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Abstract 

Background 

Despite rapid advances in treatment, breast cancer remains the leading cause of cancer 

mortality in women, with triple negative breast cancers having a particularly poor prognosis. 

Some tumors have (epi)genetic alterations causing homologous recombination deficiency, 

providing opportunities for targeted therapeutics including poly (ADP-ribose) polymerase 

inhibitors. However, the effects of targeted treatments are variable; therefore, functional assays 

are needed to predict the best personalized treatment options.  

Methods 

We developed a high-throughput spheroid-based assay using patient-derived breast cancer 

xenograft models sensitive and resistant to cisplatin. Methods were developed for automatic 

spheroid segmentation using deep learning to measure response of spheroids to treatment with 

cisplatin, olaparib and radiotherapy. We developed a method to distinguish between sensitive 

and resistant tumors based on predicting the percentage of responding and non-responding 

spheroids.  

Results 

Here we show that differences in treatment response between cisplatin-sensitive and resistant 

tumors faithfully correspond with the expected in vivo responses. The assay is able to 

discriminate between olaparib-sensitive and resistant tumors based on predicting the 

percentage of responding and non-responding spheroids.  

Conclusions 
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We demonstrate that this assay, guided by automatic spheroid segmentation using deep 

learning, may report on the tumor’s sensitivity to therapies with the potential to be applied to 

functional precision oncology for breast cancer. 

 

Plain language summary 

Many women die due to breast cancer, especially if tumors are more difficult to treat or spread 

more easily to other organs. Some of these tumors can be successfully treated with drugs 

because of faults in their DNA repair. To choose the best treatment for the patient, it would be 

helpful to know which tumors are vulnerable to treatment. We therefore developed a test. We 

grew small spheres from tumor material (spheroids) and treated them with different drugs used 

in cancer therapies. To measure the response, we took pictures of the spheroids and we taught 

a computer program to recognize the spheroids and measure their size. We tested our assay 

with patient tumors grown on mice (sensitive and resistant to a drug). We demonstrate that this 

assay may report on the tumor’s sensitivity to therapies and may be used in the future to help 

choose the best treatment for breast cancer. 

Introduction 

Despite the large number of treatment options, breast cancer is the most frequent cause of 

cancer death amongst women worldwide1,2. Although many patients are cured by surgical 

removal of the primary tumor, often in combination with radiotherapy, chemotherapy and/or anti-

hormonal treatment, approximately 20% of the patients develop metastasized disease, which is 

much more difficult to treat. Especially patients with tumors that lack expression of Estrogen and 

Progesterone Receptors (ER or PR) and Human EGF Receptor 2 (HER2), the so-called triple 

negative breast cancers (TNBC), have a dismal prognosis3. Generally, these patients are 

treated with chemotherapy. Additionally, some cancers have acquired mutations in DNA repair 
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genes, particularly those involved in homologous recombination repair (HRR), providing 

opportunities for targeted therapeutics. However, development of therapy resistance 

necessitates chemotherapy instead of targeted therapy also in this group of patients. Moreover, 

not all patients benefit from treatments, especially in later lines of chemotherapy. Hence, 

personalized treatment regimens are needed to optimize therapy outcome and reduce adverse 

effects.  

 

Precision oncology needs to ensure that a targeted therapy is only given to patients whose 

tumors harbor the characteristics that predict beneficial effects from this treatment. In TNBC, 

germline mutations in the BReast CAncer gene 1 DNA repair associated (BRCA1) and BRCA2 

genes are more common than in receptor positive subtypes, up to 10-20%4. Tumors with these 

mutations are generally homologous recombination deficient (HRD) causing sensitivity to Poly-

[ADP-ribose]-polymerase inhibitors (PARPi)5,6 and DNA damaging agents such as platinum-

based chemotherapies. Therefore, accurate detection of HRD is important for treatment 

decision. Clinically-available sequencing-based tests to determine HRD status including the 

MYRIAD/ MyChoice7,8, the BRCA1/2-like classifier9, HRDetect10 and Classifier of Homologous 

Recombination Deficiency (CHORD)11 tests have their limitations12,13. Functional assays could 

complement sequencing approaches to address the limitations posed by genomics-based 

precision oncology. For instance, the RECAP test determines the HRD status of tumors based 

on the number of nuclear RAD51 foci upon X-ray treatment of tumor specimens14,15,16,17. 

However, the RECAP test only determines HRD status and cannot directly give information 

about expected treatment response. Functional assays that report on treatment response 

require personalized tumor models as patient avatars.   

 

In vivo, tumors have complex cell-cell communication and signaling pathways due to their 3D 

structure and heterogeneity, which are lacking in cell monolayers, and therefore may respond 
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differently to DNA damaging agents18. Hence, 3D cell models, such as spheroids, organoids or 

tissue explants would better mimic in vivo conditions and may serve as patient avatars12. 

Spheroids consist of a spherical aggregate of tumor cells, formed inside a scaffold such as a 

hydrogel, inside a drop (hanging drop method) or using culture plates with low-adhesive 

surface, minimizing cell-surface binding and increasing cell-cell interactions, and thus 

stimulating cell aggregation19. Protocols to produce spheroids on a large scale have been 

developed20,21,22, which makes these cell models suitable for high-throughput drug screening. 

For example, spheroids have been used in several preclinical studies to model treatment 

response to chemotherapy12,23,24,25. Moreover, spheroid culturing platforms are especially useful 

for readouts that require results within a few weeks as spheroid formation is fast, within 5-7 days 

after cell seeding.  

 

To fully evaluate the heterogeneity of a tumor, high-throughput assays may be helpful in 

assessing both the average tumor response and heterogeneity in response. Tumor volume 

estimation is one of the most frequently used parameters to determine treatment response26 

and therefore spheroid size has been used to assess this23. To determine changes in spheroid 

size, various image analysis approaches can be used to automate spheroid segmentation and 

size measurements. Traditional methods rely on signal thresholds and other image 

characteristics such as circularity27. More recently, deep learning approaches, such as using 

convolutional Neuronal Networks (CNN) have successfully been applied for spheroid 

segmentation21. Alternatively, Segment Anything Model (SAM)28, which uses a transformer-

based computer vision model can be used for versatile prompt-guided object segmentation. The 

pre-trained model can be further fine-tuned to automatically segment specific objects from 

images, such as spheroids in bright-field microscopy images. Therefore high-throughput 

spheroid production in combination with these advanced deep learning approaches is an 

attractive approach for drug screening22,29.    
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Here, we show the development of a high-throughput spheroid assay using patient-derived 

xenograft (PDX) breast cancer mouse models, reproducing the expected in vivo sensitivity of 

the models. By implementing deep-learning-based automatic spheroid segmentation, this 

approach has potential applications in screening primary patient material to guide personalized 

treatment strategies. 

