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Abstract 

Background Gait disturbances are the clinical hallmark of ataxia. Their severity is assessed 
within a well- established clinical scale, which only allows coarse scoring and does not reflect 
the complexity of individual gait deterioration. We investigated whether sensor-free motion 
capture enables to replicate clinical scoring and improve the assessment of gait disturbances. 

Methods The normal walking task during clinical assessment was videotaped in 91 ataxia 
patients and 28 healthy controls. A full-body pose estimation model (AlphaPose) was used to 
extract positions, distances, and angles over time while walking. The resulting time series were 
analyzed with four machine learning (ML) models, which were combinations of feature 
extraction (tsfresh, ROCKET) and prediction methods (XGBoost, Ridge). First, in a regression 
and classification approach, we trained the ML models on reconstructing the clinical score. 
Second, we used explainable AI (SHAP) to identify the most important time series. Third, we 
investigated time series features to study longitudinal changes. 

Results Gait disturbances are assessed with high accuracy by ML models, slightly improving human 
rating 

(i) in the categorial prediction of the clinical score (F1-score best model: 63.99%, human: 60.57% F1-
score), 
(ii) in the detection of subtle changes (pre-symptomatic patients, clinically rated unimpaired are 
differentiated from HC with a F1-score of 75.96%) and (iii) in the detection of longitudinal 
changes over time (Pearson’s correlation coefficient model: -0.626, p < 0.01; human: -0.060, 
not significant). 

Conclusions ML-based analysis shows improved sensitivity in assessing gait disturbances in 
ataxia. Subtle and longitudinal changes can be captured within this study. These findings 
suggest that such approaches may hold promise as potential outcome parameters for early 
interventions, therapy monitoring, and home-based assessments. 

 
Plain Language Summary This study explored a way to measure walking problems in people with 
ataxia, a condition that affects balance and movement. Researchers used video recordings of patients and 
healthy participants while walking and analyzed them with a machine learning model that tracks body 
movements without needing sensors. The model was used to predict clinical scores of walking difficulties 
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and to detect subtle changes over time. The results showed that this approach can capture walking 
problems accurately and may help detect early changes before symptoms appear, as well as track changes 
over time. This method could support earlier interventions, improved therapy monitoring, and even 
enable home-based assessments for people with ataxia. 
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Introduction 

Neurodegenerative ataxias are a group of sporadic and hereditary movement disorders characterized by 
a progressive loss of balance and coordination accompanied by slurred speech, leading to increasing 
disability and premature death. Gait disturbances are one of the main symptoms in ataxias resulting in 
substantial restriction of mobility with the need to use walking aids and, finally, the loss of ambulation 
in later stages of the disease. Initially, imbalance and resulting gait disturbances become obvious only 
during challenging tasks, such as a tandem walk or on uneven ground. As the disease progresses, the 
normal gait becomes increasingly impaired as well. Since gait disturbances are one of the core clinical 
hallmarks of ataxias, the clinical onset of the disease is most often defined as the patient’s reported onset 
of gait disturbances [1–3]. The clinical scale used for the assessment and rating of ataxia includes gait as 
the first item (Scale for the Assessment and Rating of Ataxia, SARA) [4]. Here, a person’s gait is rated 
from 0 (normal) to 8 (unable to walk) based on two tasks: The person is asked (1) to walk at a safe distance 
parallel to a wall including a half-turn (turn around to face the opposite direction of gait) and (2) to walk 
in tandem (heels to toes) without support. The clinical rating is based on parameters such as missteps in 
tandem walk or staggering. The tandem walk task is mandatory for the discrimination between SARA gait 
scores 0 and 1. An unimpaired, normal gait with no difficulties in walking and turning, as well as an 
unimpaired tandem walk, is rated with 0, while the combination of an unimpaired normal gait but ”slight 
difficulties, only visible when walking 10 consecutive steps in tandem” is rated with 1 [4]. For ataxia 
patients, alterations in, for instance, step width, decreased step length, and increased variability in foot 
placement and general trajectories have been described [5–7]. These abnormalities could be assessed 
using wearable sensors [8–10]. Sensor-free motion capture has been used to study gait disturbances in 
a rodent model of ataxia [11]. Lang et al. were able to characterize ataxia-specific movement and further 
quantify subtle movement changes that could not be identified visually, utilizing a single-camera setup in 
combination with a 2D pose estimation framework. Digital gait assessments have been studied in ataxias 
and other movement disorders, showing promising results even in the context of therapeutic 
interventions. Prior efforts have used multi-camera setups in combination with force plates and a Kinect 
v2 sensor [12], single-camera with deep learning-based 2D pose estimation [13, 14], single-camera 
motion capturing using optical markers in combination with inertia sensors [15], infrared depth sensors 
[16]. Moreover, efforts have been made to compare these technologies in the context of clinical 
applications [17]. This related work provides a strong foundation for digital motion analysis in ataxia 
disorders. However, the type of analysis and methodologies differ from our approach by either focusing 
on other movement disorders, such as Parkinson’s, using a different technology, like sensors or wearable 
devices, introducing new measures (e.g., Pose Dispersion Index), or investigating an entirely different 
species, such as rodents. To the best of our knowledge, no study has been published to date that aims to 
reconstruct a SARA item solely from video data in a mixed ataxia cohort of this size. This gap in the 
literature served as the motivation for this work and highlights its contribution to advancing digital gait 
analysis in ataxia. 

In this work, we aim to characterize gait disturbances in an adult cohort of 91 ataxia patients suffering 
from sporadic neurodegenerative or hereditary ataxias, as well as healthy controls (HC), autonomously 
by utilizing multiple machine learning models within a straightforward sensor-free setting. For this 
purpose, we use participants’ normal gait that is videotaped during clinical examinations (N = 159). First, 
a deep learning-based sensor-free motion capture model is used to quantify a person’s gait by extracting 
time series of body markers and subsequently characterizing features thereof. Second, machine learning 
models are trained to reproduce the clinical classification, employing the human examiner’s SARA gait 
item scoring as ground truth. Third, we conduct a feature importance investigation to identify those 
features, that are most important for the final model prediction. Fourth, we assess the sensitivity of key 
digital parameters to longitudinal change and compare their trajectories with those of the clinical scale. 
This study investigates how machine learning can (i) reconstruct a clinical rating score determined by a 
trained neurologist, and (ii) improve sensitivity in detecting subtle and longitudinal changes. Especially 
in those hereditary ataxias for which gene therapies are currently being tested in phase 1 trials 
(clinicaltrials.gov NCT05822908), the detection of early, subtle gait pathologies is of particular interest. 
Given safety and tolerability, such interventions would, in principle, offer the intriguing option of 
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preventive trials. Thus, digital biomarkers that allow to capture subtle, early changes, would support the 
planning of future preventive trials. The approach presented in this work offers great opportunities to 
assess ataxia diseases more fine-grained and personalized, which ultimately allows improved disease 
modeling. Accurate modeling of the disease is crucial for the success of any clinical trial investigating the 
effectiveness of a medication, especially in ataxias, which are typically slowly progressing [18]. Moreover, 
the video-based assessment of gait disturbances based on sensor-free motion capture is beneficial as it can 
be easily integrated into the clinical routine and could even be performed at home, allowing closer 
monitoring of treatment responses and daily fluctuations. Note that in this work, we use the term ’sensor-
free’ to emphasize the absence of wearable devices, and ’video-based’ to indicate that motion capture and 
gait analysis are performed using videotaped assessments. While similar approaches are often described 
in the literature as markerless motion capture, we use sensor-free motion capture to highlight that our 
method relies solely on video data, without any wearable sensors. This distinguishes our approach from 
other commonly used gait analysis methods, such as sensor-based motion capture or systems using inertial 
or pressure sensors [8, 9], which do require specialized hardware. This study shows that sensor-free 
motion capture on videotaped clinical assessments, in combination with a suitable machine learning 
model, is capable of accurately reconstructing clinical ratings that are currently assigned by a trained 
professional onsite. The presented methodology slightly improves on the human baseline performance 

