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Abstract

Background Heart failure (HF) is a major global cause of death. Early risk prediction and
intervention could mitigate disease progression. We aimed to improve HF prediction by
integrating genome-wide association studies (GWAS)- and electronic health records (EHR)-
derived risk scores.
Methods We previously performed a large HF GWAS within the Global Biobank Meta-
analysis Initiative to create a polygenic risk score (PRS). Three Michigan Medicine (MM)
cohortswere used to develop the clinical risk score (ClinRS): 1) PrimaryCareProvider cohort
(MM-PCP; N = 61,849), 2) Heart Failure cohort (MM-HF; N = 53,272), and 3) Michigan
Genomics Initiative cohort (MM-MGI; N = 60,215). To extract information from high-
dimensional EHR data, we leveraged natural language processing to generate 350 latent
phenotypes representing EHR codes and used coefficients from LASSO regression on
these phenotypes in a training set as weights to calculate ClinRS in a validation set. Using
logistic regression, model performances were compared between baseline model and
modelswith risk scores added: 1) PRS, 2) ClinRS, and 3)ClinRS+PRS.We further compared
the proposed models with Atherosclerosis Risk in Communities (ARIC) HF risk score.
ResultsPRSandClinRS each predict HFoutcomes significantly better than the baselinemodel,
up to eight years prior to HF diagnosis. Including both PRS and ClinRS further improves
prediction performance up to ten years prior to diagnosis, two years earlier than either score
alone. Additionally, ClinRS significantly outperforms the ARIC model one year prior.
ConclusionsWe demonstrate the additive power of integrating GWAS- and EHR-derived risk
scores to predict HF cases prior to diagnosis. This standardizable and scalable risk predictor
may enable physicians to provide earlier interventions to improve patient outcomes.

Heart failure (HF) affects an estimated 64million patientsworldwide,with a
growing burden anticipated as the population ages1,2. Echocardiographic
screenings in the general population have revealed that up to half of the
individuals living with heart failure may be undiagnosed, hampering earlier
access to mortality-reducing treatments3,4. Applying risk prediction tools

enables earlier identification of diseases, thereby shifting the trajectory of
disease progression towards prevention. Additionally, gaining a deeper
understanding of the key risk factors for heart failure could shed insight into
themechanisms of disease progression and guide therapeuticmanagement.
We sought to evaluate the predictive accuracy of a modern risk assessment
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Plain language summary

Heart failure (HF) is a leading cause of death
worldwide. Early identification of individuals
at high risk could facilitate interventions to
slow disease progression. In this study, we
develop an approach to improve HF risk
prediction by combining patient genetic
information and clinical information from
electronic health records (EHR). We create
two risk scores: a polygenic risk score (PRS)
based on genetic information, and a clinical
risk score (ClinRS) based on patient EHR.We
test how well these scores predict HF before
diagnosis. Both PRS and ClinRS improve
predictions individually and identify high-risk
individuals up to eight years in advance.
When used together, they provide greater
accuracy, predicting HF up to ten years
before diagnosis.We suggest that combining
genetic and clinical information could help
doctors detect HF earlier for better treatment
and prevention strategies in the future.
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tool that incorporates diverse clinical and genetic data compared to genetic
or clinical prediction models alone4–6.

Clinical prediction tools, such as the Framingham risk score (FRS) and
atherosclerotic cardiovascular disease (ASCVD) risk score (also known as
the pooled cohort equation [PCE]), are commonly used to predict cardio-
vascular disease (CVD). These have been widely applied for CVD man-
agement and updated over time to include a variety of demographic,
laboratory, hemodynamic, andmedical details7–11.Due to theheterogeneous
nature of heart failure, the prediction of incident disease has been less well
established. Extant HF risk scores include the Framingham Heart Study
score12, Health ABC score13, and the ARIC HF risk score14. However, it is
difficult to fully capture the risk based solely on clinical data, which could
lead to incomplete assessment as it overlooks genetic information that
contributes to disease risk15–17. Risk scores incorporating both diverse clin-
ical data and well-powered genetic data are needed for a more precise
prediction of heart failure risk.

Genome-wide polygenic risk scores (PRS) estimate an individual’s
cumulative genetic risk for a given disease as a weighted sum of genetic
effects estimated fromGWAS for thousands to millions of genetic variants.
Multiple studies have demonstrated that incorporating a PRS into disease
risk prediction can enhance prediction accuracy and further improve early
prevention6,18. Research in a Chinese population with HF with preserved
ejection fraction demonstrated that a 69 variant PRS improved the pre-
diction of 1-year CV death compared to clinical risk scores with or without
blood biomarkers such as NT-proBNP19, but failed to assess clinical and
genetic factors combined. Multiple efforts have been made to summarize
genetic and clinical information for early identification of high-risk patients;
however, integrating high-dimensional genome-wide association study
(GWAS) and electronic health record (EHR) into heart failure prediction
models has yet to be assessed20–22.

We explore approaches to enhance thepredictionof heart failure events,
leveraging both genetic and clinical data. We integrate recent insights on the
genetic underpinnings of heart failure with an EHR-based clinical scoring
system, referred to as the clinical risk score (ClinRS), to predict heart failure.
The PRS was powered by the largest heart failure GWAS23 to date, while the
clinical risk assessment borrowed natural language processing (NLP) tech-
niques to capture co-occurrence patterns of medical events within the
structured EHR data. From the proposed approaches above, we summarized
907,272 genetic variants into a PRS and 29,346medical diagnosis codes into a
ClinRS. We hypothesized that the additive power of integrating PRS and
ClinRS would result in the most powerful heart failure prediction model. In
this study, we describe the development of a ClinRS for heart failure, which is
created from NLP-extracted medical code embeddings that are clinically
meaningful. Together with the PRS, this score predicts heart failure better
than the established ARIC-HF score up to 3 years before diagnosis.

