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Abstract

Background Loudness hyperacusis may alter brain function beyond the discomfort elicited
by regular sound levels. Yet, the neuroscientific literature of hyperacusis has largely focused
on the sensory neural components, and often in the context of other comorbid conditions.
Our goal was to investigate brain-wide neural interactions associated with loudness
hyperacusis using resting-state fMRI and machine learning classification.
Methods Fourteen young, healthy adults experiencing hyperacusis were recruited and
compared to twenty-five age-, gender-, and education-matched control individuals. All
participants had normal hearing thresholds and they were classified as having hyperacusis
based on having a score greater than 22 on the Hyperacusis Questionnaire (HQ). Functional
connectivity measures were used in a machine learning model that distinguished
participants with hyperacusis from controls. Model weights were further analyzed
systematically to reveal the cognitive brain networks and regional hubs where functional
coupling was significantly altered in hyperacusis.
Results Here, we observe that participants with hyperacusis are distinguishable from
control individuals usinga functional connectivity-basedclassificationmodel,which yields a
classification F1-score of 0.679. Owing to optimized feature selection, the model
coefficients capture highly specific neural connectivity differences between the groups,
including brain regions and networks implicated in semantic processing, working memory,
emotion processing, and self-regulation. Furthermore, network connectivity measures,
scaled by model-informed coefficients, explain up to 53% of the variance in individual HQ
scores.
Conclusions Through rigorous data-driven modeling, we characterize the reduced sound
tolerance condition of loudness hyperacusis as being associatedwith atypical spontaneous
connectivity across cognitive networks that extend beyond the auditory system. Such
improved knowledge of the condition validates patient experiences and has implications for
future treatments and assessments.

Poor tolerance towards sounds is one of the definitive behaviors for the
disorder of hyperacusis1. Individuals suffering from hyperacusis perceive
everyday regular sounds as too loud and react with adverse emotional,
physical, and physiological responses2,3. Based on reactions to acoustic sti-
muli, finer subcategories are suggested - (1) loudness hyperacusis, where

moderately loud sounds cause discomfort, (2) annoyance hyperacusis,
where sounds evoke negative emotional reactions, (3) fear hyperacusis,
where individuals seek avoidance, or show anticipatory response to sounds,
and (4) pain hyperacusis, where individuals experience pain even at low
sound levels4,5. Given the pronounced behavioral manifestations of
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Plain Language Summary

Whensomeone is sensitive to the loudness of
everyday sounds that do not seem to affect
those around them, we call it loudness
hyperacusis. Often, hyperacusis affects
activities of daily living and impacts
psychological health. We compared brain
differences using a type of brain imaging
called MRI in young adults with hyperacusis
and an age-matched control group without
hyperacusis. Using advanced computational
approaches, we measured differences in
functional connections across a largenumber
of brain regions. We found that individuals
with loudness hyperacusis may process
information from their senses differently,
especially when it comes to attention and
memory. Besides sound-attenuation strate-
gies, treatments that address the brain’s
meaning-making networks and emotional
response to sounds could help those with
hyperacusis.
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hyperacusis, it is compelling to investigate its neural correlates within brain
networks associated with cognitive and affective functions, particularly
those involving the auditory, limbic, and attentional systems. In this study,
we leveraged a comprehensive brain-wide network analysis to ascertain the
altered cortical and subcortical connectivity profiles in loudness hyperacusis
using rigorous machine learning methods. We focused on loudness
hyperacusis5 alone and we use “hyperacusis” to indicate “loudness hyper-
acusis” for the remainder of the article.

Neuroscientific research on hyperacusis has largely been confined to
neural activity within the sensory pathways of the auditory system6–9. Brain
regions involved in early auditory processing have consistently shown
hyperactivitywhen hyperacusis co-occurs with hearing loss and/or tinnitus,
suggesting the engagement of compensatory mechanisms related to central
auditory gain10–12. Beyond auditory regions, only a limited number of brain
areas have been investigated for functional changes in hyperacusis, with
most studies primarily employing task-based paradigms. For example,
increased sound-evoked neural activity and/or connectivity have been
reported in the striatum13, amygdala & hippocampus6,7,13, as well as the
cerebellum and reticular formation6.

Although mechanisms of enhanced central auditory gain have been
implicated in hyperacusis, reconfigurations in higher-order brain networks
—whether as a consequence of central gain or through other processes—
havenotbeenadequately contextualized.Considering thepsychological and
behavioral symptoms associated with hyperacusis2, it is plausible that trait-
like alterations in neural activity and connectivity extend across multiple
cognitive networks. For instance, the emotionprocessing network (linked to
adverse feelings elicited by sounds), the attention network (involved in
orienting toward stimuli perceived as overly intense) and the default mode
network (associated with affected psychological state) likely manifest
abnormal neural communication patterns in hyperacusis. Yet, prior neural
investigations have been largely confined to a narrow set of brain regions
selected based on a priori hypotheses (example: central gain in auditory
perception). As a result, these findings lack perspective of the broader
functional reorganization thatmayoccur in the brain in response to reduced
sound tolerance. Moreover, studies of functional neural correlates of
hyperacusis without co-occurring tinnitus and/or hearing loss are rare14 and
remain largely unexplored in existing literature. Lastly, neural responses to
sound stimuli have been well-characterized for hyperacusis in adults, typi-
cally in the context of comorbid tinnitus7,8, whereas few studies have
investigated the effects on brain-wide intrinsic functional connectivity due
to chronic loudness hyperacusis alone.

To address these gaps, we choose a well-defined, homogeneous cohort
of subjects and apply a methodologically rigorous approach. During par-
ticipant recruitment, we screen for mild to moderate cases of loudness
hyperacusis, in the narrow age range of young college students. We mini-
mize the confounding influences of aging and lifestyle, and also take into
accountplausible factors related toneurological, psychological, andauditory
health, as well as other sound tolerance disorders (e.g., misophonia15,16).We
analyze whole-brain resting-state functional connectivity and assess inter-
actions among large-scale neural networks and between standardized
functional regions of interest (ROIs) encompassing the entire cerebral
cortex and subcortex. Given that whole-brain connectivity analysis sub-
stantially increases data dimensionality relative to conventional seed-based
approaches, we adopt machine learning algorithms along with regulariza-
tion techniques and identify robust, distinguishing patterns of network
interactions associated with hyperacusis. We observe substantial contrasts
in intrinsic functional connectivity related to emotion and cognitive pro-
cessing between the two groups, and less so with auditory processing.

