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Abstract 

BACKGROUND  

Chronological age does not capture individual health or resilience. Advances in metabolomics have 

enabled development of molecular aging biomarkers that capture deviations between biological and 

chronological age, highlighting how genetics, environment, and lifestyle shape biological aging. Despite 

their promise, metabolomic biomarkers face challenges such as interpretability, non-linearity, and 

reproducibility. 

METHODS  

We have developed a metabolomic predictor of biological age based on untargeted metabolomic profiling 

of individuals aged 45–85 years from the Canadian Longitudinal Study on Aging. To enhance 

interpretability, we first identified metabolites related to health based on variance heterogeneity. For 

metabolites with identifiable optimal levels, or “sweet spots”, we modeled non-linearity using deviations 

from these values. A penalized regression model was trained on the Frailty Index using sweet spot 

deviations as predictors. 

RESULTS  

Here we show that the Sweet Spot Clock built on 178 health-related metabolites is strongly associated 

with all-cause mortality (HR=1.08, p =5.8x10-12, C-index=0.841) and age-related diseases. The biomarker 

outperforms models trained on chronological age and those using raw metabolite levels, underscoring the 

importance of modeling non-linearity. It remains predictive after adjusting for age, sex, lifestyle and 

socioeconomic factors, though its added value over standard health and demographic measures is modest. 

The model generalizes to an independent cohort of individuals aged 85 years. 

CONCLUSIONS  

The Sweet Spot Clock provides a reproducible and interpretable measure of biological age. By modeling 

deviations from optimal metabolite levels and training on health status rather than age, it offers a tool for 

understanding aging heterogeneity and identifying individuals at risk of health decline. 

Plain language summary 

Chronological age does not fully reflect a person’s health or resilience. We used data from Canadians 

aged 45–85 to develop a biomarker of biological age based on metabolites—small molecules in the blood 

that reflect body processes. We focused on 178 health-related metabolites and identified “sweet spots,” or 
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optimal levels, for 74 of them. Our model, the Sweet Spot Clock, was strongly related to mortality and 

age-related diseases. These findings held up in an independent group of Canadians aged 85 and older. By 

focusing on health status and accounting for non-linear patterns, our approach offers a reproducible and 

interpretable way to measure biological aging and understand why some people age more healthfully than 

others. 

Introduction 

Aging is a universal process experienced uniquely by individuals. While chronological age is a 

strong proxy for biological age, it does not fully reflect individual variation in physiological and 

functional status. Biological age provides additional insight into health and the pace of aging among 

same-age individuals 1. Although chronological age is a major risk factor for age-related diseases like 

type 2 diabetes, cardiovascular disease, and cancer 2, it does not consistently predict disease susceptibility, 

treatment response, or variability in aging trajectories. People of the same chronological age may show 

diverse aging phenotypes shaped by environmental exposures, lifestyle, psychological conditions, and 

genetic factors 3–5. Discrepancies between chronological and biological age have led to a challenging 

search for reliable aging biomarkers—quantitative individual-level measures that predict biological age 6 

and capture the variability in the timing of disease onset, functional decline, and mortality between 

individuals. Such biomarkers can act as predictors of aging, reflect the individual level of molecular and 

cellular damage, and provide valuable insights into what drives heterogeneity in aging. 

To operationalize accurate aging biomarkers, numerous -omics clocks have been developed over 

the past decade 7–9, leveraging advancements in technology and longitudinal -omics data (e.g., 

epigenomics, metabolomics, proteomics, transcriptomics, immuneomics, glycomics, and the gut 

microbiome) 10–21. These clocks typically target age deviation as a biomarker—the difference between 

predicted biological age and chronological age. Their weak inter-correlations indicate that they capture 

distinct facets of biological aging at various cellular levels, consistent with studies showing that 

metabolomic and epigenetic clocks often reflect complementary and non-overlapping biological processes 

22. Omics-based aging predictors are increasingly applied in research and clinical settings 6. However, 

many models remain limited by the assumption of linearity 23,24, poor interpretability and high 

dimensionality, often relying on numerous predictors with unclear relevance to aging heterogeneity 25. 

While non-linear methods such as neural networks are used to capture complex associations with aging 

outcomes, their black-box nature limits mechanistic insight 21. There is a need for biomarkers that are 

interpretable, model non-linearity effectively, and are grounded in biologically relevant predictors. 

Metabolomics offers potential in this context, as metabolites reflect integrated signals from endogenous 
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processes and external exposures, including diet, lifestyle, and acute stress 26,27. Though promising for 

identifying systemic markers of aging, challenges such as data reproducibility due to batch effects must 

be addressed 28. 

In our previous work, we demonstrated that difference in variance between the least and the most 

healthy individuals at a given age can reveal phenotypes under homeostatic control, which we proposed to 

be closely related to health 29. By narrowing the focus to metabolites potentially relevant to health, we can 

better target measurements that explain aging heterogeneity, reduce model complexity, minimize data 

noise, and enhance the interpretability of metabolomic clocks 6. Moreover, our earlier findings showed 

that many phenotypes under homeostatic control demonstrate complex, non-linear associations with 

health, a pattern also noted in recent -omics studies 30. Consequently, non-linear modeling or feature 

transformation techniques are necessary to address this complexity.  

Here, we investigate the molecular bases of heterogeneity in aging by leveraging untargeted 

metabolomic profiling data from individuals in the Canadian Longitudinal Study on Aging 31. We identify 

metabolites related to health and healthy aging and estimate their optimal levels, or “sweet spots.” We 

construct a metabolomic aging biomarker that explicitly models deviations from these optimal values. 

The resulting Sweet Spot Clock is predictive of mortality and the onset of age-related diseases and 

provides a reproducible and interpretable measure of biological aging that replicates in an independent 

cohort of older adults.  

Methods 

Data 

We examine data from the Canadian Longitudinal Study on Aging (CLSA) 31. These data consist 

of a stratified sample of Canadian males and females aged 45 to 85 years. Community-dwelling 

participants were recruited by CLSA from the ten Canadian provinces excluding individuals unable to 

respond in English or French; residents of the three Canadian territories and some remote regions; 

individuals living on First Nation reserves and other First Nations settlements in the provinces or in 

nursing homes; full-time members of the armed forces; and individuals with significant cognitive 

impairment at recruitment. The subsample of participants selected for the Comprehensive Cohort (COM) 

of the CLSA underwent detailed physical assessments and provided blood and urine samples. Baseline 

data were collected between May 2012 and July 2015. The average follow-up period was six years, 

defined as the time between baseline and Follow-up 2 data collection. The onset of age-related diseases 

after baseline was determined using data from both Follow-up 1 and Follow-up 2 assessments. 
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Metabolomic profiling was done for 9,992 (51.5% females) out of 27,170 participants who provided 

blood samples at baseline. All participants of CLSA provided informed consent prior to data collection. 

The present study was approved by the joint Research Ethics Board of the BC Cancer and the University 

of British Columbia, and harmonized with Simon Fraser University (#H22-01012). 

Genomic data 

Genotyping was done by CLSA for 26,622 participants using the Affymetrix UK Biobank Axiom 

array, with phasing and imputation using TOPMed reference panel v.r2 32. CLSA performed marker-

based and sample-based quality control 33. Variants were examined for discordant genotype frequency 

between batches, departure from HWE, discordance across control replicates, and sex genotype frequency 

discordance. We removed low-quality imputed genetic variants: with a minor allele frequency lower than 

0.1%, imputation quality score < 0.5, or missing rate > 0.1. The remaining 11.7 million variants were used 

for GWAS. Participants were examined for relatedness, sex discordance, outliers in heterozygosity and 

missing rates. Genetic ancestries were derived using principal component analysis and used to account for 

population structure. Sex was defined using genetically inferred sex chromosome composition as 

determined by CLSA 34. Samples with discordance between genetically inferred sex and self-reported sex 

were excluded from analysis.  