Methods
To generate the most statistically powered genetic predictor, we meta-
analyzed multiple biobank datasets within the Global Biobank Meta-
analysis Initiative (GBMI) consortium to generate a heart failureGWAS23,24.
TheGBMI consortium aims to enhanceGWASpower and improve disease
risk prediction through international collaboration among biobanks across
the world, and make all GWAS summary statistics open-access for
researchers. The case count of the heart failure GWAS from GBMI is the
largest to date, and the PRS generated from GBMI meta-analysis GWAS is
shown to have higher accuracy in predicting future heart failure events23.
TheUniversity ofMichigan’s Institutional ReviewBoard approved research
aims and access to the data sets (HUM00128472, HUM00143523,
HUM00126227), and participants provided informed consent.

Michigan Medicine EHR system and biobank
Three cohorts ofMichiganMedicine (MM) patientswere used in this study:
(1) PrimaryCare Provider cohort (MM-PCP;N = 61,849), (2)Heart Failure
cohort (MM-HF;N = 53,272), and (3)MichiganGenomics Initiative cohort
(MM-MGI;N = 60,215) (Supplementary Fig. 1, SupplementaryTable 1).All

individuals in the three cohorts underwent at least one surgical procedure
within the MM healthcare system. The EHR information utilized is Inter-
national Classification of Disease (ICD) codes, both ICD-9 and ICD-10
diagnosis codes, from the Epic EHR system implemented at Michigan
Medicine. The data were recorded between 2000 and 2022, and the deri-
vation and validation datasets had a median of 10 years of EHR data.

TheMM-PCP cohort includes patients (i) with primary care providers
within Michigan Medicine, (ii) who had received an anesthetic, (iii) whose
most recent visit was in 2018 or later, and iv) who had at least five years of
medical encounter history (difference between last and first encounter year
≥5) within Michigan Medicine. Exclusion criteria for this cohort include
patients (i) recruited in theMichiganGenomics Initiative and (ii) predefined
in the Heart Failure cohort to ensure that no samples overlap with datasets
used to validate the clinical predictor. TheMM-HF cohort was defined by a
previously validated heart failure phenotyping algorithm4. The phenotyping
algorithm incorporated ICD diagnosis codes, medication history, cardiac
imaging, and clinical notes in the form of free text to assign the disease
outcome for each individual. Clinical expert adjudicationwas performed on
279 individuals to serve as the gold-standard label for algorithm validation.

The Michigan Genomics Initiative (MGI) is an EHR-linked biobank
hosted at the University of Michigan with genotype data linked to EHR
information to facilitate biomedical research.With both genetic and clinical
data available for all individuals in MM-MGI, we were able to validate the
predictionmodels using genetic and/or clinical information. TheMM-MGI
cohort used in this study is from data freeze 4 (release date: July 2021)25.

The study cohorts were subset to individuals who self-reported as
EuropeanAmerican in theMM-HF andMM-MGI cohorts, to avoid having
reduced performance of genetic predictors in non-white ancestries, thereby
biasing themodel evaluation towards favoring clinical predictors. TheMM-
HF and MM-MGI cohorts were comprised of 90% and 86% European
American individuals, respectively.

We refer to theMM-PCP cohort as the code embedding derivation set,
MM-HF cohort, excluding individuals in the MM-MGI cohort as the
ClinRS weights derivation set, and the intersection of the MM-MGI and
MM-HF cohort as themodel validation set. Themodel validation set has no
overlap with the code embedding and ClinRS weights derivation sets
(Supplementary Fig. 1). First, the code embedding derivation setwas used to
learn EHR code patterns and build medical code embeddings for down-
stream analysis. Patients with a rich medical history and active records
within the systemwere included for code co-occurrence pattern learning in
the code embedding derivation set. Next, the labels curated in the MM-HF
cohort served as the outcome in the ClinRS weights derivation set to obtain
theweights to calculateClinRS for heart failure cases prediction. TheClinRS
weights derivation set consisted of 7120 individuals from MM-HF and
excluded those from the MM-MGI. Last, the model validation set (inde-
pendent from the ClinRS weights derivation set) was used to assess the
prediction ability of PRS and ClinRS. The model validation set included
20,279 participants, who were drawn from the overlapping populations of
theMM-MGI andMM-HF cohorts. All patients in themodel validation set
were assigned a label for heart failure outcome using a phenotyping, fully
genotyped to calculate PRS, and had EHR data available to generate ClinRS
(Supplementary Fig. 1).

Polygenic risk score (PRS)
The polygenic risk score was derived from the heart failureGWAS conducted
by theGlobal BiobankMeta-analysis Initiative.GBMI is a global collaboration
network of 23 biobanks across 4 continents and with over 2.2 million parti-
cipants (as of April 2022)26. The summary statistics from nine of the GBMI
heart failure contributing cohorts (BioMe, BioVU, Estonian Biobank, Finn-
Gen, HUNT, Lifelines, Partners Biobank, UCLA Precision Health BioBank,
and UK Biobank) were meta-analyzed, resulting in 974,174 individuals of
European ancestry in the combinedGWAS. These nine biobanks contributed
a total of 51,274 heart failure cases and 922,900 healthy controls, defined by
phenome-wide association study code (phecode)27 428.2 (heart failure, not
otherwise specified)27,28. IRB and informed consent information for GBMI
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cohorts is described in Zhou et al. 24. The GBMI heart failure study has the
highest heart failure case number in a published GWAS study to date.
Advanced genotyping imputation reference panels were used in the partici-
pating cohorts, resulting in estimatesof variationat additional genetic variants.
Theseadvancements in theGBMIheart failureGWASimproved the statistical
power to more precisely identify the genetic risk associated with the
outcome29,30. In this study, we used the GBMI European-ancestry meta-ana-
lysis GWAS to generate a heart failure PRS, which is the current best-
performing heart failure PRS for European American individuals (Fig. 1)23.

