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Abstract 

Artificial intelligence is transforming breast cancer management through various machine 

learning applications. Artificial intelligence supports precision medicine by enhancing 

detection, diagnosis, prognosis, and treatment response prediction. It achieves this by 

analysing data from medical imaging, histopathology, genomics and multi-omics sources 

to improve patient recovery. This review summarises AI-driven advancements across the 

entire continuum of breast cancer management, spanning detection, diagnosis, 

prognosis, treatment and recovery. It evaluates their efficacy and limitations, explores 

their impact on healthcare costs and clinical practice, and addresses key challenges 

including generalisability, reproducibility and regulatory barriers. Evidence from recent 

studies highlights AI’s role in improving breast cancer detection, molecular subtyping and 

prognostic accuracy. It also facilitates more patient-tailored therapeutic strategies and 

supports quality of life interventions. Nonetheless, the translation of these benefits into 

clinical practice requires rigorous validation, transparent model development, and 

equitable implementation. 
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Introduction 

Breast cancer is the most commonly diagnosed cancer among women globally, with an 

estimated 2.3 million new cases reported in 2022. It is a complex and heterogeneous 

disease that can quickly develop into a metastatic, drug-resistant state1. Breast cancer is 

also the leading cause of cancer mortality among women with 666,000 deaths recorded 

in the same year2.  

Over recent decades, technological advancements have improved the detection and 

treatment of breast cancer. In particular, the adoption of artificial intelligence (AI) in 

medical imaging and therapeutics has enhanced breast cancer diagnosis and therapy 

planning, while reducing operational costs, time and labour3–5. AI refers to the use of 

computational methods that mimic human neural processes to process vast amounts of 

data and carry out tedious tasks, such as image recognition and predictive analyses. 

Within breast cancer care, the most widely applied techniques include machine learning, 

which builds predictive models by identifying patterns in data, and deep learning, which 

refers to a subset of machine learning that leverages neural networks to extract 

increasingly complex features from large datasets. These methods have demonstrated 

strength in medical imaging, pathology, and genomics, where high-dimensional inputs are 

difficult to interpret manually. A recent review encompassing more than 300 breast cancer 

AI studies has shown that performance varies substantially depending on algorithm 

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



 

 
 

selection, with recurrent neural networks, transfer learning, and convolutional neural 

networks (CNNs) achieving higher accuracies compared to conventional machine 

learning methods, while decision trees often underperform due to overfitting6.  

In addition to machine learning and deep learning, which constitute the majority of current 

breast cancer AI research, it is important to note that generative AI represents a rapidly 

emerging field. Based on the input information it receives, generative AI can create new 

content, including text and images. To date, however, its applications in breast cancer 

care remain limited and largely restricted to diagnosis7. Several of its applications such 

as image augmentation8,9 and drug discovery10, also fall outside the primary scope of this 

review. Therefore, the use of generative AI tools is only briefly acknowledged within this 

review. 

In the area of medical imaging, the use of AI in mammograms11, tomosynthesis12, 

magnetic resonance imaging (MRI)13 and ultrasound14 has improved the accuracy and 

speed of breast cancer detection, as compared to manual readings by radiologists. The 

use of AI in histopathology has also enhanced the grading and subtyping15, and prognosis 

of breast cancer16. In the area of breast cancer therapeutics, AI has advanced the 

prediction of treatment response17, the accuracy of precision medicine18, and the recovery 

of patients19. 

Along with the numerous applications of AI in breast cancer management, it is also 

important to consider the impact of AI. Besides the direct impact of improving breast 

cancer diagnosis and therapy, AI is predicted to bring about significant cost savings in 

breast cancer management and in the healthcare industry as a whole20,21. The use of AI 

in breast cancer management will also affect the role of healthcare practitioners including 
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but not restricted to physicians and radiologists. At present, AI is not operating at a level 

where it can completely replace these healthcare practitioners. Instead, AI can 

complement them by performing specific time-consuming and tedious tasks, allowing 

healthcare practitioners to work more efficiently22,23. 

Our review provides a clinically focused synthesis of AI applications across the entire 

breast cancer care continuum, offering a holistic perspective that extends beyond what is 

typically available in domain-specific reviews. In addition to mapping this broad scope, 

we present a more methodologically transparent comparison of existing studies. Beyond 

performance outcomes, we also examine the datasets and strategies employed to train 

and validate the AI systems. We further assess whether the datasets and algorithms are 

publicly accessible or proprietary. By doing so, the review highlights issues of 

reproducibility and openness that are often overlooked. Finally, we expand the discussion 

beyond technical considerations to address barriers to implementation, including the 

challenges faced in low-resource settings. These contributions are summarised in Box 1 

and together, they provide an integrated and critically appraised perspective that offers 

clinicians, researchers, and policymakers a consolidated, practice-oriented resource for 

understanding how AI innovations can be translated into equitable and sustainable breast 

cancer care. 

Treatment Phases 

This review categorises the use of AI in breast cancer management into 3 phases – pre-

treatment, treatment and post-treatment, as shown in Fig. 1. In the pre-treatment phase, 

detection, diagnosis, and prognosis represent distinct but interconnected phases of care. 

Detection refers to the identification of suspicious breast lesions, most commonly through 
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population-based screening modalities such as mammography. Diagnosis follows 

detection and involves confirming malignancy and characterising tumour grade and 

subtype through histopathology or molecular assays. Prognosis addresses the 

anticipated course of disease, including risk of recurrence, likelihood of treatment 

response and long-term survival outcomes. Specific uses of AI in the pre-treatment phase 

of breast cancer management are summarised in Table 1 and Supplementary Table 1. 

In the second phase, patient samples may be obtained and tested with the goal of 

improving treatment. This testing can include predicting response to treatment and 

identifying precision medicine strategies. Specific uses of AI in the treatment phase of 

breast cancer management are summarised in Table 2 and Supplementary Table 2. In 

the final phase, post-treatment focuses on the enhancement of patient recovery. This 

mainly involves interventions targeting quality of life (QoL) measures. Additionally, patient 

recovery can also be influenced by the aesthetic outcome of breast surgery. Specific uses 

of AI in the post-treatment phase of breast cancer management are summarised in Table 

3. The process of selecting the studies to be included in this review is outlined in 

Supplementary Methods and Supplementary Figure 1. 

Role of AI in Pre-treatment Phase 

Detection 

Early detection of breast cancer is crucial to plan timely treatment, prevent unnecessary 

biopsies, and reduce the mortality associated with this disease. The detection of breast 

cancer begins with non-invasive imaging techniques. Mammograms are the most 

commonly used imaging method for breast cancer screening and detection24,25. 

Mammography uses low dose X-rays to construct images of the breast, whereby 
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cancerous lesions appear as bright spots. Over time, mammograms have developed from 

2-dimensional (2D) to 3-dimensional (3D) tomosynthesis, and from analogue screen-films 

to digital images. In traditional screening workflows, radiologists double-read 

mammograms, a process that is time-consuming and subject to reader variability, 

resulting in significant false positive and false negative rates26,27. AI-enhanced workflows, 

by contrast, offer automated triage, reduce unnecessary recalls, and shorten 

interpretation times, thereby alleviating workforce pressures while maintaining or 

improving accuracy.  

Through the use of large datasets to train and test AI algorithms, these imaging 

techniques have been advanced and, in some cases, automated for the detection of 

breast cancer28. Initial attempts at automating mammograms involved using computer-

aided detection (CADe) and computer-aided diagnosis (CADx) algorithms. These 

algorithms normalised images to a reference and identified suspected breast cancer 

lesions based on specific programmed-in features that were determined by human 

experts29–36.  

