
communicationsmedicine Article
A Nature Portfolio journal

https://doi.org/10.1038/s43856-025-01329-0

Sex-specific transcriptome similarity
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Abstract

Background Biological differences between women and men lead to variations in the
prevalence and progression of many diseases, influencing diagnosis, management, and
treatment outcomes.However, thebiologicalmechanisms that contribute to sexdifferences
in disease co-occurrence remain largely unexplored. This study aims to uncover the
molecular processes underlying sex-specific patterns of comorbidity.
Methods We analyze gene expression data from over 100 diseases, considering the
biological sex of each sample (8906 samples, 43.06%women). For each sex, we construct
disease similarity networks based on differential gene expression profiles and identify
enriched biological processes. We then compare these networks with epidemiological data
from population-level comorbidity studies to assess their concordance. Finally, we
investigate drugs associated with sex-specific comorbidities to identify potential
differences in therapeutic response.
ResultsWe show that 13–16% of transcriptomically similar disease pairs are sex-specific.
These similarities recover 53–60% of known comorbidities that differ between women and
men. Diseases can co-occur through the differential alteration of biological processes, with
immune and metabolic pathways playing a greater role in women, and extracellular matrix
organization and signal transduction pathways in men. We also identify drugs differentially
linked to comorbid diseases depending on sex, suggesting possible sex-dependent effects
on disease co-occurrence.
Conclusions Our findings demonstrate that transcriptomic data can reveal sex-specific
molecular links between diseases and suggest that biological sex should be considered in
the design of therapeutic strategies and drug administration.

Comorbidity andmultimorbidity, defined as the presence ofmore than one
medical condition in individuals1,2, have been investigated using cohort,
case-control, and nested case-control study designs. These studies have
shown, for example, that patients with type II diabetes (T2D) exhibit a
higher prevalence of dementia and cancer, withmen showing a particularly
elevated risk of Alzheimer’s disease3,4. The development of digital medical
record systems5 and the implementation of the Veterans Health

Information System and Technology Architecture6 enabled large-scale
collection of clinical information in the form of electronic health records
(EHR). Since then, multiple studies have systematically analyzed comor-
bidity relations and constructed networks based on epidemiological evi-
dence. For example, Hidalgo et al. generated a comorbidity network using
Medicare data from more than 30 million patients in the United States7.
They found insightful sex-specific differences in comorbidity patterns—for
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Plain language summary

Men and women often develop different co-
occurring health conditions, but the biological
reasons are not well understood. Our study
investigated differences in gene activity
between men and women across more than
100 diseases. By comparing these patterns,
we discovered distinct groups of diseases
that are more strongly connected to one sex
than the other. Our results suggest that the
immune system andmetabolism play a more
prominent role in women’s diseases, while
tissue structure and cell communication are
more dominant in men’s. We also found evi-
dence that some treatments may work dif-
ferently in men and women, highlighting the
critical need to consider sex in both medical
research and treatment decisions.
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example, a higher risk of nephropathies in women and acute myocardial
infarction in men with T2D. Similarly, Jensen et al. used Danish EHRs to
construct temporal disease trajectories by linking statistically significant
disease co-occurrences, thereby identifying key conditions that drive disease
progression and increase mortality8. In the same population, Westergaard
et al. reported that women exhibit a greater number of comorbidities than
men, as well as more frequent disease co-occurrences over longer time
spans9. Together, these findings indicate that men and women differ sub-
stantially in their comorbidity profiles, underscoring the importance of
understanding these differences from a molecular perspective.

Since the publication of the first human disease network in 2007 by
Goh et al., in which diseases were connected if they shared at least one
altered gene (the diseasome)10, numerous studies have explored molecular
similarities between diseases, including efforts to better understand
comorbidities. Lee et al. demonstrated that diseases involving coupled
metabolic reactions co-occur three to seven times more frequently than
those without such connections11. Likewise, studies measuring distances
between disease modules in the protein interactome have shown that dis-
eases with overlapping modules tend to co-occur more often than expected
by chance12,13. Transcriptomic similarities between diseases have also been
found to reflect epidemiologically observed co-occurrences14,15. More
recently, Dong et al. integrated EHR and genome-wide association studies
(GWAS) data from the UK Biobank to recapitulate 46% of observed
multimorbidities16, while Murrin et al. found that most pairs of chronic
conditions with shared genetic features co-occur in the primary care
setting17.

We have previously highlighted the lack of studies examining biolo-
gical differences betweenwomen andmen to better understand sex-specific
comorbidity patterns18. This gap is notable given that 37% of all genes
exhibit sex-biased expression in at least one tissue19. Liu et al. found sex-
specific disease-associated polymorphisms in GWAS20, and Lopes-Ramos
et al. constructed sample-specific gene regulatory networks from healthy
human tissues to reveal thatmany transcription factors have sex-dependent
regulatory targets. Interestingly, these differentially targeted genes are
enriched for tissue-related functions and diseases. For example, genes
associated with Alzheimer’s disease are regulated by distinct transcription
factors depending on the sex of the sample21.

