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Abstract

Plain language summary

Background Glial responses are involved in neurodegenerative processes, with tau
pathology often associated with increased glial inflammatory responses in Alzheimer’s
disease (AD). The apolipoprotein E (APOE) €4 allele, the major genetic susceptibility gene for
AD, might contribute to this process by modulating both tau pathology and inflammatory
cascades in the brain.

Methods We used data from the Translational Biomarkers of Alzheimer’s Disease (TRIAD)
cohort (n = 137) to investigate the association between YKL-40, a marker of reactive
astrogliosis, and tau burden measured with PET imaging, while also exploring the
involvement of APOE €4 carriership. Statistical analyses included correlation and regression
models controlling for age and sex.

Results Here we show that tau pathology is positively associated with YKL-40 levels,
reflecting regional patterns of astrocyte activity in the brain. Furthermore, this association is
more widespread in individuals carrying the APOE €4 allele, suggesting a genotype-specific
modulation of the glial neuroinflammatory response.

Conclusions Our findings demonstrate a link between tau accumulation and astrocyte-
mediated neuroinflammation in AD and highlight the modulatory role of APOE €4 in this
process. Taken together, our findings help inform the multifaceted role of tau-associated
neuroinflammation in the progression of AD.

Alzheimer’s disease is a brain disorder
characterized by the accumulation of abnormal
proteins, including tau, which contribute to
memory loss and cognitive decline. Brain
support cells called astrocytes respond to this
protein build-up by becoming reactive, which
can lead to inflammation in the brain. In this
study, we used brain scans and cerebrospinal
fluid samples from 137 participants to examine
how astrocyte reactivity, measured by the
protein YKL-40, relates to tau accumulation.
We also investigated whether carrying a com-
mon genetic risk factor, APOE &4, influences
this relationship. We found that higher tau
levels are associated with increased astrocyte
reactivity, and this association is stronger in
people carrying APOE €4. These findings
suggest that genetic risk may amplify inflam-
mation in Alzheimer’s disease.

The pathophysiological hallmarks of Alzheimer’s disease (AD) include
extracellular amyloid-p plaques and intracellular tangles composed of
paired helical filaments of hyperphosphorylated tau'’. Inflammation
and genetic factors, particularly the polymorphism in the apolipoprotein
E (APOE) gene, have also been linked to amyloid-p and tau aggregates’.
Specifically, the e4 allele is well recognized to be strongly associated with
a higher risk of developing sporadic AD, and is believed to play a role in
the underlying mechanisms of AD proteinopathy”. For one, APOE

€4 increases amyloid-p burden, possibly through reduced clearance’”.
Independent from this effect on amyloid-p, APOE €4 carriership
may also lead to increased tau accumulation and tau-mediated
neurodegeneration®"’. Importantly, APOE 4 is associated with inflam-
matory responses in AD'""”. These observations have led to neuroin-
flammation gaining recognition as a key factor in AD pathogenesis, with
particular interest in how APOE &4 may exacerbate inflammatory
pathways'".

Afull list of affiliations appears at the end of the paper.
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Astrocytes, an abundant type of glial cells, participate in neuroin-
flammatory processes'”™"”. In response to CNS injury or disease, they
become abnormally reactive, with the goal of restoring homeostasis by
promoting tissue repair and enhancing clearance of debris and metabolic
waste products from the brain'"'*". This response, called reactive astro-
gliosis, is characterized by morphological, molecular and functional chan-
ges, including leakage, release or secretion of proteins'®. Among other
proteins, reactive astrocytes overexpress Chitinase-3-like protein 1
(CHI3L1), also named YKL-40, as part of their inflammatory response'®.
This observation has been made in patients with MCI and AD dementia,
where increased levels of YKL-40 mRNA and elevated CSF levels of YKL-40
are found in the brain'**. Furthermore, recent meta-analyses report that
YKL-40 is consistently elevated in the CSF of individuals with AD>.