(F1-score best model: 63.99%, human: 60.57% F1-score), is capable of distinguishing healthy controls 

from pre-symptomatic patients (F1-score of 75.96%), and models gait disturbances longitudinally more 
accurately than the clinical score itself (Pearson’s correlation coefficient model: -0.626, p ¡ 0.01; human: -
0.060, not significant). Subsequent explainable AI investigations 
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reveal that upper limb movement is most important for the model to distinguish between different SARA 
gait scores. Finally, the presented work has potential in multiple aspects of ataxia research and care. 
Firstly, this study shows that machine learning applied to sensor-free video recordings of walking can 
detect subtle and early gait disturbances in ataxia, including changes not visible to human examiners. 
This potentially allows for earlier intervention and more accurate disease monitoring. Secondly, the 
method is practical for clinical and home use, which enables performing ataxia assessments on a large scale 
either at home or in a clinical setting without the necessity for a SARA-trained professional. 

 

Methods 

Data 

Participants & Clinical Assessment All participants were enrolled in ongoing observational studies 
in neurode- generative ataxias at the German Center for Neurodegenerative Diseases (Deutsches 
Zentrum f ü r  Neurodegenerative Erkrankungen, DZNE) in Bonn, Germany, and a full list of studied 
patient subgroups of the DZNE Clinical Ataxia Network (DCAN) is given in Supplementary Table 1. Of 
the in total 119 subjects included, 28 were healthy controls and 91 were ataxia patients of the following 
distribution: 58 spinocerebellar ataxia (SCA)(SCA3: 28, SCA6: 10, SCA1: 10, SCA2: 4, SCA10: 2, SCA8: 
1, SCA5: 1, SCA26: 1, not further specified SCA: 1), 2 early-onset ataxias of unknown etiology, 11 multiple 
system atrophy of cerebellar type (MSA-C) as well as 6 sporadic adult-onset ataxia of unknown etiology 
(SAOA)), 3 FXTAS, 2 BRAT1, 2 SYNE1, 2 sporadic ataxias suspect for autoimmune ataxia, 2 Friedreich-
Ataxia, 1 CTX, 1 RFC1 and 1 CANCA1A missense mutation. The final cohort was found to be sufficient in 
size for the analysis carried out in this work. All participants underwent a standardized clinical 
assessment including the Assessment and Rating of Ataxia (SARA) [4] and the majority additionally 
completed the Inventory of Non-Ataxia Signs (INAS) [19], between October 2018 and December 2023. 
SARA includes assessment and rating of 8 different items. The first item, gait, includes the assessment 
of a normal walking task, which was used for the automated video analyses (see next para- graph for more 
details), and a tandem walk. Instruction and graded rating scores for the SARA item gait are provided in 
Supplementary Figure 1. Notably, the differentiation between grade 0 (normal) and 1 refers to gait 
disturbances, which are only obvious during the tandem walk task, while the normal gait is unimpaired 
according to the examiner. The study was approved by the local ethics committee (Ethics Committee of 

the Medical Faculty of the University of Bonn, https://ethik.meb.uni-bonn.de/), and all participants gave 
their written consent, including the assessments and the videotaping, according to the Declaration of 
Helsinki. 

 
Video Taping for Sensor-free Motion Capture & Selection of Videos During visits, the regular 
SARA assess- ments were videotaped following a standardized protocol. For the gait item, the camera was 
positioned directly in front of the person (Supplementary Figure 2). Notably, for the subsequent motion 
capture analysis, we only used the videos of task 1 of the SARA gait item, the gait task of normal walking. 
For quality control, all videos were inspected visually for suitability and excluded otherwise. Reasons for 
exclusion were: disturbances of the overall scene by other persons (e.g., clinic personnel), insufficient 
video quality, or environmental factors, such as mirroring surfaces, that disrupted the downstream data 
processing, for instance, the motion capture. We restricted the analysis to those patients who could 
perform the normal gait task without walking aids, which corresponds to a SARA gait score of less than 
5. All videos were recorded using an iPad Pro (2nd generation) with a frame rate of 30 at a resolution of 
1920x1080. In the end, each video was labeled with its respective on-site SARA gait score and 
additionally tagged as HC or ataxia patient. 

 

Human Rating 

Human examiner rating of the SARA gait item is based on both tasks, normal gait, and tandem walk. 
The on-site assessment of the SARA gait item was conducted and rated by experienced neurologists who 
were trained to perform the SARA. This on-site rating was considered as ground truth for the SARA gait 
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score. A subset of video recordings of the SARA gait item, again including both tasks (N = 41), was rated 
a posteriori by three clinical experts in consensus as part of the SARA training tool development [20]. 
These consensus video ratings were considered a human prediction and likewise compared with the ground 
truth of the on-site ratings. The resulting performance scores were taken as baseline performance for this 
work. 

 

Motion Capture 

For motion capture, we used Alpha Pose, a full-body pose estimation model to extract movement markers 
from joints of the human body [21]. Note that the process of assessing a person’s movement from video 
data using a pose estimation model is referred to as the motion capture process in this work. Alpha Pose 
was favored over other frameworks, such as Open Pose [22–25], due to its ease-of-use and superior 
performance on benchmark datasets commonly used in pose tracking [21]. The Alpha Pose pipeline 
works in a two-step process, which comprises at first a person localization step, using YOLOV3 [26] and 
EfficentDet [27], and subsequently a pose estimation step, while the latter utilizes ResNet [28] as its 
backbone model. After applying the pose estimation model, the standard 17 motion markers were 
extracted corresponding to 17 body parts (e.g., left ankle, right hip) according to the COCO keypoint 
format (see Supplementary Table 2 for details). The data provided by Alpha Pose yields the horizontal 
and vertical positions of each marker in each frame of the video. Further on, from the Alpha Pose output, 
4 multivariate time series were extracted, where each 
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frame was considered a time step. (1) The first time series was based on the raw x-positions of the hip, 
wrist, and ankle (each left and right, respectively), which were assembled into a 6-dimensional (2+2+2) 
time series from here on referred to as X-pos. (2) Furthermore, distances between pairs of markers were 
extracted and formed the 6-dimensional time series, here referred to as Dist. The elements of Dist are the 
distances between both ankles, between both wrists, and the distances between the left hip and left wrist, 
between the right hip and right wrist, and the distance between the neck and left hip, and neck and right 
hip. (3) & (4) Finally, triples of markers from the upper and lower limbs were used to form triangles, and 
time series were based on the extracted angles. Upper consists of the angles at the shoulders, formed by 
the triangle shoulder, wrist, and hip, left and right, respectively. Lower comprised the angles at the hips, 
formed by the triangle between both ankles and the left and right hip, respectively. Thus, two 2-
dimensional time series resulted for Upper and Lower. In summary, time series of movements were 
generated such that each time point corresponds to one video frame. Time series of 6 raw x-positions (X-
pos), 6 distances (Dist ), and in total 2x2 triangles (Upper and Lower ) are further analyzed. This data 
generation is further illustrated in Supplementary Figures 3-6. Written informed consent to publish the 
identifiable images shown in Supplementary Figures 3–6 was obtained from the individual depicted. 

