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Abstract

Artificial intelligence is transforming breast cancer management through various machine
learning applications. Artificial intelligence supports precision medicine by enhancing
detection, diagnosis, prognosis, and treatment response prediction. It achieves this by
analysing data from medical imaging, histopathology, genomics and multi-omics sources
to improve patient recovery. This review summarises Al-driven advancements across the
entire continuum of breast cancer management, spanning detection, diagnosis,
prognosis, treatment and recovery. It evaluates their efficacy and limitations, explores
their impact on healthcare costs and clinical practice, and addresses key challenges
including generalisability, reproducibility and regulatory barriers. Evidence from recent
studies highlights Al’s role in improving breast cancer detection, molecular subtyping and
prognostic accuracy. It also facilitates more patient-tailored therapeutic strategies and
supports quality of life interventions. Nonetheless, the translation of these benefits into
clinical practice requires rigorous validation, transparent model development, and

equitable implementation.



Introduction

Breast cancer is the most commonly diagnosed cancer among women globally, with an
estimated 2.3 million new cases reported in 2022. It is a complex and heterogeneous
disease that can quickly develop into a metastatic, drug-resistant state’. Breast cancer is
also the leading cause of cancer mortality among women with 666,000 deaths recorded

in the same year?.

Over recent decades, technological advancements have improved the detection and
treatment of breast cancer. In particular, the adoption of artificial intelligence (Al) in
medical imaging and therapeutics has enhanced breast cancer diagnosis and therapy
planning, while reducing operational costs, time and labour3-5. Al refers to the use of
computational methods that mimic human neural processes to process vast amounts of
data and carry out tedious tasks, such as image recognition and predictive analyses.
Within breast cancer care, the most widely applied techniques include machine learning,
which builds predictive models by identifying patterns in data, and deep learning, which
refers to a subset of machine learning that leverages neural networks to extract
increasingly complex features from large datasets. These methods have demonstrated
strength in medical imaging, pathology, and genomics, where high-dimensional inputs are
difficult to interpret manually. A recent review encompassing more than 300 breast cancer

Al studies has shown that performance varies substantially depending on algorithm



selection, with recurrent neural networks, transfer learning, and convolutional neural
networks (CNNs) achieving higher accuracies compared to conventional machine

learning methods, while decision trees often underperform due to overfitting®.

In addition to machine learning and deep learning, which constitute the majority of current
breast cancer Al research, it is important to note that generative Al represents a rapidly
emerging field. Based on the input information it receives, generative Al can create new
content, including text and images. To date, however, its applications in breast cancer
care remain limited and largely restricted to diagnosis’. Several of its applications such
as image augmentation®® and drug discovery', also fall outside the primary scope of this
review. Therefore, the use of generative Al tools is only briefly acknowledged within this

review.

In the area of medical imaging, the use of Al in mammograms’!, tomosynthesis'?,
magnetic resonance imaging (MRI)'3 and ultrasound'* has improved the accuracy and
speed of breast cancer detection, as compared to manual readings by radiologists. The
use of Al in histopathology has also enhanced the grading and subtyping'®, and prognosis
of breast cancer'®. In the area of breast cancer therapeutics, Al has advanced the
prediction of treatment response'’, the accuracy of precision medicine'®, and the recovery

of patients’®.

Along with the numerous applications of Al in breast cancer management, it is also
important to consider the impact of Al. Besides the direct impact of improving breast
cancer diagnosis and therapy, Al is predicted to bring about significant cost savings in
breast cancer management and in the healthcare industry as a whole?%2'. The use of Al

in breast cancer management will also affect the role of healthcare practitioners including



but not restricted to physicians and radiologists. At present, Al is not operating at a level
where it can completely replace these healthcare practitioners. Instead, Al can
complement them by performing specific time-consuming and tedious tasks, allowing

healthcare practitioners to work more efficiently?%23,

Our review provides a clinically focused synthesis of Al applications across the entire
breast cancer care continuum, offering a holistic perspective that extends beyond what is
typically available in domain-specific reviews. In addition to mapping this broad scope,
we present a more methodologically transparent comparison of existing studies. Beyond
performance outcomes, we also examine the datasets and strategies employed to train
and validate the Al systems. We further assess whether the datasets and algorithms are
publicly accessible or proprietary. By doing so, the review highlights issues of
reproducibility and openness that are often overlooked. Finally, we expand the discussion
beyond technical considerations to address barriers to implementation, including the
challenges faced in low-resource settings. These contributions are summarised in Box 1
and together, they provide an integrated and critically appraised perspective that offers
clinicians, researchers, and policymakers a consolidated, practice-oriented resource for
understanding how Al innovations can be translated into equitable and sustainable breast

cancer care.
Treatment Phases

This review categorises the use of Al in breast cancer management into 3 phases — pre-
treatment, treatment and post-treatment, as shown in Fig. 1. In the pre-treatment phase,
detection, diagnosis, and prognosis represent distinct but interconnected phases of care.

Detection refers to the identification of suspicious breast lesions, most commonly through



population-based screening modalities such as mammography. Diagnosis follows
detection and involves confirming malignancy and characterising tumour grade and
subtype through histopathology or molecular assays. Prognosis addresses the
anticipated course of disease, including risk of recurrence, likelihood of treatment
response and long-term survival outcomes. Specific uses of Al in the pre-treatment phase
of breast cancer management are summarised in Table 1 and Supplementary Table 1.
In the second phase, patient samples may be obtained and tested with the goal of
improving treatment. This testing can include predicting response to treatment and
identifying precision medicine strategies. Specific uses of Al in the treatment phase of
breast cancer management are summarised in Table 2 and Supplementary Table 2. In
the final phase, post-treatment focuses on the enhancement of patient recovery. This
mainly involves interventions targeting quality of life (QoL) measures. Additionally, patient
recovery can also be influenced by the aesthetic outcome of breast surgery. Specific uses
of Al in the post-treatment phase of breast cancer management are summarised in Table
3. The process of selecting the studies to be included in this review is outlined in

Supplementary Methods and Supplementary Figure 1.
Role of Al in Pre-treatment Phase
Detection

Early detection of breast cancer is crucial to plan timely treatment, prevent unnecessary
biopsies, and reduce the mortality associated with this disease. The detection of breast
cancer begins with non-invasive imaging techniques. Mammograms are the most
commonly used imaging method for breast cancer screening and detection?25.

Mammography uses low dose X-rays to construct images of the breast, whereby



cancerous lesions appear as bright spots. Over time, mammograms have developed from
2-dimensional (2D) to 3-dimensional (3D) tomosynthesis, and from analogue screen-films
to digital images. In traditional screening workflows, radiologists double-read
mammograms, a process that is time-consuming and subject to reader variability,
resulting in significant false positive and false negative rates?%2?7. Al-enhanced workflows,
by contrast, offer automated triage, reduce unnecessary recalls, and shorten
interpretation times, thereby alleviating workforce pressures while maintaining or

improving accuracy.