Untargeted metabolomic data and quality control 

CLSA metabolomic data includes levels of 1,458 metabolites quantified in EDTA plasma 

samples by Metabolon using ultrahigh performance liquid chromatography–tandem mass spectroscopy 

(UPLC–MS/MS). A description of quality control and normalization is detailed elsewhere 

(https://www.clsa-elcv.ca/wp-

content/uploads/2024/01/CLSA_DataSupportDoc_Metabolomics_v2.0_2023Aug03.pdf). 

From an initial cohort of 9,992 participants with metabolomic data, we selected a maximal subset 

of unrelated individuals without third-degree or closer relatives 35. We further excluded individuals that 

did not pass a sample-based quality control performed by CLSA. Specifically, we excluded samples with 

discrepancies between self-reported and genetic sex, as well as those exhibiting outlier values for missing 

genotype (>0.05%) data and heterozygosity rates (>0.215). The cohort used for analysis comprised 8,887 

individuals with European ancestry, 111 individuals with Asian ancestry, and 63 individuals with Black 

ancestry, as previously categorized by CLSA. We omitted analytes with a missing data rate exceeding 

20%, resulting in 1041 retained measures. Focusing on homeostatic mechanisms, the study was confined 

to endogenous metabolites, excluding xenobiotics, which were identified through annotations provided to 
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CLSA by Metabolon Inc. The final analytical dataset comprised 888 metabolites. Metabolite levels were 

log-transformed and scaled to ensure a mean of zero and standard deviation of one. To control for 

confounders, correlation analyses were performed between the metabolite levels and external factors, 

leading to adjustments in metabolite levels based on hours since the last meal or drink and dates of blood 

drawn. We applied an inverse rank-normal transformation to the metabolite ratios. Furthermore, we 

evaluated the metabolites for bimodality by ranking them using the bimodality index, where a bimodality 

index (BI) greater than 1.1 indicates potential bimodality, potentially affecting the reliability of the results 

36. The metabolites used for analysis and their bimodality indices are listed in Supplementary Data 1. 

Replication cohort 

Data from the Super Seniors Study was used as an independent replication cohort 37. This study 

was approved by the joint Research Ethics Board of BC Cancer and the University of British Columbia, 

harmonized with Simon Fraser University (#H20-03117-A002). All participants gave written informed 

consent. Participants were determined to be Super Seniors if they met both of the following inclusion 

criteria: i) 85 years or older at the date of recruitment, and ii) self-reporting as never having had cancer 

(except non-melanoma skin cancer), cardiovascular disease, diabetes, dementia, or major pulmonary 

disease (except asthma). Controls were age-matched individuals who did not meet inclusion criteria. Non-

fasting blood samples were collected from all participants.  The data set comprised 548 Super Seniors and 

119 age-matched controls. Self-reported sex was confirmed with genetically inferred sex chromosome 

composition, and genetic ancestry was inferred using principal component analysis. 

EDTA plasma samples were sent to Metabolon for untargeted metabolomic profiling using 

Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS), yielding a 

total of 1,679 biochemicals, including 1,371 compounds of known identity. Raw data was extracted, 

peak-identified and processed using Metabolon’s hardware and software. Peaks were quantified using 

area-under-the-curve. For each metabolite, the raw values in the experimental samples were divided by 

the median of those samples in each instrument batch, giving each batch and thus the metabolite a median 

of one.  These data were also normalized to the QC samples for each batch similar to CLSA 

(https://www.clsa-elcv.ca/wp-

content/uploads/2024/01/CLSA_DataSupportDoc_Metabolomics_v2.0_2023Aug03.pdf). Consistent with 

CLSA preprocessing, we performed minimum value imputation in which the minimum value detected for 

a given metabolite is used to replace the missing values for that same metabolite, followed by natural-log 

transformation and autoscaling 

Instruments for health assessment 

https://pubmed.ncbi.nlm.nih.gov/19718451/
https://pubmed.ncbi.nlm.nih.gov/19718451/
https://www.clsa-elcv.ca/wp-content/uploads/2024/01/CLSA_DataSupportDoc_Metabolomics_v2.0_2023Aug03.pdf
https://www.clsa-elcv.ca/wp-content/uploads/2024/01/CLSA_DataSupportDoc_Metabolomics_v2.0_2023Aug03.pdf
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We derived five composite instruments to quantify health status, each standardized to a unit 

interval where higher scores reflect greater health burden. The first instrument (I) is a deficit 

accumulation Frailty Index (FI), calculated as the proportion of 51 health deficits present. The second (II) 

captures the frequency of five major diseases—cancer (excluding non-melanoma skin cancer), 

cardiovascular disease, chronic pulmonary disease, dementia, and diabetes—normalized by individual-

level burden. The third (III) reflects the count of chronic conditions not included in the major disease 

category. The fourth (IV) assesses cognitive function using the average of three domain-specific scores, 

each rank-normalized from CLSA cognitive tests. The fifth(V) evaluates physical function based on rank-

normalized scores from five physical performance assessments. Details on phenotype definitions and 

scoring procedures are provided in Supplementary Table 1. The construction and methodologies used for 

these instruments are described elsewhere 29. We assigned health levels according to quartiles: healthiest, 

good health, fair health, and least healthy. Quartile-based cut-offs were applied to categorize participants 

by health levels regardless of age (Supplementary Table 2). 

Statistics and Reproducibility 

The study workflow is summarized in Fig. 1a,b and detailed in Supplementary Fig. 1. Primary 

analyses focused on the largest ancestral subset (European ancestry), representing 98% of the cohort. To 

perform inference and evaluate the performance of the molecular biomarkers, we randomly partitioned 

the participants with European ancestry into a training set (85%) and a validation (15%) set, resulting in 

sample sizes of 7,579 and 1,308, respectively. Sample sizes by sex and age group for the training and test 

sets are shown in Supplementary Table 3. The training set was used to subset metabolites, identify their 

optimal levels and to develop a model for estimating metabolomic age deviation. We stratified our 

analysis by sex, rather than adjusting for it, due to the substantial differences in metabolite concentrations 

and metabolic pathways observed between sexes 38. Health scores and metabolite levels were adjusted for 

age.  

Identifying health-related metabolites  

We selected metabolites that exhibited a variance effect on health, meaning that variance among 

the healthiest group is significantly lower than among least healthy individuals. To perform this selection, 

we conducted pairwise tests of equality of variance between the metabolite levels of the healthiest and 

least healthy groups using the Brown-Forsythe (BF) test for heteroskedasticity 39.  

Let 𝑥 ∈ ℜ𝑁 be metabolite level across 𝑁 sample, 𝑝 be a number of health groups, and 𝑧𝑖𝑗 =

|𝑥𝑖𝑗 − 𝑥̃𝑗|, where 𝑥̃𝑗 is the median of group j. The BF test statistic is the model F statistic: 

https://pubmed.ncbi.nlm.nih.gov/30799310/
https://www.jstor.org/stable/2285659
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𝐹 =
(𝑁 − 𝑝)

(𝑝 − 1)

∑ 𝑛𝑗(𝑧̃∙𝑗 − 𝑧̃∙∙)
2𝑝

𝑗=1

∑ ∑ (𝑧𝑖𝑗 − 𝑧̃∙𝑗)
2𝑛𝑗

𝑖=1
𝑝
𝑗=1

 

where 𝑛𝑗 is the number of observations in group j,  𝑧̃∙𝑗 are the group means of the 𝑧𝑖𝑗  , and 𝑧̃∙∙ is 

the overall mean of the 𝑧𝑖𝑗. This F-statistic follows the F-distribution ℱ𝑝−1, 𝑁−𝑝.  

