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Abstract

Plain language summary

Background Age and sex significantly impact DNA methylation patterns, however, existing
datasets typically include only a subset of methylation sites in the human genome, hindering
our thorough understanding.

Methods We recruited 98 generally healthy adults aged from 22 to 77 and investigated the
effects of age and sex on plasma cell-free DNA (cfDNA) methylation through whole-genome
bisulfite sequencing (WGBS) and association analysis.

Results Here we show 3,047 age-associated and 1,053 sex-associated CpGs on
autosomes, corresponding to 1,587 and 324 genes, respectively. To the best of our
knowledge, many of these CpGs are newly discovered to be age- and sex-related at the DNA
methylation level. The discovered sex-differential cfDNA methylation patterns on the X
chromosome are related to XCl status. Besides, a cfDNA epigenetic clock comprising 125
CpGs is developed, demonstrating relatively high accuracy in predicting chronological age.
Tissue-of-origin analysis reveals that cfDNA derived from monocytes/macrophages,
granulocytes, and hepatocytes is associated with age and sex. Several individuals with
abnormal cfDNA proportions of some specific cell types are found to have individual health
problems.

Conclusions Our discovered CpGs and genes help to explain age-related and sex-biased
diseases such as psychiatric disorders, diabetes, and autoimmune diseases, and we
demonstrate the potential of cfDNA methylation signatures as very promising biomarkers for
health monitoring for the general population.

Aging is a complex biological process
shaping disease risks. Meanwhile, the
influence of sex differences is still
underexplored. There are various influencing
factors, including modifications on DNA
called DNA methylation which are important
for gene regulations. In this study, we explore
the age-related changes and sex-related dif-
ferences in DNA methylation in blood sam-
ples, by recruiting 98 generally healthy adults
aged from 22 to 77. Based on DNA methyla-
tion sequencing, we identify two sets of genes
that help to explain some age-related and
sex-biased diseases. We also develop a
methylation aging clock for estimating biolo-
gical age. Moreover, we demonstrate the
potential of methylation signatures as very
promising biomarkers for health monitoring,
as they contain health risk information from
immune cells and tissue injuries.

In humans and other mammals, the epigenetic modification of DNA
methylation (DNAm) predominantly occurs at cytosine-phosphate-guanine
(CpG) dinucleotide sites, and it is essential for regulating gene expression,
growth, development, and disease’. Age-associated methylation alterations
are related to diseases, such as osteoporosis, neurodegenerative disease,
diabetes, and cancers™’. One way to assess age-related disease risks is to
measure biological age by epigenetic clocks’. In addition to age, sex also has a

strong impact on methylation variations. The sex-associated methylation
patterns contribute to sex-biases diseases, such as liver diseases’, auto-
immune diseases’, and neurological disorders’. Sex-associated methylation
patterns are observed in autosomes® and the X chromosome’. In fact, DNA
methylation is one of the key mechanisms in regulating X-chromosome
inactivation (XCI) in females, for balancing X-lined gene dosage between the

sexes'’. Some genes that escape from XCI may lead to the dual expression
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dosage and contribute to the female bias in diseases, such as autoimmune
diseases’. Since age- and sex-associated DNA methylation plays important
regulatory roles in aging and diseases, it is worth in-depth studies.

Various detection methods have been developed to investigate human
DNA methylome, with different coverages and resolutions. The most widely
used [lumina 450 K" and 850 K'* arrays cover approximately 450,000 and
850,000 CpGs, respectively, featuring on CpG islands and other regulatory
regions”. However, these methylation arrays represent only a very small
fraction (~3%) of the 28 million CpG sites in the human genome. Most
studies on DNA methylation on aging and sex adopted these methylation
arrays, which led to the remaining CpGs in the human genome being less
known about their influence.

Moreover, methylation patterns are known to be tissue- and cell-
specific'*"”. The plasma cfDNA is derived from cellular processes such as
apoptosis, necrosis, and active secretion'®, which enables non-invasive and
real-time monitoring of physiological and pathological conditions in
human bodies. The deconvolution algorithms based on the DNA methy-
lation atlas of human tissues/cell types have been used to estimate the origins
of tissues/cell types of cfDNA'"'*. However, previous cfDNA research has
predominantly focused on disease-specific cfDNA profiles and tissue-of-
origin results'*”’, and less attention has been paid to the age- and sex-related
cfDNA methylation profiles. Teo et al. studied on cfDNA nucleosome
signals as an aging biomarker”'. Shtumpf et al. constructed aging clocks
based on cfDNA fragment sizes and nucleosome distances™. Li et al. utilized
plasma samples from three age groups of healthy individuals to identify age-
related CpGs, and they developed a ¢fDNA methylation age prediction

model, however, they only utilized the CpG sites covered by 450 K array in
their model”. Additionally, the sex-differential DNA methylation studies
primarily relied on whole blood and tissue samples, and were often based on
450 K and 850 K arrays™* ™.

In this study, we conduct a comprehensive profiling of CpGs methy-
lation characteristics related to age and sex at the whole-genome level, using
plasma cell-free DNA whole-genome bisulfite sequencing (WGBS) data from
98 generally healthy adults (52 females and 46 males) aged from 22 to 77. A
cfDNA epigenetic clock based on 125 CpG sites is developed and validated by
an independent dataset. Furthermore, we find some age and sex differences in
the tissue and cell-type origins of plasma cfDNA. The detection of individuals
with abnormal tissue-of-origin results show the potential of cfDNA as a
biomarker for health monitoring. Our findings provide a foundation for
future research on human cfDNA methylation and liquid biopsies.