 

 

 

Methods 

Breast PDX tumor models 

Breast cancer PDX models used in this study included a HR deficient triple-negative breast 

tumor (c.2210delC/2329delC) sensitive to cisplatin and a cisplatin-resistant model (acquired 

resistant by repeated cisplatin treatment)30  and tumor extraction from these mouse models was 

approved by the Central Committee on Animal Experiments (CCE) and by the Institute for 

Animal Welfare of the Netherlands Cancer Institute. Tumor fragments from PDX mouse 

models30 were transplanted into the 4th mammary fat pad of 6-10 week-old female mice 

(NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ; Jackson Laboratory) under anesthesia with isoflurane (3-

4% induction and 2-3% maintenance) and analgesia with Carprofen (in drinking water, a day 

before surgery and 3 days after, 0.067 mg/ml). The perpendicular tumor diameters of formed 

tumors were measured twice per week using a calliper, and tumor volume was calculated using 

vol(mm3) = 0.5(length × width2). Maximum permitted tumor volumes were 1000 mm3. Mice 

were killed by CO2 asphyxiation to collect tumors post-euthanasia. Mice were kept in 

individually ventilated cages, with a 12-hour light/dark cycle (7am:7 pm) at 21 °C (-/+3°C ) and 
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humidity of 55% (+/-10%). Food and water were provided ad libitum. The maximal permitted 

disease endpoints were not exceeded in any of the experiments. All experiments were 

performed under ethical approval AVD3010020172464 and work protocol 9.1.10374. 

RECAP assay 

The HR status of used PDX tumors was validated using the RECAP assay15,17. Briefly, the 

amount of RAD51 foci was determined 2 hours post-radiation with 5 Gy. As HR would only be 

functional in S/G2 cells, we used geminin staining and an additional 53BP1 staining was 

performed to verify proper induction of DSBs following treatment. PDX tumors were classified as 

HRP or HRD when more than 50% or less than 20% of geminin+ cells displayed more than five 

RAD51 foci, respectively.  

Cell isolation from breast PDX tumors 

For cell isolation from PDX material, the tumors were dissected into small pieces and collected 

in Dulbecco’s Phosphate Buffered Saline (PBS, D8537, Sigma-Aldrich). The collected material 

was then centrifuged at 200xg for 5 minutes at room temperature. The material was further 

processed by re-suspension in pre-warmed (37°C) 1.6*104 units of collagenase (C9407, Sigma-

Aldrich) in PBS under constant agitation for 40 minutes at 37°C. This suspension was then 

centrifuged at 200xg for 5 minutes at room temperature. Next, the supernatant was aspirated 

and 10 ml of Trypsin-EDTA solution (T3924, Sigma-Aldrich) diluted 1/10 in PBS was added and 

incubated for 5 minutes at 37°C. Trypsin was then de-activated using 1 ml of Fetal Bovine 

Serum (FBS, FBS-12A, Capricorn Scientific GmbH) and the suspension was centrifuged at 

200xg for 5 minutes at room temperature. The supernatant was then aspirated and the 

specimen was re-suspended in 10 ml Dulbecco’s Modified Eagle Medium (DMEM, D6429, 

Sigma-Aldrich) followed by thorough trituration of the suspension using a Pasteur Pipette. The 

suspension was then sent through a cell strainer (40µm pore size, 352340, BD Falcon) and 

collected for centrifugation at 200xg for 5 minutes at room temperature. The cell pallet was re-
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suspended in 10 ml DMEM and centrifugation was repeated. Medium was aspirated and cells 

were re-suspended in 1 ml of HBEC medium (components are listed in Supplementary Table 

1) for counting and cell viability assessment using the Countess II Automated cell counter 

(Invitrogen). The cell yield of the PDX tumor models is shown in Supplementary Table 2.  

Spheroid formation from isolated PDX tumor cells 

For spheroid formation we adapted our published protocol20 to make it suitable for PDX tumors. 

Briefly, we prepared agarose casts using the 12-256 precision micro-mold from Microtissues®. 

Isolated tumor cells were loaded onto the cast in a concentration between 2.0-4.0*106/ml and 

were allowed to settle for 15 minutes. 2 ml of HBEC medium supplemented with 50 µg/ml of 

fibronectin (10838039001, Sigma-Aldrich) was then carefully added and spheroids were allowed 

to form for 5-7 days.  

Spheroid treatments 

After 5-7 days of spheroid formation, Olaparib (10 µM, S1060, Selleckchem) and radiation (10 

Gy) treatments were performed and spheroids were harvested 7 days later. Cisplatin (10 µM) 

treatment was done 9-11 days post-formation and spheroids were harvested 3 days post-

treatment. Each treatment was performed using a single agarose cast containing 256 spheroids. 

Immunostaining 

For staining of spheroids, 30 µM of EdU (ab146186, Abcam) was added to the spheroid 

samples for 2 hours at 37°C. Culture medium was then removed, and spheroids were harvested 

according to the manual from Microtissues®. After this, spheroids were transferred to a 1.5 ml 

low-binding microcentrifuge tube (MTL-0150-BC, Biotix) and centrifuged at 200xg for 5 minutes 

at room temperature. Supernatant was removed and 1 ml of PBS was added followed by 

centrifugation at 200xg for 5 minutes at room temperature. PBS was discarded and spheroids 

were fixed with 4% paraformaldehyde (PFA, 158127, Sigma-Aldrich) for 30 minutes at room 

temperature on a rotation wheel. Spheroids were then washed 3 times with PBS for 10 minutes 
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and centrifuged at 200xg for 5 minutes at room temperature after each wash step. After this, 1 

ml of blocking solution (PBS supplemented with 1.0% (v/v) Triton X-100 (108603, Merck 

