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Abstract

Background Thedepositionof amyloid-β (Aβ) in thehumanbrain is a hallmark of Alzheimer’s
disease and is associated with cognitive decline. Aβ pathology is traditionally assessed at
thewhole-brain level across neocortical regions using positron emission tomography (PET).
However, thesemeasuresoften showweakassociationswith future cognitive impairment. A
more sensitive pathology metric is needed to quantify early Aβ burden and better predict
cognitive decline. Here, we aim to develop a network-basedmetric of Aβ burden to improve
early prediction of cognitive decline in aging populations.
Methods We integrated subject-specific brain connectome information with Aβ-PET
measures to construct a network-based metric of Aβ burden. Cross-validated predictive
modeling was used to evaluate the performance of this metric in predicting longitudinal
cognitive decline. Furthermore, we identified a neuropathological signature pattern linked to
future cognitive decline, and we validated this pattern in an independent cohort.
Results Our results demonstrate that incorporating individualized structural connectome,
but not functional connectome, information into Aβmeasures enhances predictive
performance for prospective cognitive decline. The identified neuropathological signature
pattern is reproducible across cohorts.
Conclusion These findings advance our understanding of the spatial patterns of Aβ
pathology and its relationship to brain networks, highlighting the potential of connectome-
informed network-based metrics for Aβ-PET imaging in identifying individuals at higher risk
of cognitive decline.

Amyloid-β (Aβ) pathology is recognized as one of the earliest initiating
events in Alzheimer’s disease (AD) progression. As proposed by the
Amyloid-β Cascade Hypothesis1,2, abnormal accumulation of Aβ in the
brain has been linked to a cascade of pathological events, including tau
tangle formation and spread3,4, inflammation5, gray matter atrophy6, neu-
ronal dysfunction and network disruption7,8, and ultimately cognitive and

functional impairment9. Aβ deposition is commonly observed in the brain
in older adults who do not show significant cognitive impairment10. How-
ever, individuals with elevated Aβ pathology are at increased risk of devel-
oping dementia in the future11, and are considered to be in the preclinical
phase of AD12. In this study, we developed network-based amyloid-β
pathology (NAP) measures that incorporate subject-specific connectome

1CognitiveNeuroscienceDivision, Department ofNeurology, VagelosCollege of Physicians andSurgeons, ColumbiaUniversity, NewYork, NY,USA. 2Quantitative
Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, USA. 3Center for Biomedical Imaging &
Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA. 4Taub Institute for Research in Alzheimer’s Disease and the Aging
Brain,ColumbiaUniversity, NewYork,NY,USA. 5GertrudeH.SergievskyCenter, ColumbiaUniversity, NewYork,NY,USA. 49Deceased: J.Q. Trojanowski.*A list of
authors and their affiliations appears at the end of the paper. e-mail: hh2699@cumc.columbia.edu; ys11@cumc.columbia.edu

Plain language summary

Amyloid-βpeptide is amolecule that is known
to accumulate in the brains of people with
Alzheimer’sdisease. Thisaccumulation starts
to occur many years before the symptoms of
Alzheimer’s disease, such as memory pro-
blems.Currentmethods to image thebrain for
amyloid-βpeptideusuallymeasure theoverall
level across the whole brain. In this study, we
developed amore sensitive and personalized
measure of amyloid-β by also considering
how the different parts of a person’s brain are
connected. We found that this approach
improves the ability to predict future changes
in cognition compared to the standard
method. Our method might enable earlier
identification of people at risk of developing
Alzheimer’s disease, which could improve
monitoring and treatment.
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information. We then examined how these neuropathology measures,
assessed at baseline, are associated with cognitive changes over the sub-
sequent years.

The literature presents heterogeneous findings regarding the rela-
tionship between Aβ and cognition. The most consistent associations have
been observed in episodicmemory13–17. However, the reported relationships
between Aβ and cognition are often weak15,18, and the results for non-
memory cognitive domains are inconsistent. Some studies that assessed
global cognition, combining measures across multiple cognitive domains,
yielded slightly larger effect sizes, but such effects remain moderate15.

In clinical settings, Aβ deposition is quantified dichotomously, classi-
fied as positivewhen above the cut-off threshold andnegativewhenbelow it,
and is measured globally across the entire cerebral cortex. However, the
organization of brain network systems has been proposed as an important
influencing factor in the relationship between neuropathology and clinical
symptoms19–21. Therefore, effective metrics of early Aβ pathology that
consider its spatial location and spread are needed, and may potentially
facilitate earlier recognition and intervention22.

Aβ deposition is spatially heterogeneous, especially in the preclinical
phase of AD. Thus, some studies suggested that regional and continuous
measures of Aβ deposition provide additional value in the early identifica-
tion of participants at risk of transitioning from preclinical to clinical
AD14,23,24. Early deposition has been shown to concentrate in the default
mode network and other highly connected regions7,25. By exploring the
spatial pattern and regional-temporal evolution of Aβ deposition, studies
have suggested diverse pathological staging patterns26–28. Moreover, recent
evidence indicates that early Aβ deposition patterns vary across
individuals24,29. These spatially heterogeneous patterns may reflect the
accumulation of neuropathology in distinct sets of brain networks,
depending on the individualized connectome, and different networks may
potentially be associated with distinct clinical symptoms. These findings
highlight the need for integrating connectome and network information in
Aβ-cognition studies.

In this study, we characterized the potential role of the brain network
connectome on theAβ-cognition relationship by employing network-based
neuropathologicalmeasures of Aβ.We reasoned that thesemeasures would
provide a more comprehensive metric to capture the complex relationship
between neuropathology and cognitive function. We developed NAP
measures by incorporating connectome information that considers both
initial regional Aβ burden and its deposition within individualized con-
nectomes. Two types of connectomes were used independently: structural
connectivity derived fromdiffusionmagnetic resonance imaging (MRI) and
functional connectivity derived from resting-state functionalMRI.We then
examined how these patterns, measured at baseline, are associated with
cognitive changes over subsequent years. To improve the generalizability of
our findings, we employed a cross-validated machine learning predictive
model. Connectome-based predictivemodeling (CPM)30–32 has beenwidely
used to study brain-behavior relationships, which leverages brain con-
nectivity patterns to predict individual differences in behavior and cogni-
tion. Here, we adapted the CPM framework to evaluate the performance of
the NAP measure in predicting subsequent longitudinal cognitive decline,
and compare it to the predictive performance of the regional amyloid-β
standardized uptake value ratio (SUVR) value using the positron emission
tomography (PET) imaging of Aβ pathology. We hypothesized that

integrating connectome information would improve the prediction of
cognitive decline. We derived a neuropathological signature of cognitive
decline,which provides insights into the regional-specific andnetwork-level
contributions of Aβ neuropathology to cognitive deterioration. We then
sought external validation in the second cohort to confirm the neuro-
pathological signature’s association with future cognitive decline and
demonstrate its generalizability. These results advance our understandingof
Aβ pathology within brain network systems and offer a framework for
future studies onAβdeposition and cognition that incorporate personalized
connectome profiles and brain network analyses. The proposed NAP
measures could potentially better reflect the individual risk of future cog-
nitive decline.

Methods
Participants and study design in the CogRes/RANN study
Participants were recruited through our ongoing cognitive reserve and
reference ability neural network (CogRes/RANN) longitudinal study33. All
participants were cognitively normal at baseline. They were screened for
dementia andmild cognitive impairment (MCI) using theDementia Rating
Scale (DRS)34. A minimum score of 130 was required for the DRS assess-
ment. Here, we included eighty-five cognitively normal older adults
(Demographic information is in Table 1). All participants were recruited
using a random market mailing approach and were screened for basic
inclusion criteria (i.e., right-handed, native English-speaking, no severe
medical or psychiatric conditions, no head injuries, no hearing or vision
impairments, and no other issues that could interfere withMRI acquisition
or cognition). Data were collected at Columbia University Irving Medical
Center. The first participant was enrolled in 2011, and data collection is still
ongoing. The experimental design of our study and the recruitment process
were approved by the Institutional Review Board of the College of Physi-
cians and Surgeons of Columbia University. All participants have provided
informed consent to participate in the study, and written consent was
obtained from the participants. All participants were scheduled for 5- and
10-year follow-ups. Multiple types of contact information were collected at
baseline, and phone calls, emails, and regular mail were used to reach
participants for follow-up. In this study, we included subjects who had: (1)
participated in baseline MRI acquisitions and Aβ PET, (2) demographic
information available at baseline, and (3) finished neuropsychological
testing at both baseline and follow-up sessions. Data were available for
eighty-five subjects, with a baseline age ranged from 56 to 71 (65.56 ± 3.35,
mean ± SD) years, 42 females and 43 males, and education ranged from 12
to 20 (16.12 ± 2.22, mean ± SD) years. To perform cross-validated pre-
dictive model analyses with NAP, eight additional participants were
excluded due to: (1) three subjects with functional connectivity results not
passing quality control (QC); (2) five subjects with no baseline diffusion
MRI data, leaving seventy-seven subjects.