Methods

Sample collection and ethics statement

This study was approved by the Institutional Review Board on Bioethics and
Biosafety of BGI (BGI-IRB 21157-T2). From December 2021 to December
2022, adult participants were recruited during their physical examination,
including young, middle-aged, and elderly individuals, with an almost equal
number of males and females in all age groups (Fig.1a). Women who were
during pregnancy or lactation; and anyone who had fever symptoms,
recently had a surgical procedure, or was diagnosed with infectious diseases,
cancer, or other severe diseases were all excluded from this study. A total of
98 participants (52 females and 46 males) aged from 22 to 77 were included
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Fig. 1 | Overview of study design and participants cohort (n = 98). a The
recruitment of participants and the workflow of whole genome bisulfite sequencing
(WGBS) of plasma cfDNA. The library preparation method is based on a single-
stranded library preparation technique. b Identification of age- and sex- associated
CpGs on autosomes using the method of linear regression. The related genes are

further analyzed based on the rank of the number of CpGs and the enriched path-
ways. ¢ Sex difference analysis of methylation patterns on the X chromosome.

d Tissue-of-origin analysis of cfDNA and exploration of the influences of age, sex,
and individual variances. (Fig. 1 is created with Biorender.com).
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in this study. There were about 10 males and 10 females in each 10-year age
group (Fig.1a). We collected their basic information about their sex, age, and
past medical history through a questionnaire. Their physical examination
results were also collected. For each participant, a peripheral blood sample
was collected using an EDTA blood collection tube. The study was con-
ducted in accordance with the Declaration of Helsinki and informed con-
sent was signed by all participants. All data were de-identified prior to
analysis by removing direct identifiers such as names and medical record
numbers. Each participant was assigned a unique study code for research
use and to protect privacy. Written informed consent was obtained from all
participants for the publication of the de-identified data.

Cell-free DNA extraction

Plasma isolation was performed via a two-step centrifugation procedure
within 4 h after blood sampling. In the first step, the blood was centrifuged at
1600 g for 10 min at 4 °C. In the second step, the upper layer of plasma was
centrifuged again at 16,000 g for 10 min at 4 °C to remove cellular debris.
The resultant supernatant plasma was then stored at —80 °C before cfDNA
extraction. For each sample, 0.5-1 mL plasma was used for cfDNA
extraction using MagPure Circulating DNA KF Kit (Magen, China)
according to the manufacturer’s instructions.

Library preparation for WGBS

The input ¢fDNA amount for the library preparation was 15.23 + 6.64 ng
(mean + SD). The extracted cfDNA was bisulfite treated and purified using
EZ-96 DNA Methylation Kit (Zymo Research). To evaluate bisulfite con-
version efficiency, 0.05 ng of lambda DNA (New England Biolabs, #N30115)
was added to each reaction as an unmethylated control before bisulfite
treatment. Subsequently, WGBS sequencing libraries were prepared utilizing
a modified single-stranded library preparation method of the SPlinted Liga-
tion Adapter Tagging (SPLAT)” ™. Briefly, the double-stranded DNA
(dsDNA) was denatured into single-stranded DNA (ssDNA) at high tem-
peratures; then adapters containing six random bases were annealed and
ligated to both ends of ssDNA; finally, the ligation product was amplified
through PCR and the barcode sequences of samples were introduced through
PCR primers. Notably, the processes include the utilization of a single-
stranded DNA binding protein (ET SSB) to stabilize the presence of ssDNA
in solution™. A one-step adapter ligation reaction was used and the adapters
were specifically tailored for the DNBSEQ platform (MGI)*. Subsequently,
the libraries were subjected to 100-bp paired-end (PE) sequencing using the
DNBSEQ platform with a sequencing depth of >30x for each sample.

WGBS data processing

We used Fastp (0.19.5)°" to process the raw sequencing data with default
parameters, including trimming adapters, filtering out reads of low quality,
and discarding reads with a high proportion of undetermined nucleotides
(Ns). Subsequently, the pre-processed reads were aligned to the human
reference genome (GRCh38.p14) using BitMapperBS (v1.0.2.3)” with
default settings. Following alignment, PCR duplicates were removed using
sambamba (v0.8.2)”. After removing the duplicated reads, the median
sequencing depth for samples was 31.19x (Supplementary Data 1). The
depth calculation is based on sequencing reads and bases. The overlapping
paired-end bases were calculated twice in the depth count.

Then we used MethylDackel (v0.5.1) (https:/github.com/dpryan79/
MethylDackel) to calculate the methylation values at each CpG site. In brief,
methylation values were determined by the ratio of methylated C to the total
number of reads supporting C (methylated) and T (unmethylated) at this site.
Methylation values range from 0 to 1, with 0 indicating no DNA methylation
and 1 indicating complete DNA methylation. CpGs with less than 5X coverage
were labeled as NA, and those with more than 10% NA values in samples were
removed from further analyses. The remaining NA values were imputed with
the impute.knn function (using k = 10) in R language. The CpGs located on
chromosome Y were not investigated in the study. Ultimately, we obtained a
comprehensive DNA methylation profile consisting of 23,510,673 CpG sites
on autosomes and 996,907 CpG sites on the X chromosome.

Genomic distribution analysis

Manhattan plots were generated using the R package CMplot (https:/github.
com/YinLiLin/R-CMplot). The annotate R package™ was utilized for anno-
tating various features such as CpG regions and gene regions. CpG regions
including open sea regions, CpG islands, CpG shelves, and CpG shores. CpG
shores are defined as 2 Kb upstream/downstream from the ends of the CpG
islands, less the CpG islands. CpG shelves are defined as another 2 Kb
upstream/downstream of the farthest upstream/downstream limits of the CpG
shores, less the CpG islands and CpG shores. The remaining genomic regions
comprise the open sea annotation gene regions including 1-5 Kb upstream of
the TSS (1to5kb), 3’ untranslated region (3’'UTR), 5’ untranslated region (5
UTR), exons, introns, promoters (<1 Kb upstream of the TSS), and enhancers.

Age-associated CpGs analysis

We implemented a linear regression model, glm function (family=gaussian)
in R language, with two-tailed f test, to identify age-associated CpG sites
(Eq. 1). The p-values were adjusted using the Benjamini-Hochberg (BH)
method™, and all CpG sites with adjusted p-value (Padj) <0.05 were
defined as age-associated.

Methylation rate ~ Age (1)

The reported age-associated CpGs data were obtained from the EWAS
Atlas database, with the traits of aging (https://ngdc.cncb.ac.cn/ewas/
browse?traitList=aging).