The weights used to create PRS were calculated with PRS-CS31, using
European individuals from the 1000 Genome and UK Biobank combined
cohort as the LD reference panel32,33. The meta-analyzed heart failure
GWAS summary statistics fromGBMI used in this studywere independent
from the validation set used in the analysis to compare the effect con-
tribution between genetic and clinical information for predicting heart
failure. PRSwere calculated for individuals in theMM-MGI cohort. Possible
population substructurewas controlledby regressing the rawPRSon the top
10 principal components (PC) derived from the patient’s genotype file. The

Fig. 1 | This study leveraged genetic and clinical
data to improve heart failure case prediction.
Polygenic risk score (PRS) was generated (a) using
the largest heart failure genome-wide association
study (GWAS). b Heart failure GWAS were con-
ducted in nine biobanks with a total of 974,174
individuals and meta-analyzed by the Global Bio-
bank Meta-analysis Initiative. c The meta-analyzed
summary statistics were further used to calculate
individuals’ PRS and (d) a weighted average of the
genotypic risk.
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resulting residuals were inverse normalized to transform the final PRS score
into a standard normal distribution.

Clinical risk score (ClinRS)
To extract clinical information from the EHR, we developed machine
learning methods to efficiently summarize large-scale, structured, long-
itudinal EHR data into a clinical risk score, ClinRS, for heart failure. We
treated medical diagnosis codes as ‘words’ in human language. Some tem-
poral information is retained as ICD codes from the same day are con-
catenated into a ‘sentence.’ Using the concept of word embeddings, we
capture semantic relationships between words and contextual information
about words based on the idea that words with similar meanings tend to
occur in similar contexts, also known as the distributional hypothesis34. To
do this, we adapted NLP methods to capture the co-occurrence pattern
among ICD code sentences in the high-dimensional medical records. The
co-occurrence relationship among codes was then utilized to extract inde-
pendent information and converted into low-dimensional numeric vectors
resembling the context and semantics of medical events.

First, we treated 29,346 EHR diagnosis ICD codes as ‘words’ and
concatenated all codes documented in a patient’swholemedical history into
an ‘article’ using the MM-PCP cohort. After we created the article from all
patients, we adapted an NLP technique to obtain numeric vector repre-
sentations that captured the semanticmeaning and context ofmedical codes
(Supplementary Methods)35–37. These vector representations were subse-
quently validated to be clinicallymeaningful, in the sense that they captured
the concept of each code and showed high concordance with expert
manually curated phenotypic grouping labels27. We refer to these repre-
sentations as medical code embeddings hereon.

We leveraged themedical code embeddings to createClinRS,which is a
linear combinationof (i)ClinRSweights from theClinRSweights derivation
set (MM-HF, excludingMM-MGI) and (ii) patient latent phenotypes in the
model validation set (intersection of MM-MGI and MM-HF, entirely
independent from the derivation set). To create ClinRS weights, we first
generated patient-level latent phenotypes that combine code embeddings
and patients’ code utilization (SupplementaryMethods).We then regressed
heart failure outcome on latent phenotypes, and the regression coefficients
were utilized as weights for the calculation of the ClinRS.

To summarize the multi-dimensional patient-level latent phenotypes
into a single risk score, we applied the least absolute shrinkage and selection
operator (LASSO) for feature selectionwith 10-fold validation for shrinkage
parameter tuning38. The LASSO leverages the L1 penalty on the regression
coefficients to eliminate non-important variables, avoid overfitting, and
achieve better prediction. Next, the coefficients yielded from the LASSO
model were used as weights (effect sizes) to calculate a weighted sum of
patients’ clinical risk. In the ClinRS weights derivation set (individuals in
MM-HF excluding MM-MGI), the patients’ latent phenotypes were cal-
culated using EHR records one year prior to heart failure diagnosis (Sup-
plementary Fig. 1). The heart failure outcome was regressed on 350 latent
phenotypes and adjusted for age, sex, and healthcare utilization using
logistic regression with L1 regularization. Three patient characteristics
known to be strong predictors of the outcome (age, sex, and healthcare
utilization) were forced into the model with no shrinkage. Patients’
healthcare utilizations were summarized by the number of months of
encounters recorded in the EHR. Lastly, the trained ClinRS weights were
combinedwith patient-level latent phenotypes in the validation set to create
the final ClinRS (Supplementary Methods). With these steps, we success-
fully reduced the data dimension from 29,346 unique ICD codes to 350
latent phenotypes, then to a single risk score (Fig. 2).

Statistics and reproducibility
Statistical analysis was performed usingR v4.0.3. First, we validatedwhether
the medical code embeddings generated in the MM-PCP cohort
(N = 61,849) were clinically meaningful and suitable for generating a
ClinRS, andwhether the embeddings could capture the information hidden
in the complex EHR dataset. We used the cosine distance between a pair of

codes to classify whether a code pair shared the same expert manually
curated phenotypic grouping, phecode (i.e., have similar clinical concept)
and calculated the concept-AUC. Concept-AUC is the AUC for identifying
code pairs in the same phecode group, whichwas used to aid grid search for
optimal NLP-derived medical code embeddings based on existing clinical
concept ontology (Supplementary Methods).