Methods
Participant recruitment and categorization
The study was approved by the Institutional Review Board of University of
Illinois Urbana-Champaign under protocol #IRB24 −1118, with risk level
assessed to be minimal, and conforming to the standards set by the
Declaration of Helsinki. An online survey was circulated among

undergraduate population at the university between the ages of 18–25 and
sampled roughly in a 50/50 sex distribution (Table 1). The participants gave
informed consent for survey data usage in accordance with the university’s
Institutional Review Board. Based on the responses and their willingness to
be contacted, participants were recruited from the survey respondents for
the in-person study and informed consent was obtained again for the
remaining parts of the study. The survey included questions on demo-
graphics, Hyperacusis Questionnaire17 (HQ), and other psychological
health questionnaires. A participant was considered to have hyperacusis if
their HQ score was greater than or equal to 2218. Participants were also
carefully screened for no likelihood of having misophonia using the diag-
nostic criteria proposed by Lewin et al. 19; this and fear or pain hyperacusis
were evaluated through a semi-structured interview conducted by a clinical
psychologydoctoral student, and supervisedby a clinical psychologist.None
of the participants in the hyperacusis (HA) or control (CTR) groups had
these other types of hyperacusis. Current depression symptom severity was
also evaluated using clinician ratings on the Mood Episodes section of the
Structured Clinical Interview for DSM-520. Pure-tone audiometry (PTA)
tests were conducted across several frequencies (shown in Supplementary
Fig. 1a). PTA profiles were matched between the hyperacusis and control
groups, and also used to exclude participants with hearing loss (having
average PTA across 0.5,1,2,4 KHz >=25 dB HL). In this article, we present
our analyses and results based on the resting state functional MRI phase of
the study for individuals in the HA (n = 14) and CTR (n = 25) groups.

Brain imaging
MRI acquisition. AnMRI safety screening form and a consent formwere
filled out by the participants and reviewed by the MR technician before
beginning scan acquisition. Resting state functional MRI data was
acquired on a 3 T Siemens Prisma scanner with a 20-channel head coil for
10 min while the participant lay with eyes open, fixating on a cross at the
center of the display screen. Double sound protection gear—ear plugs
andMR-safe noise cancellation headphones—was employed tominimize
possible discomfort due to continuous scanner noise. Participants were
given the option to end the study at any time in case of any discomfort
experienced in the scanner, sound-related or otherwise. A gradient echo-
planar imaging sequence with transversal orientation (repetition time
[TR] = 1500 ms, echo time [TE] = 30 ms, flip angle = 73°, 40 slices, voxel
size = 3 × 3 × 3mm3) was used to obtain functional MRI data. A total of
400 resting state volumes were acquired per participant. Additionally, a
structural scan was obtained through a T1-weighted sagittal MPRAGE
image (TR = 2300 ms, TE = 2.32 ms, flip angle = 8°, 192 slices, voxel size =
0.9 × 0.94 × 0.94 mm3) andwas used for preprocessing functional resting
state scans.

MRI data pre-processing. The anatomical and functional MRI data
were organized participant-wise through BIDS structuring21 and pre-
processed through fMRIprep pipeline22 using the default parameters.
Briefly, the steps performed were (1) fieldmap estimation, (2) structural
preprocessing including bias field correction, skull-stripping, tissue
segmentation, surface reconstruction, spatial normalization to MNI-152
template, (3) functional preprocessing including reference volume gen-
eration, fieldmap alignment, slice-time correction, T1w co-registration,
spatial smoothing with an isotropic Gaussian kernel of 6 mm full-width
half-maximum, head-motion estimation and removal of outlier volumes.
After preprocessing, the voxel-level time series were normalized by
z-scoring.

Head motion and physiological parameters were found to be similar
between the groups and therefore not included as covariates for pre-
processing fMRI timeseries – see Supplementary Methods 1 and Supple-
mentary Fig. 1b, c for more details.

Functional connectivity
Between brain regions. Normalized (z-scored) voxel time series were
grouped and averaged as per Schaefer parcellation23 to obtain resting-
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state time series corresponding to 400 regions of interest (ROIs) spanning
the cerebral cortex. Additionally, normalized time series for voxels in the
subcortex were grouped and averaged as perHarvard-Oxford subcortical
atlas to obtain timeseries corresponding to 14 subcortical ROIs (listed in
Supplementary Data). Functional connectivity wasmeasured between all
pairs of ROIs (ROI-ROI FC) using Pearson’s correlation coefficient
between the respective ROI time series. The FC matrix for a participant
was symmetric and of dimension 414 × 414. Thus the lower triangle of FC
matrix comprised of 85,491 functional connections which included the
complete ROI-ROI FC battery for an individual. The diagonal of the
matrix contained all 1 s by definition and was ignored.

Between region and whole brain. Functional connectivity of an ROI
with whole-brain was measured by summing all 413 measures in the
ROI-ROI FC matrix corresponding to a given ROI.

Betweenbrainnetworks. The 400ROIs of Schaefer atlas23map onto one
of seventeen functional networks defined by Yeo parcellation24 (Sup-
plementary Data), which are subtypes within wider cognitive networks.
We grouped the cortical ROIs into the eight broader networks among the
17 subtypes, namely Control (A,B,C), Default Mode (A,B,C), Dorsal
Attention (A,B), Limbic (A,B), Salience/Ventral Attention (A,B),
Somatomotor (A,B), Temporo-parietal, and Visual (A,B). The 14 sub-
cortical ROIswere grouped as a separate (ninth) ‘Subcortex’network.We
measured the strength of functional connectivity among the 8 cortical
networks and also the subcortex, by aggregating the ROI FC values
corresponding to all regional connections, or FC edges, that exis-
ted between the networks. For a given participant, inter-network con-
nectivity between two networks, N1 and N2, was measured by summing
the FC estimates across all ROI-ROI edges linking N1 with N2. Similarly,
intra-network connectivity for a network was measured by summing FC
estimates across the ROI-ROI edges comprising the network. Thus net-
work connectivity matrix for a given participant comprised of 36
between-network, and 9 within-network measures.