To address the knowledge gap in the molecular bases of sex-specific
comorbidities, we have generated disease transcriptomic similarity net-
works separately formen andwomen. Tomaintain consistent terminology,
we use the gender termswomen andmen to refer to the binary categories in
both transcriptomic data (females/males) and epidemiological data
(women/men), and refer to them collectively as sexes without implying
alignment between sex and gender. The resulting networks recover a
representative set of comorbidities previously described for women and
men9. By analyzing pathways altered in the same direction in comorbid
diseases, we propose hypotheses explaining differences in disease co-
occurrence between sexes. Moreover, we find that disease pairs may co-
occur more frequently than expected by chance in both sexes, but through
distinct biological processes. Finally, we extend these findings to potentially
related drugs, emphasizing the scientific and clinical relevance of studying
sex-specific molecular differences in disease and comorbidity. In summary,
this study provides molecular hypotheses to explain sex differences in
comorbidity relationships and explores the potential roles of drugs within
these relationships.

Methods
Gene expression analysis
Raw gene expression data were obtained from the Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress
repositories (https://www.ebi.ac.uk/arrayexpress). Studies conducted using
the Affymetrix HG U133Plus 2microarray platform were selected for their
cost-effectiveness, reproducibility, and translational potential compared to
other assays. This selection also ensured sufficiently large sample sizes for
robust disease-disease association analyses, while minimizing biases from

platform heterogeneity. After excluding low-quality samples (GNUSE
median values >1.2522), we retained 128 diseases with at least three case and
three control samples (SupplementaryData 1). Because sex informationwas
available for only 52.23% (6685/12,797) of samples, we used the massiR
package to infer sample sex, correctly recovering sex in 94.24%of annotated
samples23. Thismethod classifies samples asmale or female by analyzing the
expression levels of probes corresponding to Y-chromosome genes. To
harmonize our transcriptomic similarity networks with previously pub-
lished epidemiological networks9, disease namesweremapped to three-digit
codes of the World Health Organization’s International Classification of
Diseases, version 10 (ICD-10), grouping specific conditions under each
code. This resulted in 76 ICD-10 codes in women (2465 cases and 1370
controls) and 77 in men (3200 cases and 1871 controls), with 59 codes
common to both sexes (see Supplementary Fig. 1). Overall, women repre-
sented 43% of cases and 42% of controls, with case samples comprising
~63–64% of total samples in both sexes. Lowly expressed genes (detection
p-value < 0.05) were identified and removed using theMAS 5.0 algorithm24.
Backgroundcorrection, normalization, and summarizationwereperformed
using the frozen Robust Multiarray Analysis (fRMA) preprocessing algo-
rithmwith default parameters25. Differential expression analyses comparing
case (disease) versus control (disease-free) samples were conducted using
the modeling framework implemented in the LIMMA package26. Analyses
were performed both separately by sex and jointly across all samples,
adjusting for potential confounders such as study of origin and sex. Genes
with a false discovery rate (FDR)≤0.05 and log fold change (logFC) <0 or >0
were classified as significantly down- or up-regulated, respectively. All R
packages used for analysis and visualization are listed at https://github.com/
jonsv89/SHDC27.

Gene set enrichment analysis
Functional enrichment was performed using gene set enrichment analysis
(GSEA)28, applied to the full list of genes ranked by logFC from the differ-
ential expression results. Gene sets from Reactome, Gene Ontology (GO),
and KEGG databases were used for GSEA. Disease clustering was based
specifically onReactomepathways,whosehierarchical organization enabled
the identification of 29 lowest-level pathway categories. Pairwise Euclidean
distances were computed between diseases based on their Reactome path-
way enrichment profiles (using normalized enrichment scores fromGSEA).
Hierarchical clustering was performed using the Ward2 linkage method29,
and significant clusters (p value ≤0.05) were identified via bootstrap
resampling using the pvclust R package30. Resulting dendrograms for
women and men were compared using tanglegrams generated with the
dendextend R package31.

Network construction
Transcriptional similarities between diseases were calculated using three
gene sets: (i) all annotated genes, (ii) the union of genes with significant
differential expression (sDEGs), and (iii) the intersection of sDEGs, fol-
lowing previous studies on the molecular bases of comorbidities14,15 (see
Fig. 1). Six similarity metrics were computed: Pearson and Spearman cor-
relation coefficients, cosine similarity, and Euclidean, Canberra, and Man-
hattan distances. Empirical p values were obtained from 10,000 random
permutations for cosine, Euclidean, Canberra, andManhattanmetrics, with
Bonferroni correction applied; similarities with FDR ≤0.05 were considered
significant. For distance metrics (Euclidean, Canberra, Manhattan)
observed distances were compared to the mean of random distances,
yielding positive (greater) or negative (lesser) similarity values relative to
expectation (see Supplementary Fig. 2). Similarity values were then binar-
ized: coefficients >0were set to+1, and those <0 to−1.The resultingdisease
transcriptomic similarity networks (DTSNs) generated from the different
metrics were largely consistent, particularly those based on Pearson,
Spearman, cosine, and Euclidean measures (see Supplementary Fig. 3). For
clarity, results shown in the main text correspond to Euclidean-based
DTSNs, which recovered the highest number of comorbidity relationships
(see Supplementary Table 1). As the number of sDEGs strongly influences
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similarity detection (correlations = 0.75–0.86 for sDEG sets vs. 0.34 using all
genes; see Supplementary Fig. 4), analyses were focused on the complete list
of genes. All DTSNs are available at the disease-perception portal (https://
disease-perception.bsc.es/shdc/). The network backbone was extracted
following the method described by ref. 32.