Millipore) and 3.0% (w/v) BSA (A9418, Sigma-Aldrich)) was added and incubated for 1 hour at 

room temperature on a rotation wheel. Spheroid samples were then centrifuged at 200xg for 5 

minutes at room temperature after which blocking solution was removed and 1 mL of Click-IT 

reaction mix (components are listed in Supplementary Table 3) was added. This was then 

incubated for 2 hours at room temperature in the dark on a rotation wheel. After incubation, 

samples were centrifuged and washed twice with 1 ml of blocking solution for 10 minutes and 

centrifuged at 200xg for 5 minutes at room temperature after each wash step. After this 1 ml of 

blocking solution was added to the spheroids and samples were incubated for 4 hours at room 

temperature on a rotation wheel before incubation with the primary antibodies (the sources and 

dilutions are listed in Supplementary Table 4) diluted in blocking solution for a duration of 48 

hours at 4°C on a rotation wheel. After this, spheroid samples were washed 3 times for 10 

minutes with PBS supplemented with 0.1% (w/v) BSA at room temperature on a rotation wheel 

before a 3-hour incubation with the secondary antibodies (the sources and dilutions are listed in 

Supplementary Table 5) diluted in blocking solution at 4°C. After this, samples were washed 2 

times for 15 minutes with PBS at room temperature before mounting the spheroids using 

Vectashield containing 4’,6-diamidino-2-phenylindole (DAPI, H-1200, VectorLabs) for staining of 

the nucleus. 

Bright-field microscopy 

To monitor spheroid sizes, bright-field images were captured using the Olympus IX70 inverted 

phase contrast microscope. Images were captured using a DFC320 digital camera from Leica 

Microsystems and saved using Adobe Photoshop 2021. We used the UPlanFLN 4x PhL 

objective (pixel size, 0.183 mm) for all CS spheroid models and the UPlanFL 10x objective (pixel 

size, 0.123 mm) for the CR models. 
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Confocal microscopy 

Stained spheroids were imaged using the SP8 confocal microscope from Leica Microsystems 

with LasX suite control software. We used Leica’s air immersion HC PL APO 20X/0.75 CS2 

objective on the SP8. Sequential scanning was employed to prevent crosstalk when detecting 

multiple fluorophores in a single sample. The following excitation and filter settings were 

applied: 405 nm excitation, 415-470 nm for detection of DAPI nuclear stain; 488 nm excitation, 

500-550 nm for detection of Alexa Fluor 488 and 561 nm excitation, 570-620 nm for detection of 

Alexa Fluor 555. 

Image analysis  

EdU+ cells and 53BP1 foci in spheroids and geminin+ cells and RAD51 foci in tissue slices 

were quantified using the Image-J macro “Foci-analyzer” (freely available 

at https://github.com/BioImaging-NKI/Foci-analyzer; created by Bram van den Broek, the 

Netherlands Cancer Institute, the Netherlands)31. Cleaved caspase-3 signal in spheroids was 

quantified using ImageJ by manually selecting the ROI per Z-slice based on the DAPI signal. 

The mean intensity of cleaved caspase-3 signal was then measured in this region. 

Model Training  

We implemented the Segment Anything Model (SAM) for microcopy framework for our 

automated spheroid segmentation. Training data was generated using the micro-SAM napari 

plugin (version 1.0.1), with spheroids manually annotated using rectangular prompts. For 

preparation of training, images were converted to 8-bit grayscale format in Fiji. The training 

dataset comprised 96 images (2 images of each model, time point and treatment) with 

corresponding manual annotations, split equally between training and validation sets. The semi-

manual segmentation predictions based on the prompt were saved as label images.  

For fine-tuning the Segment Anything Model for automatic instance segmentation we used a 

Segment Anything for Microscopy notebook (https://github.com/computational-cell-

https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FBioImaging-NKI%2FFoci-analyzer&data=05%7C02%7Cm.kuijten%40erasmusmc.nl%7C2cc88b6d566f45c7801e08dc73470e8d%7C526638ba6af34b0fa532a1a511f4ac80%7C0%7C0%7C638511996238903709%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=cz2SYGkqaStQOvMxle%2BTmkHSrpaVW%2FZkmux0SfSbJkE%3D&reserved=0
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analytics/micro-sam/notebooks/sam_finetuning.ipynb) as reference and modified this notebook 

to work with our data set and to ease training of different models using subsets of data. We also 

added a script to process the data and to extract several metrics from the SAM generated label 

images. The model was trained for 100 epochs, 5 objects per batch, a patch size of 1024x1024 

pixels and using the additional convolutional decoder for end-to-end automatic instance 

segmentation32.  

 

Part of the data of the resistant tumors was acquired on a different microscope. To allow for 

training the canvas of all images were set to the dimensions of the largest image in the data set, 

resulting in a zero-value border around the images and label images. 

Training was performed on an Ubuntu 20.04 system with an Intel Xeon Gold4218 (64 cores) 

processor, 512 GB memory, and a Quadro RTX 6000 24GB GPU.  

Post-segmentation analysis included automated measurement of multiple spheroid parameters 

including their individual area, height, width, perimeter, diameter, and volume.  

 

Evaluation of network performance 

Network performance was evaluated by precision, recall and F1 score. True positives (TP) were 

defined as spheroids correctly measured; true negatives (TN) were defined as empty wells. 

False positives (FP) were defined as incorrectly measured spheroids which showed a too large 

or too small surface area based on overlay of AI-recognized and bright-field image. Precision, 

Recall and F1 scores were calculated based on these parameters. 

Precision =
TP

TP+FP
   (1) 

Recall =
TP

TP+FN
   (2) 

F1 score =
2 Recall ×Precision

Recall+Precision
  (3) 
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Inclusion and ethics 

All experiments were approved by the Central Committee on Animal Experiments (CCE) and 

performed in accordance with the guidelines of the Institute for Animal Welfare of the 

Netherlands Cancer Institute. We declare no inclusion and ethics concerns related to this study. 

Statistics and Reproducibility 

Statistical analysis and data visualization was performed using GraphPad Prism v10.2.1 

(GraphPad Software Inc.). Error bars represent standard deviation (SD) over data points. 

Statistical analysis was conducted using at least three independent experiments with Student’s 

T-tests (unpaired, parametric two-tailed tests with a 95% confidence interval), with or without 

Welch’s correction, or one/two-way Anova tests. A P<0.05 was considered statistically 

significant. Four tumor models (biologically replicates) from three different mice were used to 

form spheroids (CS1-3, CR1-3 with CS2A and CS2B and CR2A and CR2B extracted from mice 

with two tumors). The degree of correlation was determined by calculating Pearson’s correlation 

coefficients. To set a threshold for our prediction analysis, outliers were identified in the control 

condition using the Robust regression and Outlier removal (ROUT) method in GraphPad Prism. 