We conducted analyses within a cohort of 20,279 individuals in the
model validation set (intersection of MM-MGI and MM-HF) with at least
one year ofmedical history prior to a heart failure diagnosis in theMichigan
Medicine health system (Supplementary Fig. 1). Ten different datasets with
time point cutoffs, one year apart from one year to ten years prior to disease
diagnosis, were applied to the analysis. Individuals with no medical history
prior to the timepoint cutoffwere removed fromthe corresponding analysis.

Wefit four logistic regressionmodels topredictwhether patients have a
heart failure diagnosis, and further evaluated the accuracy among models
with different risk predictor(s) for all 10 timepoints, one to ten years prior to
disease diagnosis. The baseline model included patients’ demographic
information (age at diagnosis and sex), and three additionalmodelswith the
risk score added: (i) PRS, (ii) ClinRS, and (iii) PRS+ClinRSwere created to
compare the improvement in model accuracy from the baseline model. In
the PRS and PRS+ClinRS models, the top ten PCs derived from patients’
genotype data were adjusted to account for the population structure39.

We further compared model performance with the existing HF risk
score from the Atherosclerosis Risk in Communities (ARIC) study14. The
components of the ARIC HF risk score include demographic information,
vital signs, smoking history, medication history, disease diagnosis, and
biomarker (N-terminal pro-B-type natriuretic peptide [NT-proBNP]). Two
versions of theARICHF risk scorewere published: (1) amodelwithoutNT-
proBNP and (2) a model that included NT-proBNP as a predictor. In this
study, we were only able to implement the model without incorporating
NT-proBNP, asmost of the patients do not have this biomarker available in
our dataset. Missing information was imputed as zero for the predictors in
the ARIC risk score calculation to keep the sample size in the testing set
consistent across different risk score models.

Model performances were compared using 10-fold cross-validation
area under the receiver operating characteristics (AUC), and the precision-
recall AUC calculated using the R package PRROC. We summarized the
AUCs of seven models: baseline (age and sex), PRS, ClinRS, ClinRS+ PRS
model, ARICHF risk score, ARIC+ PRS, andClinRS+ARIC+ PRS, each
built from 10 time points. The analysis was performed using European
ancestry samples only.

Sensitivityanalysis removingcirculatory systemdiagnosiscodes
To further verify the validity of ClinRS, additional analyses were conducted
to examine the robustness of the co-occurrence patterns captured by the
unsupervised NLP algorithm. We created a ClinRS without circulatory
system information (ClinRS-NoCirc) by excluding ICD diagnosis codes
belonging to ICD-9 Seventh Chapter (390–459) and ICD-10 Chapter IX
(I00–I99): Diseases of the Circulatory System. The ClinRS without a cir-
culatory systemwas further used in model prediction to evaluate the ability
of the proposed method. The goal of the sensitivity analysis was to predict
disease outcome (heart failure) without directly associated diagnosis
information (circulatory system diagnosis codes). We excluded 1340 cir-
culatory system diagnosis codes (459 from ICD-9 and 881 from ICD-10)
and used the rest of the 28,006 codes to create patient-level latent pheno-
types and applied the newly derived latent phenotypes with ClinRS weights
derived previously to generate ClinRS-NoCirc.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
In this study, we utilized three independent datasets (Supplementary Fig. 1)
at Michigan Medicine to achieve two main goals: (1) obtain medical code
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embeddings using NLP techniques in EHR data and (2) improve heart
failure prediction usingPRS andClinRS. First, we used theMM-PCP cohort
with a total of 61,849 individuals and 159,273,800 diagnosis coding records
from 2000 to 2022 to learn the medical code co-occurrence patterns and to
extract medical code embeddings representing the clinical meaning of each
code. The medical code embeddings trained fromMM-PCP were validated
using phenotype grouping labels to evaluate whether vector representations
derived from an unsupervised NLP method are clustered in similar ways
compared to expert, manually curated code grouping (Supplemen-
tary Fig. 2).

Next, we built two risk scores, PRS andClinRS, in themodel validation
set (intersection of MM-MGI and MM-HF) to predict future heart failure
cases. The PRSwas calculated using heart failureGWAS summary statistics,
meta-analyzed from nine biobanks in GBMI (independent fromMichigan
Medicine)23. We chose the European ancestry GWAS summary statistics
(51,274 cases and 922,900 controls) as the base of our PRS to match the
European ancestry of MM cohorts due to its superior performance in the
European ancestry individuals in the original publication. From these
summary statistics, a total of 907,272 genetic variants were integrated into a
polygenic risk score.

Fig. 2 | Clinical risk score (ClinRS) was created
using a natural language processing method to
extract clinical concepts of each EHR code and
summarize patients’ phenotypic risk. a Michigan
Medicine EHR dataset of 61,894 patients with
29,346 unique codes was used to (b) learn code co-
occurrence patterns, and the information was fur-
ther used to (c) generate patients’ latent phenotypes
usingmedical code embeddings and diagnosis codes
in the patients’ EHR. d Next, we regressed heart
failure outcome on patients’ latent phenotypes to
derive the weights of ClinRS.
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TheClinRS calculation required two steps: (i) create patient-level latent
phenotypes and (ii) derive weights (effect sizes) to calculate ClinRS. We
generated medical code embeddings for 29,346 medical codes from MM-
PCP, and then used the medical code embeddings to create 350 latent
phenotypes for each patient in MM-HF. To derive weights for the ClinRS,
we regressed heart failure outcome on latent phenotypes in the ClinRS
weights derivation set (MM-HF, excluding MM-MGI) and extracted the
effect sizes as ClinRSweights. The ClinRSweights derivation set had a heart
failure incidence of 330 out of 7120 patients (4.6%), whereas in the model
validation set, we observed 576 (2.8%) heart failure cases out of 20,279
patients (Supplementary Fig. 1). Our method integrated 29,346 medical
diagnosis codes into a single clinical risk score (ClinRS). We further cal-
culated the ARIC heart failure risk score to compare the prediction per-
formance of the proposed model with the existing risk score. Details of the
ARIC HF risk score were described in the statistical analysis section.