Analysis was stratified by sex. Metabolites were determined to be related to health and healthy 

aging if 1) the healthiest and least healthy groups had significantly different variance for at least one sex; 

and 2) the healthiest group had the lower variance. Bonferroni adjustment was used to account for 

multiple testing (Bonferroni correction factor N = 5 instruments x 2 sexes x 888 metabolites = 8880). 

Defining metabolite optimal levels 

We employed piecewise regression analysis (also known as segmented regression) to identify 

breakpoints indicating shifts in the impact on health deficit scores 40. We defined the breakpoint as a 

single free parameter for which a continuous metabolite level modulates the mean response of a health 

deficit score through two linear segments joined at this breakpoint. For metabolite values 𝑋 and the 

response health score 𝑌, the piecewise regression equation for the expected mean 𝔼(𝑌|𝑥, 𝑤) = 𝜇 can be 

formulated as  𝜇𝑖 = 𝑤𝑖
𝑇𝛾 + 𝛽(𝑥𝑖 − 𝜓)1(𝑥𝑖 > 𝜓),  where 𝑖 = 1,2, . . 𝑛, 𝜓 ∈ ℛ𝑋 is a breakpoint, 1(∙) =

1 when its argument is true, and 𝑤𝑖
𝑇𝛾 includes additional linear terms, such as the model intercept, and 

possibly other covariates. The null hypothesis is 𝐻0: 𝛽 = 0, where 𝛽 is the difference in slopes. The test 

statistic is a score-based statistics that follows the Normal distribution 41. 

We identified optimal values, i.e., breakpoints under conditions where: 1) the slopes of the linear 

segments exhibit opposite signs; 2) the 95% confidence intervals for both slopes exclude zero; and 3) the 

disparity in slope values is statistically significant, as confirmed by a two-sided score test 42. We assumed 

that the breakpoints remained constant across age group but varied by sex. To minimize age-related 

confounding, we adjusted health deficit scores for age prior to analysis and used the residual values for 

the piecewise regression. We conducted separate analyses for male and female sex to derive sex-specific 

estimates of the breakpoints. We used Bonferroni correction on the p-values of the piecewise regression 

to account for multiple comparisons (N= 5 instruments x 2 sexes x M metabolites), and deemed adjusted 

p-values below 0.05 to be statistically significant.  

Distances from sweet spots  
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For each individual, the Euclidean distance (distances from sweet spots) was computed between 

the measured metabolite levels fitted to the piecewise regression model, and the optimal metabolomic 

levels. This method quantifies the deviation of actual metabolite concentrations from their optimal levels 

and reflects homeostatic dysregulation. 

Developing metabolomic clocks 

Following the idea that biomarkers of aging have to reflect not only inter-individual differences in 

mortality risk, but also the onset of age-related disease, we trained a penalized regression model to predict 

health status. We trained the sex-specific ElasticNet models to predict FI, serving as a surrogate endpoint 

for mortality, using health-related metabolites as predictors. For measurements for which we were able to 

estimate optimal levels, distances from sweet spots (DSSs) were used as transformation of metabolite 

levels. We refer to this model as the Sweet Spot Clock (Fig. 1c). To benchmark our approach against FI 

and established metabolomic clocks, we constructed comparator models that reflect key elements of prior 

frameworks trained on age 17 or untransformed metabolite levels 19, though these models were developed 

on targeted NMR platforms and focused on age or mortality rather than health decline. Specifically, we 

trained following four ElasticNet models: 

1. SweetSpotClock. Health-related metabolites with DSS transformed levels were used as 

predictors. The model was trained to predict FI. 

2. Baseline. This model reflects an established approach to contstructing -omic clocks. Health-

related metabolites were used as predictors, with metabolite levels transformed into distances 

from their estimated optimal values. The model was trained to predict chronological age.  

3. ControlAge: health-related metabolites with DSS transformed levels were used as predictors. The 

model was trained to predict chronological age. The model was trained to show the effect of 

training on FI, instead of chronological age, on predictive ability of all-cause mortality. 

4. ControlMb: health-related metabolites without transformation levels were used as predictors. The 

model was trained to predict FI. The model was trained to show the effect of DSS transformation 

on predictive ability of all-cause mortality. 

We applied 10-fold cross-validation to optimize the ElasticNet parameters on the training dataset. 

Post-training, we calibrated each model output to age units by rescaling predictions to match the mean 

and standard deviation of chronological age. We refer to these model outputs as metabolomic age. We 

then calculated metabolomic age deviation (MAD) for each participant by regressing biological age 
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against chronological age and taking the residual. The resulting age predictors (MADs) were then 

compared based on their association with mortality on the test set. ElasticNet feature importance was 

determined using caret R package 43. 

Metabolic pathway enrichment analysis 

We conducted pathway enrichment analysis to identify subpathways that were significantly 

enriched among the health-related metabolites. First, the significance ratio was calculated for each 

subpathway as the proportion of significant metabolites within the subpathway to the total number of 

measurements in that subpathway. The Fisher exact test was then used to determine significant 

enrichment 44, with Benjamini-Hochberg correction for multiple comparisons, controlling the false 

discovery rate at a significance level of 0.05. 

Survival Analysis 

We assessed associations between a biomarker and all-cause mortality using Cox proportional 

hazards models. All models were adjusted for sex and chronological age to account for potential 

confounders. Given the evidence that hazard ratio (HR) estimates are influenced by the scale and 

distribution of mortality predictors 45, we did not perform direct comparisons of HR estimates. Instead, we 

relied on Wald’s test p-values for a scale-independent evaluation of the models and the concordance 

index (C-index). The predictive ability of biomarkers was assessed based on the performance on the test 

set.  

Heritability estimate 

To determine what portion of biomarker variability might be explained by the genetic component, 

we performed a GWAS on MAD. We used SAIGE 46 to obtain single-variant summary statistics, 

adjusting linear regressions for age, sex, and the first ten genetic principal components. We used LDSC 

(v1.0.1) 47 to estimate SNP-based heritability of MAD in CLSA COM using the LD scores from the 1,000 

Genomes Project phase 3. We did not include the X chromosome in the LDSC computation, due to 

difficulties in assessing linkage disequilibrium in the X chromosome. 

Association analysis 

In CLSA, nutritional assessment was performed by the AB SCREEN II 48 and physical activity 

level was assessed by The Physical Activity Scale for Elderly 49. Psychological distress was measured 

using Kessler Psychological Distress Scale50. Other factors were defined as follows: alcohol consumption 

(never, light/moderate, heavy drinker), household income (CDN <$20,000, $20,000–$50,000, $50,000–
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<$100,000, $100,000–$150,000, >$150,000), education level (< secondary, secondary, post-secondary 

diploma/certification, or university degree), smoking status (never, occasional, current smoker, current 

heavy smoker). For more details on the CLSA protocol, see the CLSA Cohort profile. 31 

Comparison to established epigenetic clocks 

Epigenetic age was assessed using two first-generation epigenetic clocks: the Hannum clock 

(based on 71 CpG sites 15), and the Horvath Pan-Tissue clock (based on 353 CpG sites 14). These 

biomarkers targeted chronological age during training process to estimate biological age. Both of these 

epigenetic clocks are included in the CLSA COM dataset. We also calculated PhenoAge and GrimAge 

using the Biolearn Python library 51. While epigenetic data were available for 1,307 CLSA COM samples, 

only 161 were included in the validation set. To increase accuracy, we used the full dataset (both test and 

training sets) to estimate the strength of correlation between the Sweet Spot Clock and the epigenetic 

clocks. This approach was feasible because epigenetic data were not utilized in the training process.  