Given that astrocytes are the main producers of the apoE protein in the
CNS, the interplay between APOE and astrocytic function may be linked to
AD proteinopathy™. Specifically, as APOE is predominantly expressed in
astrocytes, the €4 allele is believed to alter their normal function, leading to
deficient amyloid-p clearance, cerebral hypometabolism and an exacerbated
pro-inflammatory response’*”. In addition, studies in mice have shown that
the apoE €4 isoform also disrupts the normal tau clearance process of
astrocytes”’. Among astrocytic markers, YKL-40 has distinguished itself by
showing a specific association with tau pathology compared to others, such
as GFAP”. Therefore, this study aimed to assess the relationship between
astrocyte reactivity, assessed by cerebrospinal fluid (CSF) YKL-40, and tau
burden measured by positron emission tomography (PET) imaging, while
also investigating whether APOE &4 carriership influences this relationship.

Here, we show that astrocyte reactivity, measured by CSF YKL-40, is
positively associated with tau burden in the brain. Importantly, APOE 4
carriership potentiates this relationship, indicating that genetic risk may
exacerbate tau-related neuroinflammatory processes. These findings sup-
port a role for astrocyte-mediated inflammation in tau pathology and
highlight APOE &4 as a key modulator of this mechanism in AD.

Methods

Participants

Data from this study were obtained from the Translational Biomarkers in
Aging and Dementia (TRIAD) cohort. The sample included 132 individuals
[22 young individuals, 74 cognitively unimpaired (CU) older adults, 18 with
mild cognitive impairment (MCI), 18 with AD dementia]. Each participant
underwent structural magnetic resonance imaging (MRI), amyloid-p-PET
using [*F]AZD4694, tau-PET using ['*F]MK6240 and neuropsychological
assessments. Cerebrospinal fluid (CSF) concentrations of chitinase-3-like
protein 1 (YKL-40) were also measured through lumbar puncture. Com-
prehensive clinical evaluations were conducted on all subjects. The Clinical
Dementia Rating (CDR) was administered to older participants only.
Cognitively unimpaired participants had a CDR score of 0, while those with
MCI had a CDR of 0.5 and exhibited objective cognitive impairment with
relatively preserved activities of daily living performance. AD dementia
participants had a CDR of 1 or 2 and met the standard diagnostic criteria for
probable AD”. No participants were diagnosed with other neurological or
major neuropsychiatric disorders. Individuals with a history of a psychotic
disorder, major depressive disorder, substance abuse or autoimmune dis-
ease and cancer within two years prior to screening, along with participants
with contraindications to PET or MRI, were excluded. The study was
conducted in accordance with the Declaration of Helsinki and received
approval from the Montreal Neurological Institute PET Working Com-
mittee and the Douglas Mental Health University Institute Research Ethics
Board. Written informed consent was obtained from all participants.

Fluid biomarkers

All samples were processed and analyzed at the Clinical Neurochemistry
Laboratory, University of Gothenburg, Sweden, by scientists blinded to
clinical, demographic and biomarker information, as described previously™.
Briefly, CSF levels of YKL-40 were quantified using a commercially available
ELISA assay (R&D Systems, Minneapolis, MN, USA, catalog #DY2599)".

Neuroimaging

Study participants underwent magnetic resonance imaging (MRI) using 3D
T1-weighted sequences on a 3 T Siemens scanner, which facilitated cor-
egistration. In addition, they received [*FJAZD4694 amyloid-B-PET and
["*FIMK6240 tau-PET scans, both performed with the Siemens High
Resolution Research Tomograph (HRRT) at the MNL. The ["*F]AZD4694
images were captured 40-70 min post-injection, reconstructed using the
OSEM algorithm on a 4D volume with three frames (3 x 600 s) as described
previously”. For ["*F]MK6240, images were acquired 90-110 min post-
injection and similarly reconstructed on a 4D volume with four frames (4 x
300 s). Each PET scan was followed by an 11-min transmission scan using a
rotating 137Cs point source for attenuation correction. The images were
adjusted for dead time, decay, and random and scattered coincidences. T1-
weighted MRI images were corrected for non-uniformity and field distor-
tions, and then PET images were automatically aligned to the T1-weighted
space. The T1-weighted images were subsequently linearly and non-linearly
registered to the MNI reference space. PET images underwent meninges
and skull stripping, followed by non-linear registration to MNI space using
the transformations from T1-weighted to MNI space and from PET to T1-
weighted space. The standardized uptake value ratio (SUVR) for [**F]
AZD4694 AB-PET used the cerebellum gray matter as the reference region,
while for ['*F]MK6240 tau-PET, the inferior cerebellum gray matter served
as the reference. Finally, PET images were spatially smoothed to achieve an
8-mm full-width at half-maximum resolution.