Development of cfDNA DNAm epigenetic clock

The methylation values of the 3047 age-associated CpGs were standardized
using the R language function scale() from the base package. To build the
cfDNA methylation epigenetic clock we implemented an elastic net
regression model, using the methodology described by Horvath”. The
elastic net models were generated using the “glmnet” package in R, using the
functions of cv.glmnet and predict.glmnet. The elastic net approach com-
bines Ridge and LASSO regression with an alpha parameter of 0 for Ridge
and 1 for LASSO. Here, the elastic net alpha parameter was set to 0.5. The
minimal lambda was calculated using 10-fold cross-validation using the
“glmnet” package. A transformed version of chronological age was regressed
on DNAm levels at all included CpG sites. Given the limited sample size, we
used a previously described cross-validation scheme (leave-one-out cross-
validation, LOOCYV) for determining unbiased estimates of the accuracy of
our cfDNA methylation epigenetic clock™. The cross-validation procedure
reports the unbiased estimates of age correlation r, which is defined as
Pearson correlation between the actual age and the predicted value (the
DNAm age), and the median absolute error (MAE).

Sex-associated CpGs analysis

We implemented a linear regression model, glm function (family=gaussian)
in R language, with two-tailed t test, to identify sex-associated CpG sites
(Eq. 2). Sex was coded as 0 for males and 1 for females. The p-values were
adjusted using the Benjamini-Hochberg (BH) method. CpG sites on auto-
somes with adjusted p-value (Padj) <0.05 were defined as sex-associated
CpGs on autosomes, CpG sites on X chromosome with adjusted p-value
(Padj) < 10 were defined as sex-associated CpGs on X chromosome.

Methylation rate ~ Sex 2)

The reported sex-associated CpGs data were obtained from the EWAS
Atlas database, with the traits of gender (https://ngdc.cncb.ac.cn/ewas/
browse?traitList=gender).

Enrichment analysis

We performed a negative binomial distribution model to identify genes
enriched in age- or sex-associated CpGs, adjusting for gene length and total
number of CpG sites per gene. The p-values were calculated and then corrected
using the Benjamini-Hochberg (BH) method for multiple testing adjustments.
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Functional annotation of enriched Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway was performed by
Metascape (http://metascape.org), using hypergeometric test and BH cor-
rection with the default parameters.

For tissue enrichment analysis, we used Human Protein Atlas (HPA)
database™ and TissueEnrich tools™ to make a tissue-specific gene enrich-
ment of our gene sets (https://tissueenrich.gdcb.iastate.edu/), which used
hypergeometric test and BH correction with the default parameters.

cfDNA tissue deconvolution analysis

We used two methods for cfDNA tissues-of-origin profiling for 98 samples
based on DNA methylation atlas of human cell types'”'*. The first one was
developed by Moss et al.,, which included an extensive analysis of 7890
differentially methylated CpG sites across 25 unique human tissues and cell
types”. The second one was constructed by Loyfer et al., enabling the
quantification of 39 tissues/cell types'’. By using wgbstools (https://github.
com/nloyfer/wgbs_tools), we quantify the relative contributions of various
cell types to the plasma cfDNA.

Statistics and reproducibility

There was no technical replicates for the WGBS of 98 samples. Our
mathematical model for age- and sex-associated CpGs analysis, and the
methods for development of fDNA DNAm epigenetic clock, enrichment
analysis, and cfDNA tissue deconvolution analysis were summarized
with details in the above method details section. Two-tailed tests were
used for the linear regression model. Differences among CpGs patterns in
gene regions and CpG regions used chi-square test with BH correction.
Wilcoxon rank-sum test (two-tailed) were used for the comparison of tis-
sue/cell-type derived cfDNA proportions of females and males in different
age groups. Spearman’s correlation was used to test the relationship between
the hepatocytes-derived cfDNA proportion and ALT, AST, GGT,
and HDLC.

Results

Study design and cfDNA methylation profiling

A total of 98 generally healthy volunteers, including 52 females and 46 males, are
recruited in this study. Their age ranged from 22 to 77 (Fig. 1a and Supplement
Data 1). We collect their basic information (age, sex, medical histories)
and physical examination results. The peripheral blood samples are collected,
and plasma cell-free DNA (cfDNA) is used for WGBS with a sequencing
depth of ~30x for each sample (Fig. 1a). The WGBS libraries are prepared based
on the SPlinted Ligation Adapter Tagging (SPLAT)”~, the sequencing bias of
which is relatively small compared to some conventional library preparation
methods(Supplementary Fig. 1, Supplement Data 2). The fragment size dis-
tributions and the basic statistics about the overall quality of WGBS are sum-
marized in Supplementary Fig. 1 and Supplementary Data 1 and 2.

In the fDNA methylation analysis, CpGs with coverage below 5X are
filtered out, and those CpGs with over 10% missing values in samples are
excluded. After the data quality control, a comprehensive whole-genome DNA
methylation profile is established, encompassing 23,510,673 CpGs on auto-
somes and 996,907 CpGs on the X chromosome, corresponding to about 80%
CpGs in the human genome. These qualified CpGs are utilized in subsequent
analyses of age- and sex-associated methylation patterns (Fig. 1b-d).

Age-associated DNA methylation patterns

We identify 3047 CpGs on autosomes and one CpG on the X chromosome
with their methylation rates significantly associated with age (Padj < 0.05,
linear regression) (Supplementary Data 3 and Supplementary Data 4). The
visualization of the Manhattan plot is shown in Fig. 2a. For all these CpGs,
their Pearson correlation coefficients of methylation rate with age |r | > 0.4
(Supplementary Data 4). The age-associated CpG on the X-chromosome
chrX:97837735(GRCh38.p14) resides in the open sea region (>4 kb from
CpGislands) and intergenic region (>3 kb from the nearest annotated gene).
This locus is not covered by the Illumina 450 K/850 K arrays nor annotated
as a regulatory element in enhancer-gene links databases (e.g., EpiMap”,

ABC maps"'). The specific function of this site cannot be determined. Here,
we only study and discuss the autosomal age-associated CpGs.

Of the 3047 age-associated CpGs, 2854 CpGs exhibit negative corre-
lations (Fig. 2b) and 193 CpGs show positive correlations with age (Fig. 2¢)
(Supplementary Data 4). In other words, for most of the age-associated
CpGs, the methylation levels tend to decrease with age. This result is con-
sistent with previous findings obtained through microarray analyses'>*’. We
further explore the genomic distributions of those CpGs in relation to their
nearest genes or CpG islands. The age-associated CpGs are enriched in
promoters, 5 UTRs, enhancers, CpG islands, and CpG shores, while they
are underrepresented in 3> UTRs, introns, and open sea (Supplementary
Fig. 2a, b and Supplementary Data 5).