Currently, AI algorithms, specifically deep learning CNNs, have removed the need for 

human-determined programmed-in features37. By using large datasets of labelled 

mammogram images, supervised AI-based systems can train themselves to identify 

features that distinguish images with and without cancerous lesions, in the absence of 

explicit human guidance. These AI-based systems have been investigated in different 

formats such as reader replacements for radiologists or integrated decision support tools 

in standard double reading programs. Several retrospective studies evaluating the 

efficacy of these AI-based systems in mammography have shown that they can perform 
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on par or better than radiologists using metrics such as Area Under the Receiver 

Operating Characteristic Curve (AUROC), sensitivity and specificity38–46. In some cases, 

AI was shown to be able to detect interval cancers that were previously missed out by 

radiologists, demonstrating AI’s superior performance47–49. However, as retrospective 

studies, the results from these studies do not directly benefit the women whose data was 

used to train and test the AI systems. More importantly, retrospective evidence cannot 

fully capture real-world effectiveness and thus, should be interpreted as proof-of-concept 

rather than definitive clinical validation50. 

Presently, there have only been 4 prospective studies in Europe, which have shown that 

AI can improve detection in mammogram screening51–54. The Mammography Screening 

with AI (MASAI) trial (NCT04838756) reported a 44.3 % decrease in screen-reading 

workload with the Transpara AI-supported screening51. A study by Ng et al. showed 5 – 

13 % relative increase in cancer detection rate, with minimal to no unnecessary recalls, 

using the Mia AI-assisted double reading39. The ScreenTrustCAD study (NCT04778670) 

reported a non-inferior cancer detection rate compared to radiologist double reading, with 

the Insight MMG AI-paired reading53. The Prospective Multicentre Observational Study of 

an Integrated AI System with Live Monitoring (PRAIM) showed a 17.6 % increase in 

cancer detection rate, using the Vara MG AI-supported double reading54. Despite these 

encouraging results, translating AI models into clinical practice remains challenging. 

Recent work shows that although deep learning tools can improve accuracy, external 

validation often reveals performance variability and difficulties in workflow integration55. 

Similarly, evaluations of AI-based breast density classification models highlight variability 

between radiologists and AI predictions, illustrating that consensus ground-truth and 
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prospective validation are essential before the widespread use of AI in breast imaging 

modalities56. 

In comparison to AI applications in mammography, there have been fewer AI-based 

systems developed for digital breast tomosynthesis39. This reflects the less common use 

of digital breast tomosynthesis in breast cancer screening. One main reason that 

accounts for this difference is the significantly longer reading time that is associated with 

digital breast tomosynthesis57–60. This has prompted studies to investigate the impact of 

AI-assisted digital breast tomosynthesis on reading times. Several retrospective studies 

have shown that AI-assisted digital breast tomosynthesis can achieve decreased reading 

times, ranging from 3 – 33.7 second-reductions, compared with unassisted digital breast 

tomosynthesis 61–65. In addition to reducing reading times, AI in digital breast 

tomosynthesis has also shown other benefits such as increased accuracy in cancer 

detection, decreased workload, decreased recall rates and decreased radiation dose66,67. 

However, more prospective studies are needed to truly evaluate the impact of AI on digital 

breast tomosynthesis in breast cancer detection. 

Besides the standard use of mammograms and tomosynthesis, other non-invasive 

imaging techniques such as MRI and ultrasound may be used for breast cancer detection. 

These techniques are usually used as supplemental methods when initial findings are 

inconclusive68. They are also used for women with very high risk of breast cancer or for 

women with dense breast tissue which could mask breast cancer lesions69,70. In contrast 

to mammography which uses ionising radiation, MRI employs a magnetic field and radio 

waves, and ultrasound employs sound waves.  
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As with the use of AI in mammograms, the use of AI in MRI seeks to enhance its 

performance71. Indeed, when compared to radiologists’ readings, some AI-based MRI 

systems have been shown to possess greater accuracy. In a study by Jiang et al., 

radiologists guided with an AI system showed increased AUROC from 0.71 to 0.76 along 

with higher sensitivity72. Another study utilising a 3D CNN multimodal fusion framework, 

which processes all available MRI data instead of only a single volume, achieved an 

AUROC of 0.77873. Witowski et al. used a deep learning system which had higher AUROC 

than radiologists, 0.924 vs. 0.890 respectively74. This improvement in accuracy in turn, 

has the potential to reduce unnecessary biopsies. Besides improving accuracy, deep 

learning has been employed in an MRI CADe system to automate the breast cancer 

detection process with improved sensitivity, using only early-phase scans75. Deep 

learning has also enabled the simulation of contrast-enhanced T1-weighted breast MRI 

scans from 5 pre-contrast MRI sequences from a training set of 96 patients. A multi-reader 

study was used to validate 22 of the simulated MRI scans where all of them were 

assessed to look like a real MRI scan. This simulation removes the need of administering 

a gadolinium contrast agent and monitoring by a physician, while achieving the same 

accuracy as a real contrast-enhanced MRI76. While these retrospective evaluations 

demonstrate strong performance, methodological concerns must be acknowledged. 

Retrospective designs are limited by data insufficiency, lack of local annotations, and 

restricted generalisability, particularly in 3D imaging contexts such as MRI77.  

The use of AI in ultrasound imaging for breast cancer has seen similar effects in terms of 

non-inferior or improved performance compared to radiologists. For instance, deep 

learning CNNs have been used to develop a system with 97.18 % classification accuracy 
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in distinguishing breast ultrasonic images between normal, benign and malignant 

states78. Similarly, Yan et al. used deep learning to develop the Multimodal Ultrasound 

Prototype Network (MUP-Net) which distinguished between benign and malignant breast 

cancer with an AUROC of 0.902, sensitivity of 75.2 % and specificity of 91.8 %, which 

were comparable to radiologists’ performance79. Among patients with benign breast 

lesions, deep learning has enabled more accurate sub-classification between high-risk 

and low-risk lesions. This is evidenced by higher AUROC using the Ensemble Deep 

Learning-Breast Cancer (EDL-BC) model compared to radiologists, 0.945 vs. 0.71680. 

This demonstrates the potential of an AI system to reduce the number of invasive biopsies 

in patients with benign breast lesions. Furthermore, deep learning in the form of Clearview 

Diagnostics’ cCAD software, renamed to Koios DS, has also been used in automated 

breast ultrasound imaging to improve sensitivity and positive predictive value (PPV), and 

reduce inter-operator variability81. Comprehensively, the use of AI in mammograms, 

tomosynthesis, MRI and ultrasound imaging can improve the accuracy of breast cancer 

detection significantly in the clinic. 

Diagnosis 

After the detection of a cancerous breast lesion, breast cancer is diagnosed based on the 

tumour grade and subtype. This can be done using information obtained from genomic 

and transcriptomic profiling or from histopathology slides. With genomic and 

transcriptomic profiling, sequencing data or quantitative real-time reverse transcription 

polymerase chain reaction (qRT-PCR) data of breast cancer related genes can be 

obtained82. Such information can be fed into AI algorithms to distinguish between breast 

cancer subtypes. For instance, machine learning has been used to distinguish between 
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triple-negative breast cancer (TNBC) and non-TNBC with an accuracy of up to 86 %, 

based on the expression levels of 5502 genes83. However, genomic and transcriptomic 

profiling is costly and not routinely adopted in all clinical settings. 

As a more common and affordable diagnostic method, histopathology slides are used. 

These slides can be analysed via hematoxylin and eosin (H & E) staining to assess tissue 

morphology, and immunohistochemistry (IHC) to characterise biomarker expression. 

Conventional histopathology depends heavily on manual microscopy which is not only 

time-consuming but also prone to inter-observer variability84. Both H&E and IHC slides 

are typically scanned into whole slide images (WSIs), which form the foundation of digital 

pathology. These digitised images can then be used for storage, sharing, and 

computational analysis. Furthermore, this has enabled AI-based digital pathology tools to 

assist pathologists by automating tasks. These tools have the capacity to accelerate slide 

review, support consistent grading and biomarker scoring, and enable integration of multi-

omic data, which are difficult to synthesise manually15.  