Participants and study design in the ADNI study
Data used in the preparation of this article were obtained from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) database (adni.lo-
ni.usc.edu). The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial MRI, PET, other
biological markers, and clinical and neuropsychological assessment can be

Table 1 | Demographic information for the cognitive reserve and reference ability neural network (CogRes/RANN) longitudinal
study and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study datasets

Dataset Number of participants Baseline age (SD) Sex Education (SD), years Time (SD) from baseline to follow-up
neuropsychological assessments, years

CogRes/RANN 85 65.56 (3.35) 42(F)/43(M) 16.12 (2.22) 4.51 (0.68)

ADNI 72 73.69 (7.35) 46(F)/26(M) 16.83 (2.39) ADNI-Mem and ADNI-GCog: 3.40 (1.18)
dMemory: 3.34 (1.17)

The ADNI study dataset was used as an external dataset for generalizability validation.
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combined to measure the progression of MCI and early AD. In this study,
data from the ADNI phase 3 (ADNI-3) database were used as an external
validationdataset. TheADNI study receivedapproval from the Institutional
Review Boards of all participating institutions, and informed written con-
sent was obtained from all participants at each site for participating in the
ADNI repository. In this study, we included a sample of 159 cognitively
normal older adults from a previous study35. In ADNI, cognitively normal
subjects were identified as non-depressed, non-MCI, non-demented, with
Mini-Mental State Examination (MMSE) scores of 24–30 and clinical
dementia rating scores close to zero. We excluded 12 participants due to
progression toMCI in the follow-up, 44 participants with no diffusion data
acquisition or missing information in diffusion data, 5 participants who
failed with structural connectivity QC, 7 participants who failed with PET
Aβ analysis, 18 participants without follow-up cognition available, and 1
participant without baseline education available. Totally, the external vali-
dation dataset consisted of 72 participants, with baseline age ranged from
56.0 to 91.4 (73.69 ± 7.35, mean ± SD) years, 46 females and 26 males, and
education ranged from 12 to 20 (16.83 ± 2.39, mean ± SD) years. When
testing theAβ-cognition relationship with the ADNImemory score and the
ADNI global cognition score, one additional participant was excluded due
to the follow-up ADNI memory score not being available.

Cognitive behavioral measures in the CogRes/RANN study
A standardized battery of neuropsychological assessments was adminis-
tered to assess four domains of cognition: (1) episodic memory (Selective
Reminding Task immediate recall, delayed recall, and delayed
recognition36); (2) vocabulary (Wechsler Adult Intelligence Scale (WAIS-
III)Vocabulary37,WechslerTest ofAdultReading38, andAmericanNational
Adult Reading Test37); (3) processing speed (WAIS-III Digit Symbol37,
Stroop Color Word Test39, and Trail-Making Test versions A40), and (4)
fluid reasoning (WAIS-III Matrix Reasoning37, WAIS-III Block Design37,
and Trail-Making Test versions B40). Based on the factor structure of these
tests, cognitive composite scores for each cognitive domain were generated.
To normalize the composite measures, z-scores were calculatedwithin each
domain by subtracting the baseline full sample mean from each score and
then dividing by the baseline full sample standard deviation. The average
domain z-score for processing speed was reversed in sign to ensure that
higher values represented better cognitive performance. An average of the
four z-scores of all four cognitive domains was calculated to yield a global
cognition score. The baseline and follow-up neuropsychological assess-
ments duration was 3–7 (4.51 ± 0.68, mean ± SD) years.

Cognitive behavioral measures in the ADNI study
Three ADNI cognition scores were assessed: (1) ADNI-Mem; (2) ADNI-
GCog (summarized score ofmemory, executive functioning, and language);
(3) delayed recall tests of memory (dMemory). ADNI-Mem was assessed
with modern psychometric approaches41, where Rey Auditory Verbal
Learning Test (RAVLT, 2 versions), AD Assessment Schedule – Cognition
(ADAS-Cog, 3 versions)42,MMSE,andLogicalMemorydatawere analyzed,
and a compositememory scorewas computed.ADNI executive functioning
score (ADNI-EF) was derived from confirmatory factor analysis, and the
final model included Category Fluency—animals, Category Fluency—
vegetables, Trails A and B, Digit span backward, WAIS-R Digit Symbol
Substitution, and 5 Clock Drawing items (circle, symbol, numbers, hands,
time). More details were described in ref. 43. ADNI language score (ADNI-
Lan)was derived fromMMSE (object naming, sentence repetition, sentence
reading and writing, and following a three-step command), ADAS-Cog
(following commands, object naming, and ideational praxis)42, ADNI
administered Montreal Cognitive Assessment (phonemic fluency and
sentence repetition)44.More details are described in ref. 45. The three ADNI
composite scores were averaged to compute an assessment of global cog-
nition (ADNI-GCog). To further assess episodic memory, we additionally
derived a dMemory score using delayed recall tests. Specifically, logical
memory delayed total recall from the neuropsychological battery was
converted to z-scores based on the baseline full sample mean and standard

deviation from all cognitively normal older adults in ADNI-3. The same
process was performed for the delayedword recall (item 4 of ADAS-Cog) to
derive the z-scores. These two scores were averaged to obtain the dMemory
score for assessing episodicmemory. Follow-up cognitionwas chosen as the
latest neuropsychological testing when multiple follow-up sessions were
available. The baseline and follow-up neuropsychological assessments
duration is 1 to 5.5 (3.40 ± 1.18, mean ± SD) years for ADNI-Mem and
ADNI-GCog, and 1 to 5.5 (3.34 ± 1.17, mean ± SD) years for dMemory.

Data acquisition and preprocessing in the CogRes/RANN study
MR images were acquired using a 3 Tesla Philips Achieva Magnet scanner.
An anatomical T1-weighted structural image was acquired using
magnetization-prepared rapid gradient echo (MPRAGE) (TR/TE = 6.6/
3.0ms; flip angle = 8°; field of view (FOV) = 256 × 256mm; matrix size =
256 × 256 voxels; voxel size = 1 × 1 × 1mm; 165 axial slices). A neuror-
adiologist reviewed each participant’sMRI scan and confirmed the absence
of clinically significant findings in all participants. Resting-state fMRI scans
were collected with a T2*-weighted echo-planar imaging (EPI) sequence
(TR/TE = 2000/20ms; flip angle = 72°; FOV = 224 × 224mm; in-plane
resolution = 112 × 112 voxels; slice thickness = 3mm; 37 axial slices;
either 150 or 285 volumes). Three dummy EPI volumes acquired at the
beginning of each fMRI acquisition run were excluded before data pre-
processing.DiffusionMR imageswere acquiredwith spin-echo echo-planar
diffusion-weighted sequences. Participants’ datawere acquiredwith a single
shell sequence (TR/TE = 7647/69ms, matrix size = 224 × 224mm, voxel
size = 2 × 2 × 2mm, 75 axial slices, b = 800 s/mm2 with 56 gradient direc-
tions, and 1 volume with b = 0 s/mm2). Two runs of diffusion MR were
performed for each subject, and data were merged before preprocessing.

Structural T1-weighted MR images were processed using the Free-
Surfer pipeline v5.146, which included segmentation of brain tissue, recon-
struction of the cerebral cortex surface, and computation of cortical
thickness. Hemispherical mean cortical thickness was computed as the
average cortical thickness measures across 34 regions from the FreeSurfer
Desikan-Killiany atlas47 for each hemisphere. Brain parcellation was per-
formed based on the Local-Global Schaefer cortical parcellation atlas48 and
FreeSurfer subcortical segmentation49. Specifically, 200 cortical regions of
interest (ROIs) were defined using the Schaefer atlas. The Schaefer atlas was
aligned to each subject’s cortical surface through surface-based registration
with FreeSurfer. Subsequently, the ROI surface areas were projected into
volumetric space, resulting in the parcellation of the cerebral cortex into 200
ROIs. The Schaefer atlas grouped these 200 ROIs into 34 brain networks.
Additionally, 14 subcortical ROIs were included from the FreeSurfer
automatic segmentation49 (regions included bilateral thalamus, caudate,
putamen, ventral striatum, globus pallidus, amygdala, and hippocampus).
Totally, 214ROIswereusedwith 200 cortical regions from the Schaefer atlas
and 14 subcortical regions from FreeSurfer segmentation. Tissue segmen-
tation and spatial registration were manually reviewed for quality control
purposes50.

At baseline, participants underwent Aβ PET imaging with [18F]Flor-
betaben (donated by Piramal Pharma, Inc.) in a Siemens Biograph64mCT/
PET scanner (dynamic, 3D acquisition mode, 4 × 5-min frames over
20min). Brain PET image acquisition started 50min after the bolus injec-
tion of 18F-florbetaben (10mCi dose). An accompanying structural CT
scan (in-plane resolution = 0.58 × 0.58mm; slice thickness = 3mm,
FOV= 300 × 300mm, and number of slices = 75) was acquired for
attenuation correction purposes. PET data were reconstructed using the
TrueX (HD-PET) algorithm and smoothed with a 2-mm Gaussian kernel
with scatter correction.

During follow-up visit, participants underwent Tau PET imaging with
18F-MK-6240 tracer in a Siemens Biograph64 mCT/PET scanner
(dynamic, 3D acquisition mode, 6 dynamic frames within 30min). Brain
PET image acquisition started 80–100min after the bolus injection of the
18F-MK-6240 tracer (5mCi dose). An accompanying structural CT scan
was acquired as well. PET images were reconstructed using an iterative
algorithm with a voxel size of 1 × 1 × 2mm.
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Data acquisition and preprocessing in the ADNI study
In the ADNI-3 study, MRI scanner protocols and parameters can be found
in (https://adni.loni.usc.edu/data-samples/adni-data/neuroimaging/mri/
mri-scanner-protocols/). Briefly, MR images were acquired with an
ADNI standardized pulse sequence at various sites using 3 Tesla scanners.
Anatomical T1-weighted structural image was acquired using MPRAGE
(TR/TE = 2300/2.96ms; FOV= 240 × 256mm; matrix size = 240 × 256
voxels; voxel size = 1 × 1 × 1mm; 208 sagittal slices). Diffusion MR images
were acquired with spin-echo echo-planar diffusion-weighted sequences.
Most participants’ data were acquired with a single shell sequence (TR/
TE = 7200/56ms, matrix size = 232 × 232mm, voxel size = 2 × 2 × 2mm,
80 axial slices, b = 1000 s/mm2 with 48 gradient directions, and 7 volumes
with b = 0 s/mm2).However, sequence parameters are different for different
scanners; please see details in the Supplementary Materials. To employ Aβ
PET imaging, participants were administered an intravenous catheter of
[18F]Florbetapir (AV45, 10mCi ± 10% dose). Then, a low-dose CT image
for PET was acquired, followed by a brain PET image acquisition that
started 50–70min after the injection (dynamic, 3D acquisitionmode, 4 × 5-
min frames over 20min). The same structural data preprocessing con-
ducted on the CogRes/RANN study participants was performed on ADNI
data, including the FreeSurfer pipeline, brain parcellation with the Schaefer
atlas, and subcortical ROIs delineation with FreeSurfer. However, a newer
version of the FreeSurfer (v7.0) was used in ADNI data preprocessing.