Overlap with epidemiology
To evaluate the extent to which DTSNs capture known comorbidity pat-
terns, we used the epidemiological network published by ref. 9 (Supple-
mentary Note 1). Overlap analyses were conducted on the shared set of
diseases present in both transcriptomic and epidemiological networks.
Positive and negative transcriptomic similarities were compared separately
with epidemiological associations. All comparisons were stratified by sex
(women-women, men-men). Statistical significance was assessed using
Fisher’s exact test and a randomization approach, generating 10,000degree-
preserving random networks to establish null distributions.

Disease–drug associations
To explore potential sex-specific drug influences on comorbidities, drug
target data were retrieved from the DrugBank33. Because the number of
direct targets per drug is relatively small for enrichment analyses, we
expanded target sets using the experimentally validated human protein-
protein interaction network from IID34. First-neighbor interactors of each
drug’s primary targetswere included to increase pathway coverage.We then
performed GSEA28 to associate drugs targeting proteins encoded by up- or
down-regulated genes with corresponding diseases, analyzed separately by
sex. Disease–drug associations were obtained from the SIDER database,
which compiles drug indications and adverse reactions extracted from the
package inserts using natural language processing35. Disease names were
converted to ICD-10 codes via the UnifiedMedical Language System36, and
DrugBank identifiers were mapped to standardized drug names.

Statistics and reproducibility
The five sections, “Gene expression analysis”, “Gene set enrichment ana-
lysis”, “Network construction”, “Overlap with epidemiology”, and
“Disease–drug associations” describe how the statistical analyses of the data
were conducted.

Ethics
All analyses were performed on publicly available, de-identified gene
expression datasets obtained from the Gene Expression Omnibus (GEO)
and ArrayExpress repositories. According to GEO submission require-
ments, data submitters must ensure that deposited datasets comply with
institutional and national ethical regulations, including that the information
“does not compromise participant privacy and is in accord with the original

consent,” and that non-NIH-funded studies have “appropriate consent/
permission to submit the data to a public database.” Similarly, ArrayExpress
accepts high-throughput functional genomics data onlywhen accompanied
by appropriate study metadata, sample annotations, and protocols, in
accordance with community guidelines for ethically conducted studies.

Ethical approval and informed consent for each original dataset were
therefore obtained by the investigators who generated the data, as docu-
mented in the corresponding primary publications. No new data were
collected for the present study, and all datasets were fully de-identified prior
to public release. Because this work involves secondary analysis of publicly
available, non-identifiable data, it does not constitute human subjects
research, and no additional IRB/Ethics approval was required at our
institution.

Results
Sex-associated differences in gene expression
To obtain an initial overview of disease-related differences between women
and men, we performed hierarchical clustering on the normalized enrich-
ment score of their enriched pathways based on GSEA (see methods). On
average, clusters were larger and more heterogeneous in women than in
men (66% of clusters in women and 25% in men included diseases from
different categories, see Fig. 2). Overall, the overlap between men and
womenclusterswas limited. Parkinson’s andAlzheimer’s diseases (G20 and
G30), which have been previously linked at the molecular level37, clustered
significantly in men. These two diseases shared 112 pathways enriched in
differentially expressed genes, primarily related to signal transduction, the
immune system, andneuronal function. In contrast, inwomen,Alzheimer’s
disease clustered with schizophrenia (F20), sharing 116 enriched pathways.
These included metabolic pathways (glucose metabolism and respiratory
electron transport)38,39, proteinmetabolism (protein ubiquitination)40,41, and
neuronal system pathways (such as the serotonin neurotransmitter release
cycle and GABA synthesis, release, reuptake, and degradation)42,43, all pre-
viously associated with both diseases. Interestingly, dementia (including
Alzheimer’s disease) has been reported to co-occur significantly in patients
with schizophrenia, with a relative risk (RR) of 2.29, being the risk higher
among women with schizophrenia44.

Only twopairs of diseases clustered together significantly in both sexes:
pancreatic cancer—gastric cancer (C25 and C16) and irritable bowel syn-
drome (IBS)—ulcerative colitis (K58 and K51). Although both tumors
clustered together in men and women, the dominant molecular similarities
differed: cell cycle-related processes predominated in men, while immune
system-related processes predominated in women. Notably, interleukin
signaling pathwayswere overactivated inwomen, supporting their potential
as candidates for developing immunomodulatory therapeutic strategies45.
Considerable sex-specific divergence in tumor immune responses has been

