in eukaryotic signal transmission, regulates various phy-
siological and pathological processes, including cell proliferation, differ-
entiation, apoptosis, and inflammatory response42. MAPKs activate when
phosphorylated. Classic MAPKs include extracellular signal-regulated
kinase 1/2 (ERK1/2, also known as MAPK3/1), p38 MAPK, c-Jun NH2-
terminal kinase (JNK), and ERK5 – four major subfamilies41. Corre-
spondingly, MAPK has four classical signal pathways, among which, ERK
pathway is the most classical MAPK signal pathway, critical in DKD
development. When stimulated by extracellular stimulation signals such as
high glucose, Ras is activated, and activated Ras recruits Raf to the plasma
membrane, so that its phosphorylation is activated. Activated Raf further
binds to MEK1/2 downstream and activates ERK1/2, phosphorylates acti-
vated ERK1/2 into the nucleus to initiate gene expression related to cell
cycle, proliferation, and adhesion, and plays an important role in the
occurrence and development of DKD43,44. Osasenaga et al. found that high
glucose levels can activate ROS, triggering pathways like p38MAPK and
leading to phosphorylation of insulin receptor substrates, ultimately
resulting in diabetes45. This is consistent with our findings. Through
phosphoproteomics analysis andmolecular docking, we identifiedMAPK1
and MAPK3 as potential metformin targets in DKD, with the MAPK sig-
naling pathway being a key enrichment pathway. Upregulatedmodification
sites included Ank3_S935, Pdha1_Y289, Map2k2_S306, and
Map2k1_T386, while downregulated sites included Pkm_S77, Raf1_S621,
Mtmr3_S633, Ank3_S873, and Tmem51_S230. Additionally, the differen-
tially phosphorylatedproteinswereprimarily localized in the cytoplasmand
were closely related to carbohydrate metabolism.

Metabolomics, focusing on small molecule metabolites, observes the
dynamic change law of metabolites from the overall level, and can explore
disease biomarkers and understand the mechanisms of diseases like DM
and its complications46. Recent metabolomics studies indicate that DKD
patients exhibit multiple biochemical metabolic pathway abnormalities47. A
study in Singapore analyzed 220 circulating metabolites in 2772 diabetic
patients and identified circulating tyrosine as an important factor for
detectingDKD, and othermetabolites like lactate and citrate have also been
linked to DKD48. Another large cohort study on the association of plasma
metabolites with the risk of ESRDprogression in T2DMpatients found that
tryptophan and kynureninewere involved in the risk of renal progression in
T2DM patients, with tryptophan negatively associated with ESRD risk and
kynurenine-to-tryptophan ratio positively associated with ESRD risk, with
hazard ratios adjusted for clinical risk factors of 0.62, respectively (95% CI:
0.51, 0.75) and 1.48 (95% CI: 1.20, 1.84) per 1 SD49. This study’s targeted
carbohydrate metabolomics analysis from the blood and urine of DKD
patients showed that Mannitol, D-Arabitol, D-Mannose, and D-Xylose
were associated with DKD risk, with Proximal tubule bicarbonate recla-
mation and Alanine, aspartate and glutamate metabolism as potential
metabolic pathways.

D-Xylose, a functional monosaccharide found widely in plants rich in
hemicellulose such as the core of maize straw andAuricularia auricula, has
various physiological regulation functions and is approved by the Food and
Drug Administration, among other regulations, for use as a calorie-free
sweetener or sugar substitute. D-Xylose belongs to water-soluble dietary
fiber, which can regulate intestinal flora and promote the proliferation of
beneficial bacteria such as Bifidobacterium50. In addition, D-Xylose can
block the absorption of bile acids and hydrolysis of carbohydrates, and has

invertase and α-amylase inhibitory activity50. Early animal experiments
showed that adding 10%(w/w) xylose to sucrose drinks inhibited rapid
increases in blood glucose and insulin levels in rats51. This was confirmed in
a randomized controlled trial in South Korea, where blood glucose and
serum insulin levels were significantly reduced in hyperglycemic subjects
after consumption of sucrose beverages containing xylose compared with
control groups, suggesting that D-Xylose is beneficial to postprandial blood
glucose control50. The beneficial effect of D-Xylose on postprandial blood
glucose was also confirmed in an early clinical trial in Australia, where
12 subjects with T2DM were treated with selegiline or placebo, and were
given beverages containing either D-Xylose or sucralose (control) after
fasting overnight, and it was found that blood glucosewas lower than that of
the control group after consuming D-Xylose-containing beverages in both
groups, with the lowest blood glucose in the sitagliptin group, suggesting
thatD-Xylose reducespostprandial glucose inT2DMpatients and enhances
the effect of DDP-4 inhibitors52. This study found consistent trends in
D-xylose levels in clinical subjects and DKD model mice, suggesting that
metformin may regulate D-xylose metabolites to treat DKD, and D-xylose
can serve as a potential biomarker for metformin treatment.

This study systematically analyzedblood andurine samples fromDKD
patients and DKD model mice, integrating network pharmacology, phos-
phoproteomics, and targeted metabolomics. It confirmed metformin’s
efficacy in treatingDKD and proposed thatmetforminmay act through the
MAPK signaling pathway, with D-Xylose as a potential biomarker. How-
ever, this study still has some limitations. First, the sample size for human
samples in the clinical study is relatively small. Second, while D-Xylose was
proposed as a potential biomarker, its precise mechanism in metformin’s
treatment of DKD remains unclear. Therefore, future studies should
increase sample sizes and further investigate the regulatory role of D-Xylose
in the context ofmetformin treatment inDKD, to identify novel therapeutic
targets for this condition.

In conclusion, this study confirmed the hypoglycemic and renal pro-
tective effects of metformin in DKD using model mice. Network pharma-
cology and phosphoproteomic analyses identified MAPK1 and MAPK3 as
key targets of metformin, with the MAPK signaling pathway in its ther-
apeutic action. Targeted metabolomics revealed associations between
Mannitol,D-Arabitol,D-Mannose,D-Xylose, andDKDrisk,withD-Xylose
highlighted as a potential biomarker for metformin’s effects. These findings
suggest that metformin’s benefits in DKD may involve modulation of the
MAPK pathway and D-Xylose metabolism, with proximal tubule bicar-
bonate reclamation and alanine, aspartate and glutamate metabolism as
potential metabolic pathways.

Data availability
The source data underlying the figures presented in this study are provided
in the Supplementary Information. Specifically, the source data for Fig. 2d
are available in Supplementary Table 2, for Fig. 5 in Supplementary Table 4,
for Fig. 6 in Supplementary Table 5, and for Fig. 7 in Supplementary
Table 6 and 7. Additional supporting data not included in the Supple-
mentary Information are available from the corresponding author upon
reasonable request.
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