Machine learning classification
Datasets. For data augmentation, we divided the resting state fMRI
session data for a given participant into two samples, with alternate
volumes along time contributing to one sample. Thus, each participant’s
data contributed two samples, or two sets of ROI FC matrices—FC1 and
FC2 matrix of size 414 × 414 each. Each participant’s fMRI voxel data
were downsampled based on alternate timepoints—voxel time points
1,3,7, etc. were normalized, grouped, and averaged along the 414 ROIs
and used to estimate individual functional connectivity matrix (FC1;
dimension: 414 × 414). Similarly, voxel time points 2,4,6, etc. were used to
estimate additional matrix (FC2; dimension: 414×414). Since
correlation-based measures do not depend on the temporal sequence of
variables (ROI time series), the ROI timeseries could be downsampled as
described, yielding two resting state FC measures per participant.

We compared FCmatrices between participants to estimate the effects
of downsampling. We calculated Pearson’s correlation values between
participants’FCbattery (vector of connectivity values) fromFC1, fromFC2,
and from ‘full-FC’matrices (FC estimated on the entire resting state session
data).We compared the distribution of correlation values forwithin-subject
comparisons and between-subject comparisons usingWelch’s two-sided t-
tests, separately for the two groups.

With 14 participants in hyperacusis group and 25 in control group,
combiningFC1andFC2gave a total of 78datapoints ofmultivariateROIFC
vectors. The dataset columns, i.e. ROI-ROIFCs,were normalized (z-scored)
and used as the independent variables in themachine learning classification
model, and a binary variable indicating participant group (0 for hyperacusis;
1 for controls) was used as the dependent variable. FC1 and FC2 data from
20% of individuals (chosen at random) from each group were used for
hyperparameter optimization (HO dataset), and the data from remaining
individuals was used for training the classification model (CT dataset).

Hyperparameter optimization. We implemented a multivariate logistic
regression classifier model with elastic-net regularization, using
sklearn.linear_model.LogisticRegression (v1.5.1) function with ‘class_-
weight’ set to ‘balanced’. We incorporated both L1- and L2-norm penalty
terms; thus the model was tunable with two hyperparameters – strength
of regularization, C, and L1-to-L2 ratio for balancing elastic net regres-
sion, L1_r. We iteratively varied both the parameters over a range of
values, trained and tested the models using the fraction of data reserved
for hyperparameter optimization (HO dataset; “Methods—Machine
learning classification—Datasets”). We used a leave-one-out approach
using the FC matrices in the HO dataset, where the test data contained
both FC1 and FC2 of one participant from each group, and the train data
contained remaining participants’ FC matrices. Thus, for each hyper-
parameter combination, independent repetitions of the model were
trained, by iteratively leaving out pairs of subjects for testing. Value for C
was varied from 0.001 to 0.1 in steps of 0.005, and L1_r from 0.01 to 0.2 in
steps of 0.01. The classification performance corresponding to a given {C,
L1_r} value combination was determined by aggregating all test data
predictions from the leave-one-out repetitions. We also tracked the
average number of variables thatwere assigned non-zero coefficients for a
hyperparameter combination. The combination that yielded high F1-
score with minimal difference between precision and recall, and utilized
low number of FC variables, was chosen as the optimal hyperparameter
pair in training the classification model.

Model training and accuracy evaluation. The classifier was trained on
ROI-ROI FC to distinguish hyperacusis from controls, using a multi-
variate logistic regression model, with the hyperparameter values chosen
based on the optimization procedure. The classifier was trained in leave-
one-out repetitions using FC matrices from the CT dataset (“Methods—
Machine learning classification—Datasets”) – where the test data con-
tained both FC1 and FC2 of one participant from each group, and the
train data contained remaining participants’ FC matrices. The classifier
accuracy was obtained by combining the test data predictions across all
leave-one-out repetitions. Precision, recall, and F1-score were calculated,
considering correct hyperacusis predictions as true positives. Model
coefficients were averaged across the independent repeated trainings and
were analyzed as weights corresponding to the FC variables.

We generated a distribution of null accuracies by training the model
with class labels shuffled in the train data. We obtained test accuracies for
500 null models (500 different permutations of training labels). Similar to
classification model training, each null model was trained in leave-one-
out repetitions, and evaluated by combining test predictions across the
repetitions. The only difference in null model training was that the
participant class labels in train data were permuted before training (with
both FC1 and FC2 assigned the same label for a given participant). We
compared the classification performances of the true model (obtained
with original class labels) with the null models. P-value was estimated as
(S+ 1)/(number of permutations + 1) where S was the number of null
accuracies greater than the true classification accuracy, and number of
permutations was 500.

Statistical analysis
Group comparisons for the distributions of participant FC estimates
(weighted/unweighted) were performed using two-sided Welch’s t-test,
unless noted otherwise. These included comparisons on individual ROI-
ROI FC edges, on sum of FC edges associated with individual ROIs, and on
sum of FC edges associated with a network pair. For every family of com-
parisons, resulting p-values were corrected for multiple comparisons using
Benjamini-Yekutieli25 procedure. Effect sizes were measured using Hedges’
g statistic, and 95% confidence intervals for g were determined with 10000
bootstrapped repetitions.

Reported correlation values were measured using Pearson’s r coeffi-
cient. Two-sided 95% confidence intervals (CI) for r were estimated non-
parametrically with 10000 bootstrapped samples.
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Results
Matched demographics and hearing profiles of individuals with
and without hyperacusis
Recruited participants were students from a local university, ranging
between 18 to 25 years in age, and categorized into two groups — hyper-
acusis (HA) and control (CTR) (“Methods—Participant recruitment and
categorization”). The groupswere comparable across attributes like age, sex,
education, and hearing thresholds (PTA; Table 1 and Supplementary
Fig. 1a). None of the participants reported having tinnitus. Audiological
assessments showed significantly lower loudness discomfort levels (LDLs)
in HA5 (p < 0:05; Table 1). The groups also significantly differed in their
Hyperacusis Questionnaire17 scores (HQ; Table 1), which assessed the
presence and severity of hyperacusis. Symptoms of major depressive dis-
order (MDD) in the participants were below threshold and distributed
comparably between the groups (Table 1).