 

Models and Training 

We employed two types of feature sets and two distinct machine learning (ML) strategies to reconstruct 
the SARA gait score, resulting in four model architectures. Each architecture included both a classifier 
and a regressor. In the first architecture, we combined the Python package tsfresh [29] with XGBoost 
[30]. tsfresh extracts 794 predefined features from a one-dimensional time series, such as variance, 
number of local maxima, and other statistical and signal-based 
metrics. For multivariate time series data used in this study (X-pos, Dist, Upper, Lower ), we obtained 
N×794 features, where N corresponds to the number of time series per category: N = 6 for X-pos and 
Dist, and N = 2 for Upper and 
Lower. The extracted features were used to train an XGBoost classifier or regressor, depending on the 
task. The second architecture also used tsfresh features but replaced XGBoost with ridge regression or 
classification. Thus, the two tsfresh- based models only differed in their final prediction model. The third 
and fourth architectures used ROCKET [31], a time series method that applies random convolutional 
kernels to extract features. ROCKET has demonstrated state-of-the-art performance in classification tasks 
while being computationally efficient. In our implementation, 10,000 convolutional kernels were 
applied to the time series, and ridge regression was used as the final prediction model. For the sake 
of completeness, we combined ROCKET features with XGBoost classifiers and regressors for the fourth 
architecture. Since ROCKET requires fixed-length input, we cropped all time series to the first 400 
frames, which corresponds to approximately 13 seconds at 30 frames per second. This cut-off was chosen 
based on the shortest video duration in the dataset and was only applied for ROCKET-based 
architectures. Each model, defined as a specific combination of feature extractor and ML predictor, was 
trained and evaluated using the time series categories (X-pos, Dist, Upper, Lower ) both independently 
and in all possible combinations. For example, combining X-pos and Dist (both with dimensionality 6) 
results in a 12-dimensional multivariate time series. In all cases, we report the best-performing time series 
or combination thereof. All models were trained for both regression and classification tasks. In 
regression, the models predicted the continuous SARA gait score in the range [0, 4], excluding HC. In 
classification, the task was divided into 15 binary problems, each distinguishing between a unique pair 
from [HC, 0, 1, 2, 3, 4], excluding self-pairs. SARA gait scores were treated as discrete classes, with HC 
treated as a separate class, in the classification setting. Regression performance was assessed using Root 

Mean Squared Error (RMSE) and R2-score, and the best performing model was selected by R2-score. We 
performed Mann-Whitney U-tests on predicted values across adjacent classes to evaluate whether models 
could distinguish neighboring SARA scores. Regression experiments were repeated with HC included for 

completeness. For classification, the macro-averaged F1-score was used to account for class imbalance. 

This score is the average of per- class F1-scores. We used a modified leave-one-out cross-validation. For 
participants with follow-up visits, all remaining videos of the same participant were excluded from the 
training set when one of the videos was part of the test set, to avoid subject-specific learning. Ridge 
models used inner cross-validation to tune the regularization parameter α. For XGBoost models, 
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hyperparameters (learning rate, max tree depth, number of estimators) were optimized via 30 trial runs on 
the inner fold. Scikit-learn [32] was used for ridge models due to its convenient interface for tuning α. 
Section lists further information about the implementation and hyperparameter tuning. During the 
training of tsfresh+XGBoost models, SHAP values were computed for each test sample. These were 
aggregated across folds, and mean SHAP values were used to rank the time series by feature importance. 
This offered interpretability of model predictions, in line with current explainable ML practices [33]. 
Since regression outputs are float-valued, we implemented an additional step to derive discrete 
predictions for comparison with the human-labeled scores. For each regression prediction, a binary 
classifier was used subsequently to determine the final class. For example, a prediction of 2.42 would 
trigger a classifier trained to distinguish class 2 from class 3. To reflect the regressor’s confidence, we 
dynamically adjusted the classifier’s decision threshold based on the distance of the regression output 
from the class boundary. For details on this, please see Supplementary - Hybrid Ordinal Regression 
Implementation. This process was applied to all four models, and the resulting class predictions were 
used to compare model performance with human baselines. 

 

Longitudinal Analysis 

Thirty patients were followed longitudinally, not earlier than 6 months after the previous visit, enabling 
the evaluation of extracted gait features in capturing progressive gait disturbances over time. For each 
feature derived using the tsfresh package, we computed the Pearson correlation between the feature value 
and time (measured in days since the baseline 
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visit). SARA gait scores and time series features were normalized relative to each patient’s baseline, and a 
linear regression was performed to test the significance of the longitudinal change over time. All p-values 
from the regression were corrected for multiple testing using the Benjamini-Hochberg method [34]. 
Analyses were conducted on the full cohort (N=30) as well as four sub-cohorts stratified by baseline 
SARA gait score. For both, the full cohort and each sub-cohort, the top features are reported based on the 
highest absolute Pearson’s correlation coefficients. To provide a measure of uncertainty for the correlation 
estimates, we used bootstrapping (1,000 resamples) to compute 95% confidence intervals for Pearson’s 
correlation coefficients. Additionally, we performed a mixed-effects analysis on the subset of patients 
with at least one follow-up visit. For each feature within the combined set (X-pos, Dist, Upper, Lower ), 
we fitted a linear mixed model, modeling the relationship between the feature and SARA gait score over 
time [35]. The top three features, ranked by corrected p-values, are reported. 

 

Fairness Analysis 

Since this work aims to be incorporated into clinical practice in the future, it was necessary to investigate 
whether the models resulting from this work are fair. Here, we consider the models as fair if no sex or 
age group has to expect a significantly lesser performance. Hence, the RMSE for males and females, as 
well as for the age groups 19-39, 40-59, and 60-82, was calculated and reported. In this analysis, we used 

RMSE instead of R2-score because the group sizes vary, and R2-score is sensitive to sample size. 

 

Statistics and Reproducibility 

The statistical analysis conducted in this work uses machine learning models that were trained and 
evaluated in a cross- validation framework. The dataset consisted of 91 patients with ataxia and 28 
healthy controls, with each participant contributing up to three walking videos. No technical replicates 
were produced, and each data point corresponds to one videotaped clinical assessment. Reproducibility is 
ensured by applying a deterministic leave-one-out cross-validation with fixed random seeds, and all results 

are reported in terms of either F1-score (classification), RMSE and R2 (regression), and correlation metrics 
(longitudinal analysis). The clinical setting, pre-processing, feature extraction, and model training, 
including hyperparameter tuning, are described in the method to allow replication. 

 

Code Availability 

This study did not use any custom code beyond scripts that run the models mentioned in the Methods. 
The software and the respective versions utilized were the following. The time series features were 
generated with the tsfresh (v. 0.20.0) framework implemented in Python 
https://tsfresh.readthedocs.io/en/latest/. The XGBoost models were taken from the Python 
implementations of XGBoost (v. 1.7.5) https://xgboost.readthedocs.io/en/stable/. The ridge 
regressor and classifier models were taken from scikit-learn (v. 1.2.2) https://scikit-
learn.org/stable/api/ sklearn.linear_model.html. Hyperparameters for the XGBoost-based models 
were tuned using Optuna (v. 3.3.0) https://optuna.org/. SHAP values were calculated using the SHAP 
(v. 0.42.1) Python implementation https://SHAP. readthedocs.io/en/latest/index.html. We used the 
ROCKET implementation provided as a part of sktime (0.36.0) https://github.com/sktime/sktime. 
Statistical testing was performed using Scipy (v. 1.13.1) https://scipy.org/ 

Supplementary Table 3 lists the hyperparameter search spaces. Because all models were evaluated in 
a leave-one-out setting, no single final set of hyperparameters can be reported. To provide insight into 
typical configurations, we present the distribution of hyperparameters selected during cross-validation 
for one representative model (tsfresh+XGBoost) in the Supplementary (see Results section for the exact 
reference). 