For the ROUT analysis we compared results for various Q values: Q=0.1%, Q=1%, Q=5% and 

Q=10%. The threshold was determined based on the mean fold change spheroid area 

(untreated, day 7; all CS models combined) and the standard deviation (SD). 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑚𝑒𝑎𝑛(𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑) − 2 × 𝑆𝐷(𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑) 

Results 

Treatment response of PDX spheroids faithfully reflects expected in vivo response  

To develop a spheroid assay to report on treatment response in breast cancer, we used the 

cisplatin-sensitive PDX model T250 (TNBC), which is HR deficient due to BRCA1 mutations 

(c.2210delC/ 2329delC)30. Cisplatin-resistant (CR) tumors were established from the cisplatin-

sensitive T250 (CS) tumors by repeated in vivo cisplatin treatment as described previously30. 
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The HR status of CS tumors was confirmed using the RECAP assay14,17. In contrast, CR tumors 

displayed on average in 75% of nuclei of geminin+ cells >5 RAD51 foci, indicating that these 

tumors were HRP explaining their cisplatin resistance (Supplementary Fig. 1). Tumor tissue 

slices were stained with 53BP1 to confirm the induction of DNA double strand breaks (DSBs) 

after irradiation (Supplementary Fig. 1a, b). 

We used an agarose mold system to produce spheroids of CS and CR tumors, resulting in 256 

spheroids for each condition we tested. CS and CR spheroids were formed from tumors from 

three different mice (CS1-3; CR1-3, respectively) with mice carrying two tumors (CS2A and 

CS2B; CR2A and CR2B, respectively). The formed spheroids displayed a consistent 

morphology with a size of 150-300 µm in diameter (Fig. 1a) and consisted mainly of tumor cells 

(pan-cytokeratin+ cells; Supplementary Fig. 2a, b). Additionally, we confirmed CS and CR 

spheroids contained proliferative cells (EdU+, a S-phase marker) throughout the whole 

spheroid, suggesting that spheroids did not contain a necrotic core (Supplementary Fig. 2c). 

We tested the response to cisplatin, the PARP inhibitor olaparib and irradiation in these CS and 

CR spheroids. Fig. 1a and b show a schematic representation of spheroid formation and our 

experimental approach, respectively. 

Treatment of CS tumors with cisplatin, olaparib and radiation induced apoptosis as observed by 

significantly increased cleaved caspase-3 staining intensity compared to untreated spheroids 

(Fig. 1e). Apoptosis was present throughout the spheroid, suggesting cisplatin and olaparib 

penetrated multiple cell layers and reached cells at the core (Supplementary Fig. 2d). Cell 

proliferation was significantly reduced upon treatment with olaparib or radiotherapy, but more 

EdU+ cells were present in CS spheroids after cisplatin treatment (Fig. 1c, f), most likely 

because cisplatin may slow down S-phase progression 33,34. CR spheroids did not respond to 

cisplatin and olaparib as observed by the lack of apoptosis (Fig. 1d, g). These results were 

expected, as in vivo resistance to cisplatin occurs in CR models30 through restoration of HRR 
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(Supplementary Fig. 1), which should result in reduced PARPi sensitivity. Furthermore, 

olaparib-treated CR spheroids showed no significant difference in the number of EdU+ cells 

compared to the control (Fig. 1h). In contrast, cisplatin-treated CR spheroids showed a 

significant increase in EdU+ cells similar to cisplatin-treated CS spheroids. We observed a 

similar response to irradiation in CR spheroids compared to CS spheroids (Fig. 1e-h), which 

was expected as most DSBs induced by irradiation are repaired via non-homologous end-

joining35 and therefore HRD status of tumors would have less of an effect on treatment 

response. In CS spheroids, we found that all treatments resulted in significantly more DSBs 

(indicated by 53BP1 foci) compared to the untreated condition, although the percentage of 

nuclei with >5 foci varied between spheroids in the same condition (Fig. 1i-j).  

Overall, CS and CR spheroids faithfully displayed the expected in vivo responses to the 

respective treatments. However, we noticed that both the degree of apoptosis and inhibition of 

cell proliferation induced by the treatments varied substantially between individual spheroids. 

For instance, olaparib-treated CS and CR spheroids displayed a lower or higher degree of 

apoptosis or proliferation in the same biological sample (Supplementary Fig. 3a, b) and the 

fold mean intensity of cleaved caspase-3 and number of EdU+ cells varied substantially 

between spheroids in treated conditions of CS and CR tumor models (Supplementary Fig. 3c, 

d and e, f, respectively). We therefore aimed to develop an alternative assay that would allow 

us to capture the heterogeneity of the spheroids, by monitoring a large number of spheroids at 

multiple time points, using only a bright-field microscope. 

Automated spheroid segmentation and size determination using an AI model 

Spheroid size is influenced both by cell death and cell proliferation and therefore may be a 

suitable readout for treatment response. An additional advantage of monitoring spheroid size is 

that it requires less sample preparation compared to staining and allows longitudinal 

measurements of the same spheroids at different time points.  
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High-throughput analysis of spheroid size requires automated segmentation. For automatic 

segmentation of the spheroids from the bright-field images we explored different options that 

would segment spheroids from the images in an unbiased way. Traditional intensity 

segmentation methods are difficult on bright-field images given that the wells, in which the 

spheroids grow, are clearly visible. Subsequently we have tested a random-forest segmentation 

approach, for which a few images are sparsely annotated to create a pixel classification model. 

While this approach worked relatively well in some of our datasets, it was difficult to create a 

model that would work on all images accurately. We therefore decided to use a python 

implementation of SAM dedicated for light and electron microscopy named Segment Anything 

for Microscopy32 which allows model fine-tuning for automatic instance segmentation using an 

additional image encoder. Models that were not fine-tuned on our data were not able to 

accurately segment the spheroids. However fine-tuning of the model on our images resulted in 

much better segmentation of the spheroids (Supplementary Fig. 4). Specifically, we generated 

a training set for micro-SAM using semi-manual annotation, by only marking rectangles around 

the spheroids in the images and used SAM to segment the spheroids. We then trained SAM on 

those annotated images to automatically segment the spheroids from all images without the 

need of manual annotation. Fig. 2a shows the pipeline for automatic detection of spheroids in 

bright-field images.   

