communications medicine

Article

A Nature Portfolio journal

https://doi.org/10.1038/s43856-025-01194-x

Neuro-symbolic Al for auditable cognitive
information extraction from medical

reports

M| Check for updates

George A. Prenosil ® **
Lorenz P. Meier', Kuang-Yu Shi', Axel Rominger ® ' & Ali Afshar-Oromieh'

, Thilo K. Weitzel**, Sandra C. Bello?, Clemens Mingels ®, Giulia Manzini',

Abstract

Plain language summary

Background Large language models (LLMs) such as GPT-4 can interpret free text, but
unreliable answers, opaque reasoning, and privacy risks limit their use in healthcare. In
contrast, rule-based artificial intelligence (Al) provides transparent and reproducible results
but struggles with free text. We aimed to combine the strengths of both approaches to test
whether such a hybrid system can autonomously and reliably extract clinical data from
diagnostic imaging reports.

Methods We developed a neuro-symbolic Al that connects GPT-4 with a rule-based expert
system through a semantic integration platform. GPT-4 extracted candidate facts from free-
text reports, while the expert system verified them against medical rules, producing
traceable, deterministic labels. We evaluated the system on 206 consecutive prostate
cancer PET/CT scan reports, requiring extraction of 26 clinical parameters per report,
generating 5356 data points, and answering three study questions: study inclusion,
recurrent cancer identification, and prostate-specific antigen (PSA) level retrieval. Outputs
were compared against physician-derived references, and discrepancies were reviewed by
a blinded adjudicator.

Results Here we show that neuro-symbolic Al outperforms GPT-4 alone and matches
physicians in structuring and analysing reports. GPT-4 alone achieves F1 scores of 0.63 for
study inclusion and 0.95 for recurrence detection, with 96.6% correct PSA values.
Physicians reach F1 scores of 1.00 and 0.99, with 98.1% PSA accuracy. The neuro-
symbolic Al scores twice 1.00 with 100% PSA accuracy and delivers always an auditable
chain of reasoning. It intercepts two intentionally introduced reports with residual identifiers,
preventing unintended transfer of sensitive data.

Conclusions Unlike standalone LLMs, neuro-symbolic Al can safely automate data
extraction for clinical research and may provide a path toward trustworthy Al in healthcare
practice.

Radiology and nuclear medicine diagnostic reports are still dictated as free
text, and from them structured, reproducible data must be extracted for
clinical trials. Before the advent of large language models (LLMs), natural
language processing (NLP) struggled with language ambiguity or with
unknown semiosis, whereas LLMs such as the Generative Pre-trained
Transformer-4 (GPT-4) already match human cognition across many tasks.

Medical doctors often write reports as free
text, which is hard to reuse for research or
care. A large language model is software that
reads and writes text by imitating large
networks of brain cells. This type of artificial
intelligence can extract and organize
important information from medical reports.
But its reasoning is opaque, answers can be
wrong, and it raises privacy concerns. Rule-
based artificial intelligence is transparent,
responds correctly, and is privacy-protecting
but struggles with free text. We combined
both artificial intelligence types, so each off-
sets the other’s weaknesses. We tested the
system on 206 prostate cancer imaging
reports, where it extracted information cor-
rectly, showed how it reached its answers,
and protected sensitive data. Pairing large
language models with rule-based systems
could make artificial intelligence safer, more
trustworthy, and more useful in healthcare.

However, three fixed constraints block employing LLMs in healthcare:
determinism (answers must not shift with prompt phrasing), traceability
(reasoning must be auditable), and confidentiality (protected health data
must never leak)'”. Achieving all three is still an open challenge and con-
stitutes a major bottleneck for integrating LLMs into clinical workflows and
trials. If it were solved, LLMs could classify clinical reports, match patients to
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trials, and mine unstructured research data®*—capabilities that would
hasten the detection of pandemics7, rare side-effects, or malpractice
patterns’. We therefore wanted to address the pressing problem how to
harness LLMs without sacrificing the above-mentioned healthcare
requirements.

LLMs are vast neural networks trained on web-scale general corpora’
and professional domains, including biomedical literature'’. Belonging to
the branch of stochastic AI, LLMs excel at digesting unstructured text,
coping with ambiguous phrasing®'’, and—because it outputs probabilities—
reasoning under missing data or uncertainty'’. Its learned representations
transfer readily between tasks, so a single model can pivot from trial
matching to guideline summarisation without bespoke re-engineering,
unlike the narrow, task-specific programs that characterised classical expert
systems, i.e. the symbolic AL

Yet the same design brings healthcare-critical drawbacks". Internal
synaptic weights are difficult to explain, so the model’s logic is inexplicable to
auditors'. Pattern matching without formal deduction limits multi-step
reasoning'® and leaves the system blind to out-of-distribution inputs or to its
own nescience'®, Qutputs are stochastic and prompt-sensitive, where minor
re-phrasings of a semantically identical prompt can lead to divergent
answers'’. This may be a feature for creative writing but a liability when
identical clinical facts must yield identical conclusions'. Finally, the dis-
tributed services of the most capable LLMs, such as GPT-4, raise con-
fidentiality and alignment concerns™"”.

Compared to neural Al the older symbolic Al stores knowledge as
human-readable symbols and rules in an ontology, and uses formal logic to
yield deterministic and reproducible outcomes™. This makes inference
chains auditable and allows the program to declare ‘unknown’, ask for some
specific data, or trigger other meaningful fall-back, when a rule cannot fire*".
Early medical expert systems like MYCIN proved this approach in the
1980s”*. However, symbolic Al is labour-intensive to scale and struggles with
unstructured or uncertain inputs, and rapidly evolving medical domains™*.