Fig. 1 | Study roadmap. Schematic representation of
the main questions raised in the study. Squares,
diamonds, triangles and circles denote diseases.
Arrows indicate a higher-than-expected risk of
developing a disease when suffering from a
different one.
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documented, which may have implications for sex differences in immu-
notherapy efficacy46. For the two digestive system diseases (K58 and K51),
these also clustered with oral cavity cancer (C14) in women, a known
comorbidity.The riskof oral cavity cancer is higher inwomen (standardized
incidence ratio of 12.07 in women vs. 8.49 in men)47. The increasing pre-
valence of HPV may further amplify this risk in IBS patients, potentially
enhanced by immunosuppressive therapies48, underscoring the influence of
treatments in shaping comorbidity relationships. In this women-specific
cluster, 37 pathways were significantly altered—28 upregulated (mainly
signal transduction pathways) and nine downregulated (primarily meta-
bolic pathways). Among them, NOTCH4 signaling was overactivated, a
pathway proposed as an oral cancer marker49. NOTCH4 expression is
induced in macrophages following activation by Toll-like receptors (TLRs)
and interferon-γ (IFN-γ), both extensively studied in the context of IBS50.
Together, these findings reveal substantial molecular differences between
women and men across diseases from distinct categories, raising the ques-
tion of whether such molecular disparities contribute to differences in
comorbidity patterns.

Disease transcriptomic similarity networks
After observing sex-specific differences in disease clustering based on
pathway enrichment, we constructed disease transcriptomic similarity
networks (DTSNs) to evaluate pairwise disease relationships. Similarities
between disease pairs were calculated adjusting for sex differences, and
separately for women (wDTSN) and men (mDTSN, see Methods).

Between 45 and 48% of all edges in the wDTSN and mDTSN were
positive, indicating smaller-than-expected distances between diseases. In
contrast, 25–27%of the edgeswere negative, reflecting larger-than-expected
distances. Consistentwith epidemiological observations9, significantlymore
positive interactions (i.e., direct comorbidities) were detected between dis-
eases belonging to the same category than between those from different
categories in both women and men (odds ratio (OR) = 2.81 in women vs.

OR = 1.83 in men; Supplementary Table 2). This finding suggests that
transcriptional similaritymayprovide insight intowhydiseases affecting the
same system are more likely to co-occur than those affecting different sys-
tems. The ORs increased further when considering only the connections
that preserved the most similar comorbidity trajectories—that is, the net-
work backbone32, (4.4 inwomen and 3.2 inmen)—highlighting the stronger
relevance of intra-category connections in the flow of disease information.
This pattern is also consistent in epidemiology (see Supplementary Note 2).
Whenanalyzing specificdisease categorieswithin themDTSNandwDTSN,
we found that digestive and musculoskeletal system diseases in men and
skin diseases in women each exhibited a clustering coefficient of 1, indi-
cating full interconnection within the category. Mental illnesses followed,
with a network density of 0.83 in women compared with 0.4 in men,
reflecting the higher comorbidity burden of mental disorders among
women51 (see Supplementary Fig. 5). When focusing on diseases
common to both sexes, we observed significantly fewer positive interactions
in women than in men between digestive system and nervous
system diseases (OR = 0.21) and between digestive system and blood
diseases (OR = 0.27, see Supplementary Table 3). These findings align
with the higher risk of co-occurrence between IBS and neurological dis-
orders such as multiple sclerosis52, Parkinson’s disease53, or dementia54.
Notably, no positive interactions were found between IBS and multiple
sclerosis in women. Conversely, women displayed significantly more
negative interactions between digestive and nervous system diseases
(OR = 10.81, see Supplementary Table 4). Comparing the networks gen-
erated jointly (both sexes combined) with those generated separately, 16.22
and 13.49% of positive interactions were exclusive to women and men,
respectively—proportions roughly consistent with epidemiological esti-
mates (9% in women and 4% in men)9 (see Supplementary Fig. 6A, B).
These findings demonstrate that, as in epidemiology, sex-specific tran-
scriptional relationships can be obscuredwhen analyzing data fromwomen
and men together.

Fig. 2 | Reactomepathways are significantly altered in disease inwomen andmen.
The diseases are represented in rows, and the pathways are in columns. The colors of
the diseases refer to the category of the ICD-10 towhich they belong. The color bar in
the columns represents the Reactome parents to which each pathway belongs. The
red (blue) lines represent pathways that are under- (over-) expressed in each disease.

The diseases have been clustered by calculating Euclidean distances between them
and using the ward.D2 method29 on the GSEA’s normalized enrichment scores. The
gray lines connect diseases in women and men. Black lines near ICD codes indicate
significant clusters after bootstrapping.
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Biological clues to differences in disease co-occurrences inmen
and women
Previous studies have demonstrated that transcriptional similarity can sig-
nificantly recover comorbidity relationships14,15, even across diverse popu-
lations, underscoring the robustness of this approach (see Supplementary
Note 3). However, as discussed in the Introduction, this phenomenon has
not yet been evaluated separately for women and men18. In our analysis,
53.12 and60.68%of thedisease co-occurrences reported inwomenandmen
by ref. 9 were also captured in the wDTSN and mDTSN, respectively (see
Fig. 3, Supplementary Fig. 6C, and Supplementary Table 1).