 

Results 

Table 1 summarizes the demographic and characterizing data of the patient and healthy control cohorts. 
From 246 videotaped visits, 159 videos of participants performing the normal gait task formed the basis 
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for the following analysis. 87 videos had to be excluded due to given reasons related to video quality or a 
SARA gait score of greater than 4. The on-site ratings, which serve as the ground truth, were distributed 
as depicted in Supplementary Table 4. 
The age distribution across ataxia patient subgroups according to their baseline SARA gait scores and 
the group of HC is given in Supplementary Figure 7. We evaluated the performance of the four models 
described in Section across all time series and their combinations, in both classification and regression 
settings. Subsequently, this section presents the results of the explainability efforts and concludes with the 
results of the longitudinal and fairness analysis. For guidance, Figure 1 illustrates the main parts of the 
analysis conducted in this work. 

 

Regression Experiments 

The performance of the four included models in predicting the SARA gait score within patients only 
(Nvideos=129) was evaluated using RMSE and R2 metrics, as shown in Figure 2. The experiments were 
conducted with every time series combination possible, and the reported scores are the best noted, in 
terms of R2-score. Amongst all four models, the tsfresh+XGBoost model, which utilizes explicit time 

series features, e.g., number of peaks, showed the lowest RMSE of 0.686 while reporting the highest R2-
score of 0.589. These scores were reached by utilizing the combination of time 
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 HC Patients 
 

N 28 91 
f/m 14/14 46/45 

Nvideos 30 129 
Age 47.75 (19.67) 50.21 (13.80) 

SARA sum score 2.59 (3.36) 10.16 (5.26) 
SARA gait score 0.36 (0.66) 1.89 (1.07) 

INAS count 0.76 (0.76) 2.57 (1.62) 

Table 1: Demographic and characterizing data of the cohort. Values are given as mean and 
standard deviation in brackets. INAS count was available for 139, and SARA sum score was available for 
149 videos. Age, INAS, SARA, and SARA gait score are averaged across all videos within the respective 

group. Nvideos = Number of available videos, f 
= female, m = male. 

 

Figure 1: Summary Figure outlining the working steps performed in this study, while indicating 
the number of samples used in each step. 
Summary figure depicting the main analyses performed in this study. First, Data Processing (A) 
comprises videotaping of normal gait and subsequent motion capture resulting, per subject, in 16 time 
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series of 6 raw x-positions (X-Pos), 6 distances (Dist ), and in total 4 triangles, left and right side of the 
upper (Upper ) and lower (Lower ) limbs. The Predictive modeling (B) aimed at the reconstruction of the 
ground truth SARA gait score and compared four different architectures for this purpose. In the 
Explainable AI (C) part, we computed SHAP values during the regression experiment using the 
tsfresh+XGBoost model to identify the most influential time series, which were then interpreted as key 
parameters for distinguishing between different SARA gait scores. Subsequently, intra-individual 
trajectories of the tsfresh features were analyzed in the longitudinal analysis (D) section. We investigated 
whether time series features are capable of modeling disease progression, potentially more fine-grained 
than the clinical score. Finally, all models are compared with a Human Baseline (E) performance. Logos 
were taken from: [36–39]. HC=Healthy Control. 

 
series Dist +Upper +Lower, i.e. the body markers taken from the 6 distances between markers combined 
with the four angles at the left and right hip and shoulder, respectively. Moreover, the model 
demonstrated a statistically significant 
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Figure 2: Results of the best-performing regression experiment with the true values plotted 
against the predicted values alongside the considered performance metrics. 
Predicted SARA gait values of the best-performing tsfresh+XGBoost regression model were evaluated 

using root mean squared error (RMSE) and R2-score. The numbers in the very top row present the RMSE 
constrained to the respective SARA gait scores. The thick black line is a linear fit on the model 
predictions, while the dotted line is the diagonal representing a theoretical 1:1 relationship between true 
and predicted values. The brackets in the top section indicate whether there is a statistically significant 
difference between the predicted SARA gait scores of neighboring pairs. The 

significance was tested using a two-sided Mann-Whitney U-Test, and the reported p-values are 
uncorrected for multiple comparisons. * p < 0.05, ** p < 0.01, n.s. = not significant. The exact p-values 

are: (0,1): 0.0054, (1,2): 4.138 ∗ 10−5, (2,3): 0.029, (3,4): 0.0004. 

 
(p < 0.05) distinction in the distribution of predictions across all pairs of neighboring ratings on the 
SARA gait scale (Figure 2). This indicates that the model effectively captured the nuances between 
adjacent score levels. The remaining three models, tsfresh+Ridge, ROCKET+Ridge, and 
ROCKET+XGBoost, demonstrated worse performances, and the respective results are provided in 
Supplementary Figures 8-10. 

All regression experiments were repeated with additionally including HC. Generally, all models 

perform better in the overall R2-score when including HC. In this setting, the tsfresh+XGBoost model 

achieved an R2-score of 0.638 and an RMSE of 0.705, again making it the best-performing model among 
the four evaluated. The results of the regression experiments, including control subjects, for all models, 
are presented in Supplementary Figures 8-11. 

 

Classification Experiments 

Binary Classification Experiments The classification experiments consisted of 15 binary 
classification tasks evalu- ated across four model architectures. Among the models, the tsfresh+XGBoost 
model ranked among the top performers and was selected for inclusion in the main manuscript. Although 

it performed on par with the tsfresh+Ridge model in terms of mean macro-averaged F1-score (81.3% vs. 
81.4%, respectively), it had previously exceeded the Ridge model in the regression setting. As such, the 
tsfresh+XGBoost model was chosen for detailed reporting, while results from the tsfresh+Ridge model 
are shown in Supplementary Figure 12. Figure 3 presents the results of the 15 classification experiments 
using the tsfresh+XGBoost model, visualized as color-encoded matrices. In general, the greater the 
absolute difference between two SARA gait scores, the more accurately the model distinguished between 

them. The highest F1- score (95.38%) was achieved in the classification task separating SARA gait scores 
0 and 4, while the lowest (61.73%) was observed when distinguishing between scores 0 and 1 within the 
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patient group. Notably, the model achieved an F1-score of 75.96% when distinguishing healthy controls 
from ataxia patients with a SARA gait score of 0. A SARA gait score of 0 indicates an unimpaired gait 
according to the examiner. The tsfresh+XGBoost model utilizes explicit time series features and 
consistently performed best when incorporating either the Lower, Upper, or both time series, 
corresponding to angles at the hips and shoulders, in 14 out of the 15 binary classification tasks. In 

addition to the macro-averaged F1-score presented in the main manuscript, the weighted F1-score for all 
15 binary classification experiments, utilizing the combination tsfresh+XGBoost, is depicted in 
Supplementary Figure 13. In contrast, the models utilizing ROCKET features, ROCKET+Ridge and 

ROCKET+XGBoost, yielded inferior performance, with mean macro-averaged F1-scores of 76.7% and 
74.5%, respectively. Results for these models are presented in Supplementary Figures 14 and 15. Finally, 
calibration curves for all 15 experiments using the tsfresh+XGBoost model are depicted in 
Supplementary Figure 15. 