Global AB PET SUVR was estimated across the prefrontal, orbito-
frontal, precuneus, parietal, temporal, and cingulate cortices™. A composite
measure of tau-PET SUVR was calculated within a temporal meta-ROI that
includes the entorhinal, parahippocampal, hippocampal, fusiform, inferior
temporal, and middle temporal cortices”. PET Braak-like stages were
determined based on brain regions that correspond to the Braak stages of tau
tangle accumulation observed postmortem®” and PET studies’ . These
stages include: Braak I (transentorhinal), Braak II (entorhinal and hippo-
campus), Braak III (amygdala, fusiform gyrus, parahippocampal gyrus, and
lingual gyrus), Braak IV (insula, inferior temporal, lateral temporal, and
inferior parietal and posterior cingulate), Braak V (orbitofrontal, inferior
frontal, superior frontal, rostromedial frontal, superior temporal, cuneus,
precuneus, anterior cingulate, supramarginal gyrus, lateral occipital and
superior parietal), and Braak VI (paracentral, precentral, postcentral, and
pericalcarine).

We obtained images of the YKL-40 gene expression in the brain from
the Allen Human Brain Atlas (www.brain-map.org), a publicly available
resource developed by the Allen Institute for Brain Science'*. Briefly,
mRNA expression intensity values were calculated using microarray data
from 3702 samples taken from six healthy human postmortem brains (four
males, mean age = 42.5 + 13.4 years, postmortem delay = 20.6 + 7 h). The
YKL-40 mRNA brain expression maps were generated using a Gaussian
process' and downloaded from the following website: www.meduniwien.
ac.at/neuroimaging/mRNA.html. Brain tissue was collected after obtaining
informed consent from donors’ next-of-kin. Collection of tissue and asso-
ciated non-identifying case information was reviewed and approved by the
Institutional Review Boards of the tissue banks and repositories that pro-
vided material for this project (http://human.brain-map.org see Doc-
umentation). Finally, we defined the regions of interest (ROIs) using the
DKT atlas (Klein & Tourville, 2012), and we extracted mRNA expression in
each of the ROIs.

APOE genotyping
APOE genotyping was performed after blood collection using the TagMan
allelic discrimination assay™*’.

Statistics and reproducibility

Statistical analyses were performed in R v.2024.04.2, and voxelwise analyses
were done using the R Package for Medical Imaging NetCD (MINC)
v.1.5.3.0. To assess demographic data, independent-samples t-tests were
performed, examining differences between CUs and other cognitively
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impaired groups for continuous variables. We employed contingency ¥’
tests for categorical variables. We used voxelwise linear regression models to
assess the relationship between CSF YKL-40 and tau-PET, correcting for
age, sex and global amyloid-PET SUVR. Analyses were repeated in APOE €4
carriership subgroups. A model assessing the interaction between APOE
4 status and CSF YKL-40 was also tested. All voxelwise analyses were
corrected for multiple comparisons using random field theory with a
threshold of p <0.001. To assess regional colocalization between YKL-40
mRNA expression and the regional association between CSF YKL-40 and
tau-PET, we segmented both the t-map and the YKL-40 mRNA expression
map using the DKT atlas. We then ran a Spearman correlation analysis
between mRNA expression levels and t-values across regions. To extract
tau-PET SUVR in regions of significant interaction, we created a mask using
the MINC Toolkit (version 1.9.16). All beta coefficients reported in the
paper represent standardized beta values. Collinearity was assessed for all
variables in the regression models to make sure there was no inflation of
coefficients due to collinearity. To do so, we employed the Variance Inflation
Factor (VIF), using the car package in R.