One group developed a deep learning CNN approach to model the Predictor Analysis of 

Microarray 50 (PAM50) intrinsic molecular subtype using H & E-stained WSIs from a 

training set of 443 patients. They achieved an overall accuracy of 65.92 %, with a highest 

accuracy of 87 % for the basal subtype85. While there is room for improvement in terms 

of accuracy, this approach was able to detect multiple cases of significant intratumoural 

heterogeneity within a single WSI. This evidence of intratumoural heterogeneity could 

have different prognostic implications on survival for patients with the same breast cancer 

subtype. 
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Cruz-Roa et al. developed ConvNet classifier, an automated deep learning CNN 

approach to quantify the extent of invasive breast cancer in digitised WSIs. The ConvNet 

classifier was trained and tested on WSIs from 349 and 195 Estrogen Receptor (ER)-

positive invasive breast cancer patients respectively86. The classifier possessed a PPV 

of 0.7162 and a negative predictive value (NPV) of 0.9977, compared to manual 

evaluation of invasive ductal carcinoma by pathologists, indicating high overall accuracy. 

However, some regions of in situ carcinoma were misclassified as invasive breast cancer, 

suggesting the classifier is not without its limitations. 

Couture et al. developed a deep learning CNN approach to predict several factors such 

as breast cancer grade, intrinsic subtype, histologic subtype, ER status, and risk of 

recurrence score using H & E-stained histologic images87. This approach achieved at 

least 75 % accuracy across all the classifications, with 82 % accuracy for low-intermediate 

vs. high tumour grade, and 77 % accuracy for basal-like vs. non-basal-like subtype. 

Similarly, Bae et al. developed a deep learning-based platform, 3DHistoNet, to predict 

breast cancer subtype by identifying 5 biomarkers – Ki-67 index, ER, Progesterone 

Receptor (PR), Androgen Receptor (AR) and Human Epidermal Growth Factor Receptor 

2 (HER2) from z-stacked H & E-stained WSIs from 401 breast cancer patients. This 3D 

platform possessed a higher AUROC compared to a 2D model, 0.75 – 0.91 vs. 0.67 – 

0.8388. By incorporating AI in the analysis of H & E-stained slides, these methods can 

also save the time and cost associated with IHC staining. 

In invasive breast cancer cases, machine learning has also been used to automate the 

detection of HER2 amplification in chromogenic in situ hybridization (CISH) WSIs. This 

approach required less labour and time, while maintaining the same level of accuracy as 
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manual quantification by pathologists89. However, this system was only tested on 22 

cases so further testing with a larger dataset is needed to validate the findings. 

Apart from the standard diagnostic methods using genomic testing and histopathology 

slides, novel innovative approaches are being explored for breast cancer diagnosis. One 

such method is the integration of AI algorithms with nanotechnology and nanomedicine90. 

For example, Yang et al. has developed an electric nose composed of carbon nanotube 

sensors to detect volatile metabolites from patients’ breath. These metabolites differ 

between patients with breast cancer, patients with other types of cancers and healthy 

individuals. In combination with random forest modelling, the electric nose showed a 91 

% accuracy in diagnosing breast cancer non-invasively91. Alafeef et al. has developed a 

carbon nanoparticle platform with multifarious surface chemistries92. The different 

structural properties of the nanoparticles led to different cellular internalisation responses 

by breast cancer cells. Consequently, different breast cancer cell types showed different 

responses to the nanoparticle platform. In combination with an artificial neural network 

algorithm, the platform showed an accuracy of 98.1 % in distinguishing between 5 breast 

cell lines. With more clinical testing and fine-tuning, these innovative approaches have 

the potential to simplify the diagnosis of breast cancer. 

Prognosis 

Prognosis not only complements the diagnosis of breast cancer, it also provides more 

information about the likely progression or relapse of the disease. Prognostic evaluation 

has traditionally relied on clinicopathological features and gene expression panels, 

whereas AI approaches can incorporate histopathology slide images, radiomics, and 

multi-omics to provide more granular and scalable predictions of recurrence risk. 
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Morphological features of both the tumour cells and the cells in the tumour 

microenvironment (TME) can be identified and analysed by computerised systems to 

provide prognostic information. For example, a deep learning model, DeepGrade (DG), 

was developed to analyse H & E-stained WSIs of breast cancer patients with Nottingham 

histological grade (NHG) 2 prognostic grading93. NHG 2 represents an intermediate risk 

group in which patients have moderately differentiated cancer cells, prompting further risk 

stratification by Wang et al. The model showed that the DG2-high group possessed a 

higher risk of recurrence compared to the DG2-low group, with a hazard ratio (HR) of 1.91 

and 2.94 in 2 separate test groups. 

Deep learning was also used to assess the nuclear morphology of epithelial and stromal 

cells from ER-positive breast cancer histopathology slides94. Subsequently, machine 

learning was used to categorise the images using a predicted Oncotype DX risk score, 

which indicates the risk of recurrence. With a classification accuracy of 76 – 85 %, this 

predicted risk score could aid in deciding whether to prescribe adjuvant chemotherapy for 

ER-positive breast cancers. 

Using a similar approach, Li et al. utilised a deep learning model to identify nuclei in WSIs 

of ductal carcinoma in situ. Based on histomorphometry features such as shape, 

arrangement and texture of the identified nuclei, machine learning was used to predict 

the Oncotype DX risk scores of the images95. With AUROC of 0.57 – 0.68, this prognostic 

model has potential but can be developed further to improve its accuracy. 

Additionally, Romo-Bucheli et al. used a deep learning model to quantify mitotic nuclei in 

WSIs of ER-positive breast cancer96. Based on the quantified mitotic count, a support 

vector machine classifier was subsequently used to categorise the images into low and 
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high predicted Oncotype DX risk scores. This classifier possessed an accuracy of 83.19 

%, demonstrating its prognostic value in advising treatment selection for patients with 

different risk scores. 

In ductal carcinoma in situ (DCIS), nuclear morphology is also often used to characterise 

disease stage and determine prognosis. However, DCIS patients exhibit heterogeneity in 

terms of nuclear shape and tissue morphology which limit the reliability of nuclear 

morphology as a prognostic biomarker. To address this limitation, Zhang et al. utilised 

unsupervised representation learning on a tissue microarray of Hoechst-stained 

chromatin images97. They identified 8 distinct cell states which were present in both 

normal and cancerous breast tissues. Interestingly, the proportion and spatial 

organisation of these 8 cell states were found to be predictive of disease stage, illustrating 

the potential of using chromatin images as a prognostic biomarker in DCIS. 

Besides using nuclear morphology as the main input factor, Ki-67 index has also been 

used to predict Oncotype DX risk scores in early stage, hormone receptor-positive, HER2-

negative breast cancer. Thakur et al. utilised an automated image analysis system to 

score Ki-67 in H & E-stained slides, followed by a machine learning model to predict the 

Oncotype DX risk score98. The automated scoring system showed high concordance with 

manual scoring by a pathologist and the model had a 97 % accuracy, 98 % sensitivity and 

80 % specificity in distinguishing low-risk and high- risk patients. 

In a study by Basavanhally et al., it was demonstrated that machine learning can be used 

to identify and grade the degree of lymphocytic infiltration in HER2-positive breast cancer 

histopathology slides99. With a 90 % accuracy, this system could potentially be used to 
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stratify for HER2-positive breast cancer patients with low lymphocytic infiltration and poor 

prognosis. 

Another way that AI algorithms have been used in breast cancer prognosis is by analysing 

existing genomic, transcriptomic and metabolomic data. For instance, machine learning 

was used to develop a breast cancer stem cell (BCSC)-related risk score, based on 

prognostic BCSC genes100. In combination with clinical factors such as age, cancer stage 

and gender, the BCSC risk score had AUROC of 0.746 – 0.805 for predicting survival. 