The sex-specific DTSNs revealed altered biological processes in
comorbiddiseaseswithin both the same anddifferent disease categories. For
example, schizophrenia (F20) and chronic obstructive pulmonary disease
(COPD, J44) were connected in the wDTSN and shared enrichment for
mitochondrial processes (mitochondrial translation, mitochondrial RNA
metabolic process, and mitochondrial gene expression) and immune-
related pathways (interleukin 10 signaling, neutrophil degranulation,
macrophage cytokine production, and antimicrobial peptides) (see Sup-
plementary Data 3). Interestingly, patients with schizophrenia have been
reported to exhibit an elevated risk of COPD55, even when compared to
smoking-matched controls56. Impaired lung function is often observed in
schizophrenia57 and shared eQTL variants affecting both lung function and
neuropsychiatric traits58 may contribute to this relationship. Clinical data
also show sex differences in schizophrenia prevalence, symptomatology,
and treatment response59, as well as in comorbidity patterns—for instance,
the risk of developing COPD appears to be higher among women60 and is
statistically significant in women but not men in the Danish population9.
The enrichment of mitochondrial and immune pathways is consistent with
reports of strongermitochondrial signatures inwomenwithschizophrenia61

and COPD62 and with known sex-related immune differences63,64. These
findings support the hypothesis that sex-specific molecular variations may
contribute to distinct comorbidity patterns between women and men.

A comparable pattern emerged for smoking (F17) and irritable bowel
syndrome (IBS, K58), which were linked in the wDTSN through shared
enrichment of mitochondrial respiratory chain assembly, electron transport,
complex I biogenesis, detoxification of reactive oxygen species, and immune
processes such as neutrophil activation and immunoregulatory interactions
between lymphoid andnon-lymphoid cells. Epidemiological data indicate an
elevated risk of IBS among smokers65, particularly in women, consistent with
the greater physiological impact of smoking in women66 and the higher
prevalence of IBS in women67, possibly influenced by hormonal factors68.
Prior molecular studies have independently reported mitochondrial and
immune alterations in both conditions69–71. Additional disease pairs that co-
occur more frequently in women—but not in men—and were uniquely
connected in the wDTSN included type I diabetes (T1D, E10) with myo-
cardial infarction (I21)72, bipolar disorder (F31) with uremia (N19), and
COPD (J44) with chronic lung allograft dysfunction (B44, see Fig. 3).

In contrast, the mDTSN highlighted a men-specific association
between T1D (E10) and liver cancer (C22), correlating with the higher-
than-expected risk of developing liver cancer (C22) in T1D patients73.
Notably, T1D prevalence is greater in prepubertal girls but becomes
approximately twice as common in men after puberty74. In men, most
biological processes altered in the same direction in both diseases were
associated with metabolism (metabolism of amino acids and derivatives,
metabolism of vitamins and cofactors, glutathione metabolic process,
reactive oxygen species metabolic process, and response to starvation) and
immune regulation (humoral immune response, positive regulation of
immune effector process, and regulation of t helper 1 type immune
response). Additional examples are detailed in Supplementary Note 4).

Finally, we calculated disease similarities separately within each Reac-
tome parent category (see Supplementary Note 5). Gene expression and
immune system pathways recovered the highest proportions of known
comorbidities (41–47%), whereas drug ADME pathways recovered the
fewest (4–5%) (see Supplementary Table 5). Despite variation in the number

Fig. 3 | Comorbidities explained by the disease transcriptomic similarity net-
work. Network of comorbidities recovered based on transcriptomic similarities.
Each node represents a disease, colored based on the disease category it belongs to
(ICD-10). Red, blue, and green edges represent comorbidities (retrieved by ana-
lyzing the epidemiology separately for women and men and adjusting for sex)

recovered by calculating similarities at the gene expression level between diseases in
the same way (separately for women andmen and adjusting for sex differences). The
dashed edges represent comorbidities described in women and men that are
recovered by analyzing transcriptomic similarities separately for women and men.
The network’s visualizations have been generated using Cytoscape software112.
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of comorbidities captured across categories, all overlapswith epidemiological
data were statistically significant (see Supplementary Fig. 7A, B and Sup-
plementary Table 5). Collectively, these findings provide strong evidence for
sex-dependent differences in the biological processes underlying diseases and
suggest that suchdifferencesmay contribute to the distinct patterns of disease
co-occurrence observed betweenwomen andmen. Among themost relevant
processes are those related to the immune system, metabolism, and mito-
chondrial function—mechanisms previously reported to drive biological
differences between sexes75,76. All generated networks are available for inter-
active visualization at https://disease-perception.bsc.es/shdc/.

Comorbidities occur through different mechanisms in women
and men
After confirming that sex-specific differences in transcriptional similarities
between diseases can explain differences in comorbidity patterns, we next
investigated whether the underlying mechanisms driving disease co-
occurrence might differ between women and men. Although mechanistic
sex differences have been described for several biological processes—such as
mechanical pain hypersensitivity, which is mediated by distinct immune
cells in male (microglia) and female (T-cell) mice77—such distinctions have
not been explored in the context of comorbidities. As illustrated in Fig. 4, 29
disease pairs were found to co-occurmore often than expected by chance in
both women and men (12 of which belong to different disease categories),
and these comorbidities were consistently recovered in both the wDTSN

and mDTSN. Nevertheless, the associated biological alterations displayed
clear sex-specific patterns (see Supplementary Data 4).