For validation and testing of the robustness of the segmentation, we fine-tuned the SAM model 

using different subsets of our data (Fig. 2a). We used image label sets of individual CS tumors 

and a combined dataset from all CS tumors to train the model and compared the results. In all 

cases, we used two images, randomly selected from each treatment condition and time point of 

the respective CS tumor to have an unbiased representation of spheroids. We used one set of 

images as training data and the other set for validation during training. We manually inspected 

all segmentations and assessed the accuracy of the models by calculating F1 scores 
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(determined by the model’s recall and precision) for each training approach for the four CS 

tumors. To calculate the recall, we defined true positives as correctly-segmented spheroids and 

true negatives as empty wells. We hardly found true negatives, resulting in a recall close to 1.0. 

We defined false positives as incorrectly segmented spheroids based on the overlay of 

spheroids recognized by AI and the bright-field image (examples of overlays in Supplementary 

Fig. 5a-d). We found high F1 scores for CS models trained on its own images (>0.95); however, 

when trained on one tumor model and applied to a different model, lower F1 scores were 

observed for some models (Fig. 2b). When trained on all CS models combined, the obtained F1 

scores were as high as when trained on its own images (Fig. 2b-d). The F1 scores were very 

similar for the different time-points, suggesting that treatment did not influence segmentation 

results (Fig. 2d). 

Additionally, we manually measured the horizontal and vertical cross-sectional distances of 

spheroids for CS1, CS2A and CS2B tumors and calculated the spheroid diameter per image by 

averaging these two measurements. We then compared the manually- and AI-determined 

diameters and calculated the degree of correlation (Fig. 2e, Supplementary Fig. 5h-i). We 

found on average a Pearson’s r=0.7457+/-0.1025 when the model was trained using its own 

images, and lower correlations when the model was trained with images from a different CS 

tumor (average r=0.5512+/-0.081; Fig. 2g). Also, the fold-change in the AI-measured area after 

treatment correlated well with the manually-measured area (Fig. 2f). Again, when we used 

random images from the four CS tumors together, we observed a similar correlation as when 

trained on images of the same tumor alone (average r=0.7249+/-0.077). Considering the pixel 

size in the bright-field images is circa 1.5 µm, the manually determined height and width of 

spheroids cannot be considered an absolute ground truth simply because manually measuring 

spheroid dimensions is not that accurate. In conclusion, our data suggests that training of the AI 

model using images from all four CS tumors was as accurate as using its own images for 
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training. We therefore decided to use the AI model trained with images from all four CS tumors 

together to analyze the spheroid measurements. 

Tumor volumes are commonly used to determine treatment response26. However, our bright-

field images do not provide a 3D image of spheroids, so we need to assume that spheroids are 

spheres. To validate that spheroids in 2D images are indeed round, we determined the degree 

of roundness based on 1) the length to width ratio of the box that can be placed directly around 

the spheroid area (output of the AI model) and 2) the linear correlation between measured (total 

number of pixels) and circular surface area (based on the diameter). We found that for most 

spheroids, the normalized height to width ratio approaches 1.0, indicating that most spheroids 

were indeed round (Fig. 2h). Moreover, normalized calculated and measured surface areas 

correlated well for the four CS tumors, independent of spheroid treatment (Fig. 2i-j, 

Supplementary Fig. 5e-g). We therefore decided to use the measured surface areas for further 

analysis. 

We next tested if our AI model trained on all four CS tumors could accurately determine the 

treatment response of CR tumors, a model for in vivo acquired resistance to cisplatin. We 

compared the spheroid measurements obtained from automatic spheroid segmentation using 

different training approaches, namely trained on the four CS models together (CSall), the four 

CR models together (CRall) or CSall combined with CRall (CSCR). Treatment response of 

CR2B and CR3 spheroids showed very similar trends when comparing the different training 

approaches (Supplementary Fig. 6a-c and 6d-f, respectively). The calculated F1 scores 

suggest that the AI model trained on CSall performed the best (Supplementary Fig. 6g-i). We 

therefore decided to use this AI model for the analysis of treatment response.    

Spheroid measurements report on the expected treatment response of CS and CR 

tumors  

To validate whether our assay could accurately report on treatment response, we analyzed 
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bright-field images from untreated and CS and CR spheroids treated with olaparib, cisplatin and 

radiation and measured their surface area. Fig. 3a and b show an example of bright-field 

images of untreated and treated CS and CR spheroids at day 0, 4 and 7 in culture, respectively. 

Measured surface areas for each condition were normalized to their corresponding average 

area on day 0. In all four CS tumors we found that olaparib-treated spheroids displayed surface 

areas that mostly fell below the 25th percentile of the area distribution of untreated spheroids 

(violin plots; Fig. 3c-f), suggesting most spheroids responded to the treatment (also indicated by 

a significant decrease in surface area in olaparib-treated compared to untreated spheroids; 

Supplementary Fig. 7a-d). In contrast, olaparib-treated CR spheroids were similar in size or 

larger than untreated spheroids, indicating that they did not respond to the treatment (Fig. 3g-h, 

j; Supplementary Fig. 7e-f, h), except CR2B spheroids (Fig. 3i; Supplementary Fig. 7g, P 

=0.0106). In all four CS tumors, olaparib-treated spheroids displayed the most reduced surface 

area after treatment, which was expected considering the degree of cell death and effect on cell 

proliferation that we found earlier (Fig. 1c, e, f). However, the olaparib response is variable: 

CS1 responded well (Fig. 3c) whereas for CS2A a fraction of spheroids fell in the range of the 

untreated condition (Fig. 3d). Overall, CS spheroids displayed sensitivity to olaparib whereas 

CR spheroids appeared to be resistant, which may be explained by restoration of HRR capacity 

in these tumors (Supplementary Fig. 1b).  