PET regional amyloid-β and Tau SUVR analysis
An in-house-developed automatic quantification approach was used to
analyze Aβ PET scans51. Briefly, four dynamic PET frames were aligned to
the first frame using rigid-body registration and averaged to create a static
PET image. This static PET image was then co-registered with the accom-
panying CT scan to generate a composite image. Then, each participant’s
structural T1w imagewas registered to the composite PET-CT image (rigid-
body registration with cost function as mutual information). ROIs and the
cerebellar gray matter mask were transformed into the static PET image
space. Regional PET data were extracted from these 200 cortical ROIs, and
PET signals in the subcortical regions were not included in the analysis.
Lastly, the standardizeduptake value (SUV)was calculated for eachROIand
was normalized to the value in the gray-matter cerebellum mask to derive
SUVR. The same amyloid-β SUVR analysis was performed on ADNI PET
imaging data. The same approach was used to analyze Tau PET scans: the
static PET image was co-registered to the CT scan to generate a composite
PET-CT image, and FreeSurfer regional masks, temporal lobe mask, and
cerebellar gray matter mask were transformed into the static PET image
space. Regional Tau PET SUVRs were computed by normalizing the
regional SUV with the average uptake value in the cerebellar gray matter
region.

fMRI preprocessing and functional connectivity analysis
An in-house-developed method was used to derive functional connectivity
from resting-state fMRI data52. First, slice timing correction was carried out
with Fourier-space time-series phase-shifting by using the FSL software
package (version 6.0.4)53. Then, motion correction was performed using
rigid-body registrations on all the volumes in reference to thefirst timepoint
volume54. An fMRI reference image was created by averaging all the aligned
EPI volumes. Frame-wise displacement (FWD)was then calculated for each
subject55, using the six motion parameters and the root mean square dif-
ference (RMSD) of the realigned fMRI signal between consecutive volumes.
Scrubbing was performed to exclude fMRI-contaminated volumes (if FWD
exceeded 0.5 mm or RMSD surpassed 0.3%). Contaminated volumes were
replaced with new ones generated through linear interpolation of adjacent
volumes. Next, band-pass filtering was carried out with cut-off frequencies
of 0.01 and 0.08Hz, using the FSL software package with nonlinear high-
pass and Gaussian linear low-pass. Finally, after motion correction, scrub-
bing, and temporal filtering, we regressed out the FWD, RMSD, white
matter signals from both hemispheres, and lateral ventricular signals from
the preprocessed fMRI data. No global signal regression was applied. The

averaged fMRI time-series signalswere extracted fromthe 200 corticalROIs.
Then, functional connectivity matrices were calculated with Pearson’s
correlation, and the correlation matrices were Fisher z-transformed to
generate normalized connectivity matrices with the diagonal set to zeros.
QCwas performed based on ref. 56, by computing the variance of themean
signal within eachROI. Participants were excluded if at least one region had
zero (or very low) variance.

DTI preprocessing and structural connectivity analysis
Structural connectivity was generated following the procedures outlined in
Basic and Advanced Tractography (BATMAN)57 and using the
MRtrix3 software58. First, diffusion MRI data were preprocessed with steps
of denoising59, Gibbs’ ringing artifact correction60, EPI geometric distortion
correction61, eddy current and motion distortion correction62, bias field
correction63, and brainmask estimation. Then, response functions for white
matter, gray matter, and cerebrospinal fluid were estimated, followed by
intensity normalization to correct global intensity differences. Whole-brain
streamlineswere generated through anatomically constrained tractography,
creating 10 million streamlines per subject. The tractograms were then
filtered using the spherical-deconvolution informed filtering of tracks to
improve streamline density distribution. Finally, structural connectivity
matriceswere createdusing thepredefined214cortical and subcorticalROIs
extracted from the Schaefer atlas and FreeSurfer segmentation. The
streamline count was normalized with regard to the inverse of the node
volumes. The connectivity matrices were symmetrized, and the diagonal
was set to zero. QC was performed based on ref. 56, specifically, we com-
puted QC measures for connectome matrix density, number of connected
components, and reconstructed streamlines. Participants were excluded if
they had more than one connected component, or either matrix density or
number of streamlines fell outside three standard deviations from the group
mean. The following analyses included only the structural connectivity of
the 200 cortical ROIs.

Network-based amyloid-β pathology (NAP) measures
As shown in Fig. 1, the proposed connectivity-weighted NAP score was
computed as the matrix product of regional Aβ deposition Ai in region
i = 1,…, N (N = 200 regions of interest) and connectivitymatrixCij between
region i and j (j = 1,…, N), denoted as: Ai × ðCij þ IÞ. The connectivity-
weighted (CW) NAP deposition at region i quantifies not only the regional
Aβ deposition Ai, but also Aβ deposition in all other regions j (j = 1,…, N)
connected to region i, weighted by the strength of their structural or func-
tional connectivity: NAPCWi ¼ Ai þ

PN
j CijAj. The proposed centrality-

scaled (CS) NAP score was quantified by a Hadamard product of regional
Aβ deposition Ai in region i = 1,…, N (N regions of interest) and the cen-
trality of region i in the connectivity matrix Cij, denoted as:
NAPCS

i ¼ Ai � ðPN
j CijÞ. The centrality-scaled NAP score quantified

regional Aβ depositionAi, and scaled it by its centrality regarding the whole
connectivity matrixCij. In both NAP scores, the connectivity matrix can be
generated either using structural diffusion data or functional MR data,
denoted as CS

ij or C
F
ij , respectively.

Cross-validated predictive modeling
CPM was adapted to evaluate the Aβ-cognition relationship. CPM used
either structural or functional connectivity patterns to predict individual
differences in behavior and cognition. Instead of using connectivity as
brain measurements, we used either regional SUVR or NAP measures of
brain amyloid to predict longitudinal cognitive decline. Because the leave-
one-out approach has been shown to introduce biased estimates, repeated
random splits of K-fold cross-validation modeling were chosen as a more
stable approach64,65. We employed 500 repetitions to account for the
impact of random train-test data partitions, and the median prediction
performance was reported. The cross-validated predictive modeling
included four steps, as shown in Fig. 2: (1) Participants splitting: subjects
were randomly split into K-fold (K = 15 was chosen in this study, see
SupplementaryMaterials for details), including a training set anda test set.
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In the training set, as shown in Fig. 2b, we first regressed out covariates
related variability (age, sex, education, corresponding baseline cognition,
and hemispherical mean cortical thickness) from the longitudinal cog-
nition change. This covariate-related variability was also removed from
the test set using the same coefficient weights from the training set. (2)
Feature selection: in the training set, the pathology measure (either
regional or network-based amyloid) of each ROI was correlated with the
longitudinal cognitive change (residual from the first step). Features/
regions were selected showing a strong negative correlation with an
uncorrected p value less than 0.05 (because elevated pathology deposition
was expected to associate with severe cognitive decline). (3) Model
training: In the training set, the sum of selected features was regressed
against residual cognitive change to obtain model weights. (4) Model
validation: In the test set, the sum of the features in the same selected ROIs
and the model weights from step (3) were used to compute predicted
cognitive change. In the loop of each hold-out fold, the same processes
were performed, resulting in a predicted cognitive change value for each
participant. Lastly, statistical analyses were performed to compare the
predicted and the actual cognitive change values in the collection of all
hold-out samples. Thewhole process of cross-validation was repeated 500
times. An Aβ neuropathological signature pattern was derived for each of
the pathologymeasures input. Regions in the pattern were identified if the
regional features were selected 95% times during the repetition of cross-
validation.

Statistical analysis of predictive model performance
For each model, two metrics were computed to evaluate the predictive
performance, including Pearson’s correlation coefficient and root mean

squared error (RMSE) as σ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðy�ŷÞ2

n

r
, where y and ŷ are the actual and

predicted cognitive decline scores, respectively, and n denotes the sample
size. To compare the predictive performance across pathology models, the
train-test partitions in the 500 times repetition were kept the same for each
model. Each model was then compared to the performance of the regional
SUVRmeasure, which served as the referencemodel.We report themedian
correlation coefficient, the difference in correlation coefficient to the refer-
ence model, and the ratio of RMSE over the reference model. Because the
absolute value of RMSE can be difficult to interpret across models, we
calculated theRatio, which quantifies the RMSE of eachmodel compared to
the regional SUVR reference model and was computed as the RMSE of the
model divided by that of the reference model. Between each model and the
regional SUVR reference model, an empirical one-sided signed test was
performed on the histogram of the difference in correlation coefficient, and
p values were reported.