Direct measures of functional connections among brain regions
and cognitive networks
We acquired and pre-processed resting-state functional MRI scans for
theparticipants inHA(n = 14) andCTR(n = 25)groups (“Methods—Brain
imaging”). Average heart rate and head movement of participants did not
show statistically significant differences between the groups (see “Methods
—Brain imaging—MRI data pre-processing”, Supplementary Fig. 1b, c);
moreover mean framewise displacement values for the participants were
within the standard limit of 0.5mm26. We obtained individual functional
connectivity matrices (FC) among 414 cortical and subcortical regions
(ROIs) (Supplementary Data, “Methods—Functional connectivity—
Between brain regions”). The median number of voxels per ROI was 92
(interquartile range: 57). Average individual FC matrices of HA and CTR
were highly correlated (r ¼ 0:893; 95%CI : 0:891� 0:894; p < 0:001;
Supplementary Fig. 2a).We compared the groups on (a) connectivity of the
various ROI pairs (FC edges), and (b) net connectivity of an ROI with the
whole brain (“Methods—Functional connectivity—Between region and
whole brain”), and found no significant differences after correcting for
multiple comparisons (pcorrected > 0:05; Supplementary Fig. 2b, c).

In addition to the spatially-defined brain regions, we assessed functional
connectivity among large functional brain networks24, by aggregating the FC
edges along network pairs (Supplementary Data; “Methods—Functional
connectivity—Between brain networks”). Average network connectivity
matrix of HA group was found to be highly correlated with that of CTR
(r ¼ 0:999; 95%CI : 0:997� 0:999; p < 0:001; Supplementary Fig. 3a).

Comparing estimates of connectivity within or between the networks
showed no significant differences between the groups (p > 0:05; Supple-
mentary Fig. 3b). Thus, direct measures of neural interactions associated
with isolated brain regions or with wider functional networks did not capture
any deviations in intrinsic functional connectivity in hyperacusis.

Distinguishing presence of hyperacusis using multivariate
classification model
Next, we used a multivariate machine learning approach to assess group
classificationwith individual FCmeasures.We trained an elastic-net logistic
regressionmodel27 with FC edges as the predictor variables, and group label
(HA/CTR) as the predicted variable.

First, to increase the dataset size for model training, we obtained two
FC matrices for each participant (FC1 and FC2) based on alternate scans
from their fMRI data (“Methods—Machine learning classification—Data-
sets”). This increased the effective TR to 3000ms, which would not mark-
edly affect the connectivity estimates28. We verified this empirically – FC
matrices were highly correlated within participant, as opposed to the FC
matrices of other participants within group (p < 0:001; Supplementary
Fig. 4). Thus, participant FC estimates remained highly consistent following
downsampling.

Next,we tuned themodel hyperparameters using a small portionof the
FC dataset (“Methods—Machine learning classification—Hyperparameter
optimization”). The optimal value determined for regularization strength,
C, was 0.021 and for penalty ratio, L1_r, was 0.08 (Supplementary Fig. 5).
Using these hyperparameter values, we trained the classificationmodel over
independent repetitions, by leaving out pairs of subjects from the groups as
test data (“Methods—Machine learning classification—Model training and
accuracy evaluation”). Overall test classification F1-score was 0.679 (pre-
cision = 0.572, recall = 0.835; Fig. 1a). Importantly, the classification per-
formance was statistically significantly higher compared to a distribution of
nullmodels (p < 0:01,mean null F1-score = 0.575, precision= 0.509, recall =
0.661; Fig. 1b).

Weighted functional connections among brain regions and
cognitive networks
The model provided above-chance classification accuracy by exploiting the
unified covariance in individual intrinsic brain connectivity. Owing to
regularization, model training drove the coefficients to zero for 98.40 to
98.68% of the variables across training repetitions, thus effectively per-
forming feature selection, and utilizing only a fraction of the FC edges for

Table 1 | Participants in Hyperacusis (HA) and Control (CTR) groups: demographics, Pure-tone audiometry (PTA), Loudness
discomfort levels (LDL), HyperacusisQuestionnaire17 score (HQ), and clinician’s ratings for depressive symptoms (MDD) based
on Structural Clinical Interview for DSM-520

Hyperacusis (HA) Controls (CTR) p-value, Hedges’ g [95% CI]

No. of participants 14 25 -

Age (years) 19 ± 2 20 ± 2 n.s (= 0.5279) #

Sex 9 F, 5M 13 F, 12M n.s (= 0.5178) ^

PTA average
0.5,1,2,4 kHz (dB HL)

7.01 ± 2.67 8.33 ± 2.84 n.s (= 0.1725) #

g = -0.45 [-1.13, 0.2]

LDL 1 kHz (dB HL) 85.71 ± 10.2 94.4 ± 8.19 =0.0148 #

g = -0.92 [-1.52 -0.32]

LDL 4 kHz (dB HL) 80.18 ± 11.59 88.7 ± 12.69 =0.0481 #

g = -0.66 [-1.34 -0.04]

LDL speech (dB HL) 84.64 ± 9.11 93.3 ± 8.08 =0.0084 #

g = -0.98 [-1.76 -0.23]

HQ score (0–42) 26.07 ± 2.84 8.8 ± 4.37 =1.4e-16 #

g = 4.23 [3.1 5.62]

MDD ratings (absent(0), subthreshold(1), at or above threshold(2)) 6(0), 8(1), 0(2) 15(0), 10(1), 0(2) n.s (=0.4868) ^

Values for continuous variables are shown asmean ± standard deviation, except age is shown asmedian ± standard deviation. #Welch’s two-sided t-test; ^ Chi-squared test; g: Hedges’ g-statistic effect
size, n.s.: not significant.
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class prediction. Averaging coefficients across the models resulted in non-
zero weights for 6112 edges (7.15%). The weights represented reliable
evaluations on the group-discriminability of FC edges, as the high-valued
coefficients were identified repeatedly and independently across several
repetitions (Fig. 3). We elaborate further on this in a subsequent result.

Using the FCweights, we calculatedweighted connectivitymeasures of
ROIswith thewhole brain and found significant groupdifferences for 106of
414 ROIs (pcorrected < 0:05; Hedges’ |g | > 1.003; Fig. 2a; Supplementary
Fig. 6a); theseROIswere not anatomically or functionally clusteredbutwere
distributed across multiple cognitive networks and the subcortex.

Next, we analyzed weighted network-to-network connectivity mea-
sures, by summing the weighted FC edges grouped by network pairs.
Average weighted network connectivity matrix of the HA group was cor-
related with that of CTRwith r ¼ 0:852ð95%CI : 0:699� 0:930; p < 0:001;
Fig. 2b), which was lower than the correlation for its unweighted counterpart
(Supplementary Fig. 3a). Comparing measures between HA and CTR,
between-network weighted-connectivity for 32 of 36 network pairs, as well as
within-network weighted-connectivity for 6 of the 9 networks showed group
distinctions (pcorrected < 0:05; Hedges’ |g | > 0.767; Fig. 2c black dots; Sup-
plementary Fig. 6b).