A well-established example is smoking (F17) and COPD (J44)], which
co-occur in both women and men78. In women, shared alterations between
smokers and COPD patients involved pathways related to the cell cycle,
response to stimuli, metabolism, immune system, and developmental
biology, whereas these pathways were not observed in men (see Fig. 4).
Conversely, inmen, shared alterationswere primarily found inDNArepair,
protein metabolism, and RNA metabolism pathways, which were not
observed in women. These differences align with prior studies suggesting
that cigarette metabolism may differ between sexes due to variations in
cytochrome P450 enzyme expression and activity79, a process found over-
expressed in women with smoking exposure and COPD but not in men.
Mitochondrial functional pathways were altered in women but not men,
potentially representing key drivers of sex-specific lung disease
pathophysiology62, whereas processes such as sumoylation of transcription
cofactors, processing of capped intron-containing pre-mRNA, and base
excision repair were downregulated in men but not women.

Another illustrative example is the significant co-occurrence between
pancreatic cancer (C25) and T2D (E11)80. Interestingly, men and women
with pancreatic cancer shared a high number of altered pathways in the
same direction (Jaccard indices of 0.78 and 0.58 for up- and down-regulated
pathways, respectively), whereas the overlaps for T2D were minimal (0.03
and 0, see Supplementary Table 6). These findings indicate that sex

Fig. 4 | Pathways shared between comorbid diseases in women or men only.
Heatmap with disease pairs in rows and Reactome categories in columns repre-
senting the percentages of pathways in each category that are up- (blue) or down-
regulated (red) in both diseases. The color of the squares following the ICD-10 codes
denotes the category of disease to which they belong (ICD-10), highlighting rows

with two different colors reflect comorbidities between diseases from different
categories. Each square is divided into two triangles; the one on the top (bottom)
refers to women (men). For specific pathways enriched in comorbid diseases in
women and men, see https://disease-perception.bsc.es/shdc/.

https://doi.org/10.1038/s43856-025-01329-0 Article

Communications Medicine |            (2026) 6:61 6

https://disease-perception.bsc.es/shdc/
https://disease-perception.bsc.es/shdc/
www.nature.com/commsmed


differences are more pronounced in T2D than in pancreatic cancer, sug-
gesting that the mechanisms leading to pancreatic cancer may differ
between sexes81. In men, T2D and pancreatic cancer shared alterations in
extracellular matrix organization pathways—including collagen biosynth-
esis andmodifying enzymes, laminin interactions, and ECM proteoglycans
—aswell as signal transductionpathways altered in the samedirection, none
of which were shared in women. Conversely, in women, the two diseases
shared immune system pathways (e.g., neutrophil degranulation, antiviral
mechanism by IFN-stimulated genes) and metabolic pathways (including
sphingolipid denovobiosynthesis and regulationof cholesterol biosynthesis
by SREBP (SREBF)). Thesefindings underscore the value of our approach in
identifying biological processes that are differentially altered between
women and men and may underlie sex-specific patterns of disease devel-
opment and comorbidity. Nonetheless, substantial knowledge gaps remain
regarding the biological differences between the sexes in disease patho-
genesis—gaps that must be addressed to fully understand the mechanisms
driving sex-specific comorbidity profiles.

Sex differences in drug effects
In previous work, we identified drugs that may influence disease co-
occurrence—either by increasing or decreasing comorbidity risk—high-
lighting this strategy as a potential avenue for drug repositioning82. Building
on this, we previously identified patient subgroups in which specific drug
associations might contribute to the elevated risk of developing secondary
diseases14. In the present study, we investigated how drug-disease associa-
tions may differ between women and men, potentially explaining sex-
specific comorbidity patterns. Given the scarcity of studies examining sex-
specific gene expression changes followingdrug exposure,we extracteddrug
targets from DrugBank33, expanded these associations using a protein-
protein interaction network34, and performed enrichment analyses28 to
identify drugs whose expanded targets were significantly over- or under-
expressed across diseases in a sex-dependent manner. In total, 3878
DrugBank IDs were significantly enriched in at least one disease. Of these,
616 were linked through 3997 associations to 568 ICD-10 codes in the
SIDER database35. Focusing on diseases with sufficient sample sizes in both
sexes, 43 of 59 diseases had at least one enriched drug associated with them
in SIDER. Among the top 10 drugs associated with the largest number of
diseases in women and men, only three were shared—metformin, clofar-
abine and irinotecan—agents used to treat diabetes, acute lymphoblastic
leukemia, and metastatic cancers. Other highly connected drugs included
arginine, bortezomib, and carfilzomib in women, and dexrazoxane, eto-
poside, and idarubicin in men—all used to treat high blood pressure, car-
diomyopathies, or cancer. Seven diseases showed no overlap in drug
associations between sexes—Aspergillus colonizationof lung allograft, T1D,
amyotrophic lateral sclerosis, interstitial lung disease, rosacea, connective
tissue disorders, and axial spondyloarthropathy (see Supplementary Fig. 8).
In contrast, eight diseases exhibited a Jaccard index >0.5: pancreatic, colon,
and kidney cancers; neoplasms of uncertain behavior of lymphoid, hema-
topoietic and related tissues; oral dysplasia; Job’s syndrome; thalassemia;
and IBS. These findings highlight substantial heterogeneity in the extent of
drug overlap between sexes across the diseases. Overall, women had more
drug associations in 19 diseases, whereas men had more in 20. These dif-
ferences were not explained by disparities in sample size between sexes
(correlation p value = 0.64). For instance, in schizophrenia, 3.13more drugs
were identified in women than in men, despite there being 2.7 more men
than women samples. Analysis of drugs enriched across diseases in women
and men revealed notable sex-specific differences in drug-disease relation-
ships (see Fig. 5 and Supplementary Fig. 9).