External generalizability analysis on the ADNI dataset
As evidenced in the existing literature13–17, theAβ-cognition relationship has
consistently been observed in the episodic memory domain and global

Fig. 1 | Regional amyloid-β standardized uptake value ratio (SUVR) and
network-based amyloid-β pathology (NAP). In addition to regional SUVR, the
proposed NAP scores incorporate connectome information by using either a
connectivity-weighted or centrality-scaled approach. Here, we show a six-region toy
network. a Illustration of regional SUVR deposition Ai in region i (i = 1,…, 6).
b Connectivity-weighted NAP score quantified the influence of amyloid-β (Aβ)
deposition within the connected networks. c Centrality-scaled score quantifies the
Aβ deposition in the region and scaled it by its centrality in the connectome. Net-
work connectome information can be generated based on either structural con-
nectome (SC) (d) or the functional connectome (FC) (g). d SC is derived from
tractography on diffusion tensor imaging data, where the SC matrix was denoted as

CS
ij . e SC-based connectivity-weighted NAP score of region j quantifies both the Aβ

in region j and aweighted sumofAβ in all other regions based on connectivity values,

where the whole process was denoted as matrix multiplication of Ai × CS
ij þ I

� �
.

f SC-based centrality-scaled NAP score of region i is quantified by a Hadamard

product of regional SUVR measure and connectivity centrality Ai � ðP6
j C

s
ijÞ. g FC

is computed from statistical dependency on functional MRI data. For the
connectivity-weighted (h) and centrality-scaled pathology (i), FC-basedNAP scores
are computed in the sameway as the SC-based approach, but with FC denoted asCF

ij .
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cognition.Therefore, in the generalizability external validation,we tested the
Aβ neuropathological signatures derived from the internal CogRes/RANN
dataset on the following neuropsychological assessments in the ADNI-3
dataset: (1) ADNI-Mem; (2) ADNI-GCog; (3) dMemory. Using the same
approach as that used for the cross-validated predictive model analysis, the
residual of the longitudinal cognitive change (follow-upminus baseline)was
computed by regressing out covariates, including age, sex, education,
hemispherical mean cortical thickness, and the corresponding baseline
cognition. Because ADNI-3 participants had a large variability in the time

interval between baseline and follow-up cognition, this time interval
variability was included as an additional covariate.

The same structural T1-weightedMRdata analyseswere applied to the
ADNI-3 dataset, including brain parcellation pipelines and cortical thick-
ness estimationwith FreeSurfer.However, a newer version of the FreeSurfer
(v7.0) was used. Manual inspection and editing were conducted by a
technician to ensure quality control on cortical surface reconstruction and
white and gray matter borders delineation. The diffusion MR data used for
each participant were selected based on the closest time interval between

Fig. 2 | Cross-validated predictive modeling analysis overview. The figure illus-
trates an example of using connectivity-weighted network-based amyloid-β
pathology (NAP) with a functional-based connectome. a Feature selection on the
input of pathology models and connectome. Regional standardized uptake value ratio
(SUVR) or NAP (either connectivity-weighted or centrality-scaled) can be used as
input. Regional SUVR measures do not need the input of connectome information,
and the centrality-only model has only connectome information (serving as a
benchmark forNAPmeasures). A feature is selected if it shows a negative correlation
with the cognitive change residual score at an uncorrected p < 0.05 in the training set.

b Computation of longitudinal cognitive change scores. Subjects are randomly split
into a training set and a test set. In the training set, we regress out covariate con-
founds from the longitudinal cognitive change. The covariate-related variability is
also removed from the test set using the same weights. c Regression of selected
amyloid pathology features in the train set and prediction of cognitive decline in the
test set. The sum of selected features is regressed against cognitive change residual
scores from the training sample to obtain model weights. The obtained weights are
then applied to the features from the test set to predict cognitive decline scores, which
were then compared to actual scores to evaluate model prediction performance.
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data collection and the baseline neuropsychological assessments. Then, the
same preprocessing and structural connectome procedures were performed
to derive structural connectivity in the ADNI-3 cohort. However, the
pipeline was slightly adjusted for three participants due to the use of a
different acquisition sequence involving a multi-shell scheme.

For the external generalizability validation on the Aβ neuropathology
signature, we extracted the features (regional SUVR, connectivity-weighted
NAP, or centrality-scaled NAP values) in the corresponding signature
pattern for each pathology model. Then, the sum of features was used to
predict cognitive decline, using the same weights estimated on the internal
dataset. To evaluate the performance, Pearson’s correlation was calculated
between the predicted values and the actual cognitive decline residual scores
in each of the ADNI cognition (ADNI-Mem, ADNI-GCog, or dMemory).
Additionally, we tested whether the observed relationship reflects general
Aβdeposition in thebrain, rather thanbeing specific to thedistinct signature
patterns that are characteristic of future cognitive decline. To test such
regional specificity, we conducted a control analysis where we randomly
selected a set of ROIs, ensuring that the number of ROIs matched those
identified in the Aβ neuropathological signature. Then, for each iteration,
we used the features from this randomly selected set of ROIs to predict
cognitive decline, and we recorded the correlation coefficient between the
predicted values and the actual cognitive decline scores. This process was
repeated 500 times, resulting in a distribution of the correlation coefficients.
Lastly, the observed relationship in the signature ROIswas compared to this
control analysis distribution, and the p values in the regional specificity
randomization test were reported. The p value was calculated as the pro-
portion of randomizations that produced a correlation greater than or equal
to the observed prediction correlation.

Statistics and reproducibility
In the CogRes/RANN cohort, we included 85 cognitively normal older
adults in this study. We first tested associations between regional baseline
Aβ-PET SUVR and longitudinal cognitive decline using Spearman partial
correlations, controlling for age, sex, education, baseline cognition, and
hemispheric mean cortical thickness. The significance level was set at
p < 0.05, andmultiple comparisonswere correctedusing false-discovery rate
(FDR; q < 0.05). Next, in the cross-validated predictive modeling, the sig-
nificance of model performance was assessed by permutation testing (500
times shuffling). The Aβ-PET regional SUVR model was used as the
reference model, and between-model performance differences were eval-
uatedwith a one-sided sign test on the distribution of correlation differences
across cross-validation repetitions. External validationwas performed in the
independent ADNI cohort (n = 72 cognitively normal participants). Spe-
cifically, we tested whether features from the same signature ROIs (derived
in the CogRes/RANN cohort) provided superior prediction performance of
prospective cognitive decline inADNI.This regional specificitywas assessed
via a randomization test, comparing the performance of the signature ROI
set with a null distribution of performance from 500 size-matched random
ROI sets.

Results
The interval between baseline and follow-up neuropsychological assess-
ments ranged from 3 to 7 (4.51 ± 0.68, mean ± SD; SD, standard devia-
tion) years. A subset of the neuropsychological assessments was used to
examine participants’ cognition in four domains: episodic memory,
vocabulary, processing speed, and fluid reasoning. Cognitive composite
scores for each cognitive domain were generated and normalized by
subtracting the baseline samplemean and dividing by the baseline sample
standard deviation. An average of the four z-scores of all four cognitive
domains was calculated to yield a global cognitive score. More details of
neuropsychological assessments are described in Table S1. Overall, par-
ticipants showed a decline in global cognition (Fig. S2). However, it is
important to note that these changes reflect subclinical variation, and all
participants remainedwithin the cognitively normal range at follow-up, as
defined by the DRS ≥ 130.

As illustrated in Fig. S1, the average global amyloid SUVR of the
CogRes/RANNparticipants in this studywas 1.16with a standard deviation
of 0.09, and 2 participants were considered amyloid positive based on a cut-
off of 1.40, where previous PET imaging studies with Florbetaben tracer
have identifiedcut-off values as 1.3466, 1.4067, or 1.4868.Consistentwithother
studies on cognitively normal individuals, global amyloid SUVR in our
sample tends to follow aunimodal but right-skeweddistribution69. Based on
this distribution of global amyloid and the methodological challenges to
dichotomize amyloid status at the regional level, in this study, we treat
regional amyloid as a continuous variable to preserve its variability.

Association of global and regional Aβwith future cognitive
decline
As linear statistical modeling is commonly used to study the Aβ-cognition
relationship14,17,23,70, we first performed a similar statistical association ana-
lysis before employing the cross-validated predictive modeling. The corre-
lations between baseline Aβ pathology (PET imaging with Florbetaben
tracer) and prospective decline in each cognitive domain and in global
cognition were assessed using Spearman partial correlation, controlling for
age, sex, education, baseline cognition, and hemispherical mean cortical
thickness. When using global SUVR of Aβ pathology, no significant rela-
tionships to cognition were observed (reasoning: r = 0.1426; p = 0.2012;
memory: r = 0.1240; p = 0.2671; vocabulary: r = 0.1957; p = 0.0840; proces-
sing speed: r =−0.0577; p = 0.6067; global cognition: r = 0.0919;
p = 0.4207). Next, we performed similar correlation analyses for each
regional Aβ measure. The significance level was set as p < 0.05 with FDR
multiple-comparison correction for a total of 200 cortical regions (Schaefer
Atlas). We found significant relationships for the vocabulary cognitive
domain, but not for reasoning, memory, processing speed, nor global cog-
nition. Higher baseline regional SUVR in the left hemispherical extrastriate
cortex (part of the central visual network)was significantly related to greater
decline in vocabulary (r =−0.4044, FDR-corrected p < 0.0438; uncorrected
p < 0.0002).

The non-significant results observed may be attributed to the use of a
less sensitive non-parametric method, which was employed to accom-
modate the non-normal distribution of Aβ pathology14. Although weak but
significant associations between Aβ deposition and future cognitive decline
have been well-established in the literature13–17, the results of statistical
association analyses can be influenced by the complexity of the statistical
model and the sample size. Given that the Aβ-cognition relationship was
evaluated using within-sample correlations, the results might not predict
such a relationship for the new individuals, and are not adequate to support
predictive validity of early Aβ on cognition64,71. To improve generalizability
in the findings of the amyloid-cognition relationship, we next used cross-
validated models.