Through the use of large datasets to train and test Al algorithms, these imaging
techniques have been advanced and, in some cases, automated for the detection of
breast cancer?®. Initial attempts at automating mammograms involved using computer-
aided detection (CADe) and computer-aided diagnosis (CADx) algorithms. These
algorithms normalised images to a reference and identified suspected breast cancer
lesions based on specific programmed-in features that were determined by human

experts?9-36,

Currently, Al algorithms, specifically deep learning CNNs, have removed the need for
human-determined programmed-in features®”. By using large datasets of labelled
mammogram images, supervised Al-based systems can train themselves to identify
features that distinguish images with and without cancerous lesions, in the absence of
explicit human guidance. These Al-based systems have been investigated in different
formats such as reader replacements for radiologists or integrated decision support tools
in standard double reading programs. Several retrospective studies evaluating the

efficacy of these Al-based systems in mammography have shown that they can perform



on par or better than radiologists using metrics such as Area Under the Receiver
Operating Characteristic Curve (AUROC), sensitivity and specificity38*6. In some cases,
Al was shown to be able to detect interval cancers that were previously missed out by
radiologists, demonstrating Al's superior performance*’—°. However, as retrospective
studies, the results from these studies do not directly benefit the women whose data was
used to train and test the Al systems. More importantly, retrospective evidence cannot
fully capture real-world effectiveness and thus, should be interpreted as proof-of-concept

rather than definitive clinical validation®°.

Presently, there have only been 4 prospective studies in Europe, which have shown that
Al can improve detection in mammogram screening®'-%4. The Mammography Screening
with Al (MASAI) trial (NCT04838756) reported a 44.3 % decrease in screen-reading
workload with the Transpara Al-supported screening®'. A study by Ng et al. showed 5 —
13 % relative increase in cancer detection rate, with minimal to no unnecessary recalls,
using the Mia Al-assisted double reading®. The ScreenTrustCAD study (NCT04778670)
reported a non-inferior cancer detection rate compared to radiologist double reading, with
the Insight MMG Al-paired reading®. The Prospective Multicentre Observational Study of
an Integrated Al System with Live Monitoring (PRAIM) showed a 17.6 % increase in
cancer detection rate, using the Vara MG Al-supported double reading®*. Despite these
encouraging results, translating Al models into clinical practice remains challenging.
Recent work shows that although deep learning tools can improve accuracy, external
validation often reveals performance variability and difficulties in workflow integration®°.
Similarly, evaluations of Al-based breast density classification models highlight variability

between radiologists and Al predictions, illustrating that consensus ground-truth and



prospective validation are essential before the widespread use of Al in breast imaging

modalities®®.

In comparison to Al applications in mammography, there have been fewer Al-based
systems developed for digital breast tomosynthesis®®. This reflects the less common use
of digital breast tomosynthesis in breast cancer screening. One main reason that
accounts for this difference is the significantly longer reading time that is associated with
digital breast tomosynthesis®’-%°. This has prompted studies to investigate the impact of
Al-assisted digital breast tomosynthesis on reading times. Several retrospective studies
have shown that Al-assisted digital breast tomosynthesis can achieve decreased reading
times, ranging from 3 — 33.7 second-reductions, compared with unassisted digital breast
tomosynthesis 665 In addition to reducing reading times, Al in digital breast
tomosynthesis has also shown other benefits such as increased accuracy in cancer
detection, decreased workload, decreased recall rates and decreased radiation dose®6:6.
However, more prospective studies are needed to truly evaluate the impact of Al on digital

breast tomosynthesis in breast cancer detection.

Besides the standard use of mammograms and tomosynthesis, other non-invasive
imaging techniques such as MRI and ultrasound may be used for breast cancer detection.
These techniques are usually used as supplemental methods when initial findings are
inconclusive®. They are also used for women with very high risk of breast cancer or for
women with dense breast tissue which could mask breast cancer lesions®7°. In contrast
to mammography which uses ionising radiation, MRl employs a magnetic field and radio

waves, and ultrasound employs sound waves.



As with the use of Al in mammograms, the use of Al in MRI seeks to enhance its
performance’'. Indeed, when compared to radiologists’ readings, some Al-based MRI
systems have been shown to possess greater accuracy. In a study by Jiang et al.,,
radiologists guided with an Al system showed increased AUROC from 0.71 to 0.76 along
with higher sensitivity’?. Another study utilising a 3D CNN multimodal fusion framework,
which processes all available MRI data instead of only a single volume, achieved an
AUROC of 0.77873. Witowski et al. used a deep learning system which had higher AUROC
than radiologists, 0.924 vs. 0.890 respectively’*. This improvement in accuracy in turn,
has the potential to reduce unnecessary biopsies. Besides improving accuracy, deep
learning has been employed in an MRI CADe system to automate the breast cancer
detection process with improved sensitivity, using only early-phase scans’. Deep
learning has also enabled the simulation of contrast-enhanced T1-weighted breast MRI
scans from 5 pre-contrast MRI sequences from a training set of 96 patients. A multi-reader
study was used to validate 22 of the simulated MRI scans where all of them were
assessed to look like a real MRI scan. This simulation removes the need of administering
a gadolinium contrast agent and monitoring by a physician, while achieving the same
accuracy as a real contrast-enhanced MRI’®. While these retrospective evaluations
demonstrate strong performance, methodological concerns must be acknowledged.
Retrospective designs are limited by data insufficiency, lack of local annotations, and

restricted generalisability, particularly in 3D imaging contexts such as MRI"”.

The use of Al in ultrasound imaging for breast cancer has seen similar effects in terms of
non-inferior or improved performance compared to radiologists. For instance, deep

learning CNNs have been used to develop a system with 97.18 % classification accuracy



in distinguishing breast ultrasonic images between normal, benign and malignant
states’®. Similarly, Yan et al. used deep learning to develop the Multimodal Ultrasound
Prototype Network (MUP-Net) which distinguished between benign and malignant breast
cancer with an AUROC of 0.902, sensitivity of 75.2 % and specificity of 91.8 %, which
were comparable to radiologists’ performance’. Among patients with benign breast
lesions, deep learning has enabled more accurate sub-classification between high-risk
and low-risk lesions. This is evidenced by higher AUROC using the Ensemble Deep
Learning-Breast Cancer (EDL-BC) model compared to radiologists, 0.945 vs. 0.716%.
This demonstrates the potential of an Al system to reduce the number of invasive biopsies
in patients with benign breast lesions. Furthermore, deep learning in the form of Clearview
Diagnostics’ cCAD software, renamed to Koios DS, has also been used in automated
breast ultrasound imaging to improve sensitivity and positive predictive value (PPV), and
reduce inter-operator variability!. Comprehensively, the use of Al in mammograms,
tomosynthesis, MRI and ultrasound imaging can improve the accuracy of breast cancer

detection significantly in the clinic.
Diagnosis

After the detection of a cancerous breast lesion, breast cancer is diagnosed based on the
tumour grade and subtype. This can be done using information obtained from genomic
and transcriptomic profiling or from histopathology slides. With genomic and
transcriptomic profiling, sequencing data or quantitative real-time reverse transcription
polymerase chain reaction (QRT-PCR) data of breast cancer related genes can be
obtained®2. Such information can be fed into Al algorithms to distinguish between breast

cancer subtypes. For instance, machine learning has been used to distinguish between



triple-negative breast cancer (TNBC) and non-TNBC with an accuracy of up to 86 %,
based on the expression levels of 5502 genes®. However, genomic and transcriptomic

profiling is costly and not routinely adopted in all clinical settings.