We therefore propose a unified semantic-neuro-symbolic NLP pipe-
line. The rationale for this approach is that each component offsets the
weaknesses of the others: In our design, GPT-4 harvests clinical facts from
free text”, while a locally hosted expert system (Plato-3) verifies these
extractions against medical rules, generating deterministic, trustworthy
labels™*°. Finally, conventional software provides the practical access nee-
ded for real-world clinical workflows. In combination, these elements create
a system capable of transforming unstructured diagnostic reports into
structured, auditable, and privacy-preserving data suitable for research and
patient care.

Recent gains in hardware throughput and programming techniques™
make real-time integration of large neural models and symbolic reasoning
systems finally practicable”. Interoperability between different Al systems
as well as software required for a meaningful healthcare workflow is still
hard: Symbolic Al neural AL and conventional software all reason at dif-
ferent abstraction levels and data formats™”. To bridge these different
representations of a same problem we built RUDS (Rule-based Unification
of Digital technology using Semantics). This platform provides ‘loose
coupling™ but high cohesion’ through semantic message passing between
diverse components—also known as semantic unification’’. RUDS imple-
ments multiple programming paradigms, which allows diverse components
to exchange and interpret information despite differences in data structure,
programming style, or level of abstraction™, while the embedded expert
system keeps track of context and meta information at all time. By elevating
all connected components to a shared semantic representation’’, RUDS
unites neural cognition with symbolic reasoning in a full semantic-neuro-
symbolic Al stack™, realizing the cognitive computing paradigm™. The
result pairs LLM-NLP with an auditable inference chain from the expert
system™, enabling back-tracing from each final label to the originating
LLM tokens or human prompt”. This capability is crucial in healthcare,
where understanding the ‘why’ behind AI decisions is essential™®”.

Our goal was an exploratory proof-of-concept, demonstrating seamless
cooperation between an LLM and a symbolic expert system in autonomously

compiling structured clinical data from free-text diagnostic reports. Specifi-
cally, our study makes four practical contributions: First, we integrate GPT-4
with the expert system Plato-3 so that extracted facts are validated by medical
rules. Second, each Al-generated label includes the complete symbolic rea-
soning chain and the supporting GPT-4 evidence, providing explainability-
by-design in natural language. Third, we show that the system does not
require retraining of the language model; domain knowledge is provided
entirely through the rule base. Fourth, the architecture is implemented on the
semantic-unification platform RUDS, enabling interoperability with con-
ventional software and realizing the vision of a practical neuro-symbolic
clinical AT*****'. In addition, this work also explains the paradigm-unifying
architecture of RUDS in detail and why it is needed here. Although our
evaluation was modelled after a prior PET/CT clinical study®, it was not
designed to produce new clinical findings. Instead, we show in this proof-of-
concept study how the combined neuro-symbolic Al accurately extracts and
structures 26 clinical parameters from 206 original, unedited [68Ga]Ga-
PSMA-11 reports for recurrent prostate cancer (rPC). The system matches
physician performance, outperforms GPT-4 alone, produces deterministic
results without hallucinations, and prevents privacy breaches by controlling
all data transfer. Taken together, this work demonstrates a practical imple-
mentation of the autonomous, context-aware Al originally envisioned by the
Japanese fifth-generation computing initiative®.

Methods

Patient data

The study retrospectively analysed 206 diagnostic reports from 206 con-
secutive patients who had undergone [*Ga]Ga-PSMA-11 PET/CT scans in
eight months between January and August 2018 at the Department of
Nuclear Medicine, Inselspital Bern, Switzerland, adhering to Swiss ethical
guidelines™. The Cantonal Ethics Committee Bern (Kantonale Ethikkom-
mission Bern, Murtenstrasse 31 in 3010 Bern, Switzerland) approved ret-
rospective usage of the patient reports (KEK-Nr. 2018-00299). All patients
published in this manuscript signed a written informed consent form for the
purpose of anonymized evaluation and publication of their data. No addi-
tional approval beyond that was obtained.

We chose [®*Ga]Ga-PSMA-11 PET/CT reports because they paired a
highly variable free-text narrative—including the patient history—with a
compact, guideline-defined decision scheme, while the cohort size remained
amenable to iterative human cross-checking. This combination creates a
tractable but non-trivial testbed: if the neuro-symbolic pipeline can deliver
deterministic answers here, it is well-poised to scale to larger clinical trials
that share the same ‘unstructured-text + rule set’ pattern.” Because the
retrospective evaluation of PET/CT reports followed the design of a study
published by Afshar-Oromieh et al.’, we were able to demonstrate real-
world applicability, and the experience gained form this study also qualified
the authors to develop the expert system’s ontology.

The diagnostic reports, originally written and checked by three nuclear
medicine physicians unrelated to this study, were formatted into PDF files
according to our institutional standards, codified and anonymized using the
batch processing software PDF Replacer v.1.8.7.0 (pdfreplacer.com), and
split evenly into a development set and a validation set. All reports were
again checked manually for correct anonymization. We fabricated two
wrongly anonymized sets using an author’s name and birthdate for testing
the expert system’s ability to recognize un-anonymized reports before
sending information to the LLM. The reports included 160 patients with
rPC, 11 patients having undergone primary tumour staging (PTS), and 29
patients showing no cancer pathology. Two nuclear medicine physicians
(CM., A.A.O.) consensually extracted 26 study-relevant parameters
(Table 1) from the 206 reports, providing a physician-generated reference
with 5356 data points, e.g. labels. In case a label could not be elicited, both AI
systems and the physicians were instructed to record a ‘N/A’ (not applic-
able). Inclusion and exclusion criteria were as previously published®,
meaning that rPC, PTS, and non-pathological reports needed to be dis-
tinguished. For the study, the 206 reports were split evenly into a develop-
ment set and a validation set.
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Table 1 | 26 study parameters the Al-system was tasked to extract from diagnostic PET/CT reports

Study parameter detection

Study parameter GPT-4-only (LLM)