Baseline regional Aβ predicts subsequent cognitive decline in
global cognition
As Aβ deposition has been reported to yield the largest effect size on global
cognition15, we focused on this relationship.We employed a cross-validated
predictive modeling approach, where a framework was adapted from
CPM30–32. Briefly, participants were randomly split into training and test
partitions (Fig. 2a, b). We regressed out covariate confounds from the
longitudinal cognitive change in the training set, and the covariate-related
variability is also removed from the test set using the sameweights.Next, for
the amyloid-cognition relationship, feature selection and model building
were performed on the training set by Spearman correlation and linear
modeling, respectively (Fig. 2a, c). Lastly,model predictive performancewas
evaluated on the correlation coefficient between predicted cognitive decline
score and the actual cognitive change (cognition was assessed as residual
value controlling covariates; Fig. 2b).As repeated k-fold cross-validationhas
proven to produce less biased estimation than the leave-one-out approach65,
we used a 15-fold cross-validation modeling, and the random partitions of
train and test sets were repeated 500 times to obtain a stable result (details of
cross-validation fold number selection are in Supplementary Materials).
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The predictive performance was evaluated as the median value across
repeated iterations. First, we performed the cross-validated predictive
modeling on regional SUVRmeasures (Fig. 2a) to predict cognitive decline
in global cognition. The same predictive modeling can be fitted to other
pathology models, such as NAP, incorporating either structural or func-
tional connectome (see “pathology models” in Fig. 2a). For regional SUVR
measures, a median correlation coefficient R = 0.2013 was found between
the predicted cognitive decline in global cognition and the actual values. To
test its significance level, we generated an empirical null distribution by
shuffling the cognitive decline variable 500 times (the covariates were
ordered the same each time as the cognitive decline variable to keep cor-
respondence). The p valuewas calculated as the proportion of permutations
that were greater than or equal to the actual correlation. We found that
baseline regional SUVRmeasures significantly predict subsequent cognitive
decline in global cognition (p < 0.0419), indicating that the observed cor-
relation coefficient R = 0.2013 is significantly higher than the amyloid-
cognition relationship observed by chance.

Connectome-based modeling of the Aβ improves prediction of
subsequent cognitive decline
Here, we performed the same cross-validated predictivemodeling approach
(Fig. 2) on connectome-basedmodeling of theAβ (Fig. 1). In addition to the
regional Aβ deposition (Fig. 1a), we examined how the measures of Aβ
deposition within individualized brain connectivity networks contribute to
subsequent cognitive decline. Thus, we developedNAP scores by leveraging
the connectivity profile (either structural or functional) of eachROI (Fig. 1b,
c). As shown in Fig. 1e, h, the proposed connectivity-weighted NAP scores
quantified the influence of Aβ deposition within the connected network
associatedwith each ROI, where theNAPmeasure of each region quantifies

not only the regional Aβ deposition in the region, but also Aβ in all other
regions connected to this region, weighted by its connection strength to the
region.A simpler versionofNAP scores, i.e., centrality-scaledNAP,was also
developed to quantify only the regional Aβ deposition in the region, and it is
scaled by the centrality (nodal strength) of the region in the connectivity
matrix (Fig. 1f, i). The rationale for such measures is that highly connected
regions are crucial for cognitive functioning, and Aβ-related disruption of
such regions may lead to more distributed effects on brain dynamics, and
subsequently more severe cognitive decline72. Incorporating connectome
information into pathology measures allowed us to identify network-based
neuropathological patterns that might be predictive of cognitive decline.
NAP measures could potentially uncover cognition-relevant pathological
disconnection patterns. Specifically, we first obtained subject-specific
structural and functional connectivity between each pair of ROIs through
tractography and resting-state fMRI data, respectively (Fig. 1d, g). Then, we
adopted the same cross-validated predictive modeling approach to evaluate
and compare the performance of regional SUVR and NAP measures, and
additional models with only connectome centrality measures (no Aβ
pathology information) were included as a benchmark for comparison.

To compare the predictive performance across pathology models, the
train/test partitions for the cross-validation repetitions were kept the same
for each model. Predictive performance was assessed by comparing pre-
dicted and actual cognitive decline scores with the median correlation
coefficient and the ratio of RMSE (denoted asRatio). As shown in Fig. 3a, b,
four differentpredictivemodelswere built basedondifferent network-based
measures (connectivity-weighted or centrality-scaled measures) of brain
connectome and pathology, and were all compared to the predictive model
purely based on regional amyloid SUVR. The performance difference in the
correlation coefficient and the Ratio was reported. In addition, two

Fig. 3 | Performance of cognitive decline predic-
tion using different pathology models across
cross-validation repetitions. a Distributions of
differences in correlation coefficients between pre-
dicted and actual cognitive decline scores across
different pathologymodels. Prediction performance
was compared across cross-validation repetitions
with the regional standardized uptake value ratio
(SUVR) model as the reference. Incorporating
structural connectome (SC) with connectivity-
weighted network-based amyloid-β pathology
(NAP) achieved the highest performance, and out-
performed the prediction performance of regional
SUVR measures. b Comparison of the ratio of root
mean squared error (RMSE) performance between
pathology models. Compared to regional SUVR
measures, connectivity-weighted NAP measure of
SC had smaller RMSE, whereas connectivity-
weighted NAP measures of functional connectome
(FC) had higher RMSE. The analysis included
seventy-seven participants for whom all data were
available.
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predictivemodelswere alsobuilt basedon the connectome informationonly
(centrality-only measures). To test the significance level of predictive per-
formance, the same permutation procedure was employed by shuffling the
cognitive decline variable. Regional SUVR measures predicted cognitive
decline with a median correlation coefficient R = 0.2013, which is sig-
nificantly higher than the amyloid-cognition relationship observed by
chance (p < 0.0419). Structural connectivity information seems to be pre-
dictive of cognitive decline by itself, with centrality-only measures showing
significant performance (median R = 0.2204, permutation p < 0.016).
However, thepredictionperformancewas thehighest for theNAPmeasures
when combining the information from both regional SUVR and structural
connectome information. Structural connectivity-basedNAPmeasures also
significantly predicted cognitive decline (connectivity-weighted NAP:
median R = 0.2754, permutation p < 0.008; centrality-scaled NAP: median
R = 0.2625, permutation p < 0.010). However, functional connectivity
information itself had a worse performance compared to regional SUVR,
with a non-significant performance using centrality-onlymeasures (median
R =−0.0169, permutation p > 0.4451). Incorporating functional con-
nectome information into the NAP measures made the predictive perfor-
mance worse than regional SUVR (connectivity-weighted NAP: median
R =−0.0575, permutation p > 0.5549; centrality-scaled NAP: median
R =−0.0578, permutation p > 0.5349). Additionally, we further compared
the performance of structural connectome-based NAP and regional SUVR
measures. As shown in Fig. 3a, the performance of NAP measures is sig-
nificantly higher than that obtained by regional SUVR measures, with a
difference in correlation coefficients significantly higher than zero (con-
nectivity-weighted NAP: p < 0; centrality-scaled NAP: p < 0.006). The per-
formance of centrality-only measures is higher than that obtained by
regional SUVR measures, but the difference is not significant (p > 0.2440).

In an additional analysis, to identify and visualize the brain ROIs
contributing most to the observed relationships between pathology and
cognition, we conducted a Spearman partial correlation analysis between
the pathology features in each ROI and cognition change, controlling for
age, sex, education, baseline cognition, and hemispheric mean cortical
thickness. As shown in Fig. 4a, structural connectome-based connectivity-
weighted NAP scores had higher values in the basal cortical regions of the
temporal and occipital lobes compared to other brain regions. These

regions, along with the medial prefrontal cortex and left dorsolateral pre-
frontal cortex, exhibited a stronger negative correlation with longitudinal
cognitive change than other areas of the brain (Fig. 4b). Furthermore, NAP
scores showed a more pronounced negative correlation with longitudinal
cognitive changes compared to regional SUVR scores (Fig. 4c). Similar
patterns were observed for the centrality-scaled NAP scores (Fig. S3). Fig-
ure 4b, c illustrate that individualswithhigher levels of amyloid pathology in
the highlighted regions (shown in red) tend to experience faster cognitive
decline, whereas individuals with lower amyloid burden in these regions
tend to show slower cognitive decline.

While these results (Fig. 3a, b) were based on unthresholded con-
nectomematrices, the overwhelming number of connectionsmightmake it
difficult to extract meaningful information. Thus, we additionally tested
whether keeping only meaningful connections above a proportional
threshold will improve the performance of functional connectivity-based
NAPmeasures. A proportional threshold approach was used as it has been
shown to give more stable network measures than an absolute threshold
approach73. As shown in Fig. S4a, a stricter threshold did improve the
predictive performance with lower Ratio values compared to the perfor-
mance of regional SUVR.However, even the best performancemodelwith a
threshold of keeping the top 2% connections (connectivity-weighted NAP:
median R = 0.0557; centrality-scaled NAP: median R = 0.0620) still per-
formed worse than regional SUVR measures (Fig. S4b).