On the one hand, we find that only 71 and 208 age-associated CpGs in
this study are covered by the 450 K and 850 K arrays, respectively (Sup-
plementary Data 4). By comparing against the EWAS Atlas database, we
find that 55 of the 71 CpGs in the 450 K array and 134 of the 208 CpGs in the
850K array are annotated as age-associated CpGs in the database (Sup-
plementary Data 4). The consistency of age-associated CpG sites with those
discovered by microarray assays indicates the reliability of our results. On
the other hand, due to the limited number of CpGs coverage by the 450 K
and 850 K arrays, the remaining age-associated CpGs in our study have not
yet been reported as age-associated CpGs in the EWAS database. We believe
our identified age-associated CpGs provide a valuable resource for future
studies to elucidate epigenetic regulations in aging.

These 3047 age-associated CpGs are mapped to 1587 genes (Fig. 2d
and Supplementary Data 6). The numbers of age-associated CpGs in these
genes vary widely. 1168 genes (73%) contain only one age-associated CpG,
357 genes (23%) contain 2 to 4 age-associated CpGs, and 62 genes (4%)
contain 5 or more age-associated CpGs. The FIGN gene has the highest
number of age-associated CpGs, which is 58. Two of these 58 CpGs
(cg15148145 and cgl16532938) are covered in the 850 K arrays and anno-
tated as age-related in the EWAS database (Supplementary Data 4). Among
the 62 genes that had more than 5 age-associated CpGs, 46 genes are
annotated as age-related in the EWAS database; while the reamaining16
genes, such as IFT80 and RILPL1, have not been previously found to be age-
related at the DNA methylation level (Fig. 2d, Supplementary Data 4). IFT80
negatively regulates osteoclast differentiation*, and knock-out of IFT80 in
the mouse model caused osteoporosis phenotype***. Considering the reg-
ulation effects of IFT80 on the osteoclast, we speculate that osteoporosis in
older adults is influenced by age-associated methylation changes. Addi-
tionally, recent research has identified the relationship between RILPLI and
oculopharyngodistal myopathy (OPDM)?, a rare adult-onset hereditary
muscle disease with symptoms progressively worsening with age*. The
discovery that methylation levels of CpGs in RILPLI decline with age may
give some clues to explain the pathogenesis and progression of OPDM.

We also apply a negative binomial regression model to identify genes
enriched in age-associated CpGs (Fig. 2d and Supplementary Data 6),
adjusting for gene length and total number of CpG sites per gene. We
identify 57 genes significantly associated with age, and 19 genes (e.g., FIGN,
TENM?) have been previously reported in aging-related studies (Supple-
mentary Data 4). The remaining genes that are not enriched in age-
associated CpGs, or with small numbers of age-associated CpGs might still
play important roles in aging. For example, the genes of NEFL, NELLI, and
PDGFC contain only one age-associated CpG (Supplementary Data 4). They
were already known as age-related genes with some other CpGs being
reported”. Moreover, the proteins encoded by these genes are significantly
dysregulated in Alzheimer’s disease (AD) patients”. Our results indicate that
the DNA methylation alteration of these genes may be involved in the
neurodegenerative processes. Further investigation of these age-related genes
(Supplementary Data 6), especially the newly discovered genes, is important.

To understand the function and bioprocess of all the 1,587 genes, the
KEGG pathway and GO enrichment analysis are performed (Fig. 2e, Sup-
plementary Fig. 2c and Supplement Data 7). The enriched KEGG pathways
included cAMP signaling”’, TNF signaling”’, TRP channel regulation’,
cancer”’, GnRH secretion™, neurodegeneration™ pathways. These pathways
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are known to be related to aging.

A methylation epigenetic clock based on plasma cfDNA
Epigenetic clock based on plasma cell-free DNA (cfDNA) methylation has
not extensively been explored”. Here, we develope a cfDNA methylation

Gene Count

epigenetic clock, using an elastic net regression, based on the 3047 age-

associated CpGs. Finally, a set of 125 CpG sites is included in the age-
prediction model, achieving a relatively high level of accuracy. The corre-
lation coefficient (r) is 0.91 and the median absolute error (MAE) is 3.74

years (Fig. 2f, Supplementary Data 8). The 125 CpGs and their coefficients
with age are provided in Supplementary Data 9. To further validate this
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Fig. 2 | Genome-wide identification of age-associated CpGs, genes and pathways.
a Manhattan plot showing the distribution of 3047 age-associated CpGs (Padj <
0.05) across all the autosomes. The linear regression model is used, and the P values
for the regression coefficients are derived from two-tailed t-tests. The P values were
adjusted using the Benjamini-Hochberg (BH) method. The numbers of age-
associated CpGs in 10 Mb bins are shown on the chromosomes at the bottom of the
Manbhattan plot, with the color bar showing on the right side. The methylation rates
of age-associated CpGs are negatively (94%) or positively (6%) correlated with age.
Two examples of CpGs (chr10:13527445 and chr5:141040234) are shown in (b, c)
with the methylation rate negatively and positively correlated with age, respectively.
Methylation rate of the CpG site for each sample is shown as a dot. The red line is the
regression line based on the linear regression model (with 95% confidence intervals
shown as shaded areas), representing the relationship between the methylation rates
and the ages. The P values are adjusted using the Benjamini-Hochberg (BH)
method. d Ranking of the 1587 genes based on the number of age-associated CpGs

per gene. Among the 62 genes that have more than 5 age-associated CpGs, 16 genes
(such as IFT80 and RILPLI) have not previously been reported to be age-related at
the DNA methylation level (EWAS Atlas database). These genes are labeled with
gene names, and those genes enriched with age-associated CpGs were labeled in red.
The top one gene FIGN is previously known to be age-related at the DNA methy-
lation level, and is enriched with age-associated CpGs. e KEGG enrichment analysis
of the 1587 age-associated genes using hypergeometric test (one-tailed test). The P
values without adjustment are shown here, and the exact P values and adjusted