Results

Participants

We included 132 individuals from the Translational Biomarkers in Aging
and Dementia (TRIAD) cohort [22 young individuals, 74 cognitively
unimpaired (CU) older adults, 18 individuals with mild cognitive impair-
ment (MCI), and 18 individuals with dementia] in the study. Following
APOE genotyping, 50 individuals (37.9%) were identified as APOE &4 car-
riers, and 82 (62.1%) as APOE &4 non-carriers. Demographic characteristics
of the population are listed in Table 1, and demographic characteristics of
individuals stratified by APOE &4 carriership are summarized in Supple-
mentary Table 1. Overall, cognitively impaired individuals (individuals with
MCI or AD dementia) displayed higher CSF YKL-40 levels than CU and
young participants. Additionally, we observed an aging effect, with older CU
participants showing higher YKL-40 levels compared to younger indivi-
duals (Supplementary Fig. 1).

CSF YKL-40 is associated with tau-PET

First, to assess the relationship between CSF YKL-40 and tau-PET SUVR,
we performed a voxelwise regression analysis correcting for age, sex, and
global amyloid-PET standardized uptake value ratio (SUVR). Positive
associations were found in the precuneus, parietal and temporal lobes and
cingulate gyrus (Fig. 1A). Regression analyses controlling for age, sex and
global amyloid-PET SUVR were also performed at the ROI level using tau-
PET SUVR in the temporal meta-ROI. We found a significant main effect of
CSE YKL-40 (B = 0.42, 95% CI [0.27, 0.58], p < 0.0001) (Fig. 1C). Sensitivity
analyses excluding the cognitively unimpaired individuals and including
only tau-PET-positive individuals yielded similar results (Supplementary
Fig. 2). In addition, sensitivity analyses using tau-PET SUVR in Braak stage-

specific ROIs also showed consistent associations between CSF YKL-40 and
regional tau burden (Supplementary Fig. 3). Collinearity was assessed for all
variables in the model; we obtained a VIF smaller than 2, suggesting no
inflation of coefficients due to collinearity.

Association patterns between CSF YKL-40 and tau-PET colo-
calize with YKL-40 gene expression

We then extracted the topographical map of YKL-40 mRNA expression in
six cognitively unimpaired individuals from the Allen Human Brain Atlas
(Fig. 1B). Segmentation of the expression map with the Desikan-Killiany-
Tourville (DKT) atlas* revealed the highest mRNA expression levels in the
precuneus and superior parietal regions (Fig. 1D). Next, to assess regional
colocalization, we compared regional YKL-40 mRNA expression with the
regional association between tau-PET and CSF YKL-40 as presented in
Fig. 1A. Segmentation of the t-map using the DKT atlas allowed for a
Spearman correlation analysis between mRNA expression levels and
t-values across regions, revealing a significant overlap between regions of
association of CSF YKL-40 and tau-PET and regions with high YKL-40
mRNA expression (r = 0.33, p = 0.002) (Fig. 1E).

CSF YKL-40 is strongly associated with tau-PET in APOE 4
carriers

Next, to assess the involvement of APOE &4 carriership, we performed a
voxelwise regression analysis of CSF YKL-40 predicting tau-PET SUVR in
the APOE &4 carrier and non-carrier subgroups, controlling for age, sex, and
global amyloid-PET SUVR. We found strong significant associations in the
precuneus, parietal and temporal lobes only in APOE &4 carriers (Fig. 2A).
Sensitivity analyses excluding the cognitively unimpaired individuals yiel-
ded similar results (Supplementary Fig. 4). Images showing average tau-PET
uptake across the brain for APOE &4 carriers and non-carriers are included
in supplementary materials (Supplementary Fig. 5).