Forward application of identified neuropathological signatures
predicts future cognitive decline in an external dataset
Here,we aimed to performexternal validation on the selected features in the
cross-validated predictive modeling analyses (Fig. 2). This data-driven
approach could identify neuropathological patterns of either regional or
network-based Aβ deposition that maximally predict future cognitive
decline. To illustrate the results of feature selection in the cross-validated
predictive modeling, Fig. 5 presents brain ROIs where pathology measures
are predictive of future cognitive decline, by using regional SUVRmeasures
(Fig. 5a), connectivity-weighted NAP measures (Fig. 5b), or centrality-
scaled NAPmeasures (Fig. 5c). These regions were identified if the features
were selected for 95%of the iterations in cross-validation.As shown inFig. 5,
the Aβ neuropathological signatures identified regions located in the basal

Fig. 4 | Regional standardized uptake value ratios
(SUVR) and network-based amyloid-β pathology
(NAP) maps. a Group averaged structural con-
nectome (SC) connectivity-weighted NAP scores.
b Correlation coefficient between cognitive decline
and SC connectivity-weighted NAP scores across
cortical regions of interest (ROIs) (Spearman partial
correlation, controlling for age, sex, education,
baseline cognition, and hemispherical mean cortical
thickness). c Correlation coefficient between cog-
nitive decline and regional SUVR scores across
cortical ROIs. NAP scores have higher values in
basal cortex regions (a). Individual variability in
NAP scores in basal cortex regions and the left
dorsolateral prefrontal cortex scales with cognitive
decline (b), showing a stronger negative correlation
with subsequent cognitive change compared to
regional SUVR scores (c). The analysis included
seventy-seven participants for whom all data were
available.
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portions of the frontal, temporal, and occipital lobes, consistent with the
early-stage Aβ deposition patterns reported in other PET and autopsy
studies26,74. The exact region labels and location are reported in Supple-
mentary Data 5.

We first validated the signature pattern in the same internal CogRes/
RANN dataset. Features in the signature pattern were used to predict cog-
nitive decline, and subsequently were related to the actual cognitive decline
score (residual controlling age, sex, education, baseline cognition, and
hemispheric mean cortical thickness) in global cognition, as well as in each
cognitive domain. The predicted score significantly correlated with cogni-
tive decline in both global cognition and episodic memory, but not in fluid

reasoning, vocabulary, or processing speed (Results shown in Table S2).
Within the same dataset, the results indicate that the predictive validity of
Aβ pathology in global cognition is mostly driven by its relationship to
episodic memory. This is consistent with literature showing the robust
relationship between Aβ deposition and cognitive decline in episodic
memory13–17. Next, we sought to validate the derived Aβ neuropathological
signatures’ relationships to cognitive decline using an external dataset. We
used the ADNI dataset (adni.loni.usc.edu) and, based on the findings using
the internal CogRes/RANN dataset, we focused on the cognitive decline in
global cognition and episodic memory. Three cognition scores were
extracted: (1) ADNI memory score (ADNI-Mem)41; (2) ADNI global

Fig. 5 | The amyloid-β (Aβ) neuropathological signatures of future cognitive
decline and external validation. a Regions of interest (ROIs) whose regional Aβ
standardized uptake value ratio (SUVR) measures were identified as features of
future cognitive decline. This pattern of pathology signature was derived from the
internal CogRes/RANN dataset. In external validation, features within the same
ROIs pattern of ADNI participants were used to predict cognitive decline in
dMemory, and subsequently compared to the actual decline score. The predicted
cognitive change significantly correlated with the actual score (Pearson correlation;
two-sided), and the relationship is significantly higher than the results obtained by

random ROI selection (Randomization test; one-sided), demonstrating regional
specificity. b Results of Aβ neuropathological signatures using connectivity-
weighted network-based Aβ pathology (NAP) measures. c Results of Aβ neuro-
pathological signatures using centrality-scaled NAP measures. The color indicates
the network label of each ROI based on the Schaefer atlas. The analysis included
seventy-two participants for whom all data were available. Cont: cognitive control
network, DorsAttn: dorsal attention network, VisCent: visual central network,
VisPeri: visual peripheral network, SalVentAttn: salience/ventral attention network,
Default: default mode network.
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cognition score (ADNI-GCog; summarized score of memory, executive
functioning, and language)45; (3)Delayed recall tests ofmemory (dMemory;
summarized score of logical memory delayed total recall and delayed word
recall). The longitudinal change in the ADNI cognition scores is illustrated
in Fig. S5.

To test the generalizability of the Aβ neuropathological signature, PET
and MRI imaging data from the ADNI were preprocessed, and structural
connectome and pathological measures were computed in the same way as
the CogRes/RANN dataset. The sum of pathology features in the signature
pattern was used to predict cognitive decline in ADNI cognition scores
(residual score controlling for covariates). The predicted scores significantly
correlated with the actual cognitive decline scores in dMemory (regional
SUVR: R = 0.2583, p < 0.0285; connectivity-weighted NAP: R = 0.3121,
p < 0.0076; centrality-scaled NAP: R = 0.3018, p < 0.0100; Fig. 5), but not in
ADNI-GCog (regional SUVR: R = 0.1894, p > 0.1136; connectivity-
weighted NAP: R = 0.1902, p > 0.1121; centrality-scaled NAP: R = 0.1858,
p > 0.1209) and ADNI-Mem (regional SUVR: R = 0.1456, p > 0.2257;
connectivity-weighted NAP: R = 0.1264, p > 0.2937; centrality-scaled NAP:
R = 0.1188, p > 0.3237).

Besides predictive performance on cognitive decline, we additionally
tested if theobserved relationship is specific to theseparticular sets of regions
in the amyloid-βneuropathological signature, i.e., regional specificity. To do
this, we performed a control analysis involving random selection of a set of
ROIs, ensuring that the number of ROIs matched those selected in the Aβ
neuropathological signature. Then, features in this random ROI set were

used to predict cognitive decline, and the correlation coefficient with the
actual cognitive decline score was recorded. By repeating this random
selection process 500 times,we generated a distribution of correlation values
from these random ROI selections. As shown in Table 2, the results
demonstrated that the regional SUVR of Aβ neuropathological signature
significantly outperformed the randomly selected ROIs in predicting
ADNI-GCog (p < 0.0379) and dMemory (p < 0.0140; Fig. 5a), but not in
ADNI-Mem(p > 0.1836). And the connectivity-weightedNAPmeasures of
Aβ neuropathological signature significantly outperformed the randomly
selected ROIs in predicting dMemory (p < 0.0120; Fig. 5b), but not in pre-
dicting ADNI-Mem (p > 0.0978) and ADNI-GCog (p > 0.4271). The
centrality-scaledNAPmeasures did not show significant regional specificity
in any of the cognition tests (dMemory: p > 0.0838;ADNI-Mem:p > 0.1497;
ADNI-GCog: p > 0.6467; Fig. 5c). Together, the results demonstrated that
the Aβ neuropathological signature generalizes to an external dataset for
predicting cognitive decline, and patterns derived from regional SUVR and
connectivity-weighted NAP demonstrate regional specificity.

Lastly, we evaluated whether the proposed NAP scores are more
sensitive to cognitive decline than regional SUVR scores when not using a
cross-validation model, which may perform better due to optimized data-
driven feature selection. We performed a Spearman partial correlation
analysis between pathology features in each ROI and longitudinal cognitive
changes, controlling for age, sex, education, baseline cognition, and mean
cortical thickness of each hemisphere. As shown in Fig. 6, using a two-
sample Student’s t-test, both NAP scores exhibited a significantly stronger

Table 2 | Model performance of amyloid-β neuropathological signatures on the ADNI external dataset validation

Cognitive decline measures Regional amyloid-β (Aβ) SUVR Connectivity-weighted network Aβ pathology Centrality-scaled network Aβ pathology

ADNI global cognition score r = 0.1894; p = 0.0379 (*) r = 0.1902; p = 0.4271 r = 0.1858; p = 0.6467

ADNI memory score r = 0.1456; p = 0.1836 r = 0.1264; p = 0.0978 r = 0.1188; p = 0.1497

dMemory score r = 0.2583; p = 0.0140 (*) r = 0.3121; p = 0.0120 (*) r = 0.3018; p = 0.0838

Here, we report the Pearson correlation (r value) between neuropathology-predicted and actual cognitive changes (*p < 0.05, the p value from the one-sided regional-specificity control analysis is reported
here instead of the correlation testp value). Nomultiple-comparison correctionwas applied. ADNI global cognition includesmemory, executive function, and language cognition scores. dMemory (delayed
memory recall) score includes logical memory delayed recall (LMDR) and delayed word recall from the Alzheimer’s Disease Assessment Scale–Cognitive Subscale (DWR-ADASc).

Fig. 6 | Correlation results in the relationship between pathology features in each
region of interest (ROI) and longitudinal cognitive decline. a For participants in
the CogRes/RANN study, we performed a Spearman partial correlation analysis
between pathology features in each ROI and longitudinal cognitive changes, con-
trolling for age, sex, education, baseline cognition, and mean cortical thickness of
each hemisphere. Pathology features were characterized by either regional stan-
dardized uptake value ratio (SUVR) or network-based amyloid-β pathology (NAP).
b Same approach was performed for participants in the ADNI study. Compared to

regional SUVR measures, NAP scores demonstrated a significantly stronger nega-
tive relationship with cognition change in both studies (In the CogRes/RANN study:
connectivity-weighted NAP: p < 6.06e-21; centrality-scaled NAP: p < 1.19e-20; In
the ADNI study: connectivity-weighted NAP: p < 1.01e-05; centrality-scaled NAP:
p < 1.30e-03). Cognition was assessed using global cognition in the CogRes/RANN
study and dMemory in the ADNI study. The analysis included seventy-seven par-
ticipants in the CogRes/RANN study and seventy-two participants in the ADNI
study. (**p < 0.01; two-sample Student’s t-test).
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negative correlation with cognitive changes compared to regional SUVR
scores in both the CogRes/RANN (Connectivity-weightedNAP: t = 9.9404,
p < 6.0630e-21; centrality-scaled NAP: t = 9.8563, p < 1.1907e-20) and
ADNI datasets (Connectivity-weighted NAP: t = 4.4735, p < 1.0054e-5;
centrality-scaledNAP: t = 3.2465, p < 0.0013), where cognitionwas assessed
using global cognition and dMemory, respectively. Network-level correla-
tion results, based on networks defined by the Schaefer atlas, are provided in
Fig. S6. In addition to regional specificity, the results demonstrated higher
sensitivity of the proposed NAP scores to cognitive decline compared to
regional SUVR scores.