P values are in Supplementary Data 7. f The cfDNA methylation epigenetic clock
with 125 CpGs. The plot shows the relationship between chronological age and
epigenetic age. The blue line is the regression line of epigenetic age on chronological
age. Pearson’s correlation coefficients (r) and median absolute error (MAE) are
denoted. Leave-one-out cross-validation (LOOCYV) is used to determine the accu-
racy of the cfDNA methylation epigenetic clock.

cfDNA methylation clock, we test the publicly available fDNA WGBS data
of 23 healthy individuals (GSE186458). The external data also show a strong
correlation (r = 0.94) between the chronological age and the biological age,
with an MAE of 9.44 years (Supplementary Fig. 3, Supplementary Data 10).
To the best of our knowledge, the majority of sites selected for our cfDNA
methylation clock are novel and not present in existing DNAm clock
algorithms. Only two of the CpG sites were included in Hannum’s blood-
based clock (composed of 71 DN Am sites)*, and three CpGssites included in
Horvath’s Skin & Blood clock (comprising 391 DNAm sites)”” (Supple-
mentary Data 11). The small overlap of age-associated CpGs can be
attributed to several factors, including the sample materials, methylation
detection methods (WGBS vs Illumina 450 K/850 K array), and population
demographics (Chinese vs European/American, and different age ranges).

Sex-associated DNA methylation patterns on autosomes

We identify 1053 CpGs on autosomes with their methylation rates sig-
nificantly associated with sex (Padj < 0.05, linear regression) (Supplemen-
tary Data 12). The visualization of the Manhattan plot is shown in Fig. 3a.
Notably, only seven of the 1053 CpGs are also identified as age-associated
CpGs (Supplementary Fig. 4, Supplementary Data 3, 12), revealing that
most of the reported age- and sex-associated CpGs are independent. We
find that six out of the seven CpGs are in FIGN which contains the highest
number of age-associated CpGs (Fig. 2d, Supplementary Data 6). The two
CpGsin FIGN (cg15148145 and cg16532938) are annotated as age- and sex-
associated in the EWAS database. Here, the six CpGs not covered by the
850 K arrays are discovered to be simultaneously associated with age and sex
in our study.

The 1053 sex-associated CpGs with higher methylation rates in females
are named as female-higher methylation positions (HMPs), and those with
higher methylation rates in males as male-HMPs. There are 727 female-
HMPs (69%) and 326 male-HMPs (31%), consistent with previous reports
that most sex-associated CpG sites are more methylated in females than in
males®”. Similar to the finding about age-associated CpGs, only a limited
number of these sex-associated CpGs are covered by the 450 K and 850 K
arrays, 17 and 33, respectively (Supplementary Data 12). The EWAS
database shows that 11 out of 17, and 14 out of 33 of CpGs have previously
been found to be sex-associated by DNA methylation arrays. We evaluate
the distribution of the 1053 sex-associated CpGs based on their relation to
the nearest genes or CpG islands™. The sex-associated CpGs are enriched in
promoters, exons, enhancers, CpG islands, and CpG shores, while they are
underrepresented in the introns, open sea, and CpG shelves (Supplementary
Fig. 5a, b, Supplementary Data 5).

The 1053 sex-associated CpGs are mapped to 324 genes (Supple-
mentary Data 12). The genes containing only female HMPs are defined as
female-HMGs. Likewise, the genes containing only male-HMPs are defined
as male-HMGs. The remaining genes containing both female-HMPs and
male-HMPs were defined as mix-HMGs. In our results, there are 236
female-HMGs (Supplementary Data 13), 82 male-HMGs (Supplementary
Data 14), and 6 mix-HMGs (Supplementary Data 15). The genes enriched

with female or male HMPs are labeled in brown in Fig. 3b, d, and sum-
marized in Supplementary Data 13, Supplementary Data 14. To our
knowledge, most of the CpGs are newly discovered as sex-associated in this
study, however, at the gene level, a considerable number of genes are already
known to be sex-associated. A previous study based on whole blood samples
using the 850 K assays showed that 16 of the 236 female-HMGs have been
previously reported to have higher methylation in females, and 2 of the 82
male-HMGs have been previously reported to have higher methylation in
males”’. Additionally, transcriptome analysis across various tissues’ has
revealed that 61 of the 236 female-HMGs (19%) display sex-biased
expression, and 20 of the 82 female-HMGs (24%) display sex-biased
expression.

In female-HMGs, the LINC01597 gene contains the highest number of
female-HMPs, which is 33 (Fig. 3b, ¢, Supplementary Data 13, Supple-
mentary Data 16). Previously, the transcriptome analysis of brain tissue
showed that this gene had a lower expression level in females than in males*".
We speculate that the methylation pattern differences in LINC01597
between sexes may play a role in regulating gene expression. In male-HMGs,
the PTPRN2/LOC105375614 gene contains the highest number of male-
HMPs, which is 22 (Fig.3d, e, Supplementary Data 14, Supplementary
Data 16). These CpGs are located within the coding gene PTPRN2 and the
long non-coding RNA gene LOCI105375614, on the minus strand and the
plus strand of the genome, respectively. For the protein-coding gene,
PTPRN2is important in the secretion of hormones and neurotransmitters®™.
In females, but not in males, it influenced the secretion of the pituitary
hormones luteinizing hormone (LH) and follicle-stimulating hormone
(FSH), and thus impacted the infertility in the mouse model®. Previous
research has also reported higher methylation levels in the PTPRNZ in males
than those in females in the whole blood samples and the brain tissues™®.
Given that IncRNA expression is often involved the regulation of DNA
methylation and gene expression®”, the detailed regulation mechanism
and the interaction between IncRNAs and the target genes needs further
investigation.

Next, we analyze the 324 genes containing sex-associated CpGs by
KEGG pathway and GO enrichment (Fig. 3f, g, Supplementary Data 17).
The enriched KEGG pathways included the MAPK signaling pathway,
calcium signaling pathway, salivary secretion, and morphine addiction, all
of which were reported to be different between males and females at the
DNA methylation level”*®. It is worth noting that among the enriched GO
functions, four are related to neural functions (Fig. 3g). Concordantly, these
genes were significantly enriched in genes predominantly expressed in the
cerebral cortex (Supplementary Fig. 6a, b). Previous research has demon-
strated sex differences in the brain epigenome and transcriptome of neu-
ropsychiatric disorders®”’, and the sex-associated genes mentioned before,
such as LINC01597 and PTPRN?Z, have displayed sex differences in DNA
methylation” and gene expression” in neuropsychiatric disorders. Our
study reveals that such methylation differences in brain-related functions
exist in healthy people. In addition, PTPRN2 plays an important role in
insulin secretion in response to glucose stimuli”'. As we know, there are sex
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differences in glucose metabolism and the related disease of diabetes more
frequently affects males’”. This difference is also found in the enriched
KEGG pathway of glycolysis/gluconeogenesis (Fig. 3f). To sum up, we find
many sex-associated genes with diverse molecular and biological functions,
and their functions are relevant to sex-biased diseases.