Neuro-symbolic Al Physician-generated reference

# Label Type Trues Success rate (%) Trues Success rate (%)e  Trues Success rate (%)
1 Anonymization® Yes/No n/a n/a 206 100 206 100

2 Patient name® String 206 100 206 100 206 100

3 Patient age® Integer 206 100 206 100 206 100

4 Exam date® Date 206 100 206 100 206 100

5 PSA value® Number 202 98.1 206 100 199 96.6

6 PSA date® Date 200 97.1 206 100 196 95.1

7 Gleason score® String 206 100 206 100 199 96.6

8 Pre-therapy?® Yes/No 204 99.0 206 100 203 98.5

9 Primary tumour staging®® Yes/No 200 97.09 206 100 205 99.51

10 Pathological report*° Yes/No 189 91.75 206 100 204 99.03

Total success® 1819 98.1+2.7 2060 100.0+0 2030 98.5+1.9

11 TNM String 189 91.7 n/a n/a 190 92.2

12 Ongoing ADT Yes/No 204 99.0 n/a n/a 203 98.5

13 Radical prostatectomy Yes/No 203 98.5 n/a n/a 197 95.6

14 Primary tumour recurrence Yes/No 205 99.5 n/a n/a 204 99.0

15 Primary tumour quantity Integer 199 96.6 n/a n/a 202 98.1

16 LNM occurrence Yes/No 204 99.0 n/a n/a 205 99.5

17 LNM quantity Integer 147 71.4 n/a n/a 201 97.5

18 LNM locus String 203 98.5 n/a n/a 201 97.5

19 Bone metastases occurrence Yes/No 203 98.5 n/a n/a 206 100

20 Bone metastases quantity Integer 187 90.8 n/a n/a 203 98.5

21 Bone metastases locus String 205 99.5 n/a n/a 206 100

22 Organ metastases occurrence  Yes/No 199 96.6 n/a n/a 205 99.5

23 Organ metastases quantity Integer 200 97.1 n/a n/a 205 99.5

24 Organ metastases locus String 200 971 n/a n/a 204 99.0

25 Secondary tumour occurrence  Yes/No 166 80.6 n/a n/a 206 100

26 Secondary tumour locus String 177 85.9 n/a n/a 206 100

Total success overall 4910 95.3+6.8 2060 100.0+0 5274 98.4+1.9

“Meta-parameters determined through rule based reasoning from other parameters.

“Parameters covered by all Al entities examined. All detection rates refer to the retrospectively, manually, retrospectively corrected, “reviewed reference”. ADT androgen deprivation therapy, Al artificial
intelligence, GPT-4 generative pre-trained transformer 4, LLM large language model, LNM lymph node metastases, PSA prostate-specific antigen, TNM Classification of malignant tumours with Tumour
size (T), lymph Nodes (N), and distant Metastases (M); n/a: Parameter was not examined by that entity. Averages are shown with + standard deviation.

Paradigm-integrating platform - theory and implementation

We combined an LLM, an expert system and conventional software into a
semantic neuro-symbolic Al system running on our study software. Table 2
summarises how each system component compensates for the other’s
limitations in this setup.

The study software was developed and operated on RUDS (Zentit
GmbH, Muri bei Bern, Switzerland; ruds.ch), written in Java™8 (Oracle,
Austin, TX, USA) on Netbeans™IDE 8.2 (Apache Software Foundation,
Wilmington, DE, USA) on a Dell Precision 5470 laptop (Dell Inc., Round
Rock, TX, USA) with Microsoft Windows™10. GPT-4 integration required
internet access and an API account from OpenAl Global, LLC (San Fran-
cisco, CA, USA). The temperature setting of GPT-4 was left on its default
value of one when running the analysis in May 2024.

RUDS’s software architecture enables seamless interaction between
diverse computational paradigms of software, thereby removing dependencies
in technology, instruction semantics, data, and process order. It integrates
multiple programming paradigms representing various levels of abstraction
(Fig. 1a) enabling the software to address the entirety of a complex problem™.
The multiple levels of abstraction™ reflect real-life systems, processes or
workflows (Fig. 1b) as needed. As such, process abstraction is the act of

converting a process description into a more abstract form, resulting in a
decrease in model components, interactions, and behavioural complexity.
This allows for a higher-level representation that captures core ideas or
functionality”. Thus, the choice of programming paradigm influences how
software processes data and determines, with the addressable abstraction level,
the addressable complexity and context of a problem®. Abstraction pro-
gramming bridges complexity gaps between system components”, by ‘gluing
meanings of parts of a discourse into a coherent whole™ and retains context
across abstraction levels*. Merely applying computational methods without
considering contextual meaning'' of data will lead to meaningless results”,
which can endanger patient safety and proper study outcomes.

LLMs usually require specific APIs to couple with non-semantic infor-
mation technology. Our top semantic abstraction level with its bidirectional
semantic information flow enables high-cohesion loose coupling®” of
semantic and non-semantic information technologies and serves at the same
time to inform the human user about the system’s processes. It also enables
‘interface reversal,” where LLMs and expert systems can either actively engage
with and utilize any connected application modules, or the application
modules themselves can access Al capabilities. For instance, conventional
software can leverage Al for advanced tasks, such as data interpretation or
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Table 2| Strengths of one system component balance weaknesses of other system components in a semantic-neuro-symbolic

Al setup

COMPARISON OF NEURAL Al, SYMBOLIC Al AND CONVENTIONAL SOFTWARE

System component

1. Neural, stochastic Al: GPT-4

Strengths Weaknesses

+ Accepts unstructured data - Logical reasoning
+ Accepts ambiguity - Factuality

-+ Generalizable - Transparency

+ Huge knowledge - Privacy & alignment

+ Good scalability - Limited interoperability

- Limited real-world access

2. Rule-based symbolic Al: Plato-3

+ Logical reasoning - Struggles with unstructured data

+ Factuality - Struggles with ambiguity

+ Transparency - Works domain specific

+ Privacy & alignment - Limited knowledge

+ Good interoperability - Limited scalability

+ Semantic data representation - Limited real-world access

3. Conventional software: File loader, PDF-reader, Report generator

+ Provides real-world access - “Dumb”, non-semantic

+ Availability - Limited Interoperability

+ Human centric - Works domain specific

+ Privacy & alignment - Uses legacy data formats

Al artificial intelligence, GPT-4 generative pre-trained transformer 4, PDF portable document format.

decision support, while AI can call semantically upon these tools for operations
like data formatting or numerical processing.