The observed relationships between NAP measures and long-
itudinal cognitive decline cannot be fully explained by tau
pathology
Given that tau PET measures are strongly associated with cognitive
decline70,75,76, we additionally tested whether the observed relationships
between cognition and amyloid could be explained by tau pathology. We
used both global and temporal lobe tau PET SUVR values from follow-up
visits to quantify tau pathology, and the analysis was performed on a subset
of participants with available tau PET data (N = 27). While our results
showed that longitudinal cognitive decline was significantly associated with
global connectivity-weighted NAP measures (r =−0.5543, p = 0.0091;
Spearman correlation controlling for age, sex, education, and baseline
cognition), this relationship remained significant after adjusting for future
global tau SUVR (r =−0.4673, p = 0.0378) and for temporal lobe tau SUVR
(r =−0.4892, p = 0.0286) as covariates. However, longitudinal cognitive
decline was not significantly associated with global amyloid SUVR, either
before (r =−0.3273, p = 0.1476) or after adjusting for tau pathology (con-
trolling for global tau: r =−0.2261, p = 0.3377; controlling for temporal lobe
tau: r =−0.2243, p = 0.3418). We then repeated these analyses for the
relationships between longitudinal cognitive decline and amyloid measures
in the identifiedneuropathological signature regions.The relationshipswere
significant for regional amyloid SUVR in the signature regions (Fig. 5a),
both before (r =−0.4622, p = 0.0349) and after adjusting for tau pathology
(controlling for global tau: r =−0.5297, p = 0.0163; controlling for temporal
lobe tau: r =−0.5039, p = 0.0235). Similarly, the associations remained
significant for connectivity-weighted NAP measures in the signature
regions (Fig. 5b), both before (r =−0.6284, p = 0.0023) and after including
tau pathology as a covariate (controlling for global tau: r =−0.5746,
p = 0.0081; controlling for temporal lobe tau: r =−0.5979, p = 0.0054).
These analyses indicate that the observed associations between amyloid-
related measures and longitudinal cognitive decline cannot be fully
explained by tau burden. Nevertheless, given the central role of tau in
neurodegeneration and cognitive decline, further investigation with larger
samples of tau PET data is warranted.

Discussion
Aβ deposition in the brain is an important hallmark of AD, sometimes
occurring decades before the onset of cognitive impairment. However, the
relationship between early deposition of Aβ and future cognitive decline is
still unclear, especially since we did not have an effective metric of brain Aβ
that is predictive of future cognition. Here, we established a cross-validated
predictive model to examine our proposed network-based Aβ pathology
measures. A comprehensive examination evaluated predictive validity and
external generalization. There were several important findings. First, early
Aβ regional pathology significantly predicted future cognitive decline in
global cognition. Second, incorporating structural connectome, but not
functional connectome, information into pathology measures improved
predictive performance. Lastly, theAβneuropathological signatures derived
from our internal dataset generalize to external dataset validation.

Current correlation-based approaches for studying the amyloid-
cognition relationship often fall short in providing informative insights for
future studies, primarily due to the nature of their within-sample validation,
which limits the generalizability of findings. In this study, we adapted a
cross-validated predictive modeling approach, based on the CPM

framework, to test the predictive validity of earlyAβdepositionmeasures on
future cognitive decline, where the performance was validated in held-out
samples during cross-validation. Cross-validated predictivemodels, such as
CPM, have been widely used to investigate brain-behavior relationships
across various domains. For example, such models have been employed to
study the relationship between resting-state functional connectivity and
attention30, AD-related cognitive deficits77, task-based functional con-
nectivity and creative ability78, cognitive reserve79, aggressive behavior80, as
well as structural network lesioning with cognitive control32 and stroke-
related motor impairments81. However, such approaches have not been
commonly used to study neuropathology and cognitive aging. In this study,
we demonstrated, using the cross-validated predictive modeling, that early
Aβ regional pathology significantly predicts future cognitive decline in
global cognition. Although previous research has established associations
between Aβ deposition and cognitive decline in specific domains such as
processing speed14, executive function82, vocabulary and language14,17, and
visuospatial function15,83, our study focused on global cognition because it is
consistently reported to be associated with early Aβ deposition14,15,83–85, and
demonstrated a stronger effect size compared to cognitions in individual
domains15. Consistent with the literature, we did not observe significant
relationships when models were trained on cognitive decline within cog-
nitive domains. The stronger effect ofAβ on global cognitionmay reflect the
downstream impact of Aβ on subsequent neuropathological processes,
potentially contributing to a more pronounced relationship with clinical
outcomes over time18. Our findings contribute to understanding regionally
specific deposition of Aβ and its contributions to future cognitive decline.

It is well-established that early Aβ deposition exhibits a significant yet
weak relationship with future cognitive decline. Given the multifaceted
nature of AD, it is crucial to revisit the amyloid-cognition relationship by
consideringmore comprehensive factors.Current studies oftenoverlook the
potential contribution of network-level metrics of neuropathology to sub-
sequent cognitive decline. However, network-based approaches are
important because neurological symptoms are increasingly understood to
correlate more closely with dysfunction in brain networks rather than with
deficits in specific locations. For instance, the lesion-network mapping
approach86 leverages the brain connectome to map common networks
underlying lesions in different locations that manifest similar clinical
symptoms. This method has been successfully applied to neuropsychiatric
conditions such as amnesia87, depression88, and addiction remission89.
Despite these advances, the network mapping of neuropathology in AD
remains largely unexplored.Moreover, emerging evidence suggests that the
spread of molecular neuropathology, as well as neurodegenerative damage,
may follow large-scale brain networks20,90. It is important to consider the
spatial patterns of neuropathologydeposition.Growing evidence shows that
neuropathology distribution exhibits spatial heterogeneity and subtype
structures. This was first observed in tau pathology91 and more recently in
Aβ deposition, where distinct subtypes have been identified, such as frontal,
parietal, and occipital predominant subtypes29 as well as temporal and
cingulate predominant subtypes24. To relate network-based pathology and
cognition, Luan et al. employed a lesion-network mapping approach to tau
pathology, identifying distinct tau-lesion-network maps associated with
cognitive deficits in different cognitive domains21. Building upon such
concepts, our study introduces NAP quantifications of Aβ deposition, uti-
lizing subject-specific connectivity profiles (either structural or functional)
to map networks associated with local Aβ deposition. Our approach is
conceptually aligned with lesion-network mapping86 and white-matter
disconnection scores32,81, but we propose a more continuous and persona-
lizedmetric that incorporates current understanding of the neuropathology
underlying AD. For example, in our connectivity-weighted NAPmeasures,
we use personalized connection strength as weights, reflecting the notion
that stronger connections may facilitate faster pathology spread20. Addi-
tionally, our centrality-scaled measure is based on the idea that the
pathology deposition in highly connected brain regions (regions of high
topological centrality)may lead tomore severe cognitive decline due to their
widespread effects on brain dynamics72. It was also built upon the
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observations in the literature that Aβ pathology preferentially affects high
centrality hub regions, demonstrating selective vulnerability in hub
regions92. Centrality-based pathology measures, such as the tau hub ratio93,
have been proposed to assess tau pathology and have been associated with
cognitive decline. Our proposed centrality-scaled NAP measure builds on
this prior work by utilizing subject-specific connectomes, offering a more
individualized approach compared to group-average connectomemethods.
Our study provides the first characterization of network-level Aβ pathology
anddemonstrates that incorporatingnetwork connectome information into
pathology measures enhances the predictive performance for subsequent
cognitive decline compared to regional measures.

Our NAP approach does not assume premorbid or healthy con-
nectivity. Instead, we use each individual’s baseline connectome, regardless
of whether it reflects normal variation or disease effects, as a framework to
summarize baseline regional amyloid burden. This allows us to examine
how amyloid is distributed within the individual’s brain network archi-
tecture at baseline. While some confounding factors, such as biological
variability and disease-related alterations, may exist, our experiments show
that individualized NAP measures better predict cognitive decline than
template-based or connectome-only models (see Supplementary Materials
for details). Our results highlighted the important role of the individual
connectome betweenneuropathology and cognition,which is important for
early detection of AD-related cognitive deficits at the individual level.
However, it remains unclear which attributes of the interplay between brain
network architecture and neuropathology are responsible for the increased
predictive performance. There are several potential candidate mechanisms:
(1) Individual connectomes capture coordinated regions that are selectively
vulnerable to Aβ pathology. It has been shown that specific neurons, brain
regions, and brain networks exhibit selective vulnerability to
neuropathology8,94–97. Highly connected hub regions with higher levels of
neuronal activity and metabolic demand are vulnerable to
neuropathology92,98,99. The proposed centrality-scaled NAP score, con-
sidering nodal centrality, may reflect networks with vulnerable hubs for the
given subject, where severe AD-related symptoms might develop if Aβ
disrupts highly functioningvulnerablehubs. (2) Individual connectomes are
indicative of futureAβ spread and accumulation. Recent evidence suggested
thatmanyneurodegenerative disease-related pathological proteins (e.g., Aβ,
tau, andα-synuclein) exhibit intercellular transmission100. This suggests that
the early deposition of Aβ can potentially spread trans-neuronally across
large-scale brain networks98,101–103. Thus, the selective vulnerability might be
a result of the spreading between anatomically connected brain regions100.
For example, Song et al.101 provided both in vitro and in vivo evidence
supporting the transmission of Aβ via neuronal connections101. The pre-
dictive utility of the NAP measure may therefore reflect connectivity-
mediated propagation of Aβ pathology or the spread of Aβ-associated
hyperactivity104.However, it is also possible that theNAPcaptures regionsof
amyloid and tau co-localization, particularly given the stronger evidence for
network-based spread of tau and its closer association with cognitive
decline. Future longitudinal studies combining Aβ and tau PET, along with
structural connectivity, will be essential to further elucidate the biological
mechanisms underlying these network-level neuroimaging biomarkers.
Some studies have shown that neuropathology progression along the
structural connectome can be modeled to predict its future regional
deposition105. The proposed connectivity-weighted NAP score, considering
nodal connectivity profile (either structural or functional), may suggest
future Aβ spread based on its baseline deposition, where future deposition
more closely tracks cognitive decline in the future. (3) Individual con-
nectomes reflect the resilience of brain networks to neuropathology. Recent
studies have found that topological characteristics of brain network resi-
lience are related to age and cognition106. Incorporating connectome
information into the pathology measures might account for individual
resilience factors, and explain more variance in the cognition18,107,108.