 
Best-Performing Model Among the models evaluated, the tsfresh+XGBoost architecture consistently 
yields superior performance across all classification and regression experiments. Hence, we focused on 
this model in the subsequent analyses, and it was selected for hyperparameter reporting. The distribution 
of hyperparameters across cross-validation folds for this model is shown in Supplementary Figures 17–20, 
providing additional insights into its typical configurations. 
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Figure 3: Results of the best-performing classification experiment presented in a color-
coded matrix de- picting the performance score and the employed time series or 
combination of such. 
Results of tsfresh+XGBoost classification model where each row-column combination in the upper right 

triangle depicts the best reported macro-averaged F1-score (in %) for the respective binary classification. 
The lower left triangle depicts for which time series or combination of time series this performance was 
reported. Classes labeled 0–4 refer to patient data only, while the class labeled HC includes all healthy 
control subjects. For instance, the best tsfresh+XGBoost model fed with time series features derived 
from the x-positions (X-pos) and angles at the hips (Lower ) and trained to classify between the SARA 

gait scores 0 and 1 within the ataxia group was able to score a macro-averaged F1-score of 61.73%. X=X-
pos (time series of raw x-positions of each marker separately), D=Dist (time series of distances between 
two markers), U=Upper (time series of angles of the upper body part, i.g. shoulders), and L=Lower (time 
series of angles of the lower body part, i.g. hips). HC=Healthy Control. 

 
Comparison with Human Baseline Finally, this work evaluated the ability of the presented models 
to classify between all 5 SARA gait classes of patients considered, namely [0, 1, 2, 3, 4], and compared 
that performance with a human baseline. (Table 2). For 41 participants, this human baseline, the 
consensus rating of the videos by three trained neurologists [20], was available. The presented scores are 
macro-average scores across all classes. The human baseline was 

 
 

Model Prec. ↑ Rec. ↑ F1 ↑ 
 

tsfresh+XGBoostH41 74.87 67.17 63.99 
Human Baseline 73.03 66.68 60.57 

Table 2: End-to-end performance of the best-performing model predicting the SARA gait 
score on the ordinal scale [0, 1, 2, 3, 4] in comparison with the human performance. 
Results of the classification experiment across all patient SARA gait score classes [0,1,2,3,4] evaluated on 
the subset of the 41 cases, for which the human baseline of consensus video ratings of 3 experts were 
available. Only the tsfresh+XGBoost model surpassed the human baseline. All scores are presented in %. 

Prec.=Precision, Rec.=Recall, F1=F1-score. Arrows indicate the favorable outcome; for all considered 
metrics, higher values are favorable. 

 
able to reconstruct the SARA gait score with a macro-averaged F1-score of 60.57%, macro-averaged 
precision of 73.03%, and macro-averaged recall of 66.68%. In comparison, tsfresh+XGBoost achieved 

better performances in all metrics, in particular a higher macro-averaged F1-score of 63.99% on the 
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reconstruction of SARA gait scores within the 41 considered videos. This performance was achieved using 
features extracted from the Upper time series, specifically the angles at the shoulders. Full confusion 
matrices for both tsfresh+XGBoost and the human baseline are presented in Supplementary Figure 21, 
alongside additional performance metrics (weighted-F1 and Cohen’s κ) in Supplementary Table 5. The 
models utilizing ROCKET features and the one combining tsfresh features with a ridge regressor and 
classifier did not perform better than the human baseline. They are presented in Supplementary Table 
6. 

 

Explainability 

Since the implementation of tsfresh+XGBoost involved a mechanism for collecting SHAP values throughout 
the evaluation process, we utilized these values to gain insight into feature importance. Accumulating 
these SHAP values allowed us to evaluate which time series were most important for this model to 
generate its final prediction. Figure 4 presents the results of this investigation in a radar plot. The most 
important time series comprised the angles of the upper and lower body. The top four time series 
originated in ascending order from the angles at the right shoulder, left hip, left shoulder, and right hip. 
The most important time series from the category of time series of raw x-positions (X-pos) was derived 
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from the right hip, while the most important time series for distances (Dist ) was the distance between the 
right hip and wrist. However, features derived from the raw x-positions of certain body markers (X-pos) 
and from distances (Dist ) were generally assigned less importance. The same analysis was performed 
for neighboring classes in the classification experiments using tsfresh+XGBoost. Neighboring classes 
here refer to the binary classifications HC vs. 0, 0 vs. 1, 1 vs. 2, 2 vs. 3, and 3 vs. 4. Considering the mean 
SHAP values across neighboring classes, higher SHAP values were most associated with features of the 
shoulder angles. Detailed results for this analysis are given in the Supplementary Figure 22. 

 

Figure 4: Results of the explainability analysis illustrated in a radarplot with clockwise 
decreasing impor- tance values beginning at 12 o’clock. 

Mean SHAP values presented in a radar plot. SHAP values for each feature of the time series of x-pos 
markers (X-Pos), distances (Dist ), and angles (Upper, Lower ) are calculated during the prediction step of 
the tsfresh+XGBoost regression model. The respective markers, from which the features with the highest 
SHAP values originated, i.e., being most im- portant for the final prediction of the model, are arranged 
in ascending order in a clockwise direction, starting at the 12 o’clock position. R = right, L = left. 

 

 

Longitudinal Analysis 

Thirty participants returned for at least one follow-up visit. Table 3 characterizes this longitudinal 
sub-cohort. To 
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Time of 
observation 
in days 
mean [min, 
max] 

463.43 [130, 810] 
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Number of visits 2 visits: 24 
3 visits: 6 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

Number of 
patients 

according to 
their baseline 
level of gait 

disturbances 

SARA gait score of 0: 5 
SARA gait score of 1: 4 
SARA gait score of 2: 15 
SARA gait score of 3: 5 
SARA gait score of 4: 1 
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Table 3: Characterizing data of the longitudinal sub-cohort in terms of visits and the 
respective SARA gait score assessed at the baseline visit. 

The baseline rating refers to the ground truth SARA gait score rating assessed by a neurologist at the first 
visit. 24 patients had 1 follow-up visit, 6 patients had 2 follow-up visits. 

 
investigate features suitable for modeling gait disturbances in ataxia over time, we conducted a 
correlation analysis and visualized the most time-associated parameters, in terms of Pearson correlation, 
by plotting their relative change from baseline against the number of days since the baseline visit (Figure 
5). Note that the direction of change depends on the specific feature. For example, in one patient tracked 
longitudinally, one feature extracted from the x-position of the left hip (from the X-pos series) decreased 
over time, while another feature derived from the right shoulder angle (from the Upper series) increased. 
Thus, a longitudinal deterioration of gait disturbances might result in either a decrease or 
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an increase, e.g., negative or positive deltas compared to baseline. A full list of the selected features of 
the longitudinal analysis is given in Supplementary Table 7. 

 
Clinical Scale The clinical scale itself, the human rating of SARA gait score, did not show any significant 
longitudinal changes in the studied cohort. Increases and decreases relative to the SARA gait score at 
baseline were roughly balanced, whereby the expected deterioration in gait over time was not captured, 
with a Pearson’s correlation coefficient of -0.06, 

95% CI: [−0.431, 0.207], (p>0.05). (Figure 5 A). 

 
Overall Time Series Feature For the overall analysis of the entire ataxia cohort, the feature showing 
the greatest 
absolute Pearson correlation with time was derived from the x-position time series of the left hip 
(Pearson’s correlation coefficient -0.625, 95% CI: [−0.778, −0.421], p<0.01) (Figure 5 B). 