The response of CS and CR spheroids to radiotherapy was mixed. Most CS tumors responded 

to radiotherapy (Fig. 3c-d, f; Supplementary Fig. 3a, c-d), except for CS2A (Fig. 3e; 

Supplementary Fig. 7b). Overall, CR1 and CR3 spheroids seemed to be resistant (Fig. 3g, j; 

Supplementary Fig. 7e, h) as these spheroids were similar in size or larger compared to 

untreated spheroids, although a fraction of CR1 spheroids did respond, whereas CR2A and 

CR2B spheroids were significantly smaller than untreated spheroids (Supplementary Fig. 7f, 

g). Overall, both CS and CR spheroids showed a partial response to radiotherapy. 
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The effect of cisplatin treatment was the most variable. CS1 and CS3 spheroids significantly 

reduced in size post treatment, but cisplatin-treated C2A and CS2B spheroids were similar in 

size as untreated spheroids (Supplementary Fig. 7a-d). For CS1, cisplatin treatment revealed 

both a responding and non-responding population (Fig. 3c), whereas most CS2A and CS2B 

spheroids did not respond to cisplatin (Fig. 3d and e). A possible explanation for this 

observation may be that CS1 spheroids contained more proliferating cells at the start of the 

cisplatin treatment, as indicated by the increase in spheroid size between day 0 and day 4 

(Supplementary Fig. 7a). This contrasted with CS2A and CS2B, which showed less size 

increase, suggesting less cell proliferation (Supplementary Fig. 7b, c). Most CR spheroids did 

not respond to cisplatin treatment for CR1, CR2A and CR3 tumors (Supplementary Fig. 7e-f, 

h). Only CR2B showed a significant decrease in spheroid size in cisplatin-treated versus 

untreated spheroids (Supplementary Fig. 7g, P=0.0450).  

When comparing cisplatin-treated to olaparib-treated CR spheroids, we found either significantly 

larger olaparib-treated (Fig. 3g) or significantly larger cisplatin-treated spheroids (Fig. 3h, j). 

These findings reflect the results of our initial experiments, in which we did not observe an 

increase in cell death and reduction in cell proliferation compared to untreated spheroids when 

staining for cleaved caspase 3 and EdU, respectively (Fig. 1g, h). Overall, we observed 

differences in response to cisplatin between CS and CR spheroids. However, the cisplatin-

response in CS spheroids seems to be only partial. A possible explanation for this is that the 

chosen cisplatin concentration may be too low for the majority of CS spheroids to reduce in size. 

It seems that the cisplatin concentration is high enough to induce apoptosis in CS spheroids, but 

does not seem to have a large enough effect to reduce spheroid size as non-responsive tumor 

cells may remain proliferative.  

In conclusion, the CR spheroids responded differently to olaparib and cisplatin compared to CS 

spheroids, suggesting that measurements of spheroid surface area can report on the tumor’s 
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expected in vivo response. Moreover, our results suggest that CS tumors on average responded 

the most to olaparib treatment.  

Discriminating between treatment-sensitive and resistant tumors  

We have shown that our assay is able to report on differences in treatment response between 

CS and CR spheroid models. As an example, Fig. 4a shows a clear difference in changes in 

surface area between CS1 and CR1 spheroids upon treatment with olaparib. Next, we wanted 

to find a threshold of spheroid area fold-change to discriminate between sensitive and resistant 

tumors. We first analyzed the normalized frequency distribution of spheroid areas in untreated 

CS models (all data combined). This frequency distribution follows a Gaussian distribution with 

the top of the curve close to 1.0 (Supplementary Fig. 8a). The areas of untreated CR 

spheroids followed a similar Gaussian distribution (Supplementary Fig. 8b), suggesting that 

the datasets are very similar for the two tumor models. The frequency distribution of olaparib-

treated CS1 spheroids shifted to the left compared to CR1, suggesting that CS1 spheroids 

responded to the treatment (Fig. 4b). Cisplatin- and radiation-treated spheroids displayed 

frequency distributions that overlap, indicating a partial response (Fig. 4c, f) as we have 

previously seen (Fig. 3). To determine the threshold value for sensitivity, we first identified and 

removed outliers using the Robust regression and Outlier removal (ROUT) method36 and then 

determined the distribution of spheroids sizes to be expected for the untreated condition 

(example of Q=10% in Supplementary Fig. 8c). We compared four different Q values for outlier 

detection: Q=0.1% (mild), Q=1% (commonly used), Q=5% and Q=10% (more aggressive). Next, 

we calculated the mean value and standard deviation for the cleaned-up datasets, filtered for 

outliers, to set the threshold 2SD lower than the mean (to have a confidence interval of 95%). 

We used this threshold to define responders (below threshold) and non-responders (above 

threshold) for treated CS and CR models (shown for Q=10%; Fig. 4d, e and Supplementary 

Fig. 8d, e). We used the threshold value from CS models to apply to the CR data. The 
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percentage of spheroid data points measured below the calculated threshold for CS and CR 

tumor models is shown in heatmaps (Fig. 4g and h, respectively for Q=10%; Supplementary 

Fig. 9a-f) for Q=0.1%, Q=1% and Q=5%), indicating the prediction of response. For Q=0.1%, 

Q=1% and Q=5% we observed the same trends in prediction of response for CS and CR 

models. However, with Q=10% we found a better distinction for olaparib sensitivity between CS 

and CR models compared to Q=1% (Supplementary Fig. 9g and h). Fig. 4g and h show the 

prediction of responders for CS and CR tumors, respectively (with Q=10%). We observed a 

clear difference in the prediction of sensitivity for olaparib between the CS and CR models (on 

average 78.3% and 13.9% of responding spheroids, respectively). We did not observe a 

significant difference in percentage of responding spheroids between the CS and CR models 

after radiotherapy (Supplementary Fig. 9e, Q=10%), which was to be expected as we did not 

find a clear difference in response based on our staining results (Fig. 1) and spheroid 

measurements (Fig. 3). We also did not find a significant difference in percentage of responders 

between the CS and CR models after cisplatin treatment (Supplementary Fig. 9e, Q=10%). 

This observation may be explained by the partial response to cisplatin we observed in the CS 

spheroids. Moreover, these results suggest that although the average response may show 

sensitivity, a substantial fraction of spheroids may not respond, emphasizing the variation in 

tumor response. Further, based on the comparison of olaparib, cisplatin and radiation treatment, 

we can conclude that olaparib would be the best treatment choice for these CS tumors.  

Discussion 

In this study we developed a high-throughput assay for functional breast cancer precision 

medicine based on spheroid sizes as a measure for treatment response. Functional precision 

oncology may be extremely valuable for cancer treatment outcome, but major challenges need 

to be overcome to implement assays in the clinic. Technological challenges include the 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS 

 
 

limitations of models to mimic the complex tumor micro-environment (TME), the limited amount 

of patient sample for testing, and the limited readouts for treatment prediction37.   