As a more common and affordable diagnostic method, histopathology slides are used.
These slides can be analysed via hematoxylin and eosin (H & E) staining to assess tissue
morphology, and immunohistochemistry (IHC) to characterise biomarker expression.
Conventional histopathology depends heavily on manual microscopy which is not only
time-consuming but also prone to inter-observer variability®¢. Both H&E and IHC slides
are typically scanned into whole slide images (WSlIs), which form the foundation of digital
pathology. These digitised images can then be used for storage, sharing, and
computational analysis. Furthermore, this has enabled Al-based digital pathology tools to
assist pathologists by automating tasks. These tools have the capacity to accelerate slide
review, support consistent grading and biomarker scoring, and enable integration of multi-

omic data, which are difficult to synthesise manually'®.

One group developed a deep learning CNN approach to model the Predictor Analysis of
Microarray 50 (PAM50) intrinsic molecular subtype using H & E-stained WSIs from a
training set of 443 patients. They achieved an overall accuracy of 65.92 %, with a highest
accuracy of 87 % for the basal subtype®. While there is room for improvement in terms
of accuracy, this approach was able to detect multiple cases of significant intratumoural
heterogeneity within a single WSI. This evidence of intratumoural heterogeneity could
have different prognostic implications on survival for patients with the same breast cancer

subtype.



Cruz-Roa et al. developed ConvNet classifier, an automated deep learning CNN
approach to quantify the extent of invasive breast cancer in digitised WSIs. The ConvNet
classifier was trained and tested on WSIs from 349 and 195 Estrogen Receptor (ER)-
positive invasive breast cancer patients respectively®. The classifier possessed a PPV
of 0.7162 and a negative predictive value (NPV) of 0.9977, compared to manual
evaluation of invasive ductal carcinoma by pathologists, indicating high overall accuracy.
However, some regions of in situ carcinoma were misclassified as invasive breast cancer,

suggesting the classifier is not without its limitations.

Couture et al. developed a deep learning CNN approach to predict several factors such
as breast cancer grade, intrinsic subtype, histologic subtype, ER status, and risk of
recurrence score using H & E-stained histologic images®’. This approach achieved at
least 75 % accuracy across all the classifications, with 82 % accuracy for low-intermediate
vs. high tumour grade, and 77 % accuracy for basal-like vs. non-basal-like subtype.
Similarly, Bae et al. developed a deep learning-based platform, 3DHistoNet, to predict
breast cancer subtype by identifying 5 biomarkers — Ki-67 index, ER, Progesterone
Receptor (PR), Androgen Receptor (AR) and Human Epidermal Growth Factor Receptor
2 (HER2) from z-stacked H & E-stained WSIs from 401 breast cancer patients. This 3D
platform possessed a higher AUROC compared to a 2D model, 0.75 — 0.91 vs. 0.67 —
0.838. By incorporating Al in the analysis of H & E-stained slides, these methods can

also save the time and cost associated with IHC staining.

In invasive breast cancer cases, machine learning has also been used to automate the
detection of HER2 amplification in chromogenic in situ hybridization (CISH) WSIs. This

approach required less labour and time, while maintaining the same level of accuracy as



manual quantification by pathologists®. However, this system was only tested on 22

cases so further testing with a larger dataset is needed to validate the findings.

Apart from the standard diagnostic methods using genomic testing and histopathology
slides, novel innovative approaches are being explored for breast cancer diagnosis. One
such method is the integration of Al algorithms with nanotechnology and nanomedicine®.
For example, Yang et al. has developed an electric nose composed of carbon nanotube
sensors to detect volatile metabolites from patients’ breath. These metabolites differ
between patients with breast cancer, patients with other types of cancers and healthy
individuals. In combination with random forest modelling, the electric nose showed a 91
% accuracy in diagnosing breast cancer non-invasively®'. Alafeef et al. has developed a
carbon nanoparticle platform with multifarious surface chemistries®?. The different
structural properties of the nanoparticles led to different cellular internalisation responses
by breast cancer cells. Consequently, different breast cancer cell types showed different
responses to the nanoparticle platform. In combination with an artificial neural network
algorithm, the platform showed an accuracy of 98.1 % in distinguishing between 5 breast
cell lines. With more clinical testing and fine-tuning, these innovative approaches have

the potential to simplify the diagnosis of breast cancer.
Prognosis

Prognosis not only complements the diagnosis of breast cancer, it also provides more
information about the likely progression or relapse of the disease. Prognostic evaluation
has traditionally relied on clinicopathological features and gene expression panels,
whereas Al approaches can incorporate histopathology slide images, radiomics, and

multi-omics to provide more granular and scalable predictions of recurrence risk.



Morphological features of both the tumour cells and the cells in the tumour
microenvironment (TME) can be identified and analysed by computerised systems to
provide prognostic information. For example, a deep learning model, DeepGrade (DG),
was developed to analyse H & E-stained WSiIs of breast cancer patients with Nottingham
histological grade (NHG) 2 prognostic grading®®. NHG 2 represents an intermediate risk
group in which patients have moderately differentiated cancer cells, prompting further risk
stratification by Wang et al. The model showed that the DG2-high group possessed a
higher risk of recurrence compared to the DG2-low group, with a hazard ratio (HR) of 1.91

and 2.94 in 2 separate test groups.

Deep learning was also used to assess the nuclear morphology of epithelial and stromal
cells from ER-positive breast cancer histopathology slides®*. Subsequently, machine
learning was used to categorise the images using a predicted Oncotype DX risk score,
which indicates the risk of recurrence. With a classification accuracy of 76 — 85 %, this
predicted risk score could aid in deciding whether to prescribe adjuvant chemotherapy for

ER-positive breast cancers.

Using a similar approach, Li et al. utilised a deep learning model to identify nuclei in WSIs
of ductal carcinoma in situ. Based on histomorphometry features such as shape,
arrangement and texture of the identified nuclei, machine learning was used to predict
the Oncotype DX risk scores of the images®. With AUROC of 0.57 — 0.68, this prognostic

model has potential but can be developed further to improve its accuracy.

Additionally, Romo-Bucheli et al. used a deep learning model to quantify mitotic nuclei in
WSIs of ER-positive breast cancer®. Based on the quantified mitotic count, a support

vector machine classifier was subsequently used to categorise the images into low and



high predicted Oncotype DX risk scores. This classifier possessed an accuracy of 83.19
%, demonstrating its prognostic value in advising treatment selection for patients with

different risk scores.