 
Stage-dependent Time Series Features Further stratification of the longitudinal cohort by their 
SARA gait score rating at baseline allowed for identification of features tailored to the stage-dependent 
severity of ataxic gait. In each stage-dependent case, the time series feature with the highest Pearson 
correlation coefficient was statistically significant and showed a stronger association with disease stage 
than the overall time series feature. (Section ) with absolute values of Pearson’s coefficients ranging 
between 0.841 to 0.988 compared to 0.625 in the overall best feature. For patients that started with a 
baseline SARA gait score rating of 0, a time series feature of the x-position of the left hip was identified as 
the best feature for modeling longitudinal changes (Pearson’s coefficient of 0.934, 95% CI: [0.822, 0.986], 
p<0.01)(Figure 5 C0). For patients with a baseline SARA gait score rating of 1, a time series feature 
of the x-position of the right 

ankle best modeled the longitudinal change (Pearson’s coefficient of -0.988, 95% CI: [−1.0, −0.974], 

p<0.01)(Figure 5 
C1). For patients initially rated with a SARA gait score of 2 a feature of the time series from the angle 
at the left hip 
(Lower ) best captured the longitudinal change (Pearson’s coefficient of 0.841, 95% CI: [0.646, 0.944], 
p<0.01)(Figure 5 
C2). For patients who were rated with a SARA gait score of 3 at baseline, a feature from the time series 
of the angle at the right hip (Lower ) best captured the longitudinal change (Pearson’s coefficient of -0.943, 

95% CI: [−0.944, −0.889], p< 0.01)(Figure 5 C3). Since only 1 patient had a baseline SARA gait score 
of 4, the number of available longitudinal 
assessments for this severity level was considered insufficient for this analysis. Spearman’s rank 

correlation coefficient and R2 are depicted in Figure 5 for reference without confidence intervals. The 
linear mixed model analysis, modeling the relationship between time series features and SARA gait score, 
did not show significant effects (Supplementary Table 8). 

 

Fairness 

Evaluating the RMSE produced by the best-performing regression model, tsfresh+XGBoost, on different 
age and sex groups gives insight into the fairness of the model. The model performs best applied to the 
age group 60 to 82 (RMSE: 0.694) and worst for participants aged 19 to 39 (RMSE: 0.744). The age 
group 40 to 59 ranked between the two other groups (RMSE: 0.714). Concerning the split male/female, 
the model produced an RMSE of 0.634 for males and 0.751 for females. The results are presented in Table 
4. In summary, the tsfresh+XGBoost regression model did not show relevant performance increases or 
decreases in any sex and/or age group. 

 
 tsfresh+XGBoost 

RMSE 

Age-range / N  
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19-39/35 0.744 
40-59/59 0.714 
60-82/34 0.694 

Sex / N  

male/59 0.634 
female/60 0.751 

Table 4: Results of the fairness analysis depicting performance results for different 
demographic sub- groups. 

Root mean squared error (RMSE) of the best-performing regression model, namely tsfresh+XGBoost, 
for the age and sex groups characterized as given in the left column. 

 

 

Discussion 

We analyzed videotaped clinical assessments of a normal gait task, including half turn and way back, as 
part of a clinical assessment in a cohort of ataxia patients and healthy controls. A sensor-free motion 
capture model, Alpha Pose, was used to create time series by extracting positions of particular body 
markers, as well as distances and angles between them, 
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in every frame of the video. We applied multiple machine learning (ML) methods and were able not only 
to reproduce the human clinical scale rating but modestly surpass the human rating in the assessment of 
subtle and longitudinal changes. In general, the predicted (floating point) SARA gait values of the best-
performing model, tsfresh+XGBoost, showed a strong correlation with the human SARA gait rating. 
Binary classification between two severity levels of gait disturbances in ataxia patients improved on 
average for more distant classes, i.e. a greater difference between the two considered SARA gait scores. 
This observation was expected, since it is quite obvious that time series derived from a mildly and a 
severely ataxic gait vary. However, beyond that, there are two notable aspects with regard to the 
superiority of the developed automated gait analysis to detect subtle changes that occur in the early course 
of the disease. First, within the classification experiments, the binary classification between HC and ataxia 
patients rated by the human examiner as unimpaired, with a SARA gait score of 0 (unipairmed normal gait, 

unimpaired tandem walk), achieved higher macro averaged F1-scores than the binary classification 
between human SARA gait score rating of 0 (unimpaired normal gait, unimpaired tandem walk) and 1 
(unimpaired normal gait, but impaired tandem walk) in ataxia patients. Such participants appeared to 
have overall time series features of gait that are more similar to those of patients with already impaired 

tandem walk than compared to those of HC. Moreover, the R2-score was slightly stronger in the entire 
cohort comprised of ataxia patients plus HC than for the ataxia patients only. Thus, including HC, with 
a majority of SARA gait scores of 0, might overall reduce variances within the group of participants rated 
with a SARA gait score of 0. We hypothesize that both observations are related to the fact that ataxia 
patients, even if rated as 0 (unimpaired gait in both tasks) by the human examiner, might nonetheless 
already exhibit very subtle alterations within their gait parameters. From a conceptual point of view, a 
gradual deterioration is reasonable, and particularly for hereditary ataxias, it has been demonstrated that 
the manifest stage of the disease is preceded by a biomarker stage with already ongoing and measurable 
neurodegeneration [40]. Alterations of gait parameters, assessed with body-worn sensors [41] or a 6-
camera multi-Kinect system [42], have been described for such early, pre-ataxic disease stages. Second, 
the tsfresh+XGBoost model showed modestly improved performance over the human rater in the 
discrimination accuracy of SARA gait score 0 (normal gait in both tasks: normal walking and tandem 
walk) [4] and SARA gait score 1 (”slight difficulties only visible when walking 10 consecutive steps in 
tandem”) [4]. In our setup, the second task of the gait assessment, the tandem walk, was not videotaped. 
Consequently, a human rater by definition would not be able to discriminate SARA gait scores of 0 and 1 

based on the normal gait task only. However, the automated analyses achieved a macro-averaged F1-score 
of around 60% in this particular binary classification. This again underlines the potential of the presented 
sensor-free video-based analysis of movement for the detection of subtle, early gait disturbances. 
Incorporating machine learning models into clinical practice benefits from models being able to reason 
about their decisions. This not only allows clinicians to gain insight into the importance of certain 
features leading to the models’ final decision but also increases the trust in these models [43]. The 
superior performing model, including tsfresh, allowed for the inclusion of an explainability approach in 
which the time series derived from the considered body markers are ranked by SHAP values. This 
”explainable AI” analysis revealed that for the overall prediction of SARA gait scores, the top 4 time series 
with the greatest influence on the model’s final prediction were obtained from the angles at the shoulders 
and hips. This seems reasonable since the ataxic gait is characterized by a widened base, staggering, and 
compensation of truncal instability with balancing movements of the arms. A reasoning of the human 
examiner about the rater’s assigned SARA gait score has not been noted. It is worth discussing whether, 
in future setups, ’hand-crafted’ features, which would allow following a rater’s decision, could be included. 
Such features could be, for instance, of the form: ’Number of left arm strike outs’ or ’asymmetry in the 
lower limbs’. Ultimately, future experiments could evaluate how well ML models perform in 
reconstructing the SARA gait score when fed with such additional features, which are currently not 
assessed within the clinical scale. Beyond being used for predictive modeling, the extracted time series 
features were also leveraged to track longitudinal progression. To evaluate the sensitivity of the tsfresh 
time series features to longitudinal change, we assessed how well individual features correlated with time. 
Among these, the feature showing the strongest association with longitudinal change across all severity 
levels was the x-position time series of the left hip. It did substantially improve the human rating, which 
was not able to capture the expected longitudinal deterioration. Notably, analyzing each severity level of 
gait disturbances separately proved to be even more advantageous. Using features tailored to the actual 
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level of gait impairment at baseline further improved the detectability of progressive longitudinal changes. 
This finding aligns with previous studies in SCA2, where a 1-year longitudinal change was captured by the 
digital assessment using three body-worn sensors but not by the clinical scale [9]. While these results are 
promising, they should be interpreted with caution due to the limited size of the longitudinal cohort. 