To archive this, all application modules of the study software com-
municate semantically through the paradigm-integrating platform. For this,
the platform uses a universal messaging protocol, recursive universal
objects, and a central ‘blackboard™*® acting as a shared information space and
common ground”. The seamless semantic communication across para-
digms (Fig. 1a) enables e.g. numerical procedures working on a low level of
abstraction to ask for support from higher levels of abstraction, e.g. the
expert system, for making decisions about details of their own use in a self-
referencing procedure™. Algorithms at the procedural abstraction level can
therefore adapt at runtime to a given context or to the intent of a compu-
tation that can only be inferred at a higher level of abstraction.

Vice versa, processes on a higher level of abstraction can easily access
functionality of their choice from lower levels to obtain information they
need or to process data as needed for reaching a given goal. Consistently, the
platform uses the same design patterns for cross-paradigm access to a
graphical user interface or even to APIs for third-party applications such as
GPT-4. Information coming from or being send to other digital applications
and databases is always first handled at its native abstraction level and then
made accessible to applications working at lower or higher levels.

The application modules handle tasks such as text extraction, data pre-
processing, and report generation (Supplementary Table S1). All modules
exchange information along with meta-information®, such as Al reasoning
and data origin. Unlike in most conventional software, information and
associated meta-information persists and remains accessible to all subsystems
at all abstraction levels, even when the subsystems themselves lack semantic
capabilities. Finally, the ‘agent’ software design pattern* and the data, context,
and interaction paradigm bestow agency onto parts of the system. Supple-
mentary Table S1 explains the various concepts of the software.

Expert system implementation

The NLP expert system Plato-3 in Prolog™ is an integral part of RUDS.
Plato-3 communicates semantically with GPT-4 and the other required
application modules, and its rule base realizes the ontology software
paradigm™. Plato-3 speaks a distinct German subset of natural language for
oncologic PET reports, using the definite clause grammar formalism™. The

recursively enumerable language spans the full Chomsky hierarchy of for-
mal grammar classes™. Consequently, Plato-3 accepts unknown words from
GPT-4 but provides a defined language set to GPT-4 for unambiguous
communication between the two different AI concepts. This semantic
unification™ ensures that the two Al systems, despite operating with dif-
ferent internal representations and reasoning methods, share a common
semantic framework for consistent and unambiguous communication,
thereby realizing the neuro-symbolic paradigm (Fig. 1a).

Plato-3’s ontology contains facts along with their logical relations,
rules, and problem-solving methods™. In logic, a fact is a statement that is
unequivocally true within a given domain, such as ‘Patient X’s report
mentioned a relapse.” A rule is a conditional statement that connects facts
and enables reasoning or inference, such as ‘If a relapse is mentioned, then
the PET/CT report is classified as ‘no PTS" These constructs allow Plato-3
to use recursive first-order predicate logic for reasoning and deriving new
facts and knowledge from already existing facts".

Here, the ontology encompasses clinical guidelines for anonymization,
study inclusion (Fig. 2), identifying pathological reports, and determining
correct prostate-specific antigen (PSA) values. The ontology can integrate
new facts and rules from various modules, expressed in natural or symbolic

language, enabling self-modification™.

Study aims and workflow
We tasked the system with extracting 26 study parameters (Table 1) from
the manually pre-anonymized and codified 206 PET-reports and answer
three main study questions, relevant for patient inclusion and aims of the
reference study*. The first study question concerned study inclusion: Does
the properly anonymized report describe rPC after radical prostatectomy or
PTS (Parameter 9)? The second study question concerned identifying
reports mentioning pathology: Was a pathology found by the PSMA PET/
CT, was it rPC, and how many tumour locations were found (Parameter
10)? The third study question concerned PSA-levels mentioned in the
reports: What was the PSA-level measured at the time closest before the
PET/CT scan, and what was the time interval between the PSA and the PET
scan (Parameters 5 and 6)?

The answers to these three main study questions could not be simply
parsed from the reports by the AI but required inference from other study
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Fig. 2 | Simplified excerpt of the Plato-3 ontology used to detect PTS reports.
Start 1 yields an initial set of meta-facts, which are re-checked after Start 2.
Rhomboids depict fact checking within a rule. Light-green/red nodes mark inter-
mediate reasoning states that create additional facts; dark-green/red nodes mark
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Example - Rule “No PTS 1™: If the patient has undergone radical prostatectomy and
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tumor staging is ruled out. In contrast, Rule “No PTS 5” reads: If rPC was diagnosed
initially in the 80 days before the PET examination, PTS is still possible. The final
confirmation would then be done here with rule PTS7. ADT androgen deprivation
therapy, PET positron emission tomography, PSA prostate-specific antigen, rPC
recurrent prostate cancer, RPE radical prostatectomy; TNM = Classification of
malignant tumours with tumour size (T), lymph nodes (N), and distant metastases
(M), c-modifier indicates that stage was tumour stage was determined before
treatment.

parameters. To this end, Plato-3 inferred study parameters 1 to 10 from
logical relations between already detected study parameters, while extracting
parameters 11 to 26 primarily involved parsing and structuring text by GPT-
4 and did not require expert system inference (Table 1). This proceeding
reflects the division of labour between the two different Al types.