Results 

Health assessment and participants characteristics 

To identify health-related metabolites, we first assessed the health status of all participants. A 

total of 9,061 individuals aged 45–86 years (51% females) from the CLSA Comprehensive cohort (CLSA 

COM) were included in the analysis of 1,458 plasma metabolites.  Samples were collected by CLSA 

during the period from May, 2012 to July, 2015, with a mean tracking period of 6 years. The participants’ 

mean body mass index was 28.1 (95% CI: 22.6-33.6) kg/m2 and their mean fasting time before blood draw 

was 10 (95% CI: 6.5-13.5) hours. Out of a total of 9,061 individuals, 8,887 were of European ancestry, 

111 of Asian ancestry, and 63 of Black ancestry. We conducted a primary analysis on the ancestry that 

was most numerous in the sample (European) and replicated our findings within the ancestries that were 

less numerous (Asian, Black).  

To assign health scores to each participant, we developed five health instruments to measure 

health decline in older adults, as detailed in the Methods section: I - the Frailty Index (FI); II - the 

presence of five major diseases: cancer, cardiovascular disease, major pulmonary disease, dementia, and 

diabetes; III - the count of other chronic conditions; IV - a composite cognitive score; and V - physical 

function. All of these scores ranged from 0 (healthiest) to 1 (least healthy). The statistics and correlations 

between health scores are described in Supplementary Fig. 2. 

Twenty percent of metabolites were identified as related to health 
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A total of 888 metabolites (60% of a total of 1,458 plasma metabolites) were examined for their 

relevance to health after excluding xenobiotics and those with more than 20% missing values 

(Supplementary Data 1). Among these, 686 metabolites (77%) with known identities were categorized 

into eight superpathways: lipid, amino acid, nucleotide, cofactor and vitamins, carbohydrate, peptide, 

partially characterized molecules, and energy.   

We hypothesize that variance is lower in the healthiest group, for metabolites related to health. 

Therefore, we tested each metabolite for variance heterogeneity between the most and the least healthy 

groups. Samples were assigned to these two groups based on health scores quantiles (Methods). Of 888 

metabolites tested, 178 (20%) showed statistically significant differences in variance at least for one 

health instrument and sex after Bonferroni correction for 8,880 tests (Supplementary Data 2); 137 of them 

had known identity. These measurements were selected as predictors of metabolomic age.  

Among the 178 metabolites with detected sweet spots, 77 measurements (43%) were significant 

across male and female sexes (Fig. 2a). Metabolites involved in pentose, glycine, serine and threonine, 

and sterol metabolism showed differences in variance only in males. In contrast, metabolites from the 

pregnenolone and TCA Cycle pathways showed a variance effect on health exclusively in females. 

Analysis by superpathway revealed that amino acid, carbohydrate, and lipid superpathways harbored the 

most significantly heteroscedastic metabolites. The top markers that showed the strongest variance 

differences in these three superpathways were N6,N6,N6-trimethyllysine (p=1.2x10-27), glucose 

(p=1.2x10-20), and 1-stearoyl-2-linoleoyl-GPI (18:0/18:2) (p=1.1x10-11), respectively (Supplementary 

Data 3).  

We tested metabolites for their relevance to five different health instruments. Out of the 178 

selected measurements, 137 (80%) showed significant variance differences between the most and least 

frail older adults. In contrast, only 7 metabolites showed variance heterogeneity between the groups 

highest and lowest in cognitive function, e.g. 1,5-anhydroglucitol (1,5-AG) (p = 0.009). Detailed 

information on metabolites related to each instrument and those shared between instruments is presented 

in Fig. 2b.  

Only the androgenic steroids subpathway exhibited a statistically significant enrichment for 

health-related metabolites, with FDR adjusted p-value 6.8x10-7 (n=91). Other subpathways with notable 

significance ratios, calculated as a proportion of significant metabolites within the subpathway to the total 

number of measurements in that subpathway (see Methods), included ascorbate and aldarate metabolism, 

and corticosteroids. The top significant pathways determined by significance ratio are shown in Fig. 2c.  
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Most sweet spots estimates differ from population means 

We identified optimal metabolite levels as breakpoints, where values above or below these 

thresholds were linked to poorer health. Using piecewise regression (see Methods), we determined 

optimal levels for 74 (42%) of the 178 selected metabolites (Supplementary Data 4) after Bonferroni-

adjustment for 1,780 tests. Among these 74 measurements, we detected optimal level for 47 metabolites 

in older females, with the most significant effect change for gulonate (breakpoint estimate = -0.02, slopes 

= [-0.01, 0.04], p=1.7x10-34). In older males, we were able to estimate optimal levels for 59 metabolites; 

the most significant effect change was for N6,N6,N6-trimethyllysine (breakpoint estimate = -0.31, slopes 

= [-0.11, 0.01], p=1.7x10-34).  

The different health instruments provided varying estimates for the breakpoint positions. 

However, overlap of the 95% confidence intervals suggests a common range of estimates among the 

instruments. We selected the breakpoint estimate with the narrowest 95% confidence interval (CI) as the 

optimal metabolite value, i.e. sweet spot (Fig. 3). Similar to the variance analysis, a piecewise regression 

on the Frailty Index (I) produced a sweet spot estimate for 59 out of 74 measurements (80%), compared 

to only 9 out of 74 measurements (12%) for cognitive function. The 95% CIs of the optimal values 

overlapped between sexes for only 12 metabolites (20%), including metabolonic lactone sulfate and 

gulonate. Further analysis revealed that for 41 metabolites (55%), the 95% CI for the optimal value did 

not include zero, which is CLSA population mean.  

For each metabolite’s sweet spot, we calculated the distance between the optimal level and the 

observed metabolite measurement for each individual. We also investigated the correlation between 

distances from metabolite sweet spots and chronological age along with health instruments 

(Supplementary Fig. 3). Among measurements with known identity, hydroxyasparagine** (Pearson 

r2=0.48, p=1.6x10-212) and dehydroepiandrosterone sulfate (DHEA-S) (Pearson r2=0.38, p=5.7x10-160), 

showed the strongest correlation between age and deviation from the metabolite’s sweet spot. 

Sweet spot distance transformation enhances the mortality association of the metabolomic aging 

biomarker  

To estimate participants’ metabolomic age, we trained the Sweet Spot Clock with a penalized 

regression model on the training set, using 178 identified health-related metabolites as predictors. For a 

subset of these, we used distances from estimated optimal values instead of the raw levels (Methods). The 

relationship between chronological age and predicted metabolomic age, the model prediction transformed 

into years, is illustrated in Fig. 4a. To be consistent with other -omics based biomarkers, metabolomic age 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS 

 

was regressed onto age to calculate metabolomic age deviation (MAD). The wide distribution of MAD 

(Fig. 4b) suggests substantial inter-individual variation and a rightward shift among women relative to 

men. We evaluated the performance of the proposed biomarker on the test set by comparing it to a null, a 

baseline, and control models based on discrimination accuracy, measured by the concordance index (C-

index), and the strength of the association with 6-year all-cause mortality, both derived from Cox 

proportional hazards models.  

 The Sweet Spot Clock, trained on FI using distances from metabolite sweet spots, showed the 

strongest association with all-cause mortality and the highest discrimination (Wald statistic=6.9, p 

=5.8x10-12, C-index=0.841). The baseline model (Baseline row in Table 2), an established metabolomic 

clock 17 , showed lower discrimination (C-index=0.821) and a weaker association with all-cause mortality 

(Wald statistic=4.7, p =2.2x10-6); this model was trained to predict chronological age from measured 

metabolite levels. The null model, with only age and sex as predictors, showed the lowest discrimination 

(C-index=0.809). Next, we investigated the contribution of two factors that resulted in improved 

performance compared to the baseline model: (1) training on FI instead of age and (2) transforming 

predictors by using distances from sweet spots instead of raw metabolite levels. To disentangle the 

contributions of each factor, we trained two additional models, each with one factor fixed: ControlAge 

(fixed target) and ControlMb (fixed predictors). Our results indicate that both targeting FI (Wald 

statistic=6.7, p =2.7x10-11, C-index=0.839) and using distances from sweet spots (Wald statistic=5.0, p 

=4.5x10-7, C-index=0.830) contributed to the overall improvement (Table 1).  The correlations between 

metabolomic age derived from each model and the training targets (FI and age) are shown in 

Supplementary Fig. 4.   