Spheroids, organoids and tissue explants have been considered as models for functional 

precision oncology, with each their own advantages and limitations12. Spheroid and organoid 

formation requires cell isolation from the tumor, destroying tissue architecture and the native 

TME in contrast to tumor explants12. Unlike organoids, spheroids do not spontaneously 

recapitulate the native TME12. Spheroid models may include additional compartments of the 

TME, for instance by forming mixed spheroids from isolated tumor, stromal and immune cells38. 

Alternatively, organotypic spheroids may be used, consisting of partially dissociated tumors and 

preserving more of the native TME39. In our study we used spheroids containing only tumor 

cells, which was sufficient to correlate the treatment response of CS and CR spheroids with the 

expected in vivo treatment response in mice. However, our assay is compatible with these more 

complex spheroid models.  

In most cases, biopsies of patient tumors will be the only material available for functional assays 

and hence the amount of material is limited, posing challenges for spheroid-based functional 

assays. As spheroids are formed and treated within a brief duration, expansion of the material is 

not possible. As we formed and treated 256 spheroids per condition, but only extracted data 

from approximately 60 spheroids for each tumor sample, theoretically we could use 75% less 

starting material when we would be able to analyze all formed spheroids. In the future the assay 

used in this study needs to be optimized to show whether it is compatible with restricted material 

from tumor biopsies from patients. Alternatively, patient-derived organoids (PDOs) are suitable 

for long-term culturing and passaging, allowing to create living biobanks of patient tumor 

models40 and have been used to perform drug screens and for immune-oncology41. Breast 

cancer PDOs recapitulate disease heterogeneity, typically match histopathology, hormone 

receptor status and HER2 receptor status and show similar responses in vitro compared to their 
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orthotopic transplant in mice40. However, for clinical practice, results are required within a brief 

time span (2 weeks) to not delay treatment for the patient. This poses challenges to use 

organoids for this purpose as the generation of PDO’s is time-consuming (multiple weeks or 

months)42. In contrast, spheroid formation is fast, and we were able to form spheroids and start 

treatment 5-7 days after cell isolation.  

For functional precision oncology to be successfully applied to the clinic, functional assays 

should provide a clear readout and preferably be reasonably effortless and low cost. Moreover, 

due to tumor heterogeneity and variation in readouts, functional assays may become more 

reliable with larger numbers of data-points. Spheroid cultures are well-suited for high-throughput 

assays, especially with the recent development of protocols for large scale spheroid 

production20,21,22. The challenge of high-throughput functional assays lies in developing suitable 

readouts. Tumor volume assessment is one of the most used parameters to determine 

treatment efficacy26. In this study, we used spheroid size as readout for treatment response 

which is influenced by cell death and proliferation and allows for longitudinal monitoring of the 

same spheroids at different time points. By using deep learning to implement automatic 

spheroid segmentation, the analysis pipeline we established is suitable for large-scale drug 

screening. Overall, spheroid measurements reported accurately on sensitivity to treatment. 

Especially for the olaparib treatment, a clear distinction could be made between sensitive and 

resistant tumor models. However, in this study CS spheroids showed a partial response to 

cisplatin based on spheroid size (Fig. 3), whereas the staining results for apoptosis displayed a 

significant difference between cisplatin-treated CS and CR spheroids (Fig. 1). In contrast, the 

number of EdU+ cells was significantly increased in both cisplatin-treated CS and CR spheroids 

(Fig. 1). These observations may be explained by treatment with an insufficient dose of cisplatin 

resulting in a cell killing effect while a fraction of less-responsive tumor cells remains 

proliferating. Whole-mount staining of spheroids for apoptosis markers (Fig. 1) is a labor-
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intensive assay, requiring confocal imaging and analysis. To perform this assay on large 

numbers of spheroids is not easily implemented in the clinic. However, addition of an apoptosis 

readout, such as a live/dead staining, to spheroid measurements would provide more insight 

into the treatment response and would at least partially overcome the limitations posed by only 

using bright-field images of spheroids as readout for treatment response. Our assay may be 

compatible with incorporating such a fluorescent probe after optimization. This approach would 

require the use of high-content screening microscopy combining fluorescence with bright-field 

imaging. Incorporation of fluorescent intensity measurements should be compatible with the 

automatic spheroid segmentation after adaptation of the imaging analysis program. 

Furthermore, future studies could leverage changes in the morphology of the spheroids, 

extracted from the bright-field images. Combined with the size measurements we have already 

implemented, this might give additional insights in the response of the spheroids to different 

treatments. Alternatively, if spheroids would be cultured in ultralow attachment plates, as a 

single spheroid per well, than ATP-based cell viability assays such as Cell Titer Glo 3D, could be 

used in addition to the automated spheroid segmentation to obtain more insight into the 

treatment response.    

To facilitate large-scale assessment of spheroid measurements, automatic segmentation of 

spheroids is valuable, although challenging. The nature of images obtained from our spheroid 

cultures complicates automatic segmentation due to variability in signal intensities and shapes 

of spheroids. Although in future studies image variability could be reduced by automatic image 

acquisition, the assay requires robust tools to quantify the images. While classical segmentation 

methods based on signal thresholds and circularity27, or pixel classifiers such as ilastik did not 

provide reliable segmentation in our hands, deep learning-based approaches offered a solution. 

By implementing a microscopy-optimized version of the Segment Anything model, we achieved 

robust automated spheroid segmentation across different tumor models. The high F1 scores 
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(>0.9) obtained for both training (CS) and test (CR) models demonstrate the broad applicability 

of this approach without the need for model-specific training. Our automated analysis pipeline 

enables efficient processing of large-scale spheroid screening data, offering many potential 

applications. In the future, the assay may be further automated by implementing automated 

microscopy to increase sensitivity and make assays less labor-intensive.  

Conclusion 

In summary, we describe a high-throughput treatment prediction assay using spheroids and 

automated analysis of treatment responses using deep learning, which can be adapted for 

biopsies derived from patient tumors for functional precision oncology. We used PDX models to 

develop and validate our spheroid assay, but these models may introduce a biological mismatch 

between host organism and xenograft, limiting their biological representation of a patient’s 

tumor12,43. Therefore, further investigation of the potential value of this assay for functional 

precision oncology requires studying the correlation between treatment response of spheroids 

formed from resected/biopsy material and patient outcome.   