NLP extracted medical code embeddings are clinically
meaningful
A smaller time window size t and inclusion of more features d in a code
embedding yielded higher accuracy on identifying code pairs in the same
phecode group. We found that diagnosis codes recorded on the same day
(t = 1) provided the most information about code relationships. By holding
constant embedding dimension d while varying time window size t, the
highest concept-AUC was consistently found from co-occurrence matrices
constructed based on codes that appeared within 1 day (Supplementary
Fig. 2). In general, the higher the embedding dimension d, the higher the
concept-AUCwas observed. Themedical code embeddings generated from
a time window t = 1 day with embedding dimension d = 350 yielded the
highest concept-AUC of 0.78 in the MM-PCP (Supplementary Fig. 2).

The accuracy attenuated linearly when the window size increased. For
example, concept-AUC with embedding dimension d = 350 decreased to
0.76 for codes that co-occurred within 1 week (7 days), and dropped to the
lowest of 0.73 for codes that co-occurred within 2 months (60 days). One
possible explanation could be that diagnostic codes were often all billed on
the sameday, e.g., on the last day of hospitalization.Additionally, expanding
the time window for code co-occurrence calculation could potentially
introduce noise since diagnosis codes recorded on different daysmay not be
related to the same medical event.

We also found that the concept-AUC plateaued with up to embedding
dimensions of 300–500, depending on the time-window. This finding is
similar to previous reports40–44. This result supports the notion that the
medical code embeddings derived through unsupervised learning were

clinically meaningful and validated by an expert, manually curated phe-
notypic grouping. The medical code embeddings corresponding to the
above-chosen tuning parameters were further used to calculate patient-level
latent phenotype in this analysis.

In addition to numerically evaluating the semantic resemblance of
vector representations using concept-AUCs, we further assessed the
semantic relationship graphically using a heatmap of the cosine similarity
scores (Supplementary Fig. 3). In this study, we used ICD-9 SecondChapter
(140–239): Neoplasms as an example to discern how the similarity patterns
were formulated among each cancer code. Cancer codes were selected to
demonstrate the similarity patterns of code pairs due to their distinct organ
system-specific sub-chapter within the cancer codes. For example, codes
from cancer of digestive organs (ICD: 150–159) and cancer of respiratory
organs (ICD: 160–165) are both cancer codes, but for different organs and
were therefore expected to have different patterns and concepts.

As anticipated, we observed that the same ICD-9 diagnosis codes and/
or nearby codes (off-diagonal line in Supplementary Fig. 3) had higher
cosine values between their embeddings, indicated by the darker color on
the off-diagonal line and the band surrounding it. Furthermore, clear dis-
tinctions crossing different sub-chapters were found. These results suggest
the contextual representationswere clinicallymeaningful since related types
of cancers from the same organ system had more similar contexts and
patterns of co-occurred comorbidities, treatments, or procedures. Con-
versely, lower cosine scores were found in code pairs between different sub-
chapters of cancer diagnosis ICD-9 codes.

PRSandClinRSeachpredict heart failure cases up toeight years
in advance
We assessed the accuracy of using genetic and clinical information, indi-
vidually, in predicting future heart failure. Our evaluation metric was 10-
fold cross-validated AUC. We analyzed the performance of each risk score
built from ten different time intervals, ranging from one year to ten years
prior to the diagnosis of heart failure. To simplify, we refer to these ten
intervals as ten timepoints. Sample size in each time interval decreased from
one year to ten years prior to disease diagnosis, ranging from 20,279 (576
cases) to 10,391 (332 cases) participants, respectively (Supplementary
Table 2). We thus had sufficient power to fit an accurate model, given that
the number of predictors, including demographic information, two risk
scores, and PCs derived from genotype data, was less than fifteen.

Our results showed that both PRS and ClinRS models performed sig-
nificantlybetter than thebaselinemodel (whichonly includedage andsex)up
to eight years prior to heart failure diagnosis (Fig. 3, Supplementary Table 2).
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Fig. 3 | Forest plot comparingmodels’ accuracy of predicting heart failure at 1–10
years prior to disease diagnosis. Five models were compared at each time point:
baseline (age and sex), Atherosclerosis Risk in Communities heart failure risk score
(ARIC), polygenic risk score (PRS), clinical risk score (ClinRS), and PRS+ ClinRS.
Numbers at the bottom of the plot indicate the sample size for each time point.
Results showed that ARIC, PRS, and ClinRS, separately, can predict heart failure