To complement the survival analyses, we also trained logistic regression models using 6-year 

mortality status (alive vs. dead) as a binary outcome. The ordering of biomarkers based on area under the 

curve (AUC) and accuracy was consistent with the C-index rankings from Cox models (Table 1). We 

additionally compared AUCs between models using the DeLong test; although the Sweet Spot model had 

the highest AUC, the pairwise differences were not statistically significant (Supplementary Table 4).  

Metabolomic age deviation is strongly associated with mortality and onset of age-related diseases 

Next, we evaluated prognostic ability of the metabolomic biomarker.  We tested for the 

association with the onset of age-related conditions: diabetes, chronic obstructive pulmonary disease 

(COPD), stroke, kidney disease, Alzheimer's disease, and cancer. Besides mortality, MAD was associated 

with an increased risk of diabetes (HR = 1.05, p = 8.9x10-14, C-index=0.654), COPD (HR = 1.05, p = 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS 

 

3.1x10-7, C-index=0.692), stroke (HR = 1.07, p = 2.1x10-4, C-index=0.712), and kidney disease (HR = 

1.05, p = 0.02, C-index=0.641) after Bonferroni correction for 7 tests (Fig. 4d). All models showed higher 

discrimination accuracy than corresponding null models (with only sex and age as covariates; Table 2).  

To examine the extent to which MAD associates with mortality, independently of age, we divided 

participants into age deviation groups based on their MAD quartile. We then performed survival analysis 

and found that the group with a higher level of the MAD biomarker in a test set had a 79% higher risk of 

mortality over the 6-year period compared to the group with a lower age deviation (HR=1.79; p = 8.7x10-

6, C-index=0.821). The 6-year survival proportions by MAD quartiles are shown in Fig 4c. A 

complementary analysis using the 10th and 90th percentiles of MAD revealed an even stronger survival 

contrast (HR = 9.8; p = 6.5×10⁻⁵, C-index = 0.85) between health extremes (Supplementary Fig. 5).  

To improve robustness of our findings, we trained extended models, adjusting for additional 

covariates: body mass index (BMI), alcohol consumption, smoking status, physical activity level, and 

level of education (Methods). MAD remained strongly associated with mortality, diabetes, COPD, and 

stroke. Similarly, all models showed higher discrimination accuracy than corresponding extended null 

models (Table 2). 

Metabolomic age deviation is strongly associated with lifestyle factors 

Next, we explored genetic and environmental components of MAD. We conducted a genome-

wide association study (GWAS) on MAD, which identified a single genomic region significantly 

associated with the aging biomarker at the genome-wide significance level. The region is located on 

chromosome 1 (1p36.32), with a leading intergenic SNP, rs11809159, downstream of the AJAP1 gene 

(Fig. 4e). To assess the contribution of genetic factors to variability in MAD, we estimated SNP-based 

heritability using Linkage Disequilibrium Score Regression (LDSC). We found the SNP-heritability of 

MAD to be 0.23 (SE = 0.01). To investigate whether MAD and the Frailty Index shares common genetic 

component, we also performed a GWAS on the Frailty Index; however, all associations were below the 

genome-wide significance threshold. 

We conducted an association analysis using univariate regression models on the test set to explore 

the relationship between MAD and health, lifestyle, and socioeconomic factors. Adjusted for sex and age, 

higher MAD was significantly associated with inflammatory biomarkers: High sensitivity C-reactive 

protein (=0.02, p=4.7x10-14), Tumor necrosis factor-alpha (=0.04, p=3.5x10-34), and Interleukin-6 

(=0.04, p=2.2x10-32). MAD was also positively associated with psychological distress (=0.08, 

p=1.9x10-6), BMI (=0.04, p=2.2x10-32), Hemoglobin A1c, hyperglycemia biomarkers (=0.04, 
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p=2.5x10-39). Socioeconomic variables revealed that lower household income (=-0.03, p=8.1x10-17) and 

educational attainment (=-0.01, p=2x10-3 were associated with higher MAD. Lifestyle factors—nutrition 

quality (=-0.2, p=1.5x10-22), smoking (=0.02, p=1.7x10-11), and alcohol consumption (=0.03, 

p=4.7x10-5), also demonstrated strong associations with elevated MAD. To test for association between 

MAD and chronic condition load (number of conditions determined by Instrument II and Instrument III), 

cognitive (Instrument IV) and physical (Instrument V) function, we additionally adjusted regression 

models for BMI, alcohol consumption, smoking, education and physical activity level resulting in strong 

associations. All p-values were Bonferroni-adjusted for n=15 tests (Table 3).  

Metabolomic biomarker and mortality-predictive epigenetic biomarker share signals of aging 

heterogeneity 

To understand the relationship with other -omics-based biomarkers, we measured the correlation 

between MAD and epigenetic age deviation as measured by five established epigenetic clocks. We 

observed weak correlations with the Hannum clock 15 (r2 = 0.12, p = 2.0x10-4), the Horvath Pan-Tissue 

clock 14 (r2 = 0.08, p = 0.005) and DNAm PhenoAge13 (r2 = 0.17, p = 3.3x10-7). In contrast, the correlation 

with DNAm GrimAge 45 adjusted for chronological age appeared to be moderate (r2 = 0.38, p = 2.3x10-44 

for GrimAge v1). For additional details on correlations between the omics clocks (constructed 

metabolomic clocks and established epigenetic clocks) in both the full dataset and the test set, see 

Supplementary Fig. 6 and Supplementary Fig. 7, respectively.  

To further explore the predictive performance of the proposed metabolomic biomarker, we 

conducted a secondary analysis in a subset of 1,242 individuals (64 mortality events) with paired 

metabolomic and DNA methylation data. In this subgroup, the Sweet Spot Clock demonstrated higher 

discrimination than established epigenetic clocks (C-index: 0.783 for Sweet Spot Clock vs. 0.751 for 

GrimAge v2). A combined multi-omics model incorporating both MAD and GrimAge v2 achieved the 

highest discrimination (C-index = 0.806; Supplementary Table 5). 

Metabolite-level insights into biological age deviation 

Next, we examined the metabolites’ contribution to the calculated age deviation. In total, the 

Frailty Index-based model for predicting MAD resulted in 126 unique predictors, 100 of which have 

known identity. Of these 126 metabolites, 111 and 78 were retained in the female and male models, 

respectively, following separate Elastic Net selections (Supplementary Data 5). In the female model, 

hydroxyasparagine** (=0.0074), mannose (=0.0049), and erythronate* (=0.0047) contributed the 

most to Frailty Index. For the male model, mannose (=0.0039), (S)-3-hydroxybutyrylcarnitine 

(=0.0037), and vanillactate (=0.0032) were among the top contributors to MAD. As an additional 
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control, we tested the 50 top predictive metabolites for associations with 40 known disease biomarkers, 

chronic conditions, and diagnostic measurements, adjusting for age and sex. All analytes showed strong 

associations after Bonferroni correction (n=2000) with at least five distinct phenotypes tested 

(Supplementary Fig. 8). 

Replication of associations of MAD with health status and mortality 

 To replicate association between MAD, health decline and mortality, we performed untargeted 

metabolomic profiling on 667 participants from the Super Seniors Study 37 using EDTA plasma samples. 