Because a majority of the network pairs emerged statistically different
between the groups,we further restricted the threshold alpha value.Our goal
was to extract the characteristic connectivity signatures of hyperacusis;
because the model precision was lower than the recall (Fig. 1a), we further
minimized the likelihood of type-1 errors, i.e. mistaken identification of a
group difference as significant for HA (albeit increasing type-2 errors).
Applying a stricter statistical threshold of pcorrected < 0:001 did not eliminate
the effects, rather highlightedmany network connections withmedium and
large effect sizes (Hedges’ |g| between 0.698 and 2.428; Supplementary
Fig. 6b). The effects were primarily driven by model weightage assigned to
the limbic network and the default mode network (Fig. 2c white circles).
Bulk of the limbic ROI connectivity weights were localized in the orbito-
frontal cortex and the temporal poles (Fig. 2d), and for defaultmodeROIs in
the para-hippocampal cortex, the sub-genual anterior cingulate cortex
(ACC), and the dorso-medial prefrontal cortex (PFC) (Fig. 2e).

Brain connectedness discerning hyperacusis presence
Because themodelwasbasedonamonotonic (sigmoid) functionand theFC
variables were standardized (“Methods—Machine learning classification—

Datasets”), FC weights (Fig. 3a, b) could be interpreted as relative con-
tributions of the FC edges in driving accurate class identification. To
determine the most distinguishing FC edges of hyperacusis, we compared
mean and standard deviation for the coefficients obtained across training
repetitions (Fig. 3c). 0.75% of the variables, or 645 FC edges, were assigned
non-zero coefficients in atleast 70% of repetitions (Fig. 3b, c dark-colored
data), indicating that the FCs were regularly recruited in the independently
trainedmodels. In addition, average coefficient for these particular FC edges
had largermagnitude compared to the others (lay on right extreme of x-axis
in Fig. 3b, c) or carried high weightage for classification prediction. Lastly,
coefficients for these FCs showed low variance across the independent
training repetitions (lay closer to or below the diagonal line of mean =
standard deviation in Fig. 3c), meaning that the FC evaluations were con-
sistent.Henceusingmodel coefficients, we obtained a collection of FC edges
that were relevant, reliable, and crucial in distinguishing brain connectivity
of HA from CTR.

We estimated weighted linear combination of FC for all partici-
pants, by including only the identified FC edges, and setting all other FC
coefficients to zero. Weighted sum of only the highly-weighted FC edges
showed no statistically significant difference compared to the full
weighted FC (Wilcoxon signed rank p = 0.929; Pearson’s r = 0.999;
Supplementary Fig. 7). Notably, the sign of FC weights were consistent
with the direction of effect sizes for the (unweighted) FC measures
between the groups (Fig. 3d), and hence could be interpreted as
increasing (for negative coefficients) or decreasing (for positive coeffi-
cients) for HA compared to CTR.

Among the consistently highly-weighted FC edges (Fig. 3b-d dark-
colored data),more than 50%were concentrated at a small number of ROIs,
signifying these regions as key hubs of connectivity differences in HA
(Table 2). Some of the highly-weighted FC edges were as follows. ROIs in
bilateral occipito-temporal (fusiform) regions showed widely distributed
patterns of decreased connectivity (in HA compared to CTR), namely – (1)
connectivity of the left ROIwith left visual processing areas (within fusiform
gyrus and extrastriatal visual cortex), left supplementarymotor area (SMA),
left temporo-parietal junction (TPJ), right thalamus, and right amygdala
(Fig. 4b left hemisphere); (2) ipsilateral connectivity of the right ROI largely
with the salience network (insula), middle temporal gyrus (MTG), frontal
eye fields (FEF), anterior/dorsolateral PFC, inferior frontal gyrus (IFG), and
putamen (Fig. 4b right hemisphere).
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Fig. 1 | Machine learning model performance. a Hyperacusis classification per-
formance on test data of n = 209 leave-one-out model repetitions. Points represent
scores for each model, bars represent the mean values. F1-score = 0.679 ( ± 0.021),
precision = 0.572 ( ± 0.022), and recall = 0.835 ( ± 0.024). Error bars represent
standard errors (standard deviation/no. of model repetitions) (b) Mean

performance measures for 500 null models (histograms) compared against mean
performance of true model (dashed lines) for F1-score (left panel; gray), precision
(middle panel; blue), and recall (right panel; red). See “Methods—Machine learning
classification—Model training and accuracy evaluation” for details.
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all FC edges associated with the ROI. Note break in axis.Welch’s two-sided t-test for
group comparison of summed ROI connectivity was significant (pcorrected<0.05) for
several ROIs –marked with open circles. See Supplementary Fig. 6a for effect sizes
and p-values. bWeighted network connectivity matrices averaged for the two
groups; Pearson’s r = 0.852, 95% CI [0.697 0.930]. C Control, D Default mode, A
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Subcortex, T Temporal Parietal, V Visual. cGroup comparison of weighted network
connectivity measures using Welch’s two-sided t-test. Significantly different net-
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weights shown for Limbic network nodes, and e Default mode network nodes.
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were corrected for multiple comparisons using Benjamini-Yekutieli25 method. OFC
orbitofrontal cortex, Tem.Pole temporal pole, PFC prefrontal cortex, sgACC sub-
genual anterior cingulate cortex, PHC parahippocampal cortex.

https://doi.org/10.1038/s43856-025-01313-8 Article

Communications Medicine |            (2026) 6:55 6

www.nature.com/commsmed


In addition to reduced connectivity with the right fusiform and the left
visual cortical areas, ROIs in the right anterior/dlPFC exhibited increased
connectivity with right posterior insula (Fig. 4e right hemisphere). Left
anterior PFC showed widespread decreased connectivity with parts of
default mode network (precuneus, dmPFC), ventral attentional network
(dlPFC, insula, dorsal ACC), right primary sensory cortex, IFG, right TPJ,
and left primary auditory cortex (Fig. 4e left hemisphere). Interhemispheric
connectivity between the left and right dlPFC was found to be generally
diminished. An ROI in the left superior parietal lobule (SPL) showed
increased connectivity with multiple regions across the visual cortex and
with the orbitofrontal cortex, whereas an ROI in the right SPL showed
decreased connectivity with left dlPFC and left SMA (Fig. 4f).