outcomes 8 years in advance, and adding both risk predictors to the model can
predict the disease 10 years in advance. Additionally, ClinRS performed significantly
better than ARIC in predicting heart failure events in one year. At 10 years prior to
diagnosis, there were 332 cases and 10,059 controls. Case and control counts for all
years are in Supplementary Table 2. Error bars represent a 95% confidence interval.
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The results were statistically significant, as determined by non-overlapping
95% confidence intervals (CI). This indicates that each risk score can indi-
vidually predict heart failure diagnosis better than baseline. The highest AUC
was observed in the ClinRS model (0.85 [95% CI: 0.83–0.87]) one year prior
to diagnosis, followed by the PRS model (0.76 [0.74–0.83]), which was sig-
nificantly higher compared to the baseline model with an AUC of 0.70
(0.68–0.72). Overall, ARIC performed similarly to ClinRS; both showed
significantly better performance up to 8 years prior to HF diagnosis, com-
pared to the baseline model. Additionally, we observed that at one year prior
to HF diagnosis, ClinRS had significantly better performance on predicting
HF cases, compared to ARIC. Similarly, one year prior to HF diagnosis
ClinRS+ PRS (AUC: 0.78 [0.75–0.79]) had significantly better performance
than ARIC+ PRS (AUC: 0.87 [0.85–0.88]) As expected, the benefits of risk
scores derived from clinical information, ClinRS and ARIC, prediction were
attenuated by censoring EHR data with increasing time thresholds prior to
the event anddecreasing sample size.However, better performance inClinRS
and ARIC was still observed until eight years prior to the disease diagnosis.
On the other hand, model performances using genetic information were
stable across all time points, which yielded significantly higher performance
than the baseline model from 1 year to 8 years prior to the disease diagnosis.
For example, in a cohort with at least 8 years of medical history within
Michigan Medicine, the PRS and ClinRS models yielded an AUC of 0.76
(0.74–0.78) and 0.77 (0.74–0.79), respectively, significantly higher compared
to the baseline model with an AUC of 0.71 (0.68–0.73).

In models given data from nine years prior to disease diagnosis, no
significant difference was observed among PRS (AUC: 0.77 [0.74–0.79]),
ClinRS (AUC: 0.76 [0.74–0.79]), ARIC (AUC: 0.77 [0.75–0.80]), and
baseline (AUC: 0.72 [0.69–0.75]) models. This lack of significant difference
between PRS, ClinRS, ARIC, and the baseline model from data 9 years
before the diagnosis could potentially be attributed to the smaller sample
size. The limited information provided by the EHRdata 9 and 10 years prior
to the disease diagnosismay have also contributed to the lack of significantly
increased prediction, as it may not have provided enough information for
complex prediction tasks.

We also calculated the precision-recall AUC, which is better for
unbalanced datasets (3–4% cases). We observe similar trends as the 10-fold
CV AUC (Fig. 3) although a slightly lower scale overall which is to be
expected as the PR-AUC focuses on the model’s ability to identify positive
cases which are rare in the validation set (Supplementary Fig. 4). Con-
sidering the confusion matrix based on the optimal F1 score, we show that
ClinRS significantly improves the precision over the baseline and ARIC
models with comparable recall (Supplementary Table 3).

Integrating PRS and ClinRS enhances heart failure prediction
In addition to evaluating the risk score separately, we further studied the
additive power of including both risk scores together in the heart failure
prediction model. Consistently across all ten time points, the highest
accuracy was found in the PRS+ClinRS model (Fig. 3, Supplementary
Table 2). Significantly higher AUC was continuously found in the PRS+
ClinRS model, even at 10 years prior to disease diagnosis with an AUC of
0.79 (0.77–0.82), compared to the baseline model (AUC: 0.72 [0.69–0.75]).
Compared to the single risk predictor models that predicted heart failure 8
years prior to disease diagnosis, the model including both predictors pre-
dicted disease two years earlier than using either single risk predictor alone.

As expected, we observed that the prediction accuracy of the PRS
+ClinRS model outperformed single risk score models throughout the
entire 1–10-year timehorizons. Byusing both clinical and genetic risk scores
to predict which individuals have a high risk of future heart failure, the
combined score identified the highest proportion (28%) of individuals who
had heart failure (Supplementary Fig. 5).

Robust results after removing circulatory system
diagnosis codes
To examine the robustness of ClinRS and address concerns regarding
overfitting, we conducted a sensitivity analysis by removing all circulatory

system diagnosis codes to create ClinRS-NoCirc. The model performances
of the ClinRS-NoCirc as the clinical risk predictor compared to the ClinRS
model were largely consistent (Supplementary Fig. 6, Supplementary
Table 4), which demonstrated the success of our efforts to build a risk score
that leveraged the high-dimensional EHR records and summarized
underlying patterns to reveal disease associations.Notably, themodels using
ClinRS-NoCirc for predicting future heart failure events yielded sig-
nificantly higher accuracy than baseline models, up to 6 years in advance of
disease diagnosis. We observed an AUC of 0.77 (0.75–0.80) from ClinRS-
NoCirc model at 6 years prior to disease diagnosis, which was significantly
higher than baseline model at 6 years in advance of heart failure diagnosis
(AUC: 0.72 [0.69–0.74], Supplementary Fig. 6, Supplementary Table 2).
Although the results derived from ClinRS-NoCirc could not predict the
outcome asmany years in advance as the ClinRSmodel, the additive power
of integrating genetic and clinical information in disease risk prediction
remains evident through ClinRS-NoCirc. By including both PRS and
ClinRS-NoCirc in the heart failure prediction model, we were still able to
distinguish patients with a high risk of heart failure a decade in advance of
the disease diagnosis. The heart failure prediction model with PRS and
ClinRS-NoCirs predictors showed a significantly higher AUC of 0.78
(0.76–0.81) at 10 years prior to heart failure diagnosis, compared to the
baseline model with an AUC of 0.72 (0.69–0.75).

We demonstrated that even without circulatory codes, ClinRS cap-
tured the co-occurrence patterns through indirect associations. The disease
groups most similar to circulatory codes are diseases of the respiratory
system, followed by diseases of the skin and subcutaneous tissue (Supple-
mentary Fig. 7). Six of the top 10 codes with the highest average cosine
similarity value with circulatory codes are within the respiratory system
codes (Supplementary Table 5).