For each batch, the data were normalized to the same QC samples as were used by CLSA (Methods), 

which allowed us to apply the previously identified CLSA sweet spots to the Super Seniors data. We then 

computed MAD scores using the original, pretrained Sweet Spot Clock without retraining. The data set 

comprised 548 exceptionally healthy Super Seniors aged 85 and older (mean age = 89, SD = 3.5, 62% 

females) who have never been diagnosed with cancer, cardiovascular or pulmonary disease, diabetes or 

dementia; and 119 age-matched controls with one or more chronic diseases (mean age = 89, SD = 3.7, 

52% females); 612 (92%) were of European ancestry.  

First, we calculated MAD for each participant, resulting in a mean age deviation -0.4 years 

among the Super Seniors (SD=3.1) versus 1.1 years (SD=3.5) among controls. Logistic regression for the 

all-cause mortality target adjusted for age, sex and ancestry (European/non-European), resulted in 

significant association between MAD and Super-Senior/age-matched control phenotype (=0.15, 

SE=0.03, OR=1.16, p=2.8x10-6, Supplementary Fig. 9). Next, we conducted survival analysis using 658 

individuals with known status, 334 of whom died by the status date. After adjusting for age, sex and 

ancestry, MAD showed significant association with mortality (HR=1.08, SE=0.02, p=3.3x10-5, 

Supplementary Fig. 10), and higher discrimination (C-index=0.66) than the null model with only age, sex 

and ancestry as covariates (C-index=0.61). 

To test generalizability, we calculated MAD for CLSA participants with Asian or Black ancestry, 

comprising 111 and 63 individuals with metabolomic data, respectively, who had not withdrawn from the 

CLSA by the second follow-up. There were no deaths among the subset with Asian ancestry and three 

deaths in the subset with Black ancestry. Cox regression, adjusted for sex and age, did not reveal a 

significant association between the MAD and all-cause mortality among the subset with Black ancestry 

(HR=1.15, SE=0.12, p=0.26). 

Discussion 
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We have introduced the Sweet Spot Clock, a metabolomic predictor of biological age. Our model 

restricts to metabolites related to health, and demonstrates that deviations from optimal metabolite values 

are better predictors of biological age than metabolite levels alone. To the best of our knowledge, this is 

the first study to explicitly account for non-linearity in metabolomic data. Our blood-based biomarker was 

strongly associated with all-cause mortality and health-related outcomes. Replication in an independent, 

older cohort demonstrated the generalizability of the Sweet Spot Clock, although predictive performance 

was attenuated, likely reflecting age-related metabolic shifts and cohort differences.  These findings are 

consistent with previous research on the metabolome, which has shown that an older predicted 

metabolomic age compared to chronological age is associated with multiple risk factors for premature 

mortality 25. Our model also showed strong correlations with comorbidity burden, physical decline, and 

cognitive decline, while exhibiting weak correlation with epigenetic age deviation computed by the 

DNAm PhenoAge, Hannum, and Horvath Pan-Tissue clocks, and moderate correlation with the GrimAge 

clock that incorporates smoking status and clinical biomarkers. A preliminary multi-omics model 

combining MAD with GrimAge v2 achieved the highest predictive performance in the paired subset than 

any individual predictor along, highlighting a promising future direction. These results further confirm 

that metabolomic models effectively capture differences in biological age independent of epigenetic 

changes 25. 

As expected, age and sex were the strongest predictors of age-related outcomes. While the 

extended model incorporating lifestyle and socioeconomic factors sometimes achieved higher 

concordance, the Sweet Spot Clock captured distinct biological variation not explained by these variables. 

For stroke and kidney disease, it even outperformed conventional predictors (i.e., BMI, alcohol 

consumption, smoking status, physical activity, and education) combined, suggesting added value in 

specific domains. These findings highlight the biomarker’s potential to complement established predictors 

and offer mechanistic insight into why individuals age differently, even if its standalone clinical utility is 

modest. 

To investigate why some individuals remain healthier and experience a later onset of age-related 

diseases compared to their peers, we focused on deficit accumulation across multiple systems, and trained 

a statistical model on the Frailty Index (an intermediary target) instead of on age or mortality. Many 

large-scale biobank studies have developed metabolomic clocks primarily trained to predict chronological 

age 52. While these studies demonstrated strong associations with mortality risk, cardiovascular 

phenotypes, and various disease risk factors, our findings suggest that focusing on deficit accumulation 

results in superior performance in predicting mortality and age-related diseases. Generally speaking, 

models trained to accurately predict chronological age do not capture the underlying biological 
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variability. These models focus on aligning with the chronological timeline rather than identifying the 

physiological changes and risk factors associated with different health outcomes. Another study employed 

targeted plasma metabolomics to develop metabolomic risk scores trained on all-cause mortality 19. 

Although mortality is a clearly defined endpoint and has been used in several recent studies, including 

GrimAge 45, training statistical models on functional decline or deficit accumulation has a clear 

advantage. Elucidating dysregulated pathways associated with health decline provides an opportunity for 

lifestyle or medical intervention. Although deficit accumulation reflects established physiological changes 

and a degree of resilience loss, it currently represents a comprehensive and clinically meaningful proxy 

for multisystem health decline in population-based studies. By training metabolomic models on this 

intermediary phenotype, our approach aims to extract biological signals that precede overt clinical 

manifestations. This framework offers a path toward refining instruments to capture earlier stages of 

dysregulation along the aging trajectory. 

Previous multi-omics analysis of the Frailty Index reported metabolites and genetic variants 

associated with frailty in female twins 53. While our GWAS analyses did not reveal any significant 

associations, we were able to replicate some metabolite-FI associations — glutamate, C-

glycosyltryptophan, pseudouridine, and epiandrosterone sulfate were among the metabolomic predictors 

of FI. Additionally, C-glycosyltryptophan, erythronate, and androstenediol (3beta,17beta) disulfate (2) 

were previously associated with all-cause mortality in the Alpha-Tocopherol, Beta-Carotene Cancer 

Prevention Study Cohort 54.  

As observed in previous work on Super Seniors 55 and validated in previous work on phenotypic 

measures, lower variance among the healthiest group is key to elucidating health-related measurements 29. 

Instead of selecting measurements based on correlation with age, we concentrated on the effect on health 

to explain differences in aging processes. Variance analysis resulted in a number of metabolic predictors, 

many of which were already related to diseases. For instance, N6,N6,N6-trimethyllysine (TML) and 

glucose demonstrated significant variance effects on health, serving as key indicators of disruptions in 

metabolic pathways such as carnitine synthesis and epigenetic variation 56 and glucose metabolism. 

Previous studies have shown an association between elevated TML and glucose levels with metabolic 

disorders, including diabetes and cardiovascular diseases 57–59. Aconitate has been suggested as a 

diagnostic marker for mitochondrial aconitase deficiency resulting in mitochondrial dysfunction 60. Levels 

of analytes with unknown identity also varied with health, suggesting the presence of significant yet 

uncharacterized metabolites that may provide additional understanding of metabolic functions and 

disorders. Overall, by defining health-related metabolites through the lens of variance, we were able to 
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gain meaningful insights into homeostatic regulation and prioritize the most significant analytes for 

further analysis. 

Relationship analysis revealed metabolites that were not previously known to have sweet spots. 

Notably, we sought to identify age-independent optimal metabolite levels. While previous studies indicate 

that age significantly influences metabolomic profiles 61,62, it is likely that that the observed variability 

may be attributed more to differential maintenance of metabolic health rather than to the aging process 

itself. Notably, the majority of the estimated optimal levels deviated from the population mean, 

suggesting that older adults, on average, are not in optimal health. Although average population values are 

often used to assess dysregulation levels of individuals, they may not accurately represent health 63.  