In ductal carcinoma in situ (DCIS), nuclear morphology is also often used to characterise
disease stage and determine prognosis. However, DCIS patients exhibit heterogeneity in
terms of nuclear shape and tissue morphology which limit the reliability of nuclear
morphology as a prognostic biomarker. To address this limitation, Zhang et al. utilised
unsupervised representation learning on a tissue microarray of Hoechst-stained
chromatin images®’. They identified 8 distinct cell states which were present in both
normal and cancerous breast tissues. Interestingly, the proportion and spatial
organisation of these 8 cell states were found to be predictive of disease stage, illustrating

the potential of using chromatin images as a prognostic biomarker in DCIS.

Besides using nuclear morphology as the main input factor, Ki-67 index has also been
used to predict Oncotype DX risk scores in early stage, hormone receptor-positive, HER2-
negative breast cancer. Thakur et al. utilised an automated image analysis system to
score Ki-67 in H & E-stained slides, followed by a machine learning model to predict the
Oncotype DX risk score®. The automated scoring system showed high concordance with
manual scoring by a pathologist and the model had a 97 % accuracy, 98 % sensitivity and

80 % specificity in distinguishing low-risk and high- risk patients.

In a study by Basavanhally et al., it was demonstrated that machine learning can be used
to identify and grade the degree of lymphocytic infiltration in HER2-positive breast cancer

histopathology slides®. With a 90 % accuracy, this system could potentially be used to



stratify for HER2-positive breast cancer patients with low lymphocytic infiltration and poor

prognosis.

Another way that Al algorithms have been used in breast cancer prognosis is by analysing
existing genomic, transcriptomic and metabolomic data. For instance, machine learning
was used to develop a breast cancer stem cell (BCSC)-related risk score, based on
prognostic BCSC genes'. In combination with clinical factors such as age, cancer stage
and gender, the BCSC risk score had AUROC of 0.746 — 0.805 for predicting survival.
Furthermore, the model showed that a subpopulation of BCSCs, CD79A*CD24-PANCK™*-
BCSCs, was associated with poor prognosis. This subpopulation of BCSCs could
potentially exhaust neighbouring CD8*FOXP3* T cells, thereby creating an
immunosuppressive TME that contributes to reduced survival. Accordingly, this specific
BCSC-T cell axis could be targeted to sensitise breast cancer patients with a high

CD79A*CD24-PANCK*-BCSC subpopulation to immunotherapy.

In a study by Xiao et al., machine learning was applied on metabolomic data to develop
a risk model to stratify patients with basal-like immune-suppressed (BLIS) TNBC into high
or low recurrence risk groups'®'. Within the high-risk group, further experiments showed
that N-acetyl-aspartyl-glutamate was a potential therapeutic target. Together, these
prognostic Al models demonstrate the potential to enhance patient stratification for

subsequent treatment planning.
Role of Al in Treatment Phase

Prediction of Treatment Response



Beyond diagnosis and prognosis, treatment planning is a key component of breast cancer
care. In predicting treatment response, traditional workflows rely on clinicopathological
markers such as tumour size, nodal involvement, grade, and receptor status to guide
therapeutic decisions. While these indicators are clinically useful, they lack precision at
the individual level, often resulting in overtreatment or undertreatment. Al-enhanced
workflows, by contrast, integrate clinical, demographic, digital pathology, genomic,
transcriptomic and treatment type data to build predictive models that estimate the
likelihood of pathological complete response or residual disease with greater accuracy
(Fig. 2A). These approaches enable more individualised therapy selection, reducing
unnecessary toxicity for non-responders and optimising outcomes for patients most likely
to benefit. By leveraging on Al systems, several studies have shown adequate
performance in predicting pathologic complete response to neoadjuvant therapy in breast
cancer, measured by AUROC of 0.74 — 0.93'%2, 0.83 — 0.87"93, 0.87"%4, 0.896 — 0.903 for
a deep learning radiomics nomogram (DLRN-PCR)'% and 0.91 for SimBioSys’

TumorScope Predict platform?%6.

Other types of post-treatment outcome metrics have also been used in Al-based
predictive models in breast cancer. In addition to predicting pathologic complete
response, Gu et al. also developed a deep learning radiomics nomogram to predict lymph
node metastasis (DLRN-LNM) in response to neoadjuvant therapy, with AUROC of 0.853
—0.863'%%. Another study developed a survival prediction model with AUROC of 0.98 and
a half-maximal inhibitory concentration (ICso) drug response prediction model with mean
square error (MSE) of 1.154 and an overall regression value of 0.92'%7. Park et al.

developed a deep learning model, Nested Systems in Tumours-Visible Neural Network



(NeST-VNN), to predict sensitivity to CDK4/6 inhibitor treatment. For patients treated with
a CDK4/6 inhibitor such as palbociclib, those who were predicted to be sensitive showed
a longer duration of survival than those who were predicted to be strongly resistant, with
a HR of 0.21'%_ A model to predict cardiotoxicity in response to anthracycline treatment
was also developed by a separate study. The model showed AUROC of 0.66 for predicting
breast cancer therapy-related cardiac dysfunction and 0.81 for predicting symptomatic
heart failure with reduced ejection fraction'%. Altogether, these various predictive models
illustrate the therapeutic potential to guide treatment planning for breast cancer with

increased accuracy.
Precision Medicine

Given the complex and heterogeneous nature of breast cancer, treating patients safely
and effectively remains a challenge. As a result, it is common in clinical settings to see
patients coming back with refractory metastatic breast cancer after several lines of
treatment, especially for patients with the TNBC subtype’'?. One emerging strategy to
address this challenge is to use precision medicine. Conventional approaches in precision
medicine are anchored in targeted biomarker testing and fixed gene expression panels
such as Oncotype DX, which stratify recurrence risk and inform therapeutic decisions.
Although effective, these tools assess a limited number of molecular features and provide
static insights that may not fully capture tumour heterogeneity. Beyond interrogating a
patient’s unique genetic and molecular signatures'"!, Al-enhanced precision medicine
leverages empirical data from ex vivo drug testing to predict drug sensitivity, identify novel

therapeutic combinations, and adapt treatment strategies in real time. This shift allows for



a more dynamic and comprehensive personalisation of care, ensuring that treatment is

tailored to each patient (Fig. 2B & C).

Many studies have developed and investigated the use of Al-based models to optimise
drug combination selection''?. The purpose of identifying effective drug combinations is
to leverage the potentially synergistic effects between the drugs, overcoming resistance
to monotherapy, leading to lower doses and toxicity''3. The various machine learning
algorithms that have been used to determine the best drug combinations include random
forest''4, extreme gradient boosting?%116  extremely randomised tree''”, tensor
factorisation''8, feed-forward neural networks''9-122 gutoencoder'?3, stacked restricted
Boltzmann machine'?* and graph convolutional networks'?>1%6, However, these studies
were mostly conducted using breast cancer cell lines and therefore, are not specific to

individual patients.