Before sending data to GPT-4, the workflow (Fig. 1b) included the
TextSplitApp application module segmenting every report into a clinical
history with clinical question, the clinical findings, and the physicians’
conclusions and Plato-3 verifying anonymization. This ensured that the
resulting fragments passed to GPT-4 contained no trackable or sensitive
information. Then the software used pre-engineered prompts to guide
GPT-4in data extraction. We refined these pre-engineered prompts as well
as Plato’s ontology (Fig. 2) through iterative testing on the development
dataset. Most prompts asked GPT-4 to provide a reasoning statement at
the end of its answer. Plato-3 saved GPT-4’s answers together with its
reasoning statements in its database, converted them into semantic facts,
and checked these facts against its rules to create new facts. When finding
controversial facts, Plato-3 re-consulted GPT-4 with its own reasoning.
The primal reasoning of GPT-4 served hereby as a starting point for Plato’s
chain of thoughts. Even though, Plato-3 could not verify GPT-4’s primal
reasoning, it could rule out controversial facts and therefore accept only

reasoning from plausible fact statements as its primal reasoning. All in all,
the expert system takes on the role of a quality control reviewer, verifying
inputs to and outputs from the LLMs, checking data against clinical rules
and study guidelines, and flagging any inconsistencies or breach of rule
with clear reasoning'. Supplementary Table S3 provides a detailed
description of how the software’s core components direct the workflow.

Statistics and reproducibility

First, we compared output from the neuro-symbolic Al e.g. GPT-4 com-
bined with Plato-3, to the physician-generated reference established by two
physicians and one study nurse. Discrepancies between outputs were
manually reassessed by authors A.A.O. and G.A.P. in the respective PET
reports, using the AT’s reasoning chain to identify the underlying cause for
conflict. This human-driven reassessment generated a new reviewed
reference, which served as the new ground-truth for comparing outputs
from GPT-4 alone (GPT-4-only), neuro-symbolic Al, and the original
physician-generated reference.

To avoid circularity in preparing the ground truth, the adjudication
pipeline followed three steps. Dual encoding of every report: an original label
was supplied by the reporting physician, while two Al labels were produced
independently by the neural (GPT-4-only) and neuro-symbolic pipelines.
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Blinded adjudication (A.A.O.): all discordant items were re-read and re-
labelled by a nuclear medicine physician (A.A.O.) who was blinded to which
label came from the AI. Logic concordance check (G.A.P.): the adjudicator’s
decision and the AT’s explicit rule trace were then reviewed by a second
author (G.A.P.). A correction was accepted only if the adjudicator’s rea-
soning and the AT’s rule-based trace were fully congruent; otherwise, the
original human label was retained.

Each of the 206 PET/CT reports represented one independent sample.
For parameter extraction, every report contributed one replicate per para-
meter, yielding 5356 data points in total. Replicates are therefore defined as
individual parameter extractions from independent reports. Each report
was analysed once by GPT-4, once by physicians, and once by the combined
neuro-symbolic AL No technical replicates or repeated runs were used.

Sensitivity, specificity, and predictive performance (F-score) were
evaluated in discriminating pathological cases and identifying PTS patients
for the three comparisons. McNemar’s test with exact binomial testing to
calculate two-sided p-values, with p<0.05 considered statistically sig-
nificant. Agreement with the reviewed reference in identifying the
remaining study parameters was reported as a percentage, with the Pear-
son’s chi-squared multinomial test applied on parameters 2 to 10, which
were shared between GPT-4-only, neuro-symbolic AI and the physician-
generated reference (Table 1). Bonferroni correction was used to correct for
multiple measurements.

Results

Reviewed reference

Plato-3 blocked the two intentionally wrong anonymized data sets; one with
the author’s name and one with the birthdate in plain text. Furthermore, it
flagged 17 reports missing disclaimer text. The latter indicated possibly
missing written consent, which was retrieved in all cases after manual
rechecking. The following manual inspection of discrepancies between the
physician-generated reference and Al results revealed a total of 82 human
errors (Table 1). Furthermore, the neuro-symbolic AT’s reasoning in natural
language (Example given in Fig. 3) was consistently accurate, while GPT-4-
only was not. Therefore, all 32 changes in study parameters 1 to 10 suggested
by the combined neuro-symbolic AI were accepted into the reviewed
reference, while only 52 out of 207 changes in parameters 11 to 26 suggested
by GPT-4-only were accepted here. Since no performance differences were
observed between the development and validation sets, they were combined
for the results. GPT-4 always agreed with Plato-3’s chain of reasoning, when
re-prompted (c.f. Step c in Fig. 3).

Study inclusion

GPT-4-only correctly excluded two PTS patients from the development set
and three from the validation set but missed three PTS patients in each set.
There were no false positive PTS categorizations by GPT-4, and it achieved a
sensitivity of 0.45, specificity of unity, and F-score of 0.63. Under Plato-3’s
supervision, the neuro-symbolic Al correctly excluded all 11 PTS patients
from the cohort, bringing sensitivity, specificity, and F-score to unity.
Manual inspection revealed that the neuro-symbolic AI correctly identified
one PTS patient mislabelled as rPC by physicians, giving a sensitivity of 0.91,
specificity of unity, and F-score of 1 (Table 3).

Table 4 lists each PTS patient that GPT-4 missed. Observed failure
patterns were (i) Trigger-word bias (ii) Missing temporal reasoning (iii)
Hallucinated clinical context when phrasing was ambiguous. Because Plato-
3 re-evaluates every structured fact against explicit guidelines and stored
facts, all six misclassifications were corrected, so the combined neuro-
symbolic system produced the right PTS label in every case.