Furthermore, the model showed that a subpopulation of BCSCs, CD79A+CD24-PANCK+-

BCSCs, was associated with poor prognosis. This subpopulation of BCSCs could 

potentially exhaust neighbouring CD8+FOXP3+ T cells, thereby creating an 

immunosuppressive TME that contributes to reduced survival. Accordingly, this specific 

BCSC-T cell axis could be targeted to sensitise breast cancer patients with a high 

CD79A+CD24-PANCK+-BCSC subpopulation to immunotherapy. 

In a study by Xiao et al., machine learning was applied on metabolomic data to develop 

a risk model to stratify patients with basal-like immune-suppressed (BLIS) TNBC into high 

or low recurrence risk groups101. Within the high-risk group, further experiments showed 

that N-acetyl-aspartyl-glutamate was a potential therapeutic target. Together, these 

prognostic AI models demonstrate the potential to enhance patient stratification for 

subsequent treatment planning. 

Role of AI in Treatment Phase 

Prediction of Treatment Response 

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



 

 
 

Beyond diagnosis and prognosis, treatment planning is a key component of breast cancer 

care. In predicting treatment response, traditional workflows rely on clinicopathological 

markers such as tumour size, nodal involvement, grade, and receptor status to guide 

therapeutic decisions. While these indicators are clinically useful, they lack precision at 

the individual level, often resulting in overtreatment or undertreatment. AI-enhanced 

workflows, by contrast, integrate clinical, demographic, digital pathology, genomic, 

transcriptomic and treatment type data to build predictive models that estimate the 

likelihood of pathological complete response or residual disease with greater accuracy 

(Fig. 2A). These approaches enable more individualised therapy selection, reducing 

unnecessary toxicity for non-responders and optimising outcomes for patients most likely 

to benefit. By leveraging on AI systems, several studies have shown adequate 

performance in predicting pathologic complete response to neoadjuvant therapy in breast 

cancer, measured by AUROC of 0.74 – 0.93102, 0.83 – 0.87103, 0.87104, 0.896 – 0.903 for 

a deep learning radiomics nomogram (DLRN-PCR)105 and 0.91 for SimBioSys’ 

TumorScope Predict platform106. 

Other types of post-treatment outcome metrics have also been used in AI-based 

predictive models in breast cancer. In addition to predicting pathologic complete 

response, Gu et al. also developed a deep learning radiomics nomogram to predict lymph 

node metastasis (DLRN-LNM) in response to neoadjuvant therapy, with AUROC of 0.853 

– 0.863105. Another study developed a survival prediction model with AUROC of 0.98 and 

a half-maximal inhibitory concentration (IC50) drug response prediction model with mean 

square error (MSE) of 1.154 and an overall regression value of 0.92107. Park et al. 

developed a deep learning model, Nested Systems in Tumours-Visible Neural Network 
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(NeST-VNN), to predict sensitivity to CDK4/6 inhibitor treatment. For patients treated with 

a CDK4/6 inhibitor such as palbociclib, those who were predicted to be sensitive showed 

a longer duration of survival than those who were predicted to be strongly resistant, with 

a HR of 0.21108. A model to predict cardiotoxicity in response to anthracycline treatment 

was also developed by a separate study. The model showed AUROC of 0.66 for predicting 

breast cancer therapy-related cardiac dysfunction and 0.81 for predicting symptomatic 

heart failure with reduced ejection fraction109. Altogether, these various predictive models 

illustrate the therapeutic potential to guide treatment planning for breast cancer with 

increased accuracy.  

Precision Medicine 

Given the complex and heterogeneous nature of breast cancer, treating patients safely 

and effectively remains a challenge. As a result, it is common in clinical settings to see 

patients coming back with refractory metastatic breast cancer after several lines of 

treatment, especially for patients with the TNBC subtype110. One emerging strategy to 

address this challenge is to use precision medicine. Conventional approaches in precision 

medicine are anchored in targeted biomarker testing and fixed gene expression panels 

such as Oncotype DX, which stratify recurrence risk and inform therapeutic decisions. 

Although effective, these tools assess a limited number of molecular features and provide 

static insights that may not fully capture tumour heterogeneity. Beyond interrogating a 

patient’s unique genetic and molecular signatures111, AI-enhanced precision medicine 

leverages empirical data from ex vivo drug testing to predict drug sensitivity, identify novel 

therapeutic combinations, and adapt treatment strategies in real time. This shift allows for 
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a more dynamic and comprehensive personalisation of care, ensuring that treatment is 

tailored to each patient (Fig. 2B & C). 

Many studies have developed and investigated the use of AI-based models to optimise 

drug combination selection112. The purpose of identifying effective drug combinations is 

to leverage the potentially synergistic effects between the drugs, overcoming resistance 

to monotherapy, leading to lower doses and toxicity113. The various machine learning 

algorithms that have been used to determine the best drug combinations include random 

forest114, extreme gradient boosting115,116, extremely randomised tree117, tensor 

factorisation118, feed-forward neural networks119–122, autoencoder123, stacked restricted 

Boltzmann machine124 and graph convolutional networks125,126. However, these studies 

were mostly conducted using breast cancer cell lines and therefore, are not specific to 

individual patients. 

Moving from the use of cell lines to patient samples, several AI-based models have been 

developed to predict the best drug combination to treat cancers. One example is the 

computational-experimental Drug Combination Prediction and Testing (DCPT) 

platform127. To predict synergistic drug combinations, DCPT utilises exome sequencing 

data, RNA sequencing data, single drug responses in ex vivo patient samples and a 

network pharmacology-based machine learning model. In 3 patients with T-cell 

prolymphocytic leukemia, 10 out of 24 DCPT-predicted synergistic drug combinations 

were experimentally validated using ex vivo patient samples. However, there is currently 

no reported evidence that the DCPT platform has been used for breast cancer patients.  

Another example of a patient-centric AI-based prediction model is Quadratic Phenotypic 

Optimization Platform (QPOP), which uses an orthogonal-array composite design, a 
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linear regression model and minimal tumour biopsy samples. This model has optimised 

effective drug combinations in ex vivo patient samples in hepatocellular carcinoma128 and 

multiple myeloma129. Moreover, the results from this model have also been translated to 

the clinic. 6 patients with refractory lymphoma who were treated with the QPOP-guided 

drug combination subsequently experienced a complete response130,131. Currently, there 

is a phase I clinical trial (NCT05177432) to determine the feasibility of using QPOP to 

guide drug combination treatment in breast cancer patients. 

To personalise treatment dosages, an AI-based prediction model called CURATE.AI has 

been developed. Unlike most other AI-based prediction models, CURATE.AI does not 

require a large patient dataset for training. Instead, it only requires the pre-existing drug 

dose information from an individual patient to generate a personalised treatment profile. 

Using quantifiable biomarker levels such as tumour size and circulating tumour DNA, 

CURATE.AI can determine the optimal drug dose while minimising toxicity132. 

Furthermore, this N-of-1 model is dynamic which means that it can be used to adjust 

dosage levels during the course of treatment. To date, CURATE.AI has been investigated 

in several clinical trials involving cancer patients (NCT04522284, NCT05175235 and 

NCT03759093). Notably, it was successfully used to adjust the drug doses of 

enzalutamide and ZEN-3694 for a patient with metastatic prostate cancer, resulting in 

reduced prostate-specific antigen levels and lesion size133. Furthermore, CURATE.AI-

guided dosing also demonstrated reduced adverse events, suggesting improved safety 

and drug tolerance. In the context of breast cancer, a clinical trial (NCT05381038) 

evaluating the use of QPOP in combination with CURATE.AI is currently in progress.  
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Apart from optimising drug treatment, AI can also be used to aid in genetic testing for 

breast cancer patients. Results from genetic testing can greatly impact subsequent 

treatment options. This makes pre-test genetic education or counselling important to 

ensure that patients can make informed treatment decisions. In addition, genetic 

education can help to advise patients on the potential implications for family members 

who share the same genes. Experts at Johns Hopkins University and OptraHEALTH 

developed an AI conversational virtual assistant on the HealthFAX platform to provide 

tailored genetic education to patients134. To study the performance of this AI tool, 39 

patients who were receiving active treatment for breast cancer used the tool at home. All 

the patients reported that the tool provided valuable information and was easy to use. 