Moving from the use of cell lines to patient samples, several Al-based models have been
developed to predict the best drug combination to treat cancers. One example is the
computational-experimental Drug Combination Prediction and Testing (DCPT)
platform'?7. To predict synergistic drug combinations, DCPT utilises exome sequencing
data, RNA sequencing data, single drug responses in ex vivo patient samples and a
network pharmacology-based machine learning model. In 3 patients with T-cell
prolymphocytic leukemia, 10 out of 24 DCPT-predicted synergistic drug combinations
were experimentally validated using ex vivo patient samples. However, there is currently

no reported evidence that the DCPT platform has been used for breast cancer patients.

Another example of a patient-centric Al-based prediction model is Quadratic Phenotypic

Optimization Platform (QPOP), which uses an orthogonal-array composite design, a



linear regression model and minimal tumour biopsy samples. This model has optimised
effective drug combinations in ex vivo patient samples in hepatocellular carcinoma’?® and
multiple myeloma'2°. Moreover, the results from this model have also been translated to
the clinic. 6 patients with refractory lymphoma who were treated with the QPOP-guided
drug combination subsequently experienced a complete response'3:'31. Currently, there
is a phase | clinical trial (NCT05177432) to determine the feasibility of using QPOP to

guide drug combination treatment in breast cancer patients.

To personalise treatment dosages, an Al-based prediction model called CURATE.AI has
been developed. Unlike most other Al-based prediction models, CURATE.AI does not
require a large patient dataset for training. Instead, it only requires the pre-existing drug
dose information from an individual patient to generate a personalised treatment profile.
Using quantifiable biomarker levels such as tumour size and circulating tumour DNA,
CURATE.AlI can determine the optimal drug dose while minimising toxicity'2.
Furthermore, this N-of-1 model is dynamic which means that it can be used to adjust
dosage levels during the course of treatment. To date, CURATE.AIl has been investigated
in several clinical trials involving cancer patients (NCT04522284, NCT05175235 and
NCT03759093). Notably, it was successfully used to adjust the drug doses of
enzalutamide and ZEN-3694 for a patient with metastatic prostate cancer, resulting in
reduced prostate-specific antigen levels and lesion size'3. Furthermore, CURATE.AI-
guided dosing also demonstrated reduced adverse events, suggesting improved safety
and drug tolerance. In the context of breast cancer, a clinical trial (NCT05381038)

evaluating the use of QPOP in combination with CURATE.AI is currently in progress.



Apart from optimising drug treatment, Al can also be used to aid in genetic testing for
breast cancer patients. Results from genetic testing can greatly impact subsequent
treatment options. This makes pre-test genetic education or counselling important to
ensure that patients can make informed treatment decisions. In addition, genetic
education can help to advise patients on the potential implications for family members
who share the same genes. Experts at Johns Hopkins University and OptraHEALTH
developed an Al conversational virtual assistant on the HealthFAX platform to provide
tailored genetic education to patients'**. To study the performance of this Al tool, 39
patients who were receiving active treatment for breast cancer used the tool at home. All
the patients reported that the tool provided valuable information and was easy to use.

However, there was no comparison to in-person genetic education.

A study by Al-Hilli et al. went a step further by comparing their genetic counselling Al
chatbot to a certified genetic counsellor in a randomised controlled trial'3®. 37 newly
diagnosed breast cancer patients took part in this study. The results revealed that there
was no significant difference in the patient satisfaction score and the knowledge score
between the Al chatbot and the genetic counsellor. This indicated that the Al chatbot
performed on par with the genetic counsellor in terms of patient satisfaction and
comprehension, demonstrating the potential of Al to provide precise genetic education or

counselling during breast cancer treatment.



Role of Al in Post-treatment Phase
Patient Recovery

In patient recovery, standard workflows depend on periodic follow-up visits and clinician-
reported outcomes, which can delay recognition of complications or declines in quality of
life between scheduled assessments. Al-enhanced recovery workflows incorporate
wearable sensors, mobile health platforms, and conversational agents to continuously
monitor physiological and behavioural signals, detect emerging QoL issues, and provide
personalised recommendations. This proactive model enables earlier interventions,
reduces unplanned hospital visits, and empowers patients to play a more active role in

managing their recovery trajectory.

After treatment, some breast cancer patients may respond successfully and consequently
be in remission or cancer-free. However, these patients still need to recover from the
physical, psychiatric and emotional effects of surgery and drug treatment. These effects
may be detrimental to the patients’ QoL, especially when they are not adequately
addressed'36. Currently, there are many web-based and app-based digital therapeutics
being developed to aid in patient recovery and improve QoL'®. These digital therapeutics
recommend and provide lifestyle interventions to patients in the form of physical
activity'3-139 support for anxiety'#?, depression’!, mental and sexual health'*? or a
combination of physical and psychological interventions'3144, However, most of these
digital therapeutics do not incorporate Al in their software. As such, the potential benefits

of Al-based digital therapeutics remain largely untapped.



One potential benefit of Al-based digital therapeutics may be observed in the Atrtificial
intelligence Supporting Cancer Patients across Europe (ASCAPE) clinical trial
(NCT04879563). Based on breast cancer patient data from apps, questionnaires, medical
records and wearables, the ASCAPE platform utilises machine learning algorithms to
predict 15 QoL issues such as anxiety, depression, negative body image and sexual
health'45. Furthermore, the ASCAPE platform also recommends interventions to clinicians
based on these QoL predictions. The results of this study are currently unavailable as the
trial is still ongoing. Therefore, more time is needed before accurate conclusions can be

made about this platform.

Another potential benefit of Al-based digital therapeutics may be observed in the
Cuidados Mas Alla del Cancer-Mama (CUMACA-M) randomised controlled trial
(NCT05322460). CUMACA-M is a web program that utilises Al to provide personalised
interventions to long-term breast cancer survivors'4¢. These interventions aim to improve
the spiritual, physical, social and psychological aspects of QoL, as well as self-
management of cancer sequelae. However, the results of this trial have not been
published since its estimated completion date in June 2024. As such, the true efficacy of

this program in improving QoL remains questionable.

Another aspect of patient recovery is patient satisfaction with the aesthetic outcome of
breast surgery. Depending on the severity of the cancer and other risk factors, patients
may be offered different treatment choices, including the type of surgery — mastectomy,
lumpectomy (standard breast-conserving surgery), or oncoplastic breast-conserving
surgery, which maintains the natural breast contour. While standard breast-conserving

surgery offers safer margins than oncoplastic breast-conserving surgery, it is also



associated with poorer patient satisfaction in terms of aesthetic outcome'’. This may
lead to patients experiencing a negative body image and lowered QoL'8. To help patients
decide on the type of treatment, the Comparing Decision on Aesthetics After Breast
Cancer Locoregional Treatment (CINDERLLA) clinical trial (NCT05196269) was
established. The CINDERELLA trial employs an Al web-based platform that provides
patients with information regarding the different treatments and surgeries offered. Using
the patients’ own pre-treatment images, it also generates the possible aesthetic outcomes
associated with each treatment’4°. With an estimated study completion date in 2026, it is
currently too early to ascertain if this platform can effectively assist patients in making
more informed decisions about their treatment, improve QoL and decrease the need for

supplementary breast surgeries to improve aesthetic outcome.