We also assessed the voxelwise interaction between APOE &4 carrier-
ship and CSF YKL-40 on tau-PET, correcting for age, sex, and global
amyloid-PET SUVR. We observed that APOE &4 potentiates the relation-
ship between CSF YKL-40 and tau-PET in the medial temporal lobes, and
most strongly in the right hippocampus (Fig. 2B). We extracted tau-PET
SUVR values in the region of interaction and corrected them for global
amyloid-PET SUVR. We found that after adjusting for global amyloid-PET
burden, APOE €4 carriers display significantly more tau in this area, as
confirmed by the Wilcoxon rank-sum test (p < 0.001) (Fig. 2C). Sensitivity
analyses excluding the cognitively unimpaired individuals yielded similar
results (Supplementary Fig. 5).

Discussion

In the current study, we aimed to assess the associations between astrocyte
reactivity as quantified by CSF YKL-40, APOE ¢4 carriership and tau
deposition in AD. We observed significant associations between tau

Table 1 | Demographics of TRIAD sample

Young CuU MCI p-value AD dementia p-value
No. 22 74 18 - 18 -
Age, mean (SD), years 22.5(1.9) 69.9 (7.6) 72.2 (4.9) 0.12 62.2 (6.1) 6.9 x 107°
Male, no. (%) 8(36) 29 (39) 11(61) 0.092 10 (56) 0.21
Education, mean (SD), years 16.9 (1.6) 14.8 (3.4) 15.9 (2.9) 0.17 14.3 (2.5) 0.43
APOE €4 carriers, no. (%) 6 (27) 22 (30) 10 (56) 0.039 12 (67) 0.0036
MMSE, mean (SD) 29.8 (0.53) 29.1(0.98) 27.9(2.1) 0.050 21.7 (4.8) 6.1x10°°
CDR SoB, mean (SD) - 0.05 (0.16) 1.38 (0.86) 8.8x10° 5.33(2.8) 45%x10°7
['®F]AZD4694 SUVR, mean (SD) 1.19 (0.066) 1.46 (0.38) 2.32 (0.42) 42x10°8 2.29(0.43) 95x%x10°8
["®FIMK6240 SUVR, mean (SD) 0.92 (0.075) 0.98 (0.18) 1.43 (0.50) 0.0016 2.41(0.85) 1.5x10°°

Independent-samples t-tests (two-sided) were performed to compute comparisons between CU individuals and other cognitively impaired groups for continuous variables. We employed contingency x?
tests (two-sided) for APOE €4 status and sex. Values for ["*FJAZD4694 SUVR represent global amyloid-PET SUVR, while ["*FIMK6240 SUVR reflects tau-PET SUVR in the temporal meta-ROI.

Communications Medicine | (2025)5:484


www.nature.com/commsmed

https://doi.org/10.1038/s43856-025-01171-4

Article

A B
Tau-PET~ CSF YKL-40 + cov.

/

D recuneus

supe;n%r parietal
rostral middle frontal
superior frontal

pars triangularis
caudal middle frontal
postcentral
transverse temporal
middle temporal

. pericalcarine
isthmus cingulate
pars opercularis
inferior parieta
lateral orbitofronta
superior temporal
supramarginal
precentral

paracentra
pars orbitalis
lingual

rostral anterior cingulate |
medial orbitofrontal ]

_ fusiform ]

caudal anterior cingulate |

“amygdala T

m 1]

o Pulamen ]
inferior temporal
lateral occipital
hippocampus
entorhinal
insula
accumbens area
thalamus proper