Data Availability  

Training data and fine-tuned models are accessible through Zenodo 

(https://doi.org/10.5281/zenodo.14832406)44. The numerical data plotted (source data) in Figs. 

1, 2, 3, and 4 are provided in Supplementary Data 1 and 2. 

 

Code Availability 

All code, including the training notebook and analysis scripts, is available on GitHub 

(https://github.com/maartenpaul/spheroidAnalysis; https://doi.org/10.5281/zenodo.15239560)45. 

Code development was assisted by the Anthropic Claude 3.5 Sonnet large language model. All 

code was thoroughly validated and verified by the authors. We take full responsibility for its 

functionality and results. 

https://doi.org/10.5281/zenodo.14832406
https://github.com/maartenpaul/spheroidAnalysis
https://doi.org/10.5281/zenodo.15239560
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Fig. 1: Treatment response in cisplatin-sensitive and -resistant breast cancer PDX tumor 

spheroids. a, Schematic overview of spheroid generation from breast cancer patient-derived xenograft 

(PDX) models. b, Timeline of spheroid formation, treatment and sample processing. c, Maximum 

projection images from cisplatin-sensitive (CS) PDX spheroids either untreated (Unt) or treated with 10 

µM Olaparib (Ola), 10 µM cisplatin (Cis-Pt) or 10 Gy radiation (IR) stained for cell apoptosis (cleaved 

caspase-3, red), cell proliferation (EdU, green) and nuclei (DAPI, blue). Scale bar: 100 µm. d, Maximum 

projection images from cisplatin-resistant (CR) PDX spheroids stained for cell apoptosis, proliferation and 

nuclei. Scale bar: 100 µm. e, Fold mean intensity of cleaved caspase-3 in CS tumor spheroids. Each 

point represents the fold change from the average intensity calculated from five separate Z-slices from 

five spheroids per tumor (n=4). f, Percentage of EdU+ cells in CS tumor spheroids. Each point represents 

a tumor (biological replicate; n=4). g, Fold mean intensity of cleaved caspase-3 in CR tumor spheroids. 

Each point represents the fold change from the average intensity calculated from five separate Z-slices 

from five spheroids per tumor (n=4). h, Percentage of EdU+ cells in CR tumor spheroids. Each point 

represents a tumor (biological replicate; n=4). e-h, Groups were compared using unpaired two-tailed 

Student’s T-tests. i, Confocal images of CS tumor spheroids either untreated or treated with Olaparib, 

cisplatin or radiation (day 7). Spheroids were stained for 53BP1 (red) and nuclear stain (DAPI, blue). j, 

Percentage of cells with more than five 53BP1 foci in CS spheroids untreated or treated with Olaparib, 

cisplatin or radiation. Each point represents the percentage from one spheroid from which five separate 

Z-slices were analyzed for the four tumor models. Groups were compared using unpaired two-tailed 

Student’s T-tests. e-j, Data points are shown with median.   

Fig. 2: Automated spheroid recognition and size determination using AI. a, Schematic overview of 

AI-guided automated spheroid recognition pipeline. b, Heatmap of F1 scores calculated from separate CS 

training datasets or a combined training dataset. c, Percentage of correctly segmented spheroids when 

trained on itself (STS), on other single models or combined. Each point represents a tumor (biological 

replicate; n=4). Error bars indicate mean with standard deviation (SD). Groups were compared using an 

unpaired two-tailed Student’s t-test with Welch’s correction. d, Heatmap of F1 scores calculated from 

spheroid sets at 0, 4 and 7 days post-treatment using the combined CS training dataset. e, Comparison 

between manually-measured CS1 spheroid diameters (mm) and measured using automated recognition. 

r value shows Pearson correlation. Each data point represents a spheroid. f, Overlay of fold change 
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spheroid surface areas (A) manually calculated and determined with AI at 0, 4, and 7 days post-

treatment. Each data point represents a spheroid. g, Pearson correlation scores when comparing 

spheroid diameters from manually-measured and automated spheroid recognition method, trained on 

CS1, CS2A, CS2B or combined data. h, Spheroid roundness measured by the ratio between height and 

width measured using automated recognition. Each data point represents a spheroid. i, Comparison 

between pixel-based and circular area of segmented CS1 spheroids. Each data point represents a 

spheroid. j, Pearson correlation scores when comparing measured and circular area from segmented 

spheroids. e-f, h-i, Exact numbers of spheroids for each condition can be found in Supplementary Data 2.  

   

Fig. 3: Comparison between treatment response of CS and CR tumors. a-b, Bright-field images of 

CS1 (a) and CR1 (b) spheroids either untreated or treated with 10 µM Olaparib, 10 µM cisplatin or 10 Gy 

radiation. Scale bar: 100 µm c-j, Comparison between untreated (violin plot) and treated (points). Each 

data point represents a spheroid. Exact numbers of spheroids for each condition can be found in 

Supplementary Data 2. Groups were compared using parametric two-tailed Student’s t-test with Welch’s 

correction. CS1 (c), CS2A (d), CS2B (e) and CS3 (f), CR1 (g), CR2A (h), CR2B (i) and CR3 (j) spheroid 

surface areas at day 7.  

Fig. 4: Discrimination between treatment-sensitive and resistant tumors. a, Fold change of 

measured spheroid areas for CS1 and CR1 tumor models. Each data point represents a spheroid. b, 

Frequency distribution of measured spheroid areas from tumors treated with Olaparib. c, Frequency 

distribution of spheroid areas from tumors treated with cisplatin. d-e, Fold change of measured spheroid 

areas from CS (d) and CR(e) tumors. Data points are shown with median. Each data point represents a 

spheroid. f, Frequency distribution of spheroid areas from spheroids treated with irradiation. g-h, 

Percentage of spheroid data points measured below the calculated threshold for CS (g) and CR (h) tumor 

models. a, d-e, Exact numbers of spheroids for each condition can be found in Supplementary Data 2. 

 

Editorial Summary: 

Haspels et al. developed a high-throughput assay facilitated by automatic spheroid segmentation using 

deep learning. Measured differences in treatment response between cisplatin-sensitive and resistant 

tumors faithfully correspond with expected in vivo responses and the assay is able to discriminate 

between olaparib-sensitive and resistant tumors. 
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