Limbic network ROIs in the right temporal pole showed reduced
connectivity with left anterior/dlPFC, left MTG, right SMA, and ACC, but
heightened connectivity with left insula, left IFG, and PCC/precuneus. Left
temporal pole ROI also showed reduced connectivity with sub-genual ACC
(Fig. 4d). Right orbitofrontal cortex (OFC) showed increased connectivity
with left OFC, and decreased connectivity with right FEF, right insula, and
bilateral anterior/dlPFC (Fig. 4d). The left parahippocampal cortex showed
increased connectivity with right anterior PFC (Fig. 4c). Among the sub-
cortical regions, the right pallidum showed increased connectivity with
regions in the left visual cortex; right accumbens showed increased con-
nectivity with PCC/precuneus, and decreased connectivity with left
OFC (Fig. 4c).

Weighted connectivity of auditory cortex
Previous neuroimaging studies of hyperacusis in both animals and humans
have extensively focused on neural changes among early auditory

processing regions, in the brainstem and in the primary auditory cortex29,30.
Given the scope of our analyses, we investigated neural connectivity in
hyperacusis between the auditory cortex andother functionally higher brain
regions that are crucial for complex cognitive processes. We selected seven
ROIs with MNI co-ordinates coinciding with the auditory cortex (Supple-
mentaryData).All FCedges incident at the auditoryROIs amounted toonly
2.003% of the total FC weight across brain-wide connections. Edges with
large weightage included connections linking (1) auditory regions in the
right hemisphere with regions in the right occipito-temporal cortex, and in
the left pre-motor and supplementarymotor areas, and (2) auditory regions
in the left hemisphere with left PFC (Fig. 4a; Supplementary Fig. 8a). At a
network level,more than41%ofweightage associatedwith reduced auditory
FC (positive coefficients) was observed for the coupling with somatomotor
network (Supplementary Fig. 8b).

We measured weighted connectivity for the auditory ROIs with rest
of the brain. Group comparison of net auditory cortex connectivity
yielded a Welch’s t-statistic of -3.545 (p ¼ 0:0019; Hedges’ |g | = 1.264,
95% CI [-2.09 -0.53]), which did not exceed the level of distinction
attained by the several pairs of cortical networks (compare with Fig. 2c
and Supplementary Fig. 6b), implying relatively smaller effect of hyper-
acusis on auditory network connectivity compared to other broader
functional reorganizations.

Correlation between individual hyperacusis score and network
connectivity
We further investigated whether the model weights could, in addition to
detecting hyperacusis, also account for the general variability in sound
tolerance severity among participants from both the groups. We measured

Fig. 3 | Coefficients of Hyperacusis Classifier.
Average model coefficients assigned to FC variables
– a sign matrix and bmagnitude histograms shown
for non-zero values only. Dark-colored histograms
correspond to ‘consistently-weighted’ FC variables.
c FC coefficients: mean and standard deviation
across model repetitions, shown in log scale. Yellow
dots: FC edges with a non-zero average coefficient.
Green dots: ‘consistently-weighted’ FC edges, i.e.,
having non-zero coefficient acrossmore than 70%of
the independent training repetitions. Black dashed
line: coefficient mean = coefficient standard devia-
tion. d Correspondence between mean model coef-
ficient sign (x-axis) and direction of FC effect size
(Hedges’ g; y-axis) comparing HA with CTR. Each
dot represents an FC edge. Legend: same as (c).
Because the class variable was encoded as ‘0’ for HA
and ‘1’ for CTR, positive coefficients corresponded
to FC edges that showed decreased connectivity
trend in HA compared to CTR, and vice-e-versa for
negative coefficients.
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correlation values for HQ scores of the participants with weighted and
unweighted network connectivity. With weighted measures, several net-
work pairs correlated significantly with HQ scores (pcorrected < 0:05; Pear-
son’s |r | > 0.428; Fig. 5a; Supplementary Fig. 9) andoverlapped substantially
with those that discerned group differences (Fig. 2c). Again, tominimize the

risk of false positives, we chose a stronger threshold (pcorrected < 0:001; Fig. 5a
white circles) which resulted in network pairs whose correlations with HQ
ranged between r = -0.604 to -0.728, or r2= 0.364 to 0.530 (correlation plots
shown in Supplementary Fig. 10 in green). These pairs largely involved the
frontoparietal control network, the default mode network, and the limbic

Table 2 | TopROIs accounting for ~50%of the consistently highly-weightedconnections (by FCedgecount aswell as byweight)
in the classification model

ROI
(1-414)

Part of network Region No. of highly-weighted
FC edges

Co-ordinates [x,
y, z]

Fraction of weight among consistently
highly-weighted FC edges (%)

↑ trend
in HA

↓ trend
in HA

69 Dorsal Attention Occipito-temporal/ fusiform 0 67 [-44, -42, -22] 13.49 %

201 2 44 [34, -36, -24] 8.952 %

7 Default mode Parahippocampal cortex (PHC) 14 0 [-18, -38, -12] 1.941 %

106 Control &
Salience

Anterior & Dorsolateral Prefrontal
cortex

0 13 [-28, 44, 30] 1.794 %

138 0 18 [-28, 56, 12] 2.931 %

171 0 17 [-28, 58, 0] 3.002 %

342 8 6 [–6,42,50] 2.509 %

344 0 16 [6,40,50] 2.252 %

82 Dorsal Attention Superior parietal lobule (SPL) 18 0 [-28, -62, 62] 2.089 %

277 0 12 [18, -78, 50] 1.255 %

319 Limbic Orbitofrontal (OFC) 1 13 [–20,14,24] 2.548 %

Inferior temporal gyrus (ITG),
Temporal poles

123 1 11 [-40, -22, -26] 1.919 %

326 0 14 [48, -6, -40] 2.347 %

330 11 1 [50, -28, -26] 2.405 %

411 Subcortex Globus Pallidus, Nucleus
Accumbens

16 3 [20, -4, -1] 3.05 %

414 8 5 [–6,8,11] 1.931 %

↑: increasing, ↓: decreasing.
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Fig. 4 | ROI hubs of connectivity differences. FC weights (average model coeffi-
cients) shown for a all edges of auditory ROIs (ROIs are marked in yellow squares),
andb–f consistently highly-weighted edges for key ROI hubs (see Table 2)marked in
yellow squares. b Occipito-temporal/ fusiform areas, c Parahippocampal cortex
(PHC), Globus Pallidus, andNucleusAccumbens,dOrbitofrontal cortex (OFC) and
inferior temporal gyrus (ITG)/ temporal poles (tp), e Anterior & Dorsolateral