10
Gene Count

Sex-associated DNA methylation on the X chromosome

On the X chromosome, we identify 638,599 CpGs (64 %) significantly
associated with sex (Padj < 0.05, linear regression). The methylation dif-
ferences are related to X chromosome inactivation (XCI). When applying a
more stringent threshold (Padj < 107°), we identified 29,446 CpGs (5%)
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Fig. 3 | Genome-wide identification of autosomal sex-associated CpGs, genes and
pathways. a Manhattan plot showing the distribution of 1053 sex-associated CpGs
(Padj < 0.05) across all the autosomes. The linear regression model is used, and the
P values for the regression coefficients are derived from two-tailed t-tests. The

P values were adjusted using the Benjamini-Hochberg (BH) method.The numbers
of sex-associated CpGs in 10 Mb bins are shown on the chromosomes at the bottom
of the Manhattan plot, with the color bar showing on the right side. b-d Ranking of
genes based on the number of sex-associated CpG sites per gene. The genes con-
taining CpGs with higher methylation rates in females than those in males are shown

in (b). The genes containing CpGs with higher methylation rates in males than those
in females are shown in (d). The genes containing 5 or more sex-associated CpG sites
are labeled with the gene names, and genes enriched with sex-associated CpGs are
labeled in brown. The methylation rates of sex-associated CpGs of two example
genes: ¢ LINC01597 and e PTPRN2/LOC105375614. Box plots show median +
interquartile range (IQR) and 1.5 IQR ranges (whiskers). f KEGG and g GO
enrichment analysis of 1053 autosomal sex-associated genes, using hypergeometric
test (one-tailed test). The P values without adjustment are shown in (f, g). The P
values and adjusted P values are in Supplementary Data 17.

with significant sex differences. In the subsequent analysis, we focus on these
more significant sex-associated CpGs.

To illustrate the differences in CpG methylation rates between sexes,
we plot the average methylation rates of all CpG sites on the X chromosome
in males and females on the XY axis (Fig. 4a, Supplementary Data 18).
Similar to the display in a previous research’, this plot reveals five methy-
lation patterns: red dots (pattern A, 28,464 CpGs) show significantly higher
methylation in females (Padj < 10°9), likely reflecting XCI; dark blue dots
(pattern B, 13,018 CpGs) indicat hypomethylation (Methylation rate < 0.25)
in both sexes (Padj > 10~°), suggesting potential escape from XCI in females;
orange dots (pattern C, 561,972 CpGs) represent hypermethylation
(Methylation rate > 0.75) in both sexes (Padj > 10~%); purple dots (pattern D,
265,880 CpGs) show significantly higher methylation in males
(Padj<10™%); and gray dots (pattern other, 121,573 CpGs) represent
methylation rate range from 0.25 to 0.75 (Padj > 107°).

We then evaluate the distribution of the methylation patterns based on
their relation to the nearest genes or CpG islands (Fig. 4b, ¢, Supplementary
Data 5)*. Patterns A and B are obviously enriched in promoters, 5 UTRs,
enhancers, CpG islands, and CpG shores, while patterns C, D, and others are
obviously enriched in introns and the open sea (Fig. 4b, ¢, Supplementary
Data 5). This distribution aligns with previous findings that loci with lower
methylation in males (patterns A and B) are typically in promoters’. In fact,
a considerable number of genes displayed multiple patterns including A, B,
C, and D, indicating a high degree of complexity in the regulatory
mechanisms of gene expression on the X chromosome (Supplementary
Fig. 7, Supplementary Data 19).

Given the regulation role of XCI and the significant impact of the
promoter and 5'UTR on gene expression regulation”, we utilize KEGG
pathway enrichment analysis to the genes with CpGs in patterns A and B,
and in the promoter and the 5UTR region (Fig. 4d, e, Supplementary
Data 20,21). These genes in pattern A are enriched in pathways such as NF-
kB pathway’’, Primary Immunodeficiencies”, and Polycomb repressive
complexes’, which are known to be associated with XCI. Most of the genes
in the enriched pathways are classified as XCI genes and some genes are
defined as variable escape genes (Fig. 4d, e), according to combined survey
approaches for XCI status’”’". Five genes (PABPC5, PABPC1L2A, NCBP2L,
IL2RG, and GABRQ) enriched in these pathways are unknown in the cur-
rent catalog of XCI status’”. The genes in pattern B are enriched in the
JAK-STAT signaling pathway and Neuroactive ligand-receptor interaction.
Three genes (CSF2RA, CRLF2, IL3RA) in the JAK-STAT signaling pathway
are located in the pseudoautosomal region PAR1 and one gene (IL9R) is in
the PAR2 region. The detected genes in the PARI region are usually
reported to be XCI escape genes’’, however, the XClI status of CRLF2 has not
been thoroughly studied and classified. Although this gene is involved in
diseases, such as leukemia and autoimmune disease (MalaCards Version
5.23), there is limited research on the methylation level of this gene. Notably,
The JAK-STAT pathway is implicated in various physiological and patho-
logical processes”, including autoimmune diseases that predominantly
affect women’. Three genes in another enriched pathway of Neuroactive
ligand-receptor interaction, including GRPR*, P2RY8", and P2RY10" are
also involved in autoimmune diseases. Beyond these genes, numerous other
genes containing sex-specific CpG sites may escape or variably escape from
XCI, which need further investigations, especially for the miRNA genes that
were not systematically studied for their XCI status’*". Here, we provide a

list of all genes with patterns A and B in the promoter and 5’UTR regions for
future studies (Supplementary Data 22). Our results demonstrate that
cfDNA methylation patterns likely reflect XCI status, and provide epigenetic
evidence to support conventional understandings. The non-invasive test of
cfDNA methylome may be useful for XCI status analysis for future disease
studies.