In addition to the superiority in detecting subtle and longitudinal changes, the automated analysis was 
more accurate in the reproduction of on-site ratings compared to a human baseline. The reproduction 
of the on-site rating based on a consensus rating of the videos by three neurologists (referred to as 

human baseline) did show a slightly lower macro- averaged F1-score than the best-performing ML model 
(60.57% vs. 63.99%). We have defined the on-site SARA rating of an experienced human examiner as 
ground truth. The clinical scale, SARA, has been shown to have a high inter-rater reliability [44, 45]. The 

relatively low F1-score achieved by the human baseline may be partly attributed to their limited 
perspective, having access only to the front-facing video recordings. In contrast, the on-site examiner 
benefits from an optimal viewing position, allowing for a more accurate assessment of participants’ gait. 
However, the possibility of a subjective bias of the on-site investigator due to the general impression 
gained during the entire clinical visit cannot be ruled out. Nonetheless, previous studies in smaller cohorts 
of ataxia patients have demonstrated general accordance of a posteriori ratings of videotaped SARA 
assessments and the respective on-site rating [45, 46]. Still, these studies relied on more permissive 
evaluation metrics, such as the intraclass correlation coefficient (ICC), which are less sensitive to small 
deviations between predicted and true values. Importantly, ICC is a reliability metric for continuous 
outcomes and is 
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not designed for evaluating classification performance. In contrast, the macro F1-score used in our 
analysis penalizes all misclassifications equally, without accounting for the ordinal distance between 

classes. This makes the macro F1-score a more class-balanced and stringent metric for assessing predictive 
accuracy, particularly in settings with class imbalance. The impact of camera positioning on predictive 
power for both human and ML agents remains speculative here, but might be considered as an object of 
investigation in future work. 

Given the setting presented in this work, we aimed to rule out further potential limitations and biases 
that may enable the model to make predictions without truly learning the underlying patterns. One of 
the main risks of such shortcut learning may arise from the age of the participants. However, age and 

SARA gait score are weakly associated, with an R2-score below the one achieved by the applied 
regression model, which allows to conclude that age does not lead to a shortcut learning phenomenon 

in the given regression scenario (see Supplementary Figure 23 for R2-score). Certain groups defined by 
SARA gait scores showed significant age differences, for instance, between scores of 0 and 1. However, no 
consistent pattern emerged linking age differences to classification performance (see Supplementary 
Figure 24 for t-test results). A general limitation of our study is the selection of pose estimation and ML 
models. We used one pose estimation method, and four time series models were evaluated, with two 
utilizing the same input features. Naturally, this narrows the view of the absolute potential of machine 
learning models in addressing the given task of assessing gait disturbances in ataxia. However, our aim 
was first of all to investigate whether the rating by a human examiner in a clinical context can be 
replicated by a given sensor-free, video-based automated movement analysis and whether such a digital 
assessment may offer further advantages, rather than a methodological comparison of different 
approaches in a broader sense. Accordingly, the presented work shows in a fundamental first approach 
the usability and superiority of sensor-free digital biomarkers in the given, limited setting. Future studies 
will allow for further development of the methodological settings, e.g., by comparing different pose 
estimation models and/or ML approaches. In addition, future work will explore alternative modeling 
strategies potentially better exploiting the ordinal nature of the SARA gait score, such as pure ordinal 
regression, ordered classification, or ranking approaches, which may further improve prediction 
accuracy and clinical interpretability. Based on this initial work, we see several possibilities for further 
improvement: incorporating more longitudinal data points, focusing on specific ataxia subtypes, 
including a larger number of healthy controls across the lifespan, and building a more robust dataset 
with an optimized ground truth, ideally through on- site assessments involving multiple raters, inter-rater 
comparisons, and rater consensus. Incorporating more longitudinal samples is essential to validate and 
strengthen the promising findings regarding the correlation between digital gait features and disease 
progression. Including multiple raters for the on-site assessment holds the potential for improved 
ground truth labeling, which ultimately may lead to more accurate models. This might allow to achieve 
further improvements in the prediction and mapping of biological and pathological movement patterns 
and provide further insights. Additionally, while a detailed misclassification analysis was beyond the scope 
of this work, we acknowledge that errors between adjacent SARA gait scores may hold clinical importance 
in both directions, under- and over-scoring. Future studies should explore these patterns to better 
understand their potential implications for patient monitoring and care. 

We have chosen a very simple test setup with a single camera positioned in front of the participant’s 
walking distance, which is suitable for fast and easy recording during clinical routine as well as for home 
recordings. Studies with single- camera recordings at home with a shorter walking distance have already 
demonstrated a good correlation with the established distance of 10m investigated here [47]. 
Interestingly, the study by Grobe-Einsler, M. et al. was also able to document the daily form-dependent 
fluctuations often reported by ataxia patients. The digital methods presented in our work allow large 
amounts of data to be analyzed in a short time, making it possible to evaluate large numbers of 
recordings. Therefore, they have enormous potential for overcoming the dependence on individual 
assessments in the clinical setting, which may be influenced by the current form of the day, as well as for 
frequent therapy monitoring at home. However, even in the relatively uniform on-site setting of our 
study, we had to exclude a subset of videos due to disturbed motion capture processes, e.g., due to 
mirroring surfaces at the walls. This needs to be particularly taken into account for home recordings, 
which are a strong motivation for digital assessments but remain challenging due to high variability in 
background and available walking distance. Hence, any efforts utilizing the presented approach have to 
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ensure a certain standard of videotaping and subsequent quality control that allows the motion capture 
model to assess the subjects’ movements properly. Finally, some methodological considerations are 
worthwhile to be taken into account within the context of home recordings. As mentioned above, the overall 
best-performing architecture in this study yielded the combination of tsfresh and XGBoost, incorporating 
also the opportunity to gain insights into the most important features in an explainable AI approach. 
However, one big advantage of the alternative ROCKET-based architecture is its low computational costs. 
This would even make it possible to run ROCKET locally on a smartphone device, providing an elegant 
way to analyze gait parameters without the need to transfer video data, which can be favorable in terms 
of data protection. 

 

Conclusion 

Applying machine learning to clinically assessed video data of a simple gait task using sensor-free motion 
capture and fitting time series models on the extracted markers, as demonstrated in this study, is a 
promising approach for the automated rating of ataxic gait disturbances. In particular, subtle early and 
longitudinal changes, not observable by a human examiner, were detected. This method provides an 
easy-to-use tool feasible for clinical routine as well as for assessments at home, enabling tailored 
monitoring of disease progression. Further investigation, including the collection of more data, especially 
longitudinal data from homogeneous disease groups, will help to build even more accurate models. 
Comparative studies with wearable sensors and the inclusion of additional recording angles are also 
recommended to 
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enhance the approach. 
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Figure 5: Results of the longitudinal analysis presented in 6 subplots illustrating different 
markers over time, covering the clinically assessed rating as well as time series markers 
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measured digitally. 
The relative change to baseline of (A) the on-site SARA gait score (human baseline, ground truth, (B) the 
overall, and (C0-C3) the stage-dependent best features are plotted against time since baseline in days. 
The anatomical miniature (facing the reader) in the bottom left corner of each time series plot (B, C0-
C3) indicates from which time series the respective best feature originated. For the stage-dependent 
analysis, the ataxia patient cohort was divided into subgroups of ataxic gait severity levels according to the 
baseline SARA gait score of 0 (C0), 1 (C1), 2 (C2), and 3 (C3). The black line represents the mean 
trajectory, created by a linear interpolation, with the gray shaded area being the standard deviation. The 
yellow dotted line illustrates the linear regression fit of the given data. Trajectories are color-coded 
according to the baseline SARA gait score. Pearson’s correlation coefficient and a p-value, using a Wald 
test, from the linear regression analysis are given. The p-values are corrected for multiple comparisons 

using Benjamini-Hochberg. Spearman’s rank correlation coefficient (S.Corr.) and R2 are shown to 
provide complementary views on monotonic trends and explained variance. TS = time series, R = right, 
L = left. The exact p-values for those TS features showing a significant trend are: 