Prefrontal cortex (a.PFC/dlPFC), and f Superior parietal lobule (SPL). Threshold for
panel (a) was chosen heuristically (see Supplementary Fig. 7a). Edges shown in (b–f)
are thresholded at half-maximumFCweight for each ROI. (a–c) show ventral views,
(d–f) show dorsal views. Left and right hemispheres are marked with L and R
respectively.
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network. With the unweighted or direct connectivity estimates, correlation
valueswithHQweremuchweaker andnot significant (r2= 0.0002 to0.0412;
p > 0:05; Fig. 5b; correlation plots shown in Supplementary Fig. 10 in
magenta).

Weighting neural connections with machine learning-derived coeffi-
cients allowed the linear combination of functional connections to capture
robust variance structure,which closely alignedwith individual variability in
the degree of loudness sensitivity. Systematic model-training using intrinsic
brain connectivity data not only detected the presence of hyperacusis, but
also explained the spread in participant hyperacusis scores.

Discussion
We investigated alterations in brain connectivity associated with loudness
hyperacusis, using resting-state functional MRI acquired in a cohort of
young adults. Individuals in the hyperacusis group were carefully matched
with the control group on demographic variables and hearing thresholds,
and expectedly differed in their loudness discomfort levels across stimuli
comprised of various frequencies and speech sounds31,32. The hyperacusis
group exhibiteddivergent spontaneous functional connectivity across large-
scale networks, including the default mode, limbic, frontoparietal control,
and somatomotor networks. Regions in these networks showed patterns of
both enhanced and diminished functional connectivity that are dis-
cussed here.

Hyperacusis presents with persistent symptoms31 (rarely intermittent)
and therefore maybe thought to induce neuroplastic changes and accom-
pany functional rewiring in the brain. Although based on resting-state brain
imaging, we interpret our results on network connectivity differences
between the hyperacusis and control groups as atypical behavior traits
across cognitive, social, and emotional domains33,34. Large proportion of
model weightage was allotted to node connectivity in the default mode and
limbic networks, aligning with previous findings in studies of hyperacusis,
and in other auditory conditionsmarked by chronic aversion to sounds7,35–38

(e.g., tinnitus,misophonia).We interpret these results in the context of brain
alterations associated with depression and anxiety in hyperacusis39–41, as
these markers can potentially detect ‘at-risk’ individuals before symptoms
worsen. Even though MDD rankings were below threshold for the parti-
cipants in our study, strong connectivity alterations of limbic networknodes
in medial OFC, and DMN nodes in dmPFC, as observed in HA, have
generally been linked to rumination trait as a symptom of depression42,43.
DisrupteddmPFC connectivity has psychopathological significance in first-
episode MDD in young adults44, indicating a promising biomarker for the
prognosis of psychological distress in younger population with mild to
moderate hyperacusis45. In DMN, sub-genual ACC also showed aberrant
connectivity in HA, consistent with the hypothesized predisposition for
mood disorders46 in individuals with hyperacusis.

Additionally, we found altered connectivity at limbic network nodes in
ITG/temporal poles, and DMN nodes in mPFC and PHC for the hyper-
acusis group. Trends in the former finding may affect processes of memory
encoding and contextual associations47,48, while the latter could influence
memory formations and retrieval in the context of binding social-affective
information with perceived inputs49.We associate these neural connectivity
differences in hyperacusis with possible alterations in mechanistic and
cognitive traits underlying semantic processing.

Apart from hyperacusis presence, progressive effects of hyperacusis
severity were clearly explained by the extent of connectivity disruptions
involving the frontoparietal control and the somatomotor networks. In
humans with hyperacusis, hyperactivity in the parietal context-switching
areas50, and structural changes in motor regions51 presumably influence
these connectivity trends and correspond to individual degree of loudness
sensitivity as observed in our study. Moreover, connectivity of DMN and
limbic networks, which manifested the presence of hyperacusis markers in
brain-wide FC, also explained the variability along individual HQ scores.
While HQ has been validated in several independent populations, these
results interestingly highlight some of the neural bases for behavioral
responses capturedbyHQ, i.e. attentional, social, and emotional subscales of
hyperacusis17.

Localized connectivity reconfigurations in hyperacusis with respect to
controlswere found clustered at focal brain regions subserving fundamental
cognitive processes—memory, attention and sensorimotor processing.
Principal hubs of altered connectivity at the bilateral fusiform gyrus sug-
gested evidence for significant alterations in semantic memory52–54; this
compliments the parahippocampal patterns suggesting a skewed influence
of contextual-memory on subsequent executive function55. Atypical and
contrasting connectivity trends for SPL were indicative of enhanced visual/
sensory-valuation alongwith reduced executive-sensorimotor integration56,
and for anterior/dlPFC were indicative of aberrant top-down coordination,
heightened executive–interoceptive coupling, and skewed somatosensory
monitoring57,58. Shifts in globus pallidus connectivity (stronger visual links)
also hint at altered gating of visual signal in sensorimotor coordination59,60.
Lastly, differences in OFC and nucleus accumbens connectivities may
represent impacted affect-valuation of sensory events due to sound sensi-
tivity, as hyperexcitability of accumbens has been previously noted for
noise-induced hyperacusis in animal models61. Together, these brain con-
nectivity markers support neuropsychological models of hyperacusis where
memory and attention are proposed as key cognitive factors linked to
auditory behavioral outcomes62. Our findings also provide neural bases for
some of the behavioral profiles described in a study by Sacchetto et al. 41,
including altered somatic attention and hyper-awareness to bodily sensa-
tions in individualswithhyperacusis (andwithout tinnitus)when compared
to age- and sex-matched controls.