Drug-mediated disease associations may arise for several reasons: (i)
the two diseases share symptoms, (ii) patients with one disease also have the
other, (iii) treatment for one disease contributes to the onset of the other, or
(iv) the drug used to treat one disease could be used to treat the other. In the
first scenario, IBS (K58) and major depression (F33)—two comorbid con-
ditions with shared pathophysiological mechanisms83—were linked by
lubiprostone, a drug used to treat constipation, a commonmanifestation of

both diseases84 (see Fig. 5 and Supplementary Data 5). Lubiprostone was
indicated for IBS and was enriched in the differential expression profile of
major depression in women but not men. Notably, constipation occurs
more frequently in women with depression than in men85. In the second
scenario, the association between T2D (E11) and schizophrenia (F20)—
where diabetesmedications such asmetformin and gliclazidewere enriched
in womenwith schizophrenia—may suggest that these patients were taking
these drugs or had coexisting T2D. This interpretation is supported by the
high representation of elderly schizophrenia patients in our dataset, con-
sistent with previous reports that late-life schizophrenia is associated with a
higher prevalence in women than in men (35 vs. 21.53%)86. In the third
scenario, patients with essential thrombocythemia are known to have an
elevated risk of progression tomyelofibrosis, particularly when treated with
anagrelide87—an effect more pronounced in women. Consistent with this,
anagrelide (indicated for essential thrombocythemia (D47))was enriched in
women with myelofibrosis (D75). However, the absence of detailed meta-
data prevents further confirmation of this hypothesis. In the fourth scenario,
patients with type 2 diabetes have been observed to be at greater risk of
developing liver cancer, with the risk being higher inmen88. One hypothesis
to explain this sex difference involves higher circulating levels of adiponectin
in women89. Notably, both diseases are linked throughmetformin, which is
indicated for the treatment of type 2 diabetes and whose targets are sig-
nificantly upregulated in liver cancer. Interestingly, metformin has been
described as exerting a protective effect against the development of liver
cancer, with this effect being stronger inmen90–92. A possible explanation for
the sex difference inmetformin’s protective effect could lie in the hormonal
context: higher baseline adiponectin levels in women may already confer
protection, whereas in men, metformin partly compensates for their lower
adiponectin levels and higher baseline risk. These observations underscore
the importance of considering hormonal context when evaluating potential
drug repositioning strategies.

Additional pharmacologically supported comorbidity relationships
not reported by ref. 9 included the association between T1D and asthma93,
where the risk is higher in boys compared to girls94. We identified 15 T1D-
enriched drugs indicated for asthma in men—including salbutamol and
salmeterol—that were not observed in women. Notably, salbutamol use has
been linked to elevated blood glucose levels95, emphasizing the importance
of considering both sex and age when prescribing treatment. Similarly, two
drugs—risperidone and citalopram—were significantly enriched inwomen
with schizophrenia and have also been associated with Alzheimer’s disease.
Risperidone is an atypical antipsychotic used to treat schizophrenia96 and
behavioral symptoms in Alzheimer’s disease patients97, whereas citalopram
is an antidepressant prescribed for depression and negative symptoms in
schizophrenia98 as well as agitation in Alzheimer’s disease99. Notably, as
previously mentioned, schizophrenia patients face a higher risk of devel-
oping Alzheimer’s disease—particularly among women44—and citalopram
response has also been shown to differ by sex100. Together, these findings
support the hypothesis that drug-disease associations vary between women
and men and may contribute to sex-specific comorbidity patterns. Never-
theless, additional studies are needed to directly investigate molecular-level
differences in drug effects as a function of patient sex.

Discussion
Calculating similarities between diseases using molecular data is a well-
established approach for understanding disease co-occurrence and for
identifying opportunities for drug repositioning13,18,101. Among various
molecular data types, transcriptomics has emerged as a particularly pro-
mising source, given its strong capacity to reveal biological mechanisms
underlying comorbidity relationships. Transcriptomic analyseshaveproven
useful for elucidating both direct and inverse comorbidity relationships,
identifying candidate drugs for repurposing, and detecting disease subtype-
specificmolecular similarities14,15,82,102,103. However, despite the clear physical
and physiological differences between women and men—and their evident
impact on disease development and comorbidity—sex differences in tran-
scriptional similarities between diseases have not been systematically
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investigated. Although public transcriptomic databases have historically
lacked reliable sex annotations104, advances in computational methods now
enable accurate inference of sample sex, making such analyses feasible.