Higher TML levels were previously associated with elevated risk of all-cause and cardiovascular 

mortality 58. Our findings extend this observation by showing that levels below the optimal range are also 

associated with worse health. Increased metabolonic lactone sulfate levels were previously associated 

with cardiometabolic disease in a Mexican American population-based cohort 64, while low levels had not 

been associated with adverse outcomes, but our analyses imply that deviations in either direction from an 

optimal value are relevant to health.  

This study has several limitations. Firstly, 98% of the CLSA study population analyzed consisted 

of individuals of European ancestry, limiting the generalizability of the findings to diverse ancestries. To 

address the limited generalizability, it is crucial for future research to include diverse populations. The 

metabolome is inherently noisy and influenced by factors such as diet and environmental exposures 25, 

making longitudinal metabolomic data necessary, though correction for batch effects remains challenging 

28. Untargeted metabolomic profiling with relative concentrations of metabolites prevented us from 

calculating specific optimal levels. Although this study offers strong support for relative locations of 

sweet spots, further analysis is needed to establish optimal metabolite levels in absolute concentrations, 

for potential clinical use. Comparisons between our biomarker and established epigenetic clocks should 

be interpreted with caution. The epigenetic clocks were trained on external datasets that differ from CLSA 

in age structure, phenotypic breadth, mortality follow-up, and population characteristics. Finally, while 

we included comparator models reflecting the design principles of age-based (i.e., MetaboAge17) and 

mortality-based models (i.e., MetaboHealth19), direct benchmarking against these established clocks is 

limited by platform differences (targeted NMR vs. untargeted LC-MS) and distinct training endpoints. 

Our approach therefore complements rather than replicates existing metabolomic clocks, emphasizing 

health-related decline and non-linear transformations. 
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To summarize, our study identified metabolites related to health and estimated their optimal 

levels. We developed a sweet spot metabolomic clock that predicts biological age and examined the 

genetic and environmental components of age deviation. Associations between the metabolomic 

biomarker, health decline, and mortality were replicated in an independent cohort of individuals aged 85 

years and older. 
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TABLES 

 

Table 1. The associations between metabolomic age deviations (MAD) and all-cause mortality. 

 

Model* Target DSS  C-Index HR 95% CI p-value** AUC*** Accuracy 

Sweet Spot Clock FI + 0.841 1.08 [1.06-1.10] 5.8x10-12 0.824 0.951 

ControlMb FI - 0.839 1.08 [1.06-1.11] 2.7x10-11 0.822 0.950 

ControlAge Age + 0.830 1.10 [1.06-1.14] 4.5x10-7 0.824 0.950 

Baseline Age - 0.821 1.09 [1.05-1.13] 2.2x10-6 0.815 0.950 

Frailty index - - 0.830 1.05 [1.02-1.07] 5.2x10-5 0.809 0.948 

Null - - 0.809 - - - 0.795 0.949 

* Association were determined by Cox proportional hazards models, on the test (1285 participants who had not 

withdrawn from the study by the second follow-up with 69 death events). Each model has been adjusted for sex and 

age. MAD are the residuals of metabolomic clocks, calibrated into units of age, and then regressed onto age. Hazard 

ratios (HRs) of MAD corresponding to each model are shown alongside their 95% confidence intervals (CIs). The 

line corresponding to the proposed metabolomic predictor is highlighted in bold. 

** The p-values were obtained from two-sided Wald’s tests. 

*** AUC and accuracy were estimated for logistic regressions on 6-year mortality status, adjusted for age and sex. 
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Table 2. The associations between metabolomic age deviations (MAD) and age-related diseases, as 

determined by Cox proportional hazards models.  

Outcome Model* C-Index HR 95% CI p-value** 

Mortality  MAD 0.841 1.08 [1.06-1.10] 8.1x10-11 

N=1285, N events=69 Null  0.809 -*** - - 

 MAD Extended 0.863 1.09 [1.06-1.13] 2.2x10-7 

 Null Extended 0.851 - - - 

Diabetes MAD 0.654 1.05 [1.04-1.07] 1.8x10-13 

N=942, N events=236 Null  0.594 - - - 

 MAD Extended 0.676 1.04 [1.03-1.06] 1.8x10-6 

 Null Extended 0.656 - - - 

COPD MAD 0.692 1.05 [1.03-1.07] 6.2x10-7 

N=1063, N events=108 Null  0.655 - - - 

 MAD Extended 0.757 1.05 [1.02-1.06] 0.001 

 Null Extended 0.746 - - - 

Stroke MAD 0.712 1.07 [1.04-1.11] 4.2x10-4 

N=1108, N events=30 Null  0.649 - - - 

 MAD Extended 0.723 1.07 [1.03-1.11] 0.02 

 Null Extended 0.673 - - - 

Kidney disease MAD 0.641 1.05 [1.02-1.08] 0.04 

N=1096, N events=49 Null  0.594 - - - 

 MAD Extended 0.652 1.05 [1.01-1.08] 0.07 

 Null Extended 0.618 - - - 

Cancer MAD 0.642 1.00 [0.98-1.02] 1 

N=962, N events=194 Null  0.642 - - - 

 MAD Extended 0.656 1.00 [0.98-1.02] 1 

 Null Extended 0.655 - - - 

Dementia or Alzheimer’s  MAD 0.908 0.92 [0.80-1.06] 1 

disease Null  0.896 - - - 

N=1126, N events=5 MAD_Extended 0.955 0.94 [0.79-1.11] 1 

 Null_Extended 0.954 - - - 
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* Each model was adjusted for sex and age. Hazard ratios (HRs) of MAD corresponding to each model are shown 

alongside their 95% confidence intervals (CIs). MAD are the residuals of Sweet Spot Clock, calibrated into 

units of age, and then regressed onto age. Null model had age and sex as predictors. Extended models were 

additionally adjusted for body mass index, alcohol consumption, smoking status, physical activity level, and a 

level of education. 

** The p-values were obtained from two-sided Wald’s tests and Bonferroni adjusted (n=14). 

*** HRs shown in this table correspond to the metabolomic biomarker only, as they quantify its added predictive 

value beyond the covariates. The Null and Extended Null models do not include the biomarker and therefore do not 

provide an HR. HRs for all covariates in all models are reported in Supplementary Data 6. 

 

  



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS 

 

Table 3. The associations between metabolomic age deviations (MAD) and multiple factors on the test. 

Associations were evaluated using linear regression models adjusted for age and sex, with two-sided 

Wald tests of regression coefficients. P-values were Bonferroni-adjusted (n=17). MAD are the residuals 

of Sweet Spot Clock, calibrated into units of age, and then regressed onto age.  

 Factor beta SD p-value 

Overall health Chronic condition count 0.008 0.001 8.5x10-36 

 Physical function (Instrument IV) 0.003 0.001 2.8x10-9 

 Cognitive function (Instrument V) 0.002 0.001 5.6x10-5 

Body composition Body Mass Index 0.037 0.003 2.2x10-32 

Inflammation Interleukin-6 0.036 0.003 2.2x10-32 

 Tumor Necrosis Factor - Alpha 0.043 0.003 8.5x10-36 

 High Sensitivity C-Reactive  Protein, mg/L 0.018 0.002 4.7x10-14 

Hyperglycemia Hemoglobin A1c, % 0.041 0.003 2.3x10-39 

Lifestyle Nutritional Risk -0.203 0.019 1.5x10-22 

 Smoking status 0.017 0.002 1.7x10-11 

 Alcohol consumption 0.032 0.007 4.7x10-5 

 Physical activity levels 0.037 0.003 8.5x10-36 

 Psychological Distress -1.200 0.225 1.8x10-6 

Socio-economic Total household income -0.030 0.003 8.1x10-17 

 Level of Education -0.011 0.003 2.0x10-3 
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FIGURE LEGENDS  

Fig. 1. Overview of the approach (a) and analysis workflow (b). We assessed health status for each 

participant using five instruments and assigned health scores. Plasma metabolites from the baseline 

assessment were tested to identify those presumed to be related to health by examining variance 

heterogeneity between health groups. For measurements with established non-linear relationships with 

health deficits, metabolite levels were transformed by calculating the distances between measurements 

and optimal metabolite levels. These optimal levels, or "sweet spots," were estimated using piecewise 

regression on health deficit. Health-associated metabolites were then used to construct a predictive model 

for metabolomic age. The deviation between metabolomic and chronological age formed the molecular 

biomarker, metabolomic age deviation. Subsequent CLSA follow-up visits were used only to ascertain 

chronic condition status (Created with BioRender.com). 