Fig. 5 | Network connectivity explains Hyper-
acusis severity. Pearson’s correlation between par-
ticipant hyperacusis score (HQ17) and measures of
model-weighted (left panel) and unweighted (right
panel) network connectivity. Statistically significant
correlation values (two-sided non-parametric test)
are highlighted with black dots for pcorrected < 0.05
and white circles for pcorrected < 0.001. None of the
correlations with unweighted FC were significant.
95% confidence intervals and p values are shown in
Supplementary Fig. 9, and correlation plots in Sup-
plementary Fig. 10. pcorrected values were corrected for
multiple comparisons using Benjamini-Yekutieli25

method. Control: frontoparietal control, DMN:
default mode, D. Attn: dorsal attention, Limbic:
limbic network, Salien: salience/Ventral attention,
SoMot: somatomotor, SubCx: subcortex, TemPar:
temporo-parietal, Visual: visual network.
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Spontaneous functional coupling for the auditory cortex inhyperacusis
was only modestly altered as compared to the other networks and regional
hubs, possibly because all participants had normal hearing and were not
engaged in auditory tasks during scanning. It is important to note here that
previous studies that have reported enhanced auditory cortex activity were
primarily based on explicit sound stimulation, or typically in a cohort
experiencing chronic phantom auditory perception (tinnitus)7,8. However,
lack of drastic effects in the intrinsic (resting-state) functional connectivity
of auditory regions in hyperacusis suggests only modest alterations in trait-
level auditory cortical interactions with higher processing areas.

In fact,with respect to auditory cortex coupling, largerdisruptionswere
observed mainly with the somatomotor network. In light of these findings,
we speculate that the central gain recruitment, which is widely theorized for
hyperacusis10–12, need not result in severe or permanent changes to the
fundamental auditory functional network architecture, even as hyperacusis
appears to significantly rewire functional circuitry in extra-auditory areas.
Our results provide rigorous evidence for substantial neural alterations in
non-auditory regions and functional networks, and reinforce the need to
focus on overall cognitive health in the context of treatment for loudness
sensitivity31,63.

It must be noted that the hyperacusis participant sample in this study
was based on highly selective criteria. Investigating the condition of
hyperacusis in isolation from its comorbidities is essential to identifying
divergence in behavior and function that are directly linked to loudness
sensitivity. The limited heterogeneity of our sample reflects an inherent
trade-off in our study design, aimed at isolating neural connectivity sig-
natures that are especially characteristic of chronic sound sensitivity. We
collected data from a clinically uncomplicated sample in order to avoid the
significant neural confounds accompanying (1) broader age and demo-
graphic profiles, (2) hearing comorbidities like tinnitus and hearing loss7,8

(3) neurological comorbidities like autism spectrum disorder64,65 and (4)
psychological factors like depression and anxietywhich are highly prevalent
in severe hyperacusis39,40. Additionally, participants in both the groups were
college students leading broadly comparable lifestyles, including presumed
exposure to similar environmental sound levels. Thus, taken together, the
reported group differences in functional connectivity represent reshaping of
cognitive mechanisms stemming directly from the presence of heightened
sound sensitivity. However, as the HA group excluded severe cases (higher
HQscores) andbroader age ranges, our resultsmaynot fully represent brain
dysconnectivity patterns across the wider hyperacusis populations. Rather,
we elucidate the neural coupling differences presenting due to sound sen-
sitivity in our study sample, and facilitate future studies in better dissociation
between the effects of hyperacusis from those of its co-occurring conditions
like tinnitus, anxiety, or in different demographic contexts such as hyper-
acusis in older adults.

All participants with hyperacusis were able to complete the audio-
logical assessments andMRI scanning sessions.We acknowledge the caveat
of scannernoise that is present during resting-state data acquisition in fMRI.
To mitigate the impact of sound presence, we used double ear protection—
ear plugs andMR-safe noise cancellation headphones—which significantly
reduced the noise levels. Such protection has shown to reduce the noise
levels to below 70 dB SPL66. Moreover, none of the participants reported
feeling uncomfortable due to the noise, nor chose to terminate the scanning
session early. However, we did not conduct a debriefing immediately after
the scanning session to determine if they experienced any changes in their
hearing status or hyperacusis.

Lastly, the regularized machine learning classification model and its
resulting coefficientswere crucial in detecting the key brain connections that
precisely distinguished hyperacusis. Leveraging multivariate classification
algorithm facilitated a comprehensive exploratory assessment of whole-
brain interactions spanning the cortex and the subcortex, thereby over-
coming the limitations of traditional hypothesis-driven or seed-based
analyses. Rigorous and optimized feature selection techniques and leave-
one-out cross-validation allowed us to filter a vast number of candidate ROI
pairs and reliably isolate a small fraction of key functional connections.

Data-driven reweighting and combination of FC exhibited clear separation
between hyperacusis and controls, which the unweighted connections failed
to capture. To our knowledge, this is the first study to adapt a data-centric
approach to map brain-wide intrinsic functional connectivity alterations of
loudness hyperacusis.

Conclusion
Our study augments the sparse literature on brain-wide differences in
loudness sensitivity (without tinnitus) that manifest beyond the auditory
regions67,68. Among the many connectivity patterns that distinguished HA
from CTR in our study, there was recurrent evidence for substantial
alterations inmemoryprocesses anddifferential contributions fromsensory
information (auditory/visual/somatic) towards semantic memory proces-
sing. Very few studies have examined neural links between semantic
memory impairment and hyperacusis68 and further research is required to
validate whether these findings represent adaptive or maladaptive func-
tional reorganizations in individuals afflicted with sound sensitivity.

With respect to characterization of hyperacusis, future research should
link how these connectivity disruptions may underlie behavioral perfor-
mance and likelihood for developing psychiatric comorbidities41. With
regards to treatment, ourfindings support psychological interventions, such
as cognitive behavioral therapy, which can help patients modify cognitive
deviations, ruminations, and anxiety traits; this has been tested only
sometimes for hyperacusis through randomized clinical trials69. For
assessment of hyperacusis, psychological evaluations/questionnaires are
being increasingly integrated39; cognitive evaluation focused on general
attention and working memory performance (not just with respect to
sounds) could also provide important information to evaluate the impact of
loudness sensitivity on an individual.

Data availability
All source data associated with the results and figures are available on
Figshare70 (URL: https://figshare.com/s/017e8c2fe4cabf2beffc). Due to
participant privacy protection and ethical restrictions, participant details,
audiological assessments and MRI data are not publicly available. De-
identified participant data can be obtained from the corresponding author,
Dr. Fatima T. Husain, upon reasonable request via email. Timeframe for
response to data requests may be at most three weeks.
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