Breast reconstruction surgery is another important factor that is associated with body
image and QoL. This surgery helps patients to achieve a more satisfactory post-treatment
aesthetic outcome, which contributes to enhanced recovery. There are several breast
reconstruction surgeries available, including the deep inferior epigastric artery perforator
(DIEP) flap, which is the most common free flap method. In preoperative planning,
computed tomography angiography (CTA) images of the vascular anatomy of the DIEP
are taken. However, analysing these images is a time-consuming and labour-intensive
process even for experts’. Al has the potential to improve the pre-operative planning of
DIEP flap surgery. By using computer vision techniques to automate the detection of
perforator vessels in CTA images, Mavioso et al. have reduced the analysis time from 2
hours to 30 minutes'®'. This demonstrates the ability of Al to decrease the workload of

healthcare professionals, allowing them to provide better care to patients. With further



applications, Al could potentially improve the accuracy and robustness in the preoperative

planning of breast reconstruction surgeries.



Impact of Al on the Cost of Healthcare

In this review, we have shown that various Al applications have been developed and
tested for use in breast cancer management. This extensive use of Al can be largely
attributed to the attractive benefit of improved accuracy in detection and treatment. In
addition, other benefits of Al include reductions in analysis times, labour-intensive
processes and invasive procedures such as biopsies. In theory, these benefits should
translate to cost savings for both healthcare providers as well as patients. Accenture, a
global professional services company, estimated that Al could save up to US$150 billion
in the US healthcare industry annually by 20262'. Furthermore, the US National Bureau
of Economic Research estimated even greater cost savings of US$200 billion to US$360

billion annually from 2019 in the US healthcare industry?°.

More specifically, in areas that are related to breast cancer management, Al has been
predicted or modelled to achieve cost savings in mammogram screening'%2-1%4 MRI'%°,
avoiding unnecessary biopsies'®®, diagnosis and treatment'®’, as detailed in Table 4. For
instance, traditional mammograms are prone to false positive results, which incur
additional costs due to follow-up testing. Chubak et al. reported the cost of breast-care
services for each false positive case to be $507 in 201058 while Ong and Mandl reported
it to be $852 in 2015"%°, Furthermore, in the US, the cost of false positive mammograms
and subsequent overdiagnoses has been estimated to be $4 billion annually'®. With
more accurate Al-based mammograms and detection systems, false positive cases can

potentially be reduced, leading to significant cost savings.

Despite these estimated and predicted figures, there is a lack of information available

about the real cost savings that Al provides in the overall healthcare industry and in breast



cancer management. In fact, a systematic review by Wolff et al. in 2020 showed that only
6 out of 66 identified publications assessed the economic impact of Al in healthcare
settings'60. Additionally, these 6 studies did not include information about the initial
investment in the Al system, the operational costs of Al system and any alternatives to

the Al system used.
Impact of Al on Healthcare Practitioners

The increasing use and evolution of Al has sparked discussions over its potential impact
on jobs. Specifically, in the healthcare industry, there are major concerns regarding the
impact of Al on the role of healthcare practitioners such as doctors, nurses and
pathologists?223.161.162_|njtially, it was broadly speculated that Al would replace healthcare
practitioners. Instead, with the current state of Al, it is more widely held that healthcare
practitioners who use Al would replace those who do not use Al. By collaborating together,
Al and healthcare practitioners have immense potential to improve outcomes for
patients'83. Al can complement healthcare practitioners by being used to analyse large
datasets with greater speed and accuracy'®®. In addition to accuracy, the way Al
communicates its findings to clinicians has a significant impact on adoption. A recent
study on personalised Al communication in breast cancer imaging showed that
assertiveness-based Al agents reduced diagnostic time by over a third and lowered error
rates, particularly among less experienced clinicians, without compromising accuracy .
Clinicians also expressed a preference for Al systems that provide detailed contextual
explanations rather than numerical outputs, underscoring the importance of adaptive
communication styles for building trust, reducing cognitive load, and streamlining clinical

workflows.



Healthcare practitioners would then come in to monitor the Al systems and interpret the
results in the relevant context'®®. Next, healthcare practitioners would need to
communicate the results to patients. This communication process involves a unique
human touch encompassing empathy and nuance, which is difficult for Al to
emulate'®”:188_ Importantly, healthcare practitioners should provide oversight by looking
out for errors and providing feedback to improve the performance of the Al systems. In
resource-poor settings where there is a lack of trained and skilled healthcare practitioners,
Al systems could serve as a useful tool to enable more inclusive access to healthcare'®°.
Ultimately, healthcare regulatory organisations should be responsible for ensuring that
adequate training and infrastructure are in place to facilitate effective collaboration

between man and machine7°,

Similarly, the use of Al in imaging technologies has prompted discourse on the role and
relevance of radiologists. At first glance, a commonly held notion is that radiologists would
be made redundant and that Al would replace them in detecting cancers or diseases in
general’'=173_ Upon closer inspection, the current consensus is that Al would not replace
radiologists but instead serve as a complementary tool alongside radiologists'4-17°, Al
would likely alter how radiologists practice their work and reshape their role in the
healthcare industry. For example, instead of having 2 independent radiologists interpret
an image, 1 radiologist may be aided with an Al decision support system to do the same
job more quickly and accurately’®. Alternatively, Al may be used as an initial triage method
to screen mammogram images and radiologists would follow up on positive or uncertain
cases?. Just as how radiology images developed from analogue to digital forms in the

past, this change can be regarded as the next step of technological advancement in



radiology. Radiologists who embrace Al and adapt to the associated changes will likely
be in a better position than radiologists who are sceptical and show reluctance towards

Al.
Challenges

While there are several advantages of using Al in breast cancer management, such as
higher accuracies and accelerated analysis times, the pitfalls of Al should also be weighed
when considering its implementation (Fig. 3). Al algorithms usually require large and
diverse training datasets to be sufficiently representative of a given population6".162,164,
Without such datasets, Al would encounter generalisation challenges, especially for
groups that are underrepresented in the training datasets, potentially leading to widening
health inequalities'’. Addressing this challenge will require not only prospective
validation in multi-centre trials, but also intentional inclusion of diverse patient populations
in training datasets to ensure equitable applicability across global breast cancer care.
Taking into consideration data privacy and consent issues from patients, obtaining such

datasets in the form of sensitive health information may also pose a challenge 68180,

Additionally, Al algorithms often represent a ‘black box’, generating outputs without
interpretable reasoning. These algorithms may not be understood by end-users or may
not be disclosed due to commercial interests'61.166.181 Reproducibility remains a critical
challenge in Al research. Many Al models are trained on proprietary or non-public
datasets, and clinically deployed systems are often closed source, limiting opportunities
for independent validation. Similarly, while some datasets, such as The Cancer Genome
Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium

(METABRIC), are publicly available, many large screening repositories remain under



controlled access, reinforcing inequities in research capacity. This raises barriers to
transparency and clinical trust, and stresses the importance of open-access resources,
standardised reporting, and reproducible pipelines to ensure that Al findings can be

independently verified and applied across different healthcare settings.