Incorporating structural connectome into NAPmeasures significantly
improves the prediction of future cognitive decline; however, this is not the
case for functional connectome-based NAPmeasures. One explanation for

this is that functional connectivity reflects not only direct monosynaptic
connections but also indirect polysynaptic connections109. Because func-
tional connectivity quantifies statistical dependencybetween regional neural
signals, theobserved interactions between two regionsmightbemediatedby
other regions110. Trans-synaptic propagation ofmisfolded proteinsmight be
shaped more by the structural than functional connections. Another pos-
sible explanation is that the complex interplay between Aβ deposition and
brain fMRI signals is often reported and not well understood. Some studies
suggest that Aβ deposition leads to increased neural activity, and this
hyperactivity may eventually lead to more rapid secretion of amyloid,
forming a vicious cycle of Aβ accumulation and abnormal brain function111.
The proposed simple NAP approach is not well-suited to capture such
complex interplay between fMRI signal and neuropathology. The present
work may inform future studies on the complex interplay between brain
network architecture, neuropathology, and cognition.

The neuropathological signature patterns identified in our study
encompass regions within the default mode, cognitive control, visual, lim-
bic, and salience networks, including the visual areas, temporal-occipital
junction, temporal pole, insula, medial prefrontal cortex, lateral prefrontal
cortex, orbitofrontal cortex, and parahippocampus. These regions are
consistent with previous findings on early-stage Aβ deposition, where the
initial depositionwas observed in the basal portions of the frontal, temporal,
and occipital lobes26,112. While studies reported early Aβ presence in basal
visual areas26,113, other studies suggested amyloid reaches the visual cortex at
later stages7,74. This inconsistency might be explained by recent work that
identified an occipital subtype of Aβ accumulation, characterized by early
abnormalities in the occipital cortex and a higher number of participants
with dementia in such a subtype compared to other subtypes29. Aβ
deposition in the occipital cortex was often overlooked, whereas its
deposition within the occipital cortex has already been associated with
cerebral amyloid angiopathy114 andLewybodydisease115. Recent studies also
demonstrated neurophysiological measures during a visual processing task
that are sensitive to amyloid pathology in early-stage AD116. Our findings
further support the notion that early Aβ deposition in the occipital lobe
provides prognostic information for future cognitive decline. However,
more studies are needed to investigate the relationship betweenAβ occipital
deposition and cognition. Moreover, the Aβ neuropathological signature
derived from our internal dataset serves as a generalizable predictor of
cognitive decline in the external dataset, demonstrating a consistent rela-
tionship with cognition across datasets as well as consistent regional spe-
cificity.However, the predictive power of ourmodel is somewhat attenuated
in the ADNI dataset, likely due to variations in PET radiotracers and dif-
fusion MRI acquisition parameters that impact the structural
connectome117.

The cross-validatedpredictive framework usedhere can be extended to
other neuropathological and neurodegenerative markers, such as tau, α-
synuclein, cortical atrophy, longitudinalAβ accumulation118, or a composite
measure of ATN (amyloid, tau, neurodegeneration) features69. Corre-
sponding NAP scores for each measure can be computed to quantify its
network-level effects and test their predictive performance on cognition.
Additionally, future research should explore how cognitive reserve and
resilience factors might moderate the relationship between Aβ accumula-
tion and cognitive decline18,108. For example, increased brain activity and
connectivity have often been observed alongside Aβ deposition8, potentially
promoting cognitive reserve and helping to maintain cognitive function119.
The high prediction performance of the proposedNAPmight be attributed
to its indication of future network propagation or network disruption of the
vulnerable region due to initial Aβ deposition and individualized con-
nectome. This framework demonstrated superior predictive performance
for future cognitive decline compared to regional Aβ pathology alone.
However, these hypotheses on the underlyingmechanisms need to be tested
in future studies.

The current study has several limitations. First, the sample size in this
study is small, particularly considering that cognitive decline in cognitively
normal older adults is expected to be mild. The proposed framework needs
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to be validated with larger sample sizes to further ensure its robustness and
generalizability. Second, since Aβ deposition is considered an early event in
the neuropathological cascade of AD, we focused on the predictive validity
of baseline Aβ deposition for future cognitive decline. However, the impact
of Aβ on cognition is more complex, involving interactions with multiple
factors that jointly affect cognitive outcomes. Specifically, in this study, we
did not account for tau deposition or genomic information, such as APOE
ε4 status, which may mediate the observed effects of Aβ on cognition. For
example, evidence showed that high Aβ levels are associated with tau
accumulation in themedial temporal lobe4, andAβ and tau have interactive
effects on cognitive decline120. Additionally, Aβ interacts with APOE ε4 to
promote cognitive decline in cognitively normal older adults121, but APOE
ε4 status was not included in our analysis. Aβ also interacts closely with
neurodegenerative factors, such as hippocampal volume, glucose
metabolism122, and cortical atrophy123. While we included hemispheric
mean cortical thickness as a confounder, future studies should examine
regional atrophy and its role in the Aβ-cognition relationship. Regional
atrophy was not included in this study due to limitations in sample size.
Finally, future studies with longitudinal assessment of Aβ accumulation
rates could provide additional insights intoAβpathology118; however, recent
evidence suggests that longitudinal measuresmay not significantly enhance
the detection of cognitive decline compared to a single Aβ PET scan
session85. In general, future research should comprehensively evaluate the
potential factors that interact with Aβ pathology to better understand its
relationship with future cognitive decline. Such a multimodal approach
would be well-suited to capture the multifaceted nature of AD. Here, the
proposed network-based approach and predictivemodeling framework can
be easily adapted to include other neuropathologies. And it would be
intriguing to investigate an optimal combination of AD-related features,
such as a composite score fromATNmeasures. These could be used to build
and validate network-based predictive models for AD-related symptoms,
similar to the framework proposed in this study, thereby promoting early
detection of individuals on the AD continuum.

Furthermore, in this study, we focused on cognitive decline in cogni-
tively normal older adults, which captures early and subtle changes that do
not meet clinical thresholds. Studying this population minimizes the influ-
ence of confounding factors such as co-pathologies and clinical hetero-
geneity present in symptomatic individuals. This allows a clearer assessment
of early amyloid-related indicators of neurodegenerative processes. None-
theless, it is important to test and extend this framework to participants
across the full AD spectrum in future research. Although in our sample, we
did not identify any amyloid-related pathology measures that were asso-
ciated with preserved or improved cognitive performance, this remains an
important topic for future research to investigate whether specific network
features are linked to cognitive resilience or compensatory mechanisms.

In summary, we developed a cross-validated predictivemodel to assess
Aβpathologymeasures for predicting future cognitive decline in cognitively
normal older adults. Our results demonstrated that early regional Aβ
pathology is a significant predictor of global cognitive decline, with pre-
dictive accuracy further enhanced by incorporating individualized struc-
tural connectome data as network-based Aβ pathology scores. The
identified neuropathological signature pattern is indicative of future cog-
nitive decline and demonstrates generalizability to external datasets. This
network-based approach and predictive modeling complement existing
pathology-based methods for early detection of individuals at risk of
developing AD-related symptoms and can be extended to other neuro-
pathological markers. The framework supports future neurodegenerative
disease research that considers individual brain network connectivity when
evaluating neuropathology and cognition.

Data availability
The numerical results underlying the figures are provided in the Supple-
mentaryData: Fig. 3—SupplementaryData 1; Fig. 4—SupplementaryData 2;
Fig. 5—Supplementary Data 3; Fig. 6—Supplementary Data 4. Name, labels,
and centroid coordinates of the brain regions in the neuropathological

signatures are provided in the Supplementary Data 5. Demographic infor-
mation, processed PET SUVR, and brain connectivity data are available at
https://doi.org/10.6084/m9.figshare.30152470.v1124 and https://github.com/
hehengda/cross_validation_network_based_amyloid.git. The raw and pre-
processedCogRes/RANNdatasets analyzed in the current study are available
from the corresponding author on reasonable request. ADNI data can be
accessed through the ADNI database (adni.loni.usc.edu) following registra-
tion and compliance with the data usage agreement.

Code availability
The codeused in this project and sampledata are available at https://doi.org/
10.6084/m9.figshare.30152470.v1124 and https://github.com/hehengda/
cross_validation_network_based_amyloid.git.
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