

The current and future landscape of RNA-based therapies and diagnostics

Amid continuous innovation in sequencing and gene-editing technologies combined with enhanced understanding of RNA biology, there has been an increase in RNA-based technologies for the treatment of a wide array of diseases. We discuss some recent work in the field, highlighting the RNA biology and RNA-based applications to medicine collection, which showcases the versatility of RNA for filling numerous gaps in disease treatment and detection.

RNA is a fundamental and multifunctional molecule that serves as the messenger for protein synthesis whilst also forming critical secondary structures, performing key regulatory functions, signaling the presence of pathogens in cells, and more. The flexibility and power of RNA and nucleic acids have driven countless basic and translational studies, with notably 19 small RNAs¹, seven gene replacement therapies², and two mRNA vaccines approved for patient use³. The continued reduction in sequencing cost and promise of personalized therapies underscores the future potential of RNA-based medicines or nucleic acid therapeutics (NATs), but this also requires proper workflows to be established for design, regulatory approvals, and diligent safety testing. We established the **RNA biology and RNA-based applications to medicine** collection to highlight these advances, as well as the cross-talk between basic studies of RNA and the translation of these findings to the treatment and prevention of human disease.

The success of NATs is grounded in decades of research building therapies for rare and infectious diseases that rely on small RNAs, such as, but not limited to, anti-sense oligos (ASOs) and small-interfering RNAs (siRNAs). These NATs are therapeutically effective across numerous diseases and tissues¹. Furthermore, the cooperation between discoveries in basic RNA biology and the timely development of new therapies with a

global impact is well illustrated by the development of mRNA vaccines. Years of basic research into RNA immunogenicity, nucleic acid modifications, and advanced formulation paved the way for the approval of mRNA vaccines for SARS-CoV-2. Now, not only are mRNA vaccines clinically advanced for additional viral targets³, they are also being developed for the treatment of common diseases, such as cancer. To date, cancer mRNA vaccines are in a variety of clinical trial phases, and it is anticipated that reported findings of a combination mRNA vaccine and anti-PD-1 therapy for melanoma will be promising⁴.

The design of NATs is also being streamlined with the use of systematic bioinformatic tools combined with high-throughput screening methods. Two recent examples include tools to predict optimal ASO sequences for exon-skipping applications⁵ and to predict the activity of chemical modifications on siRNA activity⁶. The versatility of ASOs and siRNAs parallels that of programmable gene-editing therapies, as they may become an option for rare diseases or personalized therapies. However, there are numerous considerations related to variant type, target tissue, and patient benefit that should be considered, and were reviewed recently^{2,7}.

The discovery and innovation surrounding NATs, including programmable, gene-editing technologies, have unlocked the ability to treat some common diseases as well as rare disorders with limited treatment options. Examples of ASOs designed for individual patients⁸ and the recent example of a personalized base-editing therapy used for a severe metabolic disorder⁹ illustrate the feasibility of these personalized therapies as well as a workflow for their development. As personalized therapies continue to emerge, emphasis on responsible and ethical use and financial considerations are essential. To this end, in the last few years, the FDA released a draft of guidelines for individualized therapies¹⁰ and numerous international collaboratives, foundations and initiatives have been established, including the N = 1 Collaborative (www.n1collaborative.org), the N-Lorem foundation, the One Mutation One Medicine (<https://www.1mutation1medicine.eu/>), or the Dutch or Spanish Centers for RNA Therapeutics (<https://www.rnatherapy.nl/>; <https://www.rnatherapy.es>).

Such international efforts will thus serve to help us enter this exciting era of personalized medicine with careful considerations.

A crucial element of the future potential of RNA-based therapies is continued advances in nucleic acid delivery to cells and specific tissues. A recent review highlighted the challenges with delivery while noting the currently approved therapies for rare diseases². Generally speaking, “naked” NATs are efficiently used locally (eye, CNS, etc.), and carriers or conjugations are needed to access other tissues. Liver targeting using N-acetylgalactosamine (GalNAc) conjugation and some LNPs carrying NATs represent the delivery modalities that are most clinically advanced, but their applicability requires additional research surrounding mitigating side effects¹¹, optimal administration routes, and different formulations. Given the wide range of RNA and nanoparticle characteristics, predicting effective formulations may benefit from the growing efforts to employ machine learning for LNP design¹². In addition to different LNP formulations, the addition of cell-specific ligands is a recent strategy for targeting tissues of interest. For example, in pre-clinical studies, an ASO conjugated to an antigen that specifically binds to muscle cells showed improved targeting and gene correction¹³. A similar approach was recently applied using PD-L1 binding peptides conjugated to LNPs as a mRNA delivery system for tumor-targeting therapies¹⁴.