However, there was no comparison to in-person genetic education. 

A study by Al-Hilli et al. went a step further by comparing their genetic counselling AI 

chatbot to a certified genetic counsellor in a randomised controlled trial135. 37 newly 

diagnosed breast cancer patients took part in this study. The results revealed that there 

was no significant difference in the patient satisfaction score and the knowledge score 

between the AI chatbot and the genetic counsellor. This indicated that the AI chatbot 

performed on par with the genetic counsellor in terms of patient satisfaction and 

comprehension, demonstrating the potential of AI to provide precise genetic education or 

counselling during breast cancer treatment. 
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Role of AI in Post-treatment Phase 

Patient Recovery 

In patient recovery, standard workflows depend on periodic follow-up visits and clinician-

reported outcomes, which can delay recognition of complications or declines in quality of 

life between scheduled assessments. AI-enhanced recovery workflows incorporate 

wearable sensors, mobile health platforms, and conversational agents to continuously 

monitor physiological and behavioural signals, detect emerging QoL issues, and provide 

personalised recommendations. This proactive model enables earlier interventions, 

reduces unplanned hospital visits, and empowers patients to play a more active role in 

managing their recovery trajectory. 

After treatment, some breast cancer patients may respond successfully and consequently 

be in remission or cancer-free. However, these patients still need to recover from the 

physical, psychiatric and emotional effects of surgery and drug treatment. These effects 

may be detrimental to the patients’ QoL, especially when they are not adequately 

addressed136. Currently, there are many web-based and app-based digital therapeutics 

being developed to aid in patient recovery and improve QoL19. These digital therapeutics 

recommend and provide lifestyle interventions to patients in the form of physical 

activity137–139, support for anxiety140, depression141, mental and sexual health142 or a 

combination of physical and psychological interventions143,144. However, most of these 

digital therapeutics do not incorporate AI in their software. As such, the potential benefits 

of AI-based digital therapeutics remain largely untapped. 
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One potential benefit of AI-based digital therapeutics may be observed in the Artificial 

intelligence Supporting Cancer Patients across Europe (ASCAPE) clinical trial 

(NCT04879563). Based on breast cancer patient data from apps, questionnaires, medical 

records and wearables, the ASCAPE platform utilises machine learning algorithms to 

predict 15 QoL issues such as anxiety, depression, negative body image and sexual 

health145. Furthermore, the ASCAPE platform also recommends interventions to clinicians 

based on these QoL predictions. The results of this study are currently unavailable as the 

trial is still ongoing. Therefore, more time is needed before accurate conclusions can be 

made about this platform.  

Another potential benefit of AI-based digital therapeutics may be observed in the 

Cuidados Más Allá del Cáncer-Mama (CUMACA-M) randomised controlled trial 

(NCT05322460). CUMACA-M is a web program that utilises AI to provide personalised 

interventions to long-term breast cancer survivors146. These interventions aim to improve 

the spiritual, physical, social and psychological aspects of QoL, as well as self-

management of cancer sequelae. However, the results of this trial have not been 

published since its estimated completion date in June 2024. As such, the true efficacy of 

this program in improving QoL remains questionable. 

Another aspect of patient recovery is patient satisfaction with the aesthetic outcome of 

breast surgery. Depending on the severity of the cancer and other risk factors, patients 

may be offered different treatment choices, including the type of surgery – mastectomy, 

lumpectomy (standard breast-conserving surgery), or oncoplastic breast-conserving 

surgery, which maintains the natural breast contour. While standard breast-conserving 

surgery offers safer margins than oncoplastic breast-conserving surgery, it is also 
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associated with poorer patient satisfaction in terms of aesthetic outcome147. This may 

lead to patients experiencing a negative body image and lowered QoL148. To help patients 

decide on the type of treatment, the Comparing Decision on Aesthetics After Breast 

Cancer Locoregional Treatment (CINDERLLA) clinical trial (NCT05196269) was 

established. The CINDERELLA trial employs an AI web-based platform that provides 

patients with information regarding the different treatments and surgeries offered. Using 

the patients’ own pre-treatment images, it also generates the possible aesthetic outcomes 

associated with each treatment149. With an estimated study completion date in 2026, it is 

currently too early to ascertain if this platform can effectively assist patients in making 

more informed decisions about their treatment, improve QoL and decrease the need for 

supplementary breast surgeries to improve aesthetic outcome. 

Breast reconstruction surgery is another important factor that is associated with body 

image and QoL. This surgery helps patients to achieve a more satisfactory post-treatment 

aesthetic outcome, which contributes to enhanced recovery. There are several breast 

reconstruction surgeries available, including the deep inferior epigastric artery perforator 

(DIEP) flap, which is the most common free flap method. In preoperative planning, 

computed tomography angiography (CTA) images of the vascular anatomy of the DIEP 

are taken. However, analysing these images is a time-consuming and labour-intensive 

process even for experts150. AI has the potential to improve the pre-operative planning of 

DIEP flap surgery. By using computer vision techniques to automate the detection of 

perforator vessels in CTA images, Mavioso et al. have reduced the analysis time from 2 

hours to 30 minutes151. This demonstrates the ability of AI to decrease the workload of 

healthcare professionals, allowing them to provide better care to patients. With further 
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applications, AI could potentially improve the accuracy and robustness in the preoperative 

planning of breast reconstruction surgeries. 
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Impact of AI on the Cost of Healthcare 

In this review, we have shown that various AI applications have been developed and 

tested for use in breast cancer management. This extensive use of AI can be largely 

attributed to the attractive benefit of improved accuracy in detection and treatment. In 

addition, other benefits of AI include reductions in analysis times, labour-intensive 

processes and invasive procedures such as biopsies. In theory, these benefits should 

translate to cost savings for both healthcare providers as well as patients. Accenture, a 

global professional services company, estimated that AI could save up to US$150 billion 

in the US healthcare industry annually by 202621. Furthermore, the US National Bureau 

of Economic Research estimated even greater cost savings of US$200 billion to US$360 

billion annually from 2019 in the US healthcare industry20. 

More specifically, in areas that are related to breast cancer management, AI has been 

predicted or modelled to achieve cost savings in mammogram screening152–154, MRI155, 

avoiding unnecessary biopsies156, diagnosis and treatment157, as detailed in Table 4. For 

instance, traditional mammograms are prone to false positive results, which incur 

additional costs due to follow-up testing. Chubak et al. reported the cost of breast-care 

services for each false positive case to be $507 in 2010158 while Ong and Mandl reported 

it to be $852 in 2015159. Furthermore, in the US, the cost of false positive mammograms 

and subsequent overdiagnoses has been estimated to be $4 billion annually159. With 

more accurate AI-based mammograms and detection systems, false positive cases can 

potentially be reduced, leading to significant cost savings. 

Despite these estimated and predicted figures, there is a lack of information available 

about the real cost savings that AI provides in the overall healthcare industry and in breast 
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cancer management. In fact, a systematic review by Wolff et al. in 2020 showed that only 

6 out of 66 identified publications assessed the economic impact of AI in healthcare 

settings160. Additionally, these 6 studies did not include information about the initial 

investment in the AI system, the operational costs of AI system and any alternatives to 

the AI system used. 