In the US, several mammography Al tools, such as Lunit INSIGHT MMG, DeepHealth’s
Saige-Q and ScreenPoint Medical’s Transpara, have obtained FDA clearance as
decision-support systems for breast cancer screening. Lunit INSIGHT MMG, for example,
received FDA 510(k) clearance in 2021 as an adjunctive tool for mammography
interpretation, reflecting the most common approval pathway for breast imaging Al. The
510(k) route requires developers to demonstrate that their device is substantially
equivalent to an already approved predicate device, typically involving analytical
validation and clinical performance studies, followed by an FDA review that may span
several months to over a year. In contrast, Al systems for which no suitable predicate
exists must undergo the De Novo classification process, a lengthier and more evidence-
intensive pathway that establishes a new device category and generally requires more
rigorous clinical data. While these regulatory frameworks aim to ensure safety and
reliability, they also introduce practical challenges for Al adoption. Many breast cancer Al
tools do not fit neatly into existing device categories, suitable predicates may be lacking
and the need for extensive evidence can slow innovation. As a result, navigating these
regulatory frameworks remain a significant barrier to the timely integration of Al

technologies into breast cancer care61.168.180,

Beyond technical opacity, recent work has shown that Al systems in medicine can

introduce bias from multiple sources, including data bias, development bias, and



interaction bias, which may result in model overfitting, unfair or even harmful outcomes if
unaddressed'®'.'82, In medical imaging, this is particularly concerning as Al systems may
inherit demographic underrepresentation from training datasets'®. Emerging work also
shows that models validated on limited datasets may underperform on minority or
underrepresented groups, risking the exacerbation of health disparities'®. Apart from
assessing performance and safety, a comprehensive evaluation framework is required to
assess ethics and bias from model development through to clinical deployment, ensuring

that Al systems remain fair, transparent, and beneficial in diverse patient populations.

Widespread clinical adoption of Al in breast cancer management depends on substantial
non-technical infrastructure and governance that are currently unevenly available.
Practical barriers include the need for robust IT infrastructure, clinical workflow
integration, long-term maintenance and model updating®'. Regulatory hurdles including
device classification, pre-market clinical evidence requirements, post-market surveillance
such as monitoring for performance drift, reporting safety events and periodically
reassessing model outputs, further slow translation from research to routine care'81.185,
These processes are increasingly important as regulators consider how to oversee
adaptive Al models that continue to learn from new data after deployment, which current
approval pathways are not yet fully equipped to manage. These challenges are amplified
in low-resource settings where imaging equipment, secure data pipelines, trained
personnel, and reimbursement mechanisms may be limited'8'.18_ Without targeted
investments in infrastructure, regulatory harmonisation, and capacity building, Al risks

being adopted unevenly and could exacerbate rather than reduce disparities.



Regulatory agencies also need to ensure that the sensitive health information used in Al
systems is adequately secured to prevent breaches in patients’ privacy'62181.187 \While
large, diverse datasets are essential for model generalisability, they raise concerns
around patient consent, data ownership, and risk of re-identification. Ensuring compliance
with regulatory frameworks, while enabling secure data sharing and federated training, is
critical to balancing innovation with patient protection. From a legal perspective, it is also
important to decide which party — healthcare practitioner or Al system developer, should
be liable if there are adverse effects to patients due to errors or failure of the Al
systems'62.180.181 Thjs could deter healthcare practitioners from accepting the Al systems

if they perceive the level of liability on them to be unfair.

The cost of Al in breast cancer management is also an important factor to consider. On
the one hand, it is possible for Al to result in cost savings by improving accuracy and
reducing time-consuming manual processes. On the other hand, the Al systems
themselves may be expensive and they may incur additional costs if they require novel
technical expertise, training and infrastructural modifications''.168.187 This could limit the
use of Al in breast cancer management to resource-rich institutions in developed

countries.

Another concern is how the use of Al would affect the long-term health of breast cancer
patients. The impact of Al systems on long-term health outcomes such as progression-
free survival and life expectancy are presently not well-studied'66. Most studies evaluating
the use of Al in breast cancer management are retrospective studies'@. This provides
limited evidence to show that Al can help make patients healthier or save more lives'®".

More comparative prospective studies and randomised controlled trials are needed to



accurately investigate the long-term health effects of Al applications. All these issues must
be critically evaluated to ensure that the use of Al in breast cancer management is safe,

effective and affordable for patients.

Conclusion

With increasing applications in image recognition and making predictions, the use of Al
has pervaded multiple aspects of breast cancer management. This review offers a
comprehensive and critically appraised synthesis of how Al is reshaping breast cancer
care, from early detection to post-treatment recovery, by evaluating its clinical
performance, translational potential, and systemic implications, while underscoring the
infrastructural, ethical, and regulatory challenges that must be addressed for equitable
implementation. In general, there are more applications of Al in the pre-treatment phase
of breast cancer management compared to the treatment and post-treatment phases.
Although this trend may lead to the earlier and more accurate detection of breast cancer
cases, it is equally important that Al can benefit breast cancer cases which fall through

the cracks and are detected at late stages.
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Box 1. Integrating Al in breast cancer management.

Al is being applied across the full breast cancer care continuum, including
detection, diagnosis, prognosis, treatment response prediction, precision
medicine and patient recovery, showing improvements in accuracy, efficiency
and clinical decision support.

Performance of Al systems varies widely depending on algorithm choice, dataset
size, validation strategy and population diversity, underscoring the need for
rigorous, transparent evaluation.

Many Al models rely on proprietary algorithms and non-public datasets, which
limits reproducibility and raises concerns about fairness, generalisability and
clinical trustworthiness.

Al influences healthcare practitioners by shifting rather than replacing clinical
roles, automating labour-intensive tasks, reducing cognitive load, and potentially
improving workflow efficiency, while also raising training and oversight demands.
Al has the potential to reduce healthcare costs through more accurate triage,
reduced unnecessary imaging, and improved resource allocation, though
widespread cost benefits depend on scalable deployment and supportive
infrastructure.

Implementation barriers, including IT infrastructure, workflow integration,
regulatory requirements and disparities in resource availability, continue to

constrain real-world adoption of Al.