In this study, we generated disease networks separately for women and
men and observed that diseases cluster differently by sex based on their
differential expression profiles—consistent with previous PheWAS-based
findings105. Notably, the clusters in womenweremore heterogeneous across
disease categories, suggesting differences in multimorbidity patterns
between the sexes. The relevance of these observations is supported by the
strong concordance between sex-specific transcriptional similarities and
epidemiologically observed disease co-occurrences. For example, type 1
diabetes and liver cancer co-occur frequently in men, while schizophrenia
andCOPDdo so inwomen. In both cases, these patterns correlate with sex-
specific alterations in metabolic and immune system-related biological
processes.

Collectively, our findings highlight the importance of analyzing
comorbidity patterns separately in women andmen and investigating their
underlying molecular mechanisms—an approach that may ultimately
inform more effective treatments.

Historically, biomedical research has predominantly focused on men,
contributing to diagnostic biases and suboptimal therapeutic strategies for
women. Moreover, women remain underrepresented in clinical trials,
resulting in poorer therapeutic optimization and health outcomes106.
Combinedwith the limited inclusionof comorbid andmultimorbidpatients
in clinical trials107, this underrepresentation may contribute to future chal-
lenges in the safe and effective use of medications. Therefore, incorporating
sex-based molecular and comorbidity differences into research and clinical

guidelines is essential for developing safer and more personalized medical
practices108.

While our study is currently limited by the availability and quality of
sex-specific information across public databases, ongoing efforts to improve
data annotation and increase the representation of both sexes in tran-
scriptomic studies will progressively strengthen future analyses. Likewise, as
more population-level studies systematically investigate comorbidity rela-
tionships by sex, it will become increasingly feasible to validate and integrate
our findings within DTSNs, enhancing their robustness and translational
relevance.

Although a few studies have explored sex-based comorbidity
differences7, many of these datasets—such as the extensive US medical
claims-based network describing fourfold more comorbidities than ref. 9—
are no longer publicly available (see Supplementary Note 5). Furthermore,
most transcriptomic studies focus on individual diseases and lack key
contextual metadata such as comorbidities, medication use, and patient age
—all of which may influence molecular profiles. Other relevant variables,
such as ethnicity or socioeconomic status—known to significantly affect
disease development and comorbidity patterns109,110 —could not be incor-
porated due to the absence of such metadata. Additionally, for comparison
with epidemiological networks, we standardized disease names to three-
digit ICD-10 codes, which was necessary for studying sex-related comor-
bidity patterns. Consequently, certain disease subtypes—such as lung can-
cer, non-small cell lung cancer, and basaloid lung cancer—were grouped
under the same ICD-10 code (C34), potentially obscuring subtype-specific
differences. Future research should therefore aim to investigate sex differ-
ences at the level of specific disease subtypes. Finally, greater availability of

Fig. 5 | Sex-specific disease–drug associations. The nodes represent diseases,
colored according to the disease category (ICD-10) to which they belong. An edge
connects two diseases if the drug indicated to treat one disease (source node) is
enriched in the differential expression profile of another disease (sink node). Only
associations between comorbid diseases9 from different ICD-10 categories are
shown. The name of the drug connecting both diseases is indicated below the edge.

Only associations detected exclusively in one sex are shown, with red (blue) edges
denoting associations detected only in females (males). Solid (dashed) lines indicate
that the normalized enrichment score of the GSEA28 is positive (negative), for all
other associations see https://disease-perception.bsc.es/shdc/ and Supplementary
Fig. 9. The network’s visualizations have been generated usingCytoscape software112.
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molecular data would enhance the statistical power of such analyses. The
growing number of biobanks integrating molecular profiles with electronic
health recordsmay, in the future, enablemore comprehensive studies of this
kind18.

In summary, this study reinforces the marked differences between the
sexes in the development of diseases and comorbidities previously described
at the epidemiological level. It also generatesmultiplemolecular hypotheses
regarding sex-specific differences in comorbidity relationships, paving the
way for future experimental validation. Future work should also explore,
from a molecular perspective, how aging influences the development of
comorbidities and their sex-specific differences, while integrating additional
data sources to refine and expand the map of disease interrelationship
generated here.

Data availability
All data needed to understand and assess the conclusions of this research are
available in the main text, supplementary materials, the Disease-
PERCEPTION portal (https://disease-perception.bsc.es/shdc/) and
https://github.com/jonsv89/SHDC/blob/main/Datasets.txt. The raw gene
expressiondatasets are publicly available and canbe downloaded fromGEO
and ArrayExpress (https://www.ebi.ac.uk/arrayexpress). The identifiers for
each of the studies are provided in Supplementary Data 1. The numerical
values required to generate themain figures are provided in Supplementary
Data 2. The source data for Figs. 2–5 can be found in SupplementaryData 2.
Each sheet specifically indicates which figure has been generated using the
data contained therein.

Code availability
The code developed to perform the analyses described is available at https://
github.com/jonsv89/SHDC27 and https://github.com/bsc-life/SHDC111.
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