Amid significant investment in the application of RNA for therapeutics, using RNA for disease prevention and detection is an active area of research. There are immense benefits to having minimally invasive strategies for disease detection, and much attention in recent years has been the application of cell-free DNA (cfDNA) tests during pregnancy and for cancer detection. However, several features of cell-free RNA (cfRNA), including its release from multiple cell types and reflection of dynamic and potentially pathogenic processes in the cell, have driven discussion of cfRNA-based biomarkers. Much of the research efforts focus on microRNAs and other non-coding RNAs, such as long RNAs and circular RNAs¹⁵. For example, a few recent studies have evaluated a long-noncoding RNA in

colorectal cancer¹⁶ and circular RNAs in retinal pathologies¹⁷. Technical advances and extensive validation of putative RNA biomarkers are still needed, but continued reduction in sequencing cost and basic studies to characterize cell-free nucleic acid in the context of numerous diseases are likely to increase its outlook.

The rapidly expanding therapeutic and diagnostic applications of RNA are fueled by the interplay between basic scientific discovery and clinical application. Numerous areas of investigation are still needed, notably in the areas of delivery, safety, and ethical and financial considerations. However, new research highlighted in this Collection demonstrates the promise of RNA-based approaches to address major unmet medical needs.

**Catherine A. Freije¹ &
Virginia Arechavala-Gomeza^{2,3}**

¹Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.

²Nucleic Acid Therapeutics for Rare Diseases (NAT-RD), Biobizkaia Health Research Institute, Barakaldo, Spain. ³Ikerbasque, Basque

Foundation for Science, Bilbao, Spain.

✉ e-mail: cfreije@rockefeller.edu

Published online: 10 November 2025

References

1. Liu, M. et al. Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines. *Sig. Transduct. Target Ther.* **10**, 73 (2025).
2. Baylot, V. et al. Between hope and reality: treatment of genetic diseases through nucleic acid-based drugs. *Commun. Biol.* **7**, 489 (2024).
3. Vélez, D. E., Torres, B. L. & Hernández, G. The bright future of mRNA as a therapeutic molecule. *Genes.* **16**, 4 (2025).
4. Carvalho, T. Personalized anti-cancer vaccine combining mRNA and immunotherapy tested in melanoma trial. *Nat. Med.* **29**, 2379–2380 (2023).
5. Chiba, S. et al. eSkip-Finder: a machine learning-based web application and database to identify the optimal sequences of antisense oligonucleotides for exon skipping. *Nucleic Acids Res.* **49**, W193–w198 (2021).
6. Liu, T. et al. Crm-siRPred: predicting chemically modified siRNA efficiency based on multi-view learning strategy. *Int. J. Biol. Macromol.* **264**, 130638 (2024).
7. Laufer, M. C. et al. Possibilities and limitations of antisense oligonucleotide therapies for the treatment of monogenic disorders. *Commun. Med.* **4**, 6 (2024).
8. Kim, J. et al. Patient-customized oligonucleotide therapy for a rare genetic disease. *N. Engl. J. Med.* **381**, 17 (2019).
9. Musunuru, K. et al. Patient-specific *in vivo* gene editing to treat a rare genetic disease. *N. Engl. J. Med.* **393**, 2235–2243 (2025).
10. United States Food and Drug Administration. IND Submissions for Individualized Antisense Oligonucleotide Drug Products for Severely Debilitating or Life-Threatening Diseases: Clinical Recommendations Guidance for Sponsor-Investigators. <https://www.fda.gov/media/154663/download> (2021).
11. Goyenvalle, A. et al. Considerations in the preclinical assessment of the safety of antisense oligonucleotides. *Nucleic Acid Ther.* **33**, 1 (2023).
12. Xu, Y. et al. AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery. *Nat. Commun.* **15**, 6305 (2024).
13. Weeden, T. et al. FORCE platform overcomes barriers of oligonucleotide delivery to muscle and corrects myotonic dystrophy features in preclinical models. *Commun. Med.* **5**, 22 (2025).
14. Kim, Y. et al. Design of PD-L1-targeted lipid nanoparticles to turn on PTEN for efficient cancer therapy. *Adv. Sci.* **11**, e2309917 (2024).
15. Cabús, L. et al. Current challenges and best practices for cell-free long RNA biomarker discovery. *Biomark. Res.* **10**, 62 (2022).
16. Cao, Y. et al. KLF15 transcriptionally activates *LINC00689* to inhibit colorectal cancer development. *Commun. Biol.* **7**, 130 (2024).
17. Zhang, Y. et al. Circular RNA RSU1 promotes retinal vascular dysfunction by regulating miR-345-3p/TAZ. *Commun. Biol.* **6**, 719 (2023).

Author contributions

C.A.F. drafted the initial manuscript. V.A.-G. contributed significantly to its revision and finalization for submission in its current form.

Competing interests

The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© Springer Nature Limited 2025