Characterization of cfDNA tissue-of-origins in the generally
healthy individuals

We perform c¢fDNA tissues-of-origin profiling for 98 samples using two
deconvolution methods based on the DNA methylation atlas of human
bodies developed by Moss et al.” and Loyfer et al."®. As a result, the blood
cells, such as granulocytes, erythroid progenitors, monocytes/macrophages,
and NK cells, are the dominant cfDNA origins (Fig. 5a, b, Supplementary
Fig. 8a, b, Supplementary Data 23). These results are also consistent with
previous studies'”'®. There are some differences between the deconvolution
results. We focus more on the generally consistent results for the blood cells
and tissues verified by both methods.

We find that the increase in the relative proportion of granulocyte-
derived cfDNA with age exists only significantly in females but not in males
(Supplementary Fig. 9a—d, Supplementary Data 23). This phenomenon may
be associated with the modulatory effects of estrogen on neutrophil
apoptosis®, which declines with age in women. By using the deconvolution
method developed by Moss et al.”’, we find that females have a higher
relative proportion of monocytes/macrophages-derived cfDNA compared
to males in relatively young groups (age 20-30 and 31-40), but not in older
groups (age: 41-50, 51-60, and >60) (Supplementary Fig. 10a, Supple-
mentary Data 23). The significant decrease of monocytes/macrophages-
derived cfDNA with age is also discovered only in female groups (Supple-
mentary Fig. 10b, ¢, Supplementary Data 23). The observed variations in
monocyte/macrophage-derived cfDNA are probably associated with the sex
difference in monocyte counts*® and monocyte cytotoxic activity”’. How-
ever, the findings about monocyte/macrophage-derived cfDNA are not
supported by the method developed by Loyfer et al."’. Therefore, it needs
further investigation to get a solid conclusion.

In addition to the blood-cells-derived cfDNA, the hepatocytes-derived
cfDNA is the highest among all organs. Age- and sex-related variations
in fDNA origins are found in hepatocytes (Fig. 5¢, Supplementary
Fig. 8¢, Supplementary Data 23). Compared to the relatively young peo-
ple, hepatocyte-derived cfDNA is higher in older males, but not in
older females. A significant sex difference (P <0.05) is found in the old
group (age:51-60), but not in younger groups (age:20-30, 31-40, and
41-50). As we know, the prevalence of chronic liver diseases, such as
metabolic dysfunction-associated steatotic liver disease (MASLD) and
hepatocellular carcinoma, is increasing with age, especially for those above
age 50%, and is much higher in males than in females®. Cell death and tissue
injuries in old males may contribute to the higher level of hepatocytes-
derived cfDNA.

Next, we compare the relative proportion of hepatocyte-derived
cfDNA with the blood biochemical test results. We find that the hepatocyte-
derived cfDNA shows positive correlations with the levels of alanine ami-
notransferase (ALT), aspartate aminotransferase (AST), and gamma-
glutamyl transpeptidase (GGT) (Fig. 5d-f, Supplementary Fig. 8d-f, Sup-
plementary Data 24), which is consistent with the positive correlations
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and CpG regions (c). Significant differences among patterns (chi-square test, two-
tailed test, adjusted P < 0.001) exist in all tested gene regions and CpG regions
(Supplementary Data 5). KEGG enrichment analysis for genes with pattern A and
pattern B in 5UTRs (d) and promoters (e), using hypergeometric test (one-tailed
test). The P values without adjustment are shown in (d, e). The P values and adjusted
Pvalues are in Supplementary Data 20, 21. The genes with four XCI status categories
are labeled in red (XCI), yellow (escape XCI), black (variable XCI), and blue
(unknown). The genes labeled in blue in pattern A and B are currently unknown for
their XCI status.

found in COVID-19 patients'’. Moreover, the hepatocyte-derived cfDNA
shows negative correlations with High Density Lipoprotein Cholesterol
(HDLC) (Fig. 5g, Supplementary Fig. 8g), an important biomarker related to
liver function. Notably, our research is based on generally healthy partici-
pants rather than patients. These results indicate that cfDNA may be a
promising and sensitive biomarker in the evaluation of liver health, in both
patients and generally healthy individuals.

The plasma cfDNA tissue origins exhibit some individual variances.
Although the participants are generally healthy, some of them may still have
some health problems or non-severe diseases, which led to abnormal
cfDNA deviations. For example, some participants showed abnormally high
proportions of ¢fDNA derived from monocytes/macrophages (EB069),
granulocytes (EB080), erythroid progenitors (EB005), megakaryocytes
(EB005), and hepatocytes (EB071) (Fig. 5a, h-l, Supplementary Fig. 8a,
h-k). To explore the possible reasons for the outliers, we investigate their
physical examination and questionnaire information.

Asaresult, we find that EB069 (Fig. 5h, Supplementary Fig. 8h) was the
only participant who had a history of gout and was currently undergoing
gout-specific medicine treatment. As monocytes are known to be involved

in the inflammatory processes in gout pathology”, this participant may
exhibit enhanced monocyte-mediated immune responses, which increased
monocyte-derived cfDNA. For another participant EB080 (Fig. 5i, Sup-
plementary Fig. 8i), the chest CT scan reveals chronic pulmonary inflam-
matory lesions. Besides, this participant had a history of hyperlipidemia and
hypertension, which has also been widely recognized to trigger inflamma-
tory pathways, resulting in heightened neutrophil production and
mobilization’*”. Participant EB005 (Fig. 5j, k, Supplementary Fig. 8j) was
diagnosed with thrombocytosis and is undergoing treatment. Thrombo-
cytosis is characterized by the overproduction of platelets by mega-
karyocytes. The clonal expansion of hematopoietic stem cells in
thrombocytosis may result in increased production of hematopoietic cell
lineages™, such as erythroid progenitors. However, the connection between
thrombocytosis and the overproduction of erythroid progenitors is not
typically a prominent feature and more studies are needed to understand the
phenomenon. Participant EB071 (Fig. 51, Supplementary Fig. 8k) who has
the highest cfDNA level of hepatocytes, has elevated liver enzyme levels,
with ALT at 70.9 U/L and AST at 76.5 U/L, both exceeding the normal range
(0-40 U/L).
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Fig. 5 | Cell-type origin analysis of the plasma cfDNA based on the methylation
profile (Deconvolution method: Loyfer et al.18.). a Cell-type composition of
plasma cfDNA for each individual (n = 98). b Cellular contributors to cfDNA
(median value of 98 samples). ¢ Boxplot comparing the hepatocytes-derived cfDNA
proportions of females (rose red) and males (blue) in different age groups. The
numbers of individual samples in each group are shown in Fig. 1a. Box plots show
median + interquartile range (IQR) and 1.5 IQR ranges (whiskers). The P values