Impact of AI on Healthcare Practitioners 

The increasing use and evolution of AI has sparked discussions over its potential impact 

on jobs. Specifically, in the healthcare industry, there are major concerns regarding the 

impact of AI on the role of healthcare practitioners such as doctors, nurses and 

pathologists22,23,161,162. Initially, it was broadly speculated that AI would replace healthcare 

practitioners. Instead, with the current state of AI, it is more widely held that healthcare 

practitioners who use AI would replace those who do not use AI. By collaborating together, 

AI and healthcare practitioners have immense potential to improve outcomes for 

patients163. AI can complement healthcare practitioners by being used to analyse large 

datasets with greater speed and accuracy164. In addition to accuracy, the way AI 

communicates its findings to clinicians has a significant impact on adoption. A recent 

study on personalised AI communication in breast cancer imaging showed that 

assertiveness-based AI agents reduced diagnostic time by over a third and lowered error 

rates, particularly among less experienced clinicians, without compromising accuracy165. 

Clinicians also expressed a preference for AI systems that provide detailed contextual 

explanations rather than numerical outputs, underscoring the importance of adaptive 

communication styles for building trust, reducing cognitive load, and streamlining clinical 

workflows. 
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Healthcare practitioners would then come in to monitor the AI systems and interpret the 

results in the relevant context166. Next, healthcare practitioners would need to 

communicate the results to patients. This communication process involves a unique 

human touch encompassing empathy and nuance, which is difficult for AI to 

emulate167,168. Importantly, healthcare practitioners should provide oversight by looking 

out for errors and providing feedback to improve the performance of the AI systems. In 

resource-poor settings where there is a lack of trained and skilled healthcare practitioners, 

AI systems could serve as a useful tool to enable more inclusive access to healthcare169. 

Ultimately, healthcare regulatory organisations should be responsible for ensuring that 

adequate training and infrastructure are in place to facilitate effective collaboration 

between man and machine170.  

Similarly, the use of AI in imaging technologies has prompted discourse on the role and 

relevance of radiologists. At first glance, a commonly held notion is that radiologists would 

be made redundant and that AI would replace them in detecting cancers or diseases in 

general171–173. Upon closer inspection, the current consensus is that AI would not replace 

radiologists but instead serve as a complementary tool alongside radiologists174–179. AI 

would likely alter how radiologists practice their work and reshape their role in the 

healthcare industry. For example, instead of having 2 independent radiologists interpret 

an image, 1 radiologist may be aided with an AI decision support system to do the same 

job more quickly and accurately79. Alternatively, AI may be used as an initial triage method 

to screen mammogram images and radiologists would follow up on positive or uncertain 

cases46. Just as how radiology images developed from analogue to digital forms in the 

past, this change can be regarded as the next step of technological advancement in 
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radiology. Radiologists who embrace AI and adapt to the associated changes will likely 

be in a better position than radiologists who are sceptical and show reluctance towards 

AI. 

Challenges 

While there are several advantages of using AI in breast cancer management, such as 

higher accuracies and accelerated analysis times, the pitfalls of AI should also be weighed 

when considering its implementation (Fig. 3). AI algorithms usually require large and 

diverse training datasets to be sufficiently representative of a given population161,162,164. 

Without such datasets, AI would encounter generalisation challenges, especially for 

groups that are underrepresented in the training datasets, potentially leading to widening 

health inequalities170. Addressing this challenge will require not only prospective 

validation in multi-centre trials, but also intentional inclusion of diverse patient populations 

in training datasets to ensure equitable applicability across global breast cancer care. 

Taking into consideration data privacy and consent issues from patients, obtaining such 

datasets in the form of sensitive health information may also pose a challenge168,180.  

Additionally, AI algorithms often represent a ‘black box’, generating outputs without 

interpretable reasoning. These algorithms may not be understood by end-users or may 

not be disclosed due to commercial interests161,166,181. Reproducibility remains a critical 

challenge in AI research. Many AI models are trained on proprietary or non-public 

datasets, and clinically deployed systems are often closed source, limiting opportunities 

for independent validation. Similarly, while some datasets, such as The Cancer Genome 

Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium 

(METABRIC), are publicly available, many large screening repositories remain under 
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controlled access, reinforcing inequities in research capacity. This raises barriers to 

transparency and clinical trust, and stresses the importance of open-access resources, 

standardised reporting, and reproducible pipelines to ensure that AI findings can be 

independently verified and applied across different healthcare settings. 

In the US, several mammography AI tools, such as Lunit INSIGHT MMG, DeepHealth’s 

Saige-Q and ScreenPoint Medical’s Transpara, have obtained FDA clearance as 

decision-support systems for breast cancer screening. Lunit INSIGHT MMG, for example, 

received FDA 510(k) clearance in 2021 as an adjunctive tool for mammography 

interpretation, reflecting the most common approval pathway for breast imaging AI. The 

510(k) route requires developers to demonstrate that their device is substantially 

equivalent to an already approved predicate device, typically involving analytical 

validation and clinical performance studies, followed by an FDA review that may span 

several months to over a year. In contrast, AI systems for which no suitable predicate 

exists must undergo the De Novo classification process, a lengthier and more evidence-

intensive pathway that establishes a new device category and generally requires more 

rigorous clinical data. While these regulatory frameworks aim to ensure safety and 

reliability, they also introduce practical challenges for AI adoption. Many breast cancer AI 

tools do not fit neatly into existing device categories, suitable predicates may be lacking 

and the need for extensive evidence can slow innovation. As a result, navigating these 

regulatory frameworks remain a significant barrier to the timely integration of AI 

technologies into breast cancer care161,168,180.  

Beyond technical opacity, recent work has shown that AI systems in medicine can 

introduce bias from multiple sources, including data bias, development bias, and 
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interaction bias, which may result in model overfitting, unfair or even harmful outcomes if 

unaddressed181,182. In medical imaging, this is particularly concerning as AI systems may 

inherit demographic underrepresentation from training datasets183. Emerging work also 

shows that models validated on limited datasets may underperform on minority or 

underrepresented groups, risking the exacerbation of health disparities184. Apart from 

assessing performance and safety, a comprehensive evaluation framework is required to 

assess ethics and bias from model development through to clinical deployment, ensuring 

that AI systems remain fair, transparent, and beneficial in diverse patient populations.  

Widespread clinical adoption of AI in breast cancer management depends on substantial 

non-technical infrastructure and governance that are currently unevenly available. 

Practical barriers include the need for robust IT infrastructure, clinical workflow 

integration, long-term maintenance and model updating181. Regulatory hurdles including 

device classification, pre-market clinical evidence requirements, post-market surveillance 

such as monitoring for performance drift, reporting safety events and periodically 

reassessing model outputs, further slow translation from research to routine care181,185. 

These processes are increasingly important as regulators consider how to oversee 

adaptive AI models that continue to learn from new data after deployment, which current 

approval pathways are not yet fully equipped to manage. These challenges are amplified 

in low-resource settings where imaging equipment, secure data pipelines, trained 

personnel, and reimbursement mechanisms may be limited181,186. Without targeted 

investments in infrastructure, regulatory harmonisation, and capacity building, AI risks 

being adopted unevenly and could exacerbate rather than reduce disparities. 
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Regulatory agencies also need to ensure that the sensitive health information used in AI 

systems is adequately secured to prevent breaches in patients’ privacy162,181,187. While 

large, diverse datasets are essential for model generalisability, they raise concerns 

around patient consent, data ownership, and risk of re-identification. Ensuring compliance 

with regulatory frameworks, while enabling secure data sharing and federated training, is 

critical to balancing innovation with patient protection. From a legal perspective, it is also 

important to decide which party – healthcare practitioner or AI system developer, should 

be liable if there are adverse effects to patients due to errors or failure of the AI 

systems162,180,181. This could deter healthcare practitioners from accepting the AI systems 

if they perceive the level of liability on them to be unfair. 

The cost of AI in breast cancer management is also an important factor to consider. On 

the one hand, it is possible for AI to result in cost savings by improving accuracy and 

reducing time-consuming manual processes. On the other hand, the AI systems 

themselves may be expensive and they may incur additional costs if they require novel 

technical expertise, training and infrastructural modifications161,168,187. This could limit the 

use of AI in breast cancer management to resource-rich institutions in developed 

countries. 