posterior cinﬁg ate ]
pallidul

0 2 4 6

YKL-40 mRNA expression

Fig. 1 | Tau-PET is associated with CSF YKL-40 in regions that resemble those of
YKL-40 mRNA expression. A Voxelwise linear regression between CSF YKL-40
and tau-PET corrected for age, sex and global amyloid-p (two-sided, RFT corrected
at p <0.001). Color bar indicates t-values. B Brain map of the topographical dis-
tribution of YKL-40 mRNA expression in six cognitively unimpaired individuals
obtained from the Allen Human Brain Atlas. C Association between CSF YKL-40
and meta-ROI tau-PET SUVR across clinical diagnoses. We employed a two-sided
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linear regression model controlling for age, sex and amyloid-p. Beta coefficient
represents standardized beta value (p < 2.2 x 107'°), n = 132 (22 young individuals,
74 CU individuals, 18 individuals with MCI, 18 individuals with AD). D Bars show
average mRNA expression in each DKT brain region. E Spearman correlation (two-
sided) between YKL-40 mRNA expression and t-value extracted from the associa-
tion in (A). Each dot represents a different DKT brain region (n = 38 regions).

pathology and YKL-40 levels, and these associations were highest in regions
of high YKL-40 mRNA expression. When separating individuals into APOE
€4 carriers and non-carriers, the association with tau pathology was more
widespread in APOE ¢4 carriers. Furthermore, we found that CSF YKL-40
interacts with APOE e4 status, correlating with greater tau accumulation in
the medial temporal lobes. Overall, our findings emphasize the significance
of APOE &4 in glial-related neuroinflammation and tau
accumulation in AD.

We first demonstrated that there is a significant association between
tau burden and YKL-40 levels in the precuneus, middle temporal and
posterior temporal cortices. These results corroborate numerous studies
showing increased YKL-40 levels in AD, associated with greater tau
burden®*"". Other studies have also highlighted the role of YKL-40 in
amyloid-B-induced tau pathology™*. Strikingly, the topography of asso-
ciations between YKL-40 and tau burden followed patterns that resemble
those of YKL-40 mRNA expression assessed postmortem. More precisely,
using the Allen Brain Atlas, we demonstrated that the magnitude of asso-
ciations between YKL-40 and tau-PET is highest in regions of high YKL-40
mRNA expression. These results suggest regional contributions of astrocyte
reactivity to local tau burden. In addition, the precuneus, middle temporal
gyrus and the posterior temporal gyrus are Braak stage IV regions, affected
in intermediate stages of AD. These findings also support the idea that YKL-

40 could be a potential biomarker for intermediate tau-related pathology.
This notion is further supported by recent findings demonstrating that CSF
YKL-40 is strongly associated with tau-PET burden in AD, in contrast to
other astrocytic markers such as GFAP, which are more closely related to
amyloid-p pathology™.

When separating individuals into APOE ¢4 carriership subgroups, the
association between YKL-40 and tau burden was stronger and more
widespread in APOE &4 carriers, suggesting a genotype-specific modulation
of the neuroinflammatory response. Studies in rodents have shown that
apoE &4 increases pro-inflammatory astrocytes by epigenetic mechanisms
and impairs tau clearance”. A plausible explanation is that APOE &4 pro-
motes astrocytic activation and tau-mediated neurodegeneration through
disrupted lipid metabolism and impaired lipid shuttling between astroglia
and neurons®. Supporting this, a recent study demonstrated that promoting
glial lipid efflux attenuates tau pathology, astrogliosis and neurodegenera-
tion in mice™. Future work employing fluid biomarkers of cholesterol
metabolism and astrogliosis may help evaluate whether similar lipid-
mediated mechanisms underlie astrocytic activation and tau accumulation
in APOE &4 carriers.

Our analyses also revealed a significant interaction between CSF
YKL-40 and APOE &4 status in predicting tau-PET uptake in the hip-
pocampus, a region where APOE is highly expressed. A recent study in
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Fig. 2 | Tau-PET is strongly associated with CSF A
YKL-40 in APOE &4 carriers. A Voxelwise linear
regression between CSF YKL-40 and tau-PET in

APOE ¢4 carriers and non-carriers (two-sided, RFT
corrected at p < 0.001). Color bar indicates t-values.

