

Ischemic brain infarcts, white matter hyperintensities, and cognitive impairment are increased in patients with Atrial Fibrillation

Received: 12 May 2025

Accepted: 7 January 2026

Cite this article as: Krisai, P., Aeschbacher, S., Coslovsky, M. *et al.* Ischemic brain infarcts, white matter hyperintensities, and cognitive impairment are increased in patients with Atrial Fibrillation. *Commun Med* (2026). <https://doi.org/10.1038/s43856-026-01389-w>

Philipp Krisai, Stefanie Aeschbacher, Michael Coslovsky, Nikki Rommers, Tobias Reichlin, Andreas S. Müller, Jürg H. Beer, Peter Ammann, Angelo Auricchio, Giorgio Moschovitis, Richard Kobza, Dipen Shah, Marcello Di Valentino, Giulio Conte, Georg Ehret, Elisa Hennings, Andreas Monsch, Rebecca E. Paladini, Nicolas Rodondi, Laurent Roten, Matthias Schwenkglenks, Christian Sticherling, Patrick Badertscher, Christine S. Zuern, Tim Sinnecker, Marco Duering, Felix Mahfoud, Leo H. Bonati, David Conen, Stefan Osswald, Michael Kühne & eMBA, for the Swiss-AF Investigators

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

Ischemic brain infarcts, white matter hyperintensities, and cognitive impairment are increased in patients with Atrial Fibrillation

Brief title: Atrial fibrillation and Cognition

Philipp Krisai^{1,2} MD, Stefanie Aeschbacher^{1,2} PhD, Michael Coslovsky^{2,3} PhD, Nikki Rommers³ PhD, Tobias Reichlin⁴ MD, Andreas S. Müller⁵ MD, Jürg H. Beer⁶ MD, Peter Ammann⁷ MD, Angelo Auricchio⁸ MD, PhD, Giorgio Moschovitis⁸ MD, Richard Kobza⁹ MD, Dipen Shah¹⁰ MD, Marcello Di Valentino¹¹ MD, Giulio Conte⁸ MD PhD, Georg Ehret¹⁰ MD, Elisa Hennings^{1,2} MD, PhD, Andreas Monsch¹² PhD, Rebecca E. Paladini^{1,2} PhD, Nicolas Rodondi^{13,14} MD, MAS, Laurent Roten⁴ MD, Matthias Schwenkglenks^{15,16} PhD MPH, Christian Sticherling^{1,2} MD, MHBA, Patrick Badertscher^{1,2} MD, Christine S. Zuern^{1,2} MD, Tim Sinnecker^{17,18} MD, Marco Duering¹⁸ MD, Felix Mahfoud^{1,2} MD, MA, Leo H. Bonati^{17,19} MD, David Conen²⁰ MD MPH, Stefan Osswald^{1,2#} MD, Michael Kühne^{1,2#} MD eMBA, for the Swiss-AF Investigators

#Stefan Osswald and Michael Kühne contributed equally and should be considered shared last authors.

*A list of authors and their affiliations appears at the end of the paper

- 1) Cardiology Division, Department of Medicine, University Hospital Basel, University Basel, Basel, Switzerland
- 2) Cardiovascular Research Institute Basel, University Hospital Basel, University Basel, Basel, Switzerland
- 3) Department of Clinical Research, University Basel, University Hospital Basel, Basel, Switzerland
- 4) Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- 5) Department of Cardiology, Triemli Hospital Zürich, Zürich, Switzerland
- 6) Department of Medicine, Cantonal Hospital of Baden and Molecular Cardiology, University Hospital of Zürich, Zürich, Switzerland
- 7) Department of Cardiology, Kantonsspital St. Gallen, St. Gallen Switzerland
- 8) Division of Cardiology, Ente Ospedaliero Cantonale (EOC), Cardiocentro Ticino Institute, Regional Hospital of Lugano, Lugano, Switzerland.
- 9) Department of Cardiology, Luzerner Kantonsspital, Lucerne, Switzerland
- 10) Division of Cardiology, Department of Medical Specialities, University Hospital Geneva, Geneva, Switzerland
- 11) Division of Cardiology, Ospedale San Giovanni, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- 12) Memory Clinic, Universitäre Altersmedizin, Felix Platter Spital Basel, University of Basel, Basel, Switzerland
- 13) Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
- 14) Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- 15) Epidemiology, Biostatistics, and Prevention Institute, University of Zürich, Zürich, Switzerland
- 16) Health Economics Facility, Department of Public Health, University of Basel, Basel, Switzerland

- 17) Department of Neurology and Stroke Center, University Hospital Basel, University of Basel, Basel, Switzerland
- 18) Medical Image Analysis Center (MIAC) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- 19) Rheinfelden Rehabilitation Clinic, Rheinfelden, Switzerland.
- 20) Population