Another concern is how the use of AI would affect the long-term health of breast cancer 

patients. The impact of AI systems on long-term health outcomes such as progression-

free survival and life expectancy are presently not well-studied166. Most studies evaluating 

the use of AI in breast cancer management are retrospective studies180. This provides 

limited evidence to show that AI can help make patients healthier or save more lives161. 

More comparative prospective studies and randomised controlled trials are needed to 
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accurately investigate the long-term health effects of AI applications. All these issues must 

be critically evaluated to ensure that the use of AI in breast cancer management is safe, 

effective and affordable for patients. 

Conclusion 

With increasing applications in image recognition and making predictions, the use of AI 

has pervaded multiple aspects of breast cancer management. This review offers a 

comprehensive and critically appraised synthesis of how AI is reshaping breast cancer 

care, from early detection to post-treatment recovery, by evaluating its clinical 

performance, translational potential, and systemic implications, while underscoring the 

infrastructural, ethical, and regulatory challenges that must be addressed for equitable 

implementation. In general, there are more applications of AI in the pre-treatment phase 

of breast cancer management compared to the treatment and post-treatment phases. 

Although this trend may lead to the earlier and more accurate detection of breast cancer 

cases, it is equally important that AI can benefit breast cancer cases which fall through 

the cracks and are detected at late stages. 
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Box 1. Integrating AI in breast cancer management.  

 

 

• AI is being applied across the full breast cancer care continuum, including 

detection, diagnosis, prognosis, treatment response prediction, precision 

medicine and patient recovery, showing improvements in accuracy, efficiency 

and clinical decision support. 

• Performance of AI systems varies widely depending on algorithm choice, dataset 

size, validation strategy and population diversity, underscoring the need for 

rigorous, transparent evaluation. 

• Many AI models rely on proprietary algorithms and non-public datasets, which 

limits reproducibility and raises concerns about fairness, generalisability and 

clinical trustworthiness. 

• AI influences healthcare practitioners by shifting rather than replacing clinical 

roles, automating labour-intensive tasks, reducing cognitive load, and potentially 

improving workflow efficiency, while also raising training and oversight demands. 

• AI has the potential to reduce healthcare costs through more accurate triage, 

reduced unnecessary imaging, and improved resource allocation, though 

widespread cost benefits depend on scalable deployment and supportive 

infrastructure. 

• Implementation barriers, including IT infrastructure, workflow integration, 

regulatory requirements and disparities in resource availability, continue to 

constrain real-world adoption of AI. 
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Figure Captions 

Figure. 1. The comprehensive and multidisciplinary applications of AI in different 

phases of breast cancer management. AI is used in the pre-treatment, treatment and 

post-treatment phases of breast cancer management. The pre-treatment phase consists 

of detection, diagnosis (grading and subtyping) and prognosis. AI is used in imaging tools 

such as mammography, DBT, MRI and ultrasound to identify women with breast cancer. 

AI is also applied to genomic and transcriptomic profiling as well as histopathological 

analysis to provide more information about the cancer. The treatment phase consists of 

prediction of treatment response and precision medicine. Using genomic, transcriptomic 

and other pathological information, AI can be used to predict a variety of outcomes in 

response to drug treatment. Additionally, AI is applied to drug sensitivity testing in patient 

samples to predict personalised effective treatments. The post-treatment phase mainly 

focuses on patient recovery. Using medical records, questionnaires and wearables, AI 

can be used to recommend lifestyle interventions to address quality of life issues in breast 

cancer patients. AI is also used in pre-operative imaging and patient education to improve 

the aesthetic outcome of breast surgery. DBT = digital breast tomosynthesis and MRI = 

magnetic resonance imaging.
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Figure. 2. Comparison of conventional breast cancer treatment with AI-guided 

breast cancer treatment. (A) Conventional treatment operates based on expert analysis 

and recommendations by doctors and pathologists. However, they are prone to personal 

bias and inter-observer variability which could negatively impact their decisions. 

Additionally, this process is labour-intensive and time-consuming, potentially reducing 

productivity. In contrast, AI-guided treatment utilises results from multi-omics data 

analysis for decision-making. This makes the treatment decisions less subjective and 

prone to human error. The automated aspect of AI also helps to save manpower and time. 

(B) The information that is used to guide conventional treatment is derived from the 

patient’s medical history. Such information may be recorded differently over time by 

different healthcare professionals. Moreover, patients may not accurately recall and report 

their own information when questioned by healthcare professionals. Comparatively, AI-

guided treatment uses data from patient samples such as breast tumour biopsy samples 

to inform treatment decisions. The patient samples may be experimentally analysed in a 

standardised manner to provide empirical evidence that is fed into computerised AI 

models. (C) Conventional treatment routinely provides the standard of care especially as 

the initial line of treatment. This often proves to be ineffective as breast cancer is a 

heterogeneous disease and manifests differently in different patients. In comparison, AI-

guided treatment can incorporate precision medicine approaches to personalise drug 

combinations and dosages for individual patients.
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Figure. 3. Challenges of using AI in breast cancer management. There are five main 

challenges to recognise and address when using AI systems and applications – the 

generalisability of AI models, the AI ‘black box’ problem, regulation, cost and long-term 

health impact. To be generalisable to broader patient populations, AI algorithms require 

large and diverse datasets. However, certain groups are often underrepresented in 

datasets, partially due to patient consent and privacy issues. The AI ‘black box’ problem 

can hinder the acceptance of AI due to a lack of understanding and transparency of how 

the AI systems work. This also limits the reproducibility of AI applications particularly when 

non-public datasets are used. The regulation of AI is an immense task as it encompasses 

minimising biases, overcoming infrastructural barriers and ensuring that AI systems 

perform effectively while protecting patient safety and privacy.  AI applications may lead 

to cost savings as a result of improved accuracy and faster analyses, or higher costs due 

to additional training and infrastructural modifications to adopt the new AI systems. To 

better understand the long-term health impact of AI, such as progression-free survival 

and life expectancy, more prospective studies and randomised controlled trials should be 

conducted. ARTI
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Table 1. Overview of selected studies evaluating AI applications in the pre-

treatment phase – detection, diagnosis and prognosis, of breast cancer 

management. The table summarises datasets (source, size, population-based vs. multi-

institutional vs. single institution and accessibility), performance metrics, validation 

strategies (prospective vs. retrospective and internal vs. external), model accessibility 

(open source vs. closed source vs. commercially available), and reported clinical 

outcomes, providing a consolidated view of current evidence and translational potential. 

More studies are summarised in Supplementary Table 1. AUROC = area under the 

receiver operating characteristic curve, DG2 = digital grade 2, HR = hazard ratio, NPV = 

negative predictive value, PAM50 = Predictor Analysis of Microarray 50, PPV = positive 

predictive value, TCGA = The Cancer Genome Atlas and WSI = whole-slide image. 
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Dataset 

Key 

Performanc

e Metrics 

Validatio

n 

Strategy 

Model 

Accessi

bility 

Outcome 
Refere

nce 

Detecti

on 

Mammog

ram 

BreastScree

n Victoria, 

Australia; 

~1M 

Sensitivity, 

specificity & 

workload 

reduction 

Retrospe

ctive & 

external 

Closed 

source 

1.9 - 2.5% ↑ 

sensitivity, 0.3 - 

0.6% ↑ 

specificity & 48 

38 
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mammogra

ms; 

population-

based; 

controlled 

access 

- 80% ↓ in 

human reads 

Systematic 

review of 13 

studies 

Pooled 

estimates of 

AUROC, 

sensitivity & 

specificity 

Not 

applicable 

Not 

applicabl

e 

Sensitivity 75.8 

- 80.8% vs. 