Figure Captions

Figure. 1. The comprehensive and multidisciplinary applications of Al in different
phases of breast cancer management. Al is used in the pre-treatment, treatment and
post-treatment phases of breast cancer management. The pre-treatment phase consists
of detection, diagnosis (grading and subtyping) and prognosis. Al is used in imaging tools
such as mammography, DBT, MRI and ultrasound to identify women with breast cancer.
Al is also applied to genomic and transcriptomic profiling as well as histopathological
analysis to provide more information about the cancer. The treatment phase consists of
prediction of treatment response and precision medicine. Using genomic, transcriptomic
and other pathological information, Al can be used to predict a variety of outcomes in
response to drug treatment. Additionally, Al is applied to drug sensitivity testing in patient
samples to predict personalised effective treatments. The post-treatment phase mainly
focuses on patient recovery. Using medical records, questionnaires and wearables, Al
can be used to recommend lifestyle interventions to address quality of life issues in breast
cancer patients. Al is also used in pre-operative imaging and patient education to improve
the aesthetic outcome of breast surgery. DBT = digital breast tomosynthesis and MRI =

magnetic resonance imaging.



Figure. 2. Comparison of conventional breast cancer treatment with Al-guided
breast cancer treatment. (A) Conventional treatment operates based on expert analysis
and recommendations by doctors and pathologists. However, they are prone to personal
bias and inter-observer variability which could negatively impact their decisions.
Additionally, this process is labour-intensive and time-consuming, potentially reducing
productivity. In contrast, Al-guided treatment utilises results from multi-omics data
analysis for decision-making. This makes the treatment decisions less subjective and
prone to human error. The automated aspect of Al also helps to save manpower and time.
(B) The information that is used to guide conventional treatment is derived from the
patient’'s medical history. Such information may be recorded differently over time by
different healthcare professionals. Moreover, patients may not accurately recall and report
their own information when questioned by healthcare professionals. Comparatively, Al-
guided treatment uses data from patient samples such as breast tumour biopsy samples
to inform treatment decisions. The patient samples may be experimentally analysed in a
standardised manner to provide empirical evidence that is fed into computerised Al
models. (C) Conventional treatment routinely provides the standard of care especially as
the initial line of treatment. This often proves to be ineffective as breast cancer is a
heterogeneous disease and manifests differently in different patients. In comparison, Al-
guided treatment can incorporate precision medicine approaches to personalise drug

combinations and dosages for individual patients.



Figure. 3. Challenges of using Al in breast cancer management. There are five main
challenges to recognise and address when using Al systems and applications — the
generalisability of Al models, the Al ‘black box’ problem, regulation, cost and long-term
health impact. To be generalisable to broader patient populations, Al algorithms require
large and diverse datasets. However, certain groups are often underrepresented in
datasets, partially due to patient consent and privacy issues. The Al ‘black box’ problem
can hinder the acceptance of Al due to a lack of understanding and transparency of how
the Al systems work. This also limits the reproducibility of Al applications particularly when
non-public datasets are used. The regulation of Al is an immense task as it encompasses
minimising biases, overcoming infrastructural barriers and ensuring that Al systems
perform effectively while protecting patient safety and privacy. Al applications may lead
to cost savings as a result of improved accuracy and faster analyses, or higher costs due
to additional training and infrastructural modifications to adopt the new Al systems. To
better understand the long-term health impact of Al, such as progression-free survival
and life expectancy, more prospective studies and randomised controlled trials should be

conducted.



Table 1. Overview of selected studies evaluating Al applications in the pre-
treatment phase - detection, diagnosis and prognosis, of breast cancer
management. The table summarises datasets (source, size, population-based vs. multi-
institutional vs. single institution and accessibility), performance metrics, validation
strategies (prospective vs. retrospective and internal vs. external), model accessibility
(open source vs. closed source vs. commercially available), and reported clinical
outcomes, providing a consolidated view of current evidence and translational potential.
More studies are summarised in Supplementary Table 1. AUROC = area under the
receiver operating characteristic curve, DG2 = digital grade 2, HR = hazard ratio, NPV =
negative predictive value, PAM50 = Predictor Analysis of Microarray 50, PPV = positive

predictive value, TCGA = The Cancer Genome Atlas and WSI = whole-slide image.
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Table 2. Overview of selected studies evaluating Al applications in the treatment

phase — prediction of treatment response and precision medicine, of breast cancer

management. The table summarises datasets (source, size, multi-institutional vs. single

institution and accessibility), performance metrics, validation strategies (prospective vs.

retrospective and internal vs. external), model accessibility (open source vs. closed

source vs. commercially available), and reported clinical outcomes, providing a

consolidated view of current evidence and highlighting the potential of Al to guide

therapeutic decision-making. More studies are summarised in Supplementary Table 2.

AUROC = area under the receiver operating characteristic curve.
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Table 3. Overview of studies evaluating Al applications in the post-treatment phase
— patient recovery, of breast cancer management. The table summarises datasets
(source, size, multi-institutional vs. single institution and accessibility), performance
metrics, validation strategies (prospective vs. retrospective), model accessibility (open
source vs. closed source vs. commercially available), and reported clinical outcomes, with
a focus on platforms supporting quality of life interventions and preoperative planning.
CTA = computed tomography angiography, DIEP = deep inferior epigastric perforator and

QoL = quality of life.
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Table 4. Estimated and predicted cost savings of Al applications in healthcare and

breast cancer management.

Area of Cost Savings | Estimated & Predicted Cost Savings Reference
Healthcare Metric
Entire healthcare | Total cost $200 billion - 360 billion annually from 2019 in 20
industry the US
$150 billion annually by 2026 in the US 21
Mammogram Incremental ICER of $23,755 per Quality-adjusted Life Year 152
screening Cost (QALY) gained (below the threshold of $100,000)
Effectiveness
Ratio (ICER)
Incremental Positive INMB of £2.70 153
Net Monetary
Benefit
(INMB)
Net Monetary | NMB of £60.4 million - 85.3 million (assuming 154
Benefit (NMB) | QALY =£20 000 and £30 000 respectively)
€399,000 | in hospital annual examination costs
MR Time and total | vs. acquiring an additional MRI scanner, | 155

biopsy

cost appointment times & 1 20 - 32 % scanner
capacity
Breast cancer Total cost >$420 million by obviating unnecessary biopsies | 1%

Diagnosis and

treatment

Time and cost
per day per
hospital

Diagnosis: 3.33 - 15.17 h and $1666.66 - 17,881
per day per hospital (at the initial year and 10
years respectively)

Treatment: 21.67 - 122.83 h and $21,666.67 -
289,634.83 per day per hospital (at the initial

year and 10 years respectively)

157




ed summary

Chu et al., discuss how artificial intelligence is transforming breast cancer care by improving detection,
diagnosis, prognosis, treatment planning, and patient recovery through advanced machine learning and
deep learning applications. They emphasise that widespread adoption faces challenges such as data
diversity, reproducibility, regulatory hurdles, infrastructure limitations, and ethical concerns around
transparency and bias.

Peer review information: Communications Medicine thanks Francisco Maria Calisto and Asim Wagqas for
their contribution to the peer review of this work.
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