ClinRS insights
We dissected the composition of ClinRS for heart failure prediction to
understand the risk and protective factors associated with disease outcome
using the ClinRSweights (Supplementary Fig. 8). The diagnoses prioritized in
theClinRS score cangenerally be classifiedby (1) organ system(cardiac versus
non-cardiac) and (2) etiology (potential causal mechanism, associated
comorbidity, or unclear link). As expected, seven out of the top 10 risk factors
for heart failure in ClinRS were cardiac diagnoses, exhibiting potential causal
mechanisms; for example, ICD-9 codes associated with acute myocardial
infarction (Supplementary Table 6). Additional potential causal diagnoses for
HF diagnoses, including: (i) stenosis, mitral and aortic valves (ICD: 396.0), (ii)
acute myocarditis (ICD: 422.0), and iii) defect, acquired cardiac septal (ICD:
429.71), were highly prioritized by the ClinRS algorithm. Also, ClinRS
incorporates many associated-cardiac diagnoses, including (i) malfunction,
cardiac pacemaker (ICD: 996.01) and (ii) mechanical complication of auto-
matic implantable cardiac defibrillator (ICD: 996.04). These codes are likely to
co-occur inpatientswithheart failurebutmayhave limitedutility inpredicting
new or previously undiagnosed cases; although it is noteworthy that all
diagnoses included in ClinRS were documented prior to the heart failure
diagnosis. Diagnoses identified by ClinRS, including: (i) Marfan syndrome
(ICD:759.82, 754.82)45, (ii) alcohol abuse (ICD:303.01, 790.3, 980.0)46, and (iii)
viral infection (ICD: 74.8)47, may reflect non-cardiac, causal mechanisms of
heart failure pathogenesis. Notably, non-cardiac-related diagnoses, unclear
linkwith a protective effect against heart failure, in theClinRS score included a
cluster of pregnancy-related conditions (ICD: 765.14, 765.25, 656.43, 678, etc.)
and another cluster of ophthalmologic diagnoses (ICD: 371.03, 370.03, 370.63,
374.23, 370.35, etc.). No causal ormechanistic relationship should be inferred.
This correlation likely results from the lower-risk baseline population
(childbearing females) for pregnancy-related conditions and more focused,
clinical ophthalmologic assessment being less likely to diagnose heart failure,
for the ophthalmologic conditions.

Discussion
This study sought to improve the accuracy of heart failure prediction by
integrating high-dimensional genetic data with clinical information to
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further heart failure prevention initiatives. Genetic risk was summarized by
a PRS, calculated from the largest-to-date heart failureGWAS23, and clinical
risk was summarized by a ClinRS, an EHR-based risk score. The combined
PRS and ClinRS score prediction model identified patients with a high risk
of heart failure a decade in advance of the disease diagnosis (Fig. 3 and
Supplementary Table 2). Specifically, the PRS+ClinRS prediction model
showed a significantly higher AUC at 10 years prior to heart failure diag-
nosis with anAUCof 0.79 (0.77–0.82) compared to the baselinemodelwith
anAUCof 0.72 (0.69–0.74). In contrast,models relying on a single risk score
canonly identifyheart failure cases8 years in advance.By integrating genetic
and clinical information, we identify heart failure cases two years earlier.
These findings reveal the power of integrating PRS and ClinRS to enhance
disease prediction and the potential to inform heart failure prevention
efforts. More broadly, this study highlights the methods and opportunities
to curate ClinRS for other complex diseases and integrate with PRS to
improve disease prediction accuracy.

Incorporating high-dimensional and longitudinal EHR data presents
unique challenges. We successfully developed a risk score summarizing the
clinical informationdespite the complexity ofEHRdata, andwevalidated its
utility in an independent dataset from an EHR-linked biobank cohort. This
study treated structured EHR diagnosis codes as human language and
converted the diagnosis codes into articles. This enabled learning the coding
patterns for patient records with any dimensionality and longitudinal his-
tory. By focusing on co-occurrence patterns of medical codes within a
specified time window, we were able to utilize data from all individuals
regardless of the length of healthcare utilization. In addition, by applying
NLP to transform codes to medical code embeddings, we successfully
reduced the high-dimensional EHR dataset into low-dimensional features.
The results present an avenue to incorporate other domains of structured
EHR datasets, such as medical procedures and laboratory tests, to create a
clinical risk score that could more comprehensively capture the risk of
having the disease.

The integration of PRS and ClinRS in predictive modeling demon-
strated significant improvement over single-source models. We previously
developed a heart failure GWAS with the largest number of cases to date to
build heart failure risk prediction models23. We successfully reduced high-
dimensional GWAS into a single predictor—PRS. Furthermore, we
implemented adaptedNLP techniques to capture latent phenotypes in EHR
data and summarized them into a predictor—ClinRS. Our analysis showed
that PRS and ClinRS independently outperformed baseline demographic
models, andwhen combined, the additive predictionmodel yielded superior
accuracy. This result demonstrated the additive predictive power of lever-
aging genetic and clinical information in risk prediction. The com-
plementarity of PRS and clinical information has been recently shown in a
similar approach togenerate anEHR-basedphenotype risk score (PheRS) in
other common diseases48.

In alignment with our findings, Mujwara et al. used a coronary artery
disease PRS (CAD-PRS) to reclassify high genetic risk patients from those in
the borderline or intermediate of the PCE clinical risk pool21. Their work
showed that using the combined PCE and CAD-PRS for risk screening to
initiate early preventive treatment could avert 50 ASCVD events over 10
years per 10,000 individuals screenedand lead to substantial cost savings per
avertedevent. It is promising thatwemay achievemore accurate predictions
using PRS and ClinRS. Such strategies could then inform guidelines for
patient care to aid in the earlier initiation of prevention treatment.