B: 0.00014, C0: 0.0374, C1: 0.00357, C2: 1.346 ∗ 10−5, C3: 0.036. 
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Figure legends 

Table 1 Demographic and characterizing data of the cohort. Values are given as mean and 
standard deviation in brackets. INAS count was available for 139, and SARA sum score was available for 
149 videos. Age, INAS, SARA, and SARA gait score are averaged across all videos within the respective 

group. Nvideos = Number of available videos, f 
= female, m = male 

 
Figure 1 Summary Figure outlining the working steps performed in this study, while 
indicating the number of samples used in each step. 

Summary figure depicting the main analyses performed in this study. First, Data Processing (A) 
comprises videotaping of normal gait and subsequent motion capture resulting, per subject, in 16 time 
series of 6 raw x-positions (X-Pos), 6 distances (Dist ), and in total 4 triangles, left and right side of the 
upper (Upper ) and lower (Lower ) limbs. The Predictive modeling (B) aimed at the reconstruction of the 
ground truth SARA gait score and compared four different architectures for this purpose. In the 
Explainable AI (C) part, we computed SHAP values during the regression experiment using the 
tsfresh+XGBoost model to identify the most influential time series, which were then interpreted as key 
parameters for distinguishing between different SARA gait scores. Subsequently, intra-individual 
trajectories of the tsfresh features were analyzed in the longitudinal analysis (D) section. We investigated 
whether time series features are capable of modeling disease progression, potentially more fine-grained 
than the clinical score. Finally, all models are compared with a Human Baseline (E) performance. Logos 
were taken from: [36–39]. HC=Healthy Control 

 
Figure 2 Results of the best-performing regression experiment with the true values plotted 
against the predicted values alongside the considered performance metrics. 

Predicted SARA gait values of the best-performing tsfresh+XGBoost regression model were evaluated 
using root mean squared error (RMSE) and R2-score. The numbers in the very top row present the RMSE 
constrained to the respective SARA gait scores. The thick black line is a linear fit on the model 
predictions, while the dotted line is the diagonal representing a theoretical 1:1 relationship between true 
and predicted values. The brackets in the top section indicate whether there is a statistically significant 
difference between the predicted SARA gait scores of neighboring pairs. The 

significance was tested using a two-sided Mann-Whitney U-Test, and the reported p-values are 
uncorrected for multiple comparisons. * p < 0.05, ** p < 0.01, n.s. = not significant. The exact p-values 

are: (0,1): 0.0054, (1,2): 4.138 ∗ 10−5, (2,3): 0.029, (3,4): 0.0004. 

 
Figure 3 Results of the best-performing classification experiment presented in a color-
coded matrix depicting the performance score and the employed time series or 
combination of such. 

Results of tsfresh+XGBoost classification model where each row-column combination in the upper right 
triangle depicts the best reported macro-averaged F1-score (in %) for the respective binary classification. 
The lower left triangle depicts for which time series or combination of time series this performance was 
reported. Classes labeled 0–4 refer to patient data only, while the class labeled HC includes all healthy 
control subjects. For instance, the best tsfresh+XGBoost model fed with time series features derived 
from the x-positions (X-pos) and angles at the hips (Lower ) and trained to classify between the SARA 

gait scores 0 and 1 within the ataxia group was able to score a macro-averaged F1-score of 61.73%. X=X-
pos (time series of raw x-positions of each marker separately), D=Dist (time series of distances between 
two markers), U=Upper (time series of angles of the upper body part, i.g. shoulders), and L=Lower (time 
series of angles of the lower body part, i.g. hips). HC=Healthy Control. 

 
Table 2 End-to-end performance of the best-performing model predicting the SARA gait 
score on the ordinal scale [0, 1, 2, 3, 4] in comparison with the human performance. 
Results of the classification experiment across all patient SARA gait score classes [0,1,2,3,4] evaluated on 
the subset of the 41 cases, for which the human baseline of consensus video ratings of 3 experts were 
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available. Only the tsfresh+XGBoost model surpassed the human baseline. All scores are presented in %. 

Prec.=Precision, Rec.=Recall, F1=F1-score. Arrows indicate the favorable outcome; for all considered 
metrics, higher values are favorable. 

 
Table 3 Characterizing data of the longitudinal sub-cohort in terms of visits and the 
respective SARA gait score assessed at the baseline visit. 
The baseline rating refers to the ground truth SARA gait score rating assessed by a neurologist at the first 
visit. 24 patients had 1 follow-up visit, 6 patients had 2 follow-up visits. 

 
Figure 4 Results of the explainability analysis illustrated in a radarplot with clockwise 
decreasing im- portance values beginning at 12 o’clock. 

Mean SHAP values presented in a radar plot. SHAP values for each feature of the time series of x-pos 
markers (X-Pos), distances (Dist ), and angles (Upper, Lower ) are calculated during the prediction step of 
the tsfresh+XGBoost regression model. The respective markers, from which the features with the highest 
SHAP values originated, i.e., being most im- portant for the final prediction of the model, are arranged 
in ascending order in a clockwise direction, starting at the 12 o’clock position. R = right, L = left. 
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Table 4 Results of the fairness analysis depicting performance results for different 
demographic sub- groups. 

Root mean squared error (RMSE) of the best-performing regression model, namely tsfresh+XGBoost, 
for the age and sex groups characterized as given in the left column. 

 
Figure 5 Results of the longitudinal analysis presented in 6 subplots illustrating different 
markers over time, covering the clinically assessed rating as well as time series markers 
measured digitally. 

The relative change to baseline of (A) the on-site SARA gait score (human baseline, ground truth, (B) the 
overall, and (C0-C3) the stage-dependent best features are plotted against time since baseline in days. 
The anatomical miniature (facing the reader) in the bottom left corner of each time series plot (B, C0-
C3) indicates from which time series the respective best feature originated. For the stage-dependent 
analysis, the ataxia patient cohort was divided into subgroups of ataxic gait severity levels according to the 
baseline SARA gait score of 0 (C0), 1 (C1), 2 (C2), and 3 (C3). The black line represents the mean 
trajectory, created by a linear interpolation, with the gray shaded area being the standard deviation. The 
yellow dotted line illustrates the linear regression fit of the given data. Trajectories are color-coded 
according to the baseline SARA gait score. Pearson’s correlation coefficient and a p-value, using a Wald 
test, from the linear regression analysis are given. The p-values are corrected for multiple comparisons 

using Benjamini-Hochberg. Spearman’s rank correlation coefficient (S.Corr.) and R2 are shown to 
provide complementary views on monotonic trends and explained variance. TS = time series, R = right, 
L = left. The exact p-values for those TS features showing a significant trend are: 

B: 0.00014, C0: 0.0374, C1: 0.00357, C2: 1.346 ∗ 10−5, C3: 0.036. 