Pathological reports

Without Plato-3, GPT-4-only correctly classified 176 PET/CT reports as
pathological and 13 as healthy but misclassified 16 cases as pathological and
1 case as healthy, resulting in a sensitivity of 0.99, specificity of 0.45, and
F-score of 0.95. In all 16 false positive cases, GPT-4 answered ‘no’ to specific
questions about primary tumours or metastases but speculated a pathology

due to clinical history. The neuro-symbolic AT made no mistakes and
achieved a sensitivity, specificity, and F-score of unity. In the previously 16
false positive cases, GPT-4 reverted its opinion after receiving Plato-3’s
accordant chain of reasoning. Furthermore, the neuro-symbolic AT identi-
fied one false negative and one false positive pathology classification in the
physician-generated reference, resulting in a sensitivity of 0.99, specificity of
0.97, and F-score of 0.99 (Table 3).

PSA-level and other study parameters

GPT-4-only made four mistakes in the development set and zero mistakes in
the validation set when identifying the latest PSA-level, resulting in an overall
agreement with the reviewed reference of 98.1%. With Plato-3 re-prompting
GPT-4, the neuro-symbolic Al improved agreement to 100%. Mistakes in
identifying the correct PSA-level made by GPT-4 were exclusively due to
erroneously formatted or written PET reports. Examples include missing
measurement units, non-attributable dates, or incorrect designations. These
ambiguities affected also the human readers, as the neuro-symbolic Al
uncovered seven PSA-level mistakes made by the physicians, giving a human
agreement rate of 96.6%. The overall agreement for correctly detecting study
parameters compared to the review standard was 94.7 + 7.1% for GPT-4-
only and 98.4 + 1.9% for the physician-generated reference. The agreement
for correctly detecting study parameters that were covered by the ontology
(Parameter 2 to 9) was 98.1 £2.7% for GPT-4-only, 98.4 + 1.8% for the
physician-generated reference, and 100+ 0% for the neuro-symbolic Al
(Table 1). No significant differences could be observed between the data sets.

Discussion

Our main result is the proof of concept for our approach to realize neuro-
symbolic AL Atautonomously structuring and analysing medical reports the
neuro-symbolic AT outperformed the unaided LLM (GPT-4) and matched
or outperformed trained physicians. GPT-4 alone performed similarly to
previously published results that showed over 90% success in text mining’.
However, when extracting study parameters controlled by the expert, the
combination of GPT-4 and the expert system reached near-perfect accuracy.
This was especially apparent for the three main study questions, where
inference was required. The expert system’s oversight also ensured con-
fidentiality, reducing privacy risks posed by GPT-4’s distributed nature.

Our results explore how a semantic-neuro-symbolic Al can discern
and communicate complex factual issues, such as identifying distinct
patient groups or necessary facts for the replication of the reference
study™. The correct identification of PTS constituted the most demanding
task, requiring the Al to construct multiple fact layers. Checking facts
against a dedicated ontology and using a specific subset of natural lan-
guage removes ambiguity from the workflow and enables GPT-4 to
structure PET reports into validated data without specialized training for
the task. The human operator is always able to retrace step-by-step the
neuro-symbolic Al reasoning for every label, as well as to understand and
correct his own mistakes. Figure 3 demonstrates this traceability and
shows together with Table 4 how the expert system complemented the
LLM in the decision-making process.

A key strength is that we retained every PET/CT report exactly as
dictated by three different staff physicians, each using their own phrasing,
abbreviations and section layout; this heterogeneity shows that the neuro-
symbolic pipeline handles natural language that extends well beyond a single
author-specific template. Additionally, using the publicly accessible GPT-4
and not a specifically trained foundation model makes our findings gen-
eralizable to other LLMs.

Artificial intelligence will be introduced in healthcare, and decision
traceability and fact checking becomes crucial due to the high importance of
accountability. Especially, the correct identification of wrongly anonymized
data and missing disclaimers highlights the need for prudence when using
stochastic ‘black box’ technologies like LLMs. This caution arises from the
potential risks to patient wellbeing and privacy due to opaque decision-
making processes and unclear data handling by unsupervised autonomous
software”.
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a) Plato-3 PTS decision

"fact : current finding is PTS.
because : current finding meets PTS criterion.
because: PTS is possible.
because: current examination is staging.
because: staging information verified_by
LLM.
[ clininfo.staging ]
because: The description of the intensely
PSMA avid lesions in the prostate, lymph
nodes, and bones indicates staging, as the
spread of the carcinoma is being assessed.
(txt)
[ clininfo.stagingReason ]
[ Tag clininfo.staging ]
[ rule_pts_prep_1_staging ]
[rule_pts 2]
and not : current finding is not PTS.
[ notinDB ]
[rule_pts 5]

b) Plato-3 identified controversy

‘fact : status PTS is not confirmed
because: current finding is PTS.
because: current finding meets PTS criterion.
because: PTS is possible.
because: current examination is staging.
because: staging information verified_by LLM.
[ clininfo.staging ]
because: The description of the intensely
PSMA avid lesions in the prostate, lymph
nodes, and bones indicates staging, as the
spread of the carcinoma is being assessed.
(txt)
[ clininfo.stagingReason ]
[ Tag clininfo.staging ]
[ rule_pts_prep_1_staging ]
[rule_pts 2]
and not : LLM is not PTS.
[ notinDB ]
[rule_pts 5]
and because: LLM is not PTS.
because: PTS information verified_by LLM.
[ clininfo.pts ]
and because : The indication for the PET/CT examination seems
to be more related to recurrence search, therapy, or follow-up
monitoring due to the rapid PSA increase and already identified
metastases, not primary tumor staging. (txt)
[ clininfo.pts ]
[ clininfo.pts ]
[ rule_pts7]

might have been incorrect.

PTS: Yes
if you can infer PTS from the text.
PTS: No

PTS: n/a
if you are unsure about the PTS status.