Addressing incomplete EHR data remains a key challenge in clinical
risk modeling. Our sensitivity analysis demonstrated that even after
removing all circulatory system diagnosis codes, high prediction accuracy
was maintained by incorporating ClinRS and PRS. That is, despite partially
missing clinical information from the EHR system, we were still able to
reach high prediction accuracy one decade prior to disease diagnosis by
incorporating ClinRS (without circulatory system diagnosis code) and PRS
in the full model (Supplementary Fig. 6, Supplementary Table 4). This
suggests that pre-trained medical code embeddings can compensate for
missing clinical information to allow for robust risk prediction with partial

records, which is beneficial for patients with shorter medical histories49.
Furthermore, the prediction ability of applyingmedical code embeddings to
fill in the missing information from incomplete EHR records showed that
ClinRS could be amore scalable approach compared to traditional risk score
calculation.Calculating a traditional risk scorewith clinical information and
biomarkers in a large population requires tremendous resources, and it
could lead to underdiagnosis in a population with less access to healthcare.
While using pretrained medical code embeddings, we would be able to
borrow information from other patients with similar medical condition
patterns to predict risk for patients with fewer healthcare visits or missing
medical records.

Traditional risk scores, such as theARICheart failure risk score, rely on
expert-selected risk predictors14. The predictors used in calculating the
ARICHF risk score are labor-intensive, requiring surveys of patients’ health
outcomes, measuring biomarkers to identify diabetes patients, and adjudi-
cating coronary heart disease status from electrocardiography by a clinician.
In a non-cohort study setting, patientsmaynot have the full set of predictors
available in their health records, which could lead to underperformance of
the disease prediction.Hence, it is important to develop amethod that could
perform equally well with or without missing information.

This method is feasible to implement within the EHR, assuming col-
laboration with EHR vendors. Notably, the ClinRS would be a dynamic
score that improves over time—new diagnosis codes can be added, word
embeddings can be updated, and the score can be iteratively re-calculated.
The longer a patient is in the system and the larger the system, the more
precise the risk estimates would become. This data-driven approach may
find at-risk individuals who have not had testing for blood biomarkers such
as NT-proBNP. However, a Randomized Controlled Trial is necessary to
demonstrate clinical utility and improved outcomes if physicians are noti-
fied of a patient’s increased risk of heart failure via the EHR.

This study demonstrates how a large-scale EHR-linked biobank can be
used to create a standardizable and scalable risk predictor. By applying the
NLP method to extract the co-occurrence patterns among patients’
healthcare utilization, we successfully built a risk score, ClinRS, with high
performance in predicting HF cases. Moreover, ClinRS used an unsu-
pervised approach to select predictors, and yielded a significantly higher
prediction accuracy at one year prior to HF diagnosis compared to ARIC—
pre-selected risk predictors by experts.

Despite its strengths, this study has limitations. Heart failure is known
to have separate subtypes with distinct treatments and phenotypic symp-
toms caused by different mechanisms, environmental exposures, or genetic
risk factors23. In the future, ClinRS for heart failure subtypes should be
developed and validated in cohorts with larger sample sizes. It would also be
useful to assess the predictive performance of ClinRS in a prospective study
of individuals without cardiovascular-related conditions. Moreover, the
curation of ClinRS and the utility of integrating genetic and clinical infor-
mation for disease risk predictionneed to be benchmarked inother complex
diseases. This study solely utilized the diagnosis information derived from
EHR data; however, leveraging other domains of structured and unstruc-
tured EHR data (e.g., procedure, medication, clinical notes, etc.) to assist
disease prediction is needed to fully understand the additive power of
integrating genetic and clinical data. Furthermore, we did not recalibrate
ARIC for the current cohort, and we used the version of ARICwithout NT-
proBNP since that biomarker was not available. While we used LASSO for
dimensionality reduction, future work could test the use of alternative
techniques such as auto-encoder50.

Furthermore, an EHR-based study may be limited by low transfer-
ability across different healthcare systems due to the heterogeneity of EHR
data. Methodology in language models could potentially be borrowed to
improve the transferability of medical code embeddings and the derived
latent phenotypes. Applying transfer learning techniques could also pro-
duce a more generalizable ClinRS to be applied across different healthcare
systems. Lastly, due to the limited sample size of people of diverse ancestral
backgrounds, we were only able to perform analysis in MGI Biobank
individuals with genetic ancestry similar to that of Europeans from a
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reference population. In the future, models validated in diverse populations
are needed.

In conclusion, the amalgamation of GWAS- and EHR-derived risk
scores predicted heart failure cases 10 years prior to diagnosis. These find-
ings highlight how the application of natural language processing to com-
plex datasets, such as medical records and the incorporation of genetic
information, may enhance the identification of patients with a higher sus-
ceptibility to heart failure. Application of this approach at scale may enable
physicians to implement preventive measures at a much earlier stage,
potentially up to 8 years before awould-be diagnosis, whichmayprevent the
onset of heart failure.

Data availability
The data used in thismanuscriptwere fromMichiganMedicine, and it is not
publicly available due to legal and privacy limitations. The source data for
Fig. 3 are in Supplementary Data 1. The GWAS used for creating the PRS (a
meta-analysis without data from Michigan Genomics Initiative) can be
accessed upon request to the corresponding author. The all-biobank meta-
analysis results are available for downloading at https://www.
globalbiobankmeta.org/resources. PRS weights estimated using all-biobank
multi-ancestry meta-analysis and leave-UKBB-out multi-ancestry meta-
analyses are in the PGS Catalog with study ID PGP000262.

Code availability
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at https://github.com/The-Shi-Lab/CodeEmbedding51.
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