72.4 - 72.6% 

(radiologists) 

39 

Diagn

osis 

Histopath

ology 

TCGA; 

~1.1k WSIs; 

multi-

institutional; 

publicly 

available 

Accuracy 

Retrospe

ctive & 

internal 

Closed 

source 

65.92% 

accuracy 

predicting 

PAM50 subtype 
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multi-

institutional; 

controlled 

access 

except for 

TCGA 

PPV & NPV 

Retrospe

ctive & 

external 

Closed 

source 

PPV 0.7162 & 

NPV 0.9977 
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osis 

Histopath
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Sweden & 

US; ~1.5k 

patients; 

multi-

institutional; 

controlled 

access 

except for 

TCGA 

HR 

Retrospe

ctive & 

external 

Closed 

source 

HR 1.91 - 2.94 

for recurrence 

(DG2-high vs 

DG2-low) 

93 

US; 178 

WSIs; multi-

institutional; 

Accuracy 

Retrospe

ctive & 

external 

Closed 

source 

75 - 86% 

accuracy 
94 
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available on 

request 

predicting 

Oncotype DX 

 

Table 2. Overview of selected studies evaluating AI applications in the treatment 

phase – prediction of treatment response and precision medicine, of breast cancer 

management. The table summarises datasets (source, size, multi-institutional vs. single 

institution and accessibility), performance metrics, validation strategies (prospective vs. 

retrospective and internal vs. external), model accessibility (open source vs. closed 

source vs. commercially available), and reported clinical outcomes, providing a 

consolidated view of current evidence and highlighting the potential of AI to guide 

therapeutic decision-making. More studies are summarised in Supplementary Table 2. 

AUROC = area under the receiver operating characteristic curve. 

 

 

 

 

 

 

 

Purpo

se 
Application Dataset 

Key 

Performan

ce Metrics 

Validatio

n 

Strategy 

Model 

Access

ibility 

 Outcome 
Referenc

e 

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



 

 
 

Predict

ion of 

Treatm

ent 

Respo

nse 

Predict 

pathologic 

complete 

response to 

neoadjuvant 

therapy 

US; 117 

patients; 

multi-

institutional; 

available on 

request 

AUROC 

Retrospe

ctive & 

internal 

Closed 

source 

AUROC 

0.74 - 0.93 
102 

China; 335 

patients; 

multi-

institutional; 

controlled 

access 

AUROC 

Retrospe

ctive & 

external 

Open 

source 

AUROC 

0.83 - 0.87 
103 

Predict lymph 

node 

metastasis in 

response to 

neoadjuvant 

therapy 

China; 297 

patients; 

multi-

institutional; 

controlled 

access 

AUROC 

Retrospe

ctive & 

external 

Closed 

source 

AUROC 

0.853 - 

0.863 

105 

Quadratic 

Phenotypic 

Optimization 

Platform 

(QPOP)  

Singapore; 

single 

institution; 

ongoing 

Personalis

ed drug 

combinatio

n 

Prospect

ive & 

ongoing 

Closed 

source 

Ongoing 

clinical trial 

to 

determine 

the 

effective 

drug 

combinatio

ns for 

breast 

cancer 

patients 

NCT0517

7432 

CURATE.AI 

Singapore; 

single 

institution; 

ongoing 

Personalis

ed drug 

dosing 

Prospect

ive & 

ongoing 

Closed 

source 

Ongoing 

clinical trial 

to 

determine 

the optimal 

drug 

dosing for 

NCT0538

1038 
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breast 

cancer 

patients 

Conversationa

l virtual 

assistant on 

HealthFAX 

platform 

US; 51 

patients; 

single 

institution; 

available on 

request 

Personalis

ed 

education 

Prospect

ive 

Closed 

source 

Provided 

easy-to-

use and 

valuable 

genetic 

education 

134 
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Table 3. Overview of studies evaluating AI applications in the post-treatment phase 

– patient recovery, of breast cancer management. The table summarises datasets 

(source, size, multi-institutional vs. single institution and accessibility), performance 

metrics, validation strategies (prospective vs. retrospective), model accessibility (open 

source vs. closed source vs. commercially available), and reported clinical outcomes, with 

a focus on platforms supporting quality of life interventions and preoperative planning. 

CTA = computed tomography angiography, DIEP = deep inferior epigastric perforator and 

QoL = quality of life. 
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Me
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Artificial intelligence 

Supporting CAncer Patients 

across Europe (ASCAPE) 

platform 

Gr
ee
ce, 
Sp
ain 
& 
Sw
ed
en; 
mu
lti-
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titu
tio
nal
; 
on
goi
ng 

Qo

L 

Pr

os

pe

cti

ve, 

ran

do

mi

se

d 

& 

on

goi

ng 

Clo

sed 

sou

rce 

Ongoing trial to predict 15 QoL 

issues & recommended 

interventions 

145 

NC

T04

879

563 

CUidados Más Allá del 

Cáncer-Mama (CUMACA-M) 

web program 

Sp

ain

; 

mu

lti-

ins

titu

tio

nal

; 

un

kn

ow

n 

Qo

L 

Pr

os

pe

cti

ve 

& 

ran

do

mi

se

d 

Clo

sed 

sou

rce 

Unknown but aims to provide 

personalised interventions to 

improve QoL & self-efficacy in the 

management of cancer sequelae 

146 

NC

T05

322

460 

Comparing Decision on 

Aesthetics After Breast 

Cancer Locoregional 

Treatment (CINDERELLA) 

web platform  

Ge

rm

an

y, 

Isr

ael

Qo

L 

Pr

os

pe

cti

ve 

& 

Clo

sed 

sou

rce 

Ongoing trial to provide treatment 

information & predict post-surgery 

aesthetic outcomes 

149 

NC

T05

196

269 

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS
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d 

& 

Po

rtu
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; 

mu

lti-

ins

titu

tio

nal

; 

on

goi

ng 

ran

do

mi

se

d 

Preoperative planning of 

DIEP flap surgery 

Po

rtu

gal

; 

40 

pat

ien

ts; 

sin

gle 

ins

titu

tio

n; 

co

ntr

An

aly

sis 

tim

e 

Pr

os

pe

cti

ve 

Clo

sed 

sou

rce 

↓ CTA analysis time 2 hrs to 30 

mins 
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Table 4.  Estimated and predicted cost savings of AI applications in healthcare and 

breast cancer management. 

Area of 

Healthcare  

Cost Savings 

Metric  

Estimated & Predicted Cost Savings  Reference 

Entire healthcare 

industry 

Total cost 
 

$200 billion - 360 billion annually from 2019 in 

the US 

20 

$150 billion annually by 2026 in the US 21 

Mammogram 

screening 
 

Incremental 

Cost 

Effectiveness 

Ratio (ICER) 

ICER of $23,755 per Quality-adjusted Life Year 

(QALY) gained (below the threshold of $100,000) 

152 

Incremental 

Net Monetary 

Benefit 

(INMB)  

Positive INMB of £2.70  153 

Net Monetary 

Benefit (NMB) 

NMB of £60.4 million - 85.3 million (assuming 

QALY = £20 000 and £30 000 respectively) 

154 

MRI 
Time and total 

cost 

€399,000 ↓ in hospital annual examination costs 

vs. acquiring an additional MRI scanner, ↓ 

appointment times & ↑ 20 - 32 % scanner 

capacity 

155 

Breast cancer 

biopsy 

Total cost >$420 million by obviating unnecessary biopsies 156 

Diagnosis and 

treatment 

Time and cost 

per day per 

hospital 

Diagnosis: 3.33 - 15.17 h and $1666.66 - 17,881 

per day per hospital (at the initial year and 10 

years respectively) 

Treatment: 21.67 - 122.83 h and $21,666.67 - 

289,634.83 per day per hospital (at the initial 

year and 10 years respectively) 

157 

 

 

 

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



 

 
 

ed summary 

 

Chu et al., discuss how artificial intelligence is transforming breast cancer care by improving detection, 

diagnosis, prognosis, treatment planning, and patient recovery through advanced machine learning and 

deep learning applications. They emphasise that widespread adoption faces challenges such as data 

diversity, reproducibility, regulatory hurdles, infrastructure limitations, and ethical concerns around 

transparency and bias. 
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