Justification: Your justification
Your original response was: PTS: No
The expert system's response was:

Primary tumor staging Yes,
because the current finding is PTS,

Answer from GPT-4
(String): PTS: Yes

c) Plato-3 re-prompting GPT-4 about PTS

Below, you will again receive a previous prompt. Your answer to this prompt may not have been entirely correct. Therefore, please try again.
To assist you, along with the original prompt, you will receive an explanation written by an expert system explaining why your first answer

Below are the previous prompt, along with your first answer and the expert system’s explanation. Previous Prompt:

Derive from the previous information whether the indication for the PET/CT examination was a primary tumor staging (PTS). You can also
use your previous findings for this. Answer in two lines. On the first line with the following three options:

if you cannot infer PTS from the text, or if the patient came for recurrence search, therapy, or follow-up monitoring.

Respond without any commentary or options, but with a justification on the second line according to:

Your justification was: Justification: The indication for the PET/CT examination seems to be more related to recurrence search, therapy, or
follow-up monitoring due to the rapid PSA increase and already identified metastases, not primary tumor staging.

because the current finding meets PTS criterion and not current finding is not PTS.

The current finding meets PTS criterion because PTS is possible. PTS is possible because the current examination is staging. The current
examination is staging because staging information was verified by LLM. The description of the intensely PSMA avid lesions in the prostate,
lymph nodes, and bones suggests staging, as the spread of the carcinoma is being assessed.

Please respond again with the same keys and two new lines exactly as requested in the prompt above.

(String): Justification: The examination serves the purpose of staging prostate carcinoma by determining the spread of the carcinoma in the
prostate, lymph nodes, and bones, which represents primary tumor staging.

Fig. 3 | Traceable reasoning process in four steps shown on the example of
detecting a PTS-report (Patient 15) as presented to the user. a First step with trace
of Plato-3 decision. b Second step with trace where Plato-3 identified a controversy
between its decision and the decision of GPT-4. ¢ Third step showing the trace with
which Plato-3 re-prompted GPT-4 with the identified controversy and its decision.
The answer from GPT-4 is the fourth step. Green: Plato-3’s predicates, including the
information sources or applied rules in squared parentheses; [notInDB]: Plato-3

could not find the fact in his database. txt: The text contains language elements
unknown to Plato-3. Blue: Plato-3’s reasoning; The originally German text was
translated to English, replicating Plato-3’s distinct set of natural language. LLM large
language model, PET/CT positron emission tomography combined with computed
tomography, PSMA prostate-specific membrane antigen, PTS primary tumour
staging, n/a not available.

Most approaches to combat a LLM’s stochastic output focus on
either fine-tuning the model with specific medical data”, giving access
to external databases, or embedding symbolic knowledge directly into
neural networks”**, which limits these systems to specific, narrowly-
defined tasks. In contrast, our validation study uses the RUDS plat-
form that enables interaction between different programming

paradigms and thus the generic interfacing of different AI concepts
into a single neuro-symbolic system. Instead of tightly coupling
symbolic AI within the neural network, RUDS allows symbolic and
neural engines to prompt each other dynamically and call upon
additional AT models or traditional software as needed. This broadens
the scope of problems such a combined AI can address, moving
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Table 3 | Comparison of GPT-4-only, Neuro-symbolic Al, and Physician-generated reference for discerning primary tumour
staging (PTS) reports and pathological reports mentioning recurrent prostate cancer (rPC)

Confusion matrices for discerning PTS reports and pathological reports

Study question GPT-4-only Neuro-symbolic Al Physician-generated reference
Reviewed standard PTS 206 T 5PP 201 PN 206 T 11 PP 195 PN 206 T 10 PP 196 PN
1P 5TP 6 FN 1P 11TP OFN 1P 10TP 1FN
195N O0FP 195TN 195N 0FP 195 TN 195N OFP 195TN
Pathological report ((PC) 206 T 192PP 14 PN 206 T 177 PP 29 PN 206 T 177 PP 29 PN
177P 176 TP* 1 FN* 177P 177 TP OFN 177 P 176 TP 1FN
29N 16 FP* 13 TN* 29N 0FP 29 TN 29N 1FP 28 TN

FN false negative, FP false positive, N negative, P positive, PN predicted negative, PP predicted positive, PTS primary tumour staging, T total, TN true negative, TP true positive, GPT-4 generative pre-
trained transformer 4, rPC recurrent prostate cancer.
*Qutput set for GPT-4-only mentioning rPC differed differed significantly (o < 0.05) from the reviewed standard (McNemar’s exact test).

Table 4 | Qualitative analysis of all six PTS reports not detected by GPT-4

PTS reports not detected by GPT-4

Patient GPT-4 explanation — translated from German to Root cause of LLM error Expert-system check
English

15 “The indication for the PET/CT examination seems to be  Hallucinated evidence: Pre-existing metastases were not Table Ill shows the full expert-
more related to recurrence search, therapy, or follow-up mentioned in the report; LLM inferred them. system-LLM dialog for this patient
monitoring due to the rapid PSA increase and already regarding PTS.
identified metastases, not primary tumour staging”

50 “The PET/CT indication is suspicion of tumour recurrence,  Incomplete premises: The LLM assumed that a PET/CT Rule PTS-2 with prostate was
not primary-tumour staging.” performed on a previously biopsied patient is a follow-up biopsied and rule PTS-4 with

exam. However, biopsies followed shortly by a PET/CT PSA > 25 ng/ml.
indicate PTS.

80 “The patient already has a known prostate-cancer Hallucinated evidence: The report mentioned explicitly that ~ Rule PTS-3 TNM with c-modifier
diagnosis and has received radical radiotherapy and no therapy was performed. and no “no PTS”— keep PTS.
hormone therapy, so the PET/CT is for follow-up,
not PTS.”

173 “The purpose was to check for bone or lymph-node Misinterpreted wording: “question of metastasis” in Rule PTS-5 compares diagnosis
metastases, suggesting follow-up or recurrence search, diagnostic exam indication as proven metastasis. date with scan date (<80 days) —
not PTS.” still PTS possible.