were calculated by the Wilcoxon rank-sum test (two-tailed). d-g Spearman’s cor-
relation between the hepatocytes-derived cfDNA proportion and ALT, AST, GGT,
and HDLG, respectively. h, i The rank of samples based on cfDNA derived from
monocytes/macrophages, granulocytes, erythroid progenitor cells, megakaryocytes,
and hepatocytes. Special triangle (A), square (O), hollow circle (o), solid circles (@),
and star (¥) in (a) represent the corresponding participants in (h-1).
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Discussion

Our research demonstrate the great value of whole-genome study on DNA
methylation. Only 7% of the age- and sex-associated CpG sites on the auto-
somes identified in our study are included in the 450 K/850 K arrays. To the
best of our knowledge, many of the CpGs are newly discovered to be age- and
sex-related at the DNA methylation level, although many related genes and
pathways have been proved to be age- or sex-related through other detection
methods, such as transcriptome and proteome analysis. For the very special
gene of FIGN, with the largest number of age-associated CpGs and simulta-
neously containing 6 age- and sex-associated CpGs, previous research has
reported something about its relationship with aging and sex. FIGN shows sex-
specific deviations in centenarians of decelerated aging”. A methylated geno-
mic units (DMUs) specific to long-lived-man in an intergenic regions near
FIGN has also been discovered™. Its expression level is relatively high in
the ovary, tibial nerve and artery (GTEx Analysis Release V10), and this gene is
also associated with diseases such as polycystic ovary syndrome, Parkinson’s
disease and pulmonary hypertension (MalaCards Version 5.23). Our analysis
provides an epigenetic perspective to understand some sex-biased and/or
aging-related diseases. Moreover, we discover that many IncRNA genes contain
a lot of age- and sex-associated CpGs. The regulation of DNA methylation on
IncRNA gene expression may impact the downstream regulation of IncRNA-
targeted genes””, which displays a more complex mechanism of regulation.

Plasma cfDNA is a very special and valuable sample material for health
and disease studies, for it provides a non-invasive approach to measure
DNA methylation alterations in various tissues and cell types in the human
body'®"”. For example, early cancer screening and diagnosis are studied by
detecting the tumor-derived cfDNA and localizing potential tumors'.
CfDNA methylation has also been explored to evaluate tissue (e.g., neu-
trophils, adipocytes, heart, lung, liver, and kidney) injuries in COVID-19"*,
and many other diseases””. These results improve our understanding of
cfDNA methylation signatures for identifying tissue-specific injuries and
systemic pathological conditions.

In the past decade, DNA methylation patterns have been employed to
measure biological age accurately'”. Like other classical epigenetic clocks, we
believe cfDNA methylation data can also be trained to estimate age accel-
eration and predict aging-associated diseases and mortality risk. In addition
to the hematopoietic cell types, cfDNA carries aging signals from tissues and
organs. These aging and tissue injury signatures may enable risk stratifica-
tions for the general population, facilitating personalized interventions (e.g.,
lifestyle modification, clinical therapies) to mitigate disease progression’.

This study has several limitations. For example, ethnic differences in
human DNA methylation have been widely reported, while this study only
focused on the Chinese population. The sample size in this study is relatively
small, expanding the participants to a wider cohort will enhance the com-
prehensive understanding of aging, sex-biased, and disease-related methy-
lation profiles. Moreover, the selection of CpGs and the predictive accuracy
of the epigenetic clock can be further refined by using other modeling
algorithms, and its application in disease prediction and health monitoring
also needs further exploration. We anticipate that future cfDNA methyla-
tion studies will provide more thorough insight into methylation variations
and promote the practical application of cfDNA signatures as biomarkers.

Conclusion

In the present study, we use cell-free DNA (cfDNA) whole-genome bisulfite
sequencing (WGBS, ~30 X) to comprehensively investigate the epigenetic
signatures of methylation that correlate with age and sex. Our analysis
reveals 3047 CpGs and 1587 genes on autosomes that exhibit significant
associations with age. We provide a list of genes with methylation altera-
tions, including genes of IFT80 and RILPLI that are related to aging diseases.
Based on the age-associated CpGs, we developed a relatively accurate
methylation epigenetic clock (R=0.91, MAE =3.74 years) utilizing 125
CpG sites, thereby expanding the research on epigenetic clocks by using
cfDNA. Additionally, we identify 1053 sex-associated CpG sites and 324
genes on autosomes. The sex-associated genes are relevant to sex-biased
pathways and diseases, including those of neural functions, psychiatric

disorders'”', and diabetes'”’. We demonstrate that cfDNA methylation
patterns on the X chromosome could also indicate XCI status, and the XCI
escape genes involved in modulating immune responses could be found
through the analysis of methylation patterns. Furthermore, our study dis-
cover age- and sex- associated cfDNA features in the tissue-of-origin,
including the relative proportion derived from granulocyte, monocytes/
macrophages, and hepatocytes. Through the cfDNA profiling of the general
population, we detect four samples that deviated from others. They had
abnormally high relative proportions of cfDNA derived from certain cell
types, which reflects their health problems. Although this analysis needs a
more comprehensive health data survey with larger sample sizes for further
validation, our findings highlight the importance of age and sex in influ-
encing cfDNA characteristics and display the great potential of cfDNA
methylation as a biomarker in clinical applications.

Data availability

The sequencing data and DNA methylation data have been deposited into
the China National GeneBank Sequence Archive (CNSA) of China National
GeneBank DataBase (CNGBdDb) with the accession numbers CNP0003513
and CNP0005464 (https://db.cngb.org/cnsa/).
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