green shows uncorrected results (p < 0.05). C Tau-
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tion corrected for multiple comparisons (p < 0.001), )
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PET SUVR controlling for global amyloid-f in
regions of interaction displayed in orange, in APOE
¢4 carriers and non-carriers, n = 132 (50 APOE &4
carriers, 82 APOE &4 non-carriers). Stars show the
level of significance of a two-sided Wilcoxon rank-
sum test (p = 0.009).
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mice demonstrated that the removal of neuronal APOE ¢4 reduces both
the accumulation of tau pathology and astrogliosis specifically in the
hippocampus, highlighting the causal role of neuronal APOE &4 in
modulating tau-associated astrogliosis®’. Our results in humans com-
plement these findings by suggesting a role of APOE &4 in promoting
tau-mediated reactive astrogliosis, particularly within medial temporal
regions. These results are also in alignment with many studies that have
shown that YKL-40 levels are elevated in early stages of the disease™”".
Given that the hippocampus is one of the earliest regions affected by tau
pathology, the interaction we observed in this region further supports
the role of YKL-40 as an early marker of astrocyte-mediated
neuroinflammation in AD.

It is important to note several limitations that warrant discus-
sion. First, YKL-40 is limited by its non-specificity. YKL-40 levels are
increased in autoimmune diseases and multiple types of cancer™.
This non-specificity suggests that while elevated YKL-40 levels in AD
may be significant, they could also reflect broader inflammatory
processes, which should be considered when interpreting our find-
ings. However, participants with autoimmune disease and cancer
within 2 years before participation were excluded from our study. In
the same line of thought, while our results support a tau-associated
astrocytic response, future studies should evaluate the role of YKL-40
increases in other tauopathies to confirm the specificity of these
findings. Furthermore, because we sampled YKL-40 from CSF, the
influence of peripheral inflammatory processes on our results is likely
negligible. Another limitation of this study is the lack of longitudinal
data for CSF YKL-40. Having multiple time points for astrocyte
reactivity would refine the analyses and make for stronger conclu-
sions regarding the temporal sequence of events through AD pro-
gression. Furthermore, our study sample consists of individuals who
are motivated to participate in a study of aging and AD and are
potentially not representative of the broader population. Next, our
sample size is relatively small, which limits the power of our results.
An additional limitation is the age-related increase in CSF YKL-40
levels, which may have contributed to our findings. However, this

influence is likely minimal, as all analyses were adjusted for age.
Another limitation is that while APOE is a key genetic factor influ-
encing AD risk and related biomarkers, other genetic factors, such as
those near the CHI3L1 gene, could also significantly impact astrocyte
regulation and CSF YKL-40 levels™. Finally, astrocytic reactivity is a
dynamic process, during which multiple proteins can rapidly change
across disease stages“’. TSPO-PET, a marker of microglial activation,
and fluid biomarker panels assessing broader inflammatory pathways
could provide valuable complementary insights into the evolving
neuroinflammatory landscape in AD.

In summary, our results contribute to the understanding of glial-
related neuroinflammation in AD by evaluating associations between APOE
€4, YKL-40 and tau pathology. Our results highlight the importance of
neuroinflammation in the pathogenesis of AD, especially in the presence of
genetic risk factors such as APOE &4.

Data availability

Source data for the figures can be found in Supplementary Data Files 1-4:
The source data for Fig. 1C is in Supplementary Data 1, the source data for
Fig. 1D is in Supplementary Data 2, the source data for Fig. 1E is in Sup-
plementary Data 3, and the source data for Fig. 2C is in Supplementary
Data 4. Access to analyzed TRIAD cohort data and study materials will be
considered by McGill University to ensure compliance with institutional
intellectual property and confidentiality policies. Anonymized TRIAD data
will be made available by the senior author (Dr. Pedro Rosa-Neto—ped-
ro.rosa@mcgill.ca) to qualified academic investigators for the sole purpose
of reproducing the analyses and results reported in this manuscript. Data
and materials that can be shared will be released under a material transfer
agreement. The Allen Human Brain atlas, including the gene expression
data used in this study, can be accessed here without registration: https://
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