187 “Extent evaluation before planned radiotherapy and Misinterpreted wording: “Suspected lymph node Rule PTS-3 TNM with c-modifier—
suspected nodal metastasis indicate follow-up ortherapy =~ metastasis. Expansion prior to planned radiotherapy” in keep PTS.
planning, not PTS.” diagnostic exam indication as proven metastasis.

204 “Because metastases are mentioned and prostate cancer  Hallucinated evidence: no metastases were described and Rule PTS-3 TNM with c-modifier—

has already been diagnosed, the PET/CT appears to be
forfollow-up or metastasis search, not for primary-tumour
staging.”

the patient history explicitly mentioned “no evidence for
lymph node metastases”. GPT-4 inferred their presence
and re-labelled the study as recurrence follow-up.

keep PTS.

Thetable lists each patient that GPT-4 missed, gives the original GPT-4 explanation translated to English, identifies (what we think) was the root cause, and shows how the Plato-3 expert system over-ruled
the error. GPT-4 generative pre-trained transformer 4, LLM large language model, PET/CT positron emission tomography combined with computed tomography, PSA prostate-specific antigene, TNM
Classification of malignant tumours with tumour size (T), lymph nodes (N), and distant metastases (M).

beyond task-specific applications to an ‘artificial expert’ capable of
handling a wider range of challenges.

Generic interfacing of fundamentally different Al and software types is
nearly impossible without paradigm integration. Paradigm integration itself
became possible because the required progress for understanding and
supporting composition operations within programming environments*
has been finally met. As a result, we have developed interfaces suitable for
paradigm unification and the realization of the cognitive computing™ and
neuro-symbolic Al paradigm. Our approach mirrors real-world processes
running at different abstraction levels™, simplifying them into manageable
components, while maintaining core functionalities of its individual
modules”. This contrasts with contemporary multi-paradigm software,
which use programming paradigms mostly in an isolated manner to address
very specific problems.

Cognitive computing, which imparts meaning to data from context
and intention, is ideal for understanding, designing, and controlling com-
plex systems that handle heterogeneous data and exhibit unexpected
behaviour’*. While solving complex problems, such as compiling studies

from unstructured medical data can be difficult, validating the problem’s
solution is generally easier. Therefore, our neuro-symbolic Al uses the LLM
for problem solving but employs a rule-based expert system to control input
and validate the LLM’s outputs against its human designed ontology.
Compared to simply using a knowledge base to augment an LLM”, our
expert system with its ontology uses recursive predicate logic™ to verify and
refine decisions”. This enables iterative reasoning, self-referencing’', and
the handling of emergent properties. Furthermore, creating an ontology
effectively lessens the need to train specific Al foundation models and allows
using boilerplate LLMs.

Contrary to standalone generative Al, our neuro-symbolic Al can be
allowed to self-modify” and to acquire new knowledge from unstructured
sources like medical textbooks or scientific papers while working on its tasks.
We are currently exploring this capability to have GPT-4 write new rules
into the ontology, while the expert system constructs thereof new prompts
for GPT-4, solving the ontology-scaling problem®.

Three caveats must be noted. First, the ontology was tailored to a small
local data set, lacking rules for some parameters, such as pathology

Communications Medicine | (2025)5:491


www.nature.com/commsmed

https://doi.org/10.1038/s43856-025-01194-x

Article

localization and lesion quantity. However, Plato-3 recognizes and com-
municates unknowns, handling such cases by using fall-back rules. Second,
GPT-4 receives continuous updates, so the results reflect the system’s
abilities at a particular time. The expert system’s ontology, however, rectifies
output regardless of LLM updates. Third, mistakes undetected by the neuro-
symbolic Al in the original physician-generated reference would be carried
over to the new reviewed reference, i.e. the new ground-truth. Also, some
circular-validation risk remains whenever an Al may outperform its human
benchmark. To curb that risk we accepted a revision only when the expert
system’s rule trace and the adjudicator’s reasoning independently agreed.

Currently under development is a method for giving direct access to a
workstation and using a multi-modal, vision-capable LLM, where our system
can enter data directly into trial forms without changing an existing workflow.
Using an expert system for auditing LLM decisions also offers the chance for
LLM applications to pass medical device safety regulations, such as receiving a
CE marking™. However, this does not absolve future work from including
multi-centre data to test robustness across institutional reporting styles and to
check against possible demographic bias introduced by the LLM.

Nevertheless, the lessons learned from this proof of principle are
already applicable to large multicentre clinical trials: With our paradigm-
integrating methods, language barriers, idiosyncrasies, or incompatible
information technology no longer hinder evaluations of transnational
datasets. Furthermore, LLMs under the transparent control of an expert
system can be applied wherever humane rules and values must be
respected”’, such as indexing electronic patient dossiers or supervising
clinical workflows’.

Conclusion

We conclude that our work offers a solution to errors and omissions, lack of
transparency, and privacy risks of generative Al. Our rule-based quality
control of LLMs permits their safe use structuring free-text from radiological
reports. Hyper-exponential growth of AI technology will increasingly
integrate AI into human-cantered tasks like health services, and future Al
will likely instruct people rather than merely assisting them®. Having
comprehensible AT decisions will therefore be crucial. Our work prepares for
this paradigm shift by incorporating controlling and auditing mechanisms
into autonomous Al systems, towards addressing the recognized needs for
transparent, fair, robust, and ethical AI*.

Data availability

The source data and statistical analyses underlying Table 1 and Table 3 are
provided as Supplementary Data 1 (Excel file). All patient findings and
reports can be shared in anonymized form upon reasonable request. All data
requests must be submitted to author A.A.O (ali.afshar@insel.ch).

Code availability

The RUDS code that supports the findings of this study are available from
SCCE GmbH but restrictions apply to the availability of these data, which
were used under license for the current study, and so are not publicly
available. Data are however available from the authors upon reasonable
request and with permission of SCCE GmbH. The ontology code and GPT-
4 prompts are given in the Supplementary Data 2.
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