Fig. 2. Metabolites identified as health-related. a, Variance differences between the most and least healthy 

groups. The bars depict the -log10 of p-values from the two-sided Brown-Forsythe test, with only the 

lowest p-values across all health instruments and sexes displayed. Metabolite names are color-coded: 

black indicates significantly lower variance in the healthiest group across both sexes, green for males 

only, and orange for females only. b, Shared health-related metabolites across health instruments. Orange 

bars in the y-axis represent the total number of metabolites with significantly lower variance among 

healthiest group as determined by each health instruments. Black bars in the x-axis represent the number 

of metabolites shared across instruments. c, Metabolic subpathways enriched in health-related 

metabolites. P-values are from the two-sided Fisher's exact test, adjusted for multiple testing (n=91) using 

Benjamini-Hochberg correction. Instruments: I - the Frailty Index; II - the number of five diseases: cancer 

(except non-melanoma skin cancer), cardiovascular disease, major pulmonary disease, dementia, and 

diabetes; III - the number of other chronic conditions; IV - cognitive function; V- physical function. The 

source data for Fig. 2 is in Supplementary Data 2-3. 

Fig. 3. Estimated optimal levels for health-related metabolites. The forest plot represents estimated 

optimal levels for 74 metabolites. Optimal levels and their 95% confidence intervals (CIs) were estimated 

using piecewise regression. The central point of each error bar corresponds to the regression-estimated 

optimal level, and the bars indicate its 95% CIs. The narrowest CI for each metabolite, across all health 

instruments, is displayed. The heatmap represent -log10(p-values) associated with the strength of the 

effect of metabolite levels on health, as determined by five instruments. P-values from the two-sided 

score test were Bonferroni-adjusted (n=1780). Instruments: I - the Frailty Index; II - the number of five 

diseases: cancer (except non-melanoma skin cancer), cardiovascular disease, major pulmonary disease, 
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dementia, and diabetes; III - the number of other chronic conditions; IV - cognitive function; V- physical 

function. The source data for Fig. 3 is in Supplementary Data 4. 

Fig. 4. Metabolomic age deviation predicts mortality and age-related diseases. a, Chronological age 

versus metabolomic age. Each dot represents a CLSA COM participant, darker meaning >1 individual. R 

indicates Pearson correlation between variables; p-value is for a two-sided t-test. Values above the 

regression line (dashed black line) indicates faster agers; below the line - slower agers. b, Distribution of 

metabolomic age deviation (in years). c, 6-year survival proportions by metabolomic age deviation 

(MAD) quartiles. Cox proportional hazard model was adjusted for age and sex. P-value was estimated by 

two-sided Wald test. d, Hazard ratios for various adverse outcomes derived from Cox hazard regression 

models adjusted for sex and age (mortality, n=1,285; diabetes, n=942; COPD, n=1,063; stroke, n=1,108; 

kidney disease, n=1,096; cancer, n=962; dementia, n=1,126). The covariate in the model is metabolomic 

age deviation. The central point of each error bar corresponds to the estimated hazard ratio, with 

horizontal lines indicating the 95% confidence interval. P-values for two-sided Wald’s tests are adjusted 

for seven tests using Bonferroni correction. e, Genome-wide association study of metabolomic age 

deviation (genomic control λ = 1.049). Association statistics were obtained from two-sided Wald tests. 

Grey horizontal line indicates genome-wide significance level of P < 5E-8. A single genomic region 

significantly associated with the aging biomarker at the genome-wide significance level (rs11809159, p-

value=1.94 × 10⁻⁹). The source data for Fig. 4 is in Supplementary Data 6-7. 

 

 

 

Editorial summary: 

Vishnyakova et al. develop a metabolomic aging biomarker based on optimal metabolite levels, 

or “sweet spots.” They show that this biomarker predicts mortality and the onset of age-related 

diseases. 

 

Peer review information: Communications Medicine thanks Sithara Vivek, Chiara Herzog and 

Valentin Vetter for their contribution to the peer review of this work. 
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Alanine and Aspartate Metabolism

Progestin Steroids

Nicotinate and Nicotinamide Metabolism

Dihydrosphingomyelins

Aminosugar Metabolism

Pyrimidine Metabolism, Uracil containing

Sterol

Pyrimidine Metabolism, Thymine containing

Purine Metabolism, Guanine containing

Phosphatidylinositol (PI)

Lactosylceramides (LCER)

Glycolysis, Gluconeogenesis, and Pyruvate Metabolism

Fatty Acid, Dihydroxy

Pregnenolone Steroids

Vitamin A Metabolism

Creatine Metabolism

Hexosylceramides (HCER)

Corticosteroids

Androgenic Steroids

Ascorbate and Aldarate Metabolism
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X−26109
X−25519
X−25420
X−25371
X−25279
X−24812
X−23659
X−21736
X−21471
X−21470
X−21467
X−21364
X−17357
X−15503
X−13553
X−12851
X−12013
X−11850
X−11470
X−11444

vanillylmandelate (VMA)
urea

trigonelline (N'−methylnicotinate)
tetrahydrocortisol glucuronide

sphingomyelin (d18:2/24:2)*
retinol (Vitamin A)

pseudouridine
phenol sulfate

N6,N6,N6−trimethyllysine
N,N,N−trimethyl−alanylproline betaine (TMAP)

N−succinyl−phenylalanine
N−acetyltaurine
N−acetylalanine

metabolonic lactone sulfate
lithocholate sulfate (1)

kynurenate
indolelactate

hydroxyasparagine**
hydroxy−CMPF*

homocitrulline
gulonate*

glycohyocholate
glycocholenate sulfate*

glyco−beta−muricholate**
glutamine_degradant*

etiocholanolone glucuronide
eicosanedioate (C20−DC)

dehydroepiandrosterone sulfate (DHEA−S)
creatinine

cortolone glucuronide (1)
citrulline

carotene diol (1)
ascorbic acid 3−sulfate*

andro steroid monosulfate C19H28O6S (1)*
5alpha−pregnan−3beta,20alpha−diol monosulfate (2)

5alpha−androstan−3alpha,17beta−diol 17−glucuronide
5,6−dihydrouridine

3b−hydroxy−5−cholenoic acid
3−methylglutarylcarnitine (2)

3−hydroxyoctanoate
3−carboxy−4−methyl−5−propyl−2−furanpropanoate (CMPF)

3−carboxy−4−methyl−5−pentyl−2−furanpropionate (3−CMPFP)**
3−aminoisobutyrate

3−(3−amino−3−carboxypropyl)uridine*
2R,3R−dihydroxybutyrate
2−O−methylascorbic acid

16a−hydroxy DHEA 3−sulfate
11beta−hydroxyetiocholanolone glucuronide*

11beta−hydroxyandrosterone glucuronide
1,5−anhydroglucitol (1,5−AG)
1−ribosyl−imidazoleacetate*

1−methylhistidine
1−methyl−5−imidazoleacetate

1−carboxyethylleucine

−2 −1 0 1

Sex

Females

Males

Sweet spot estimate

Females

I II V III IV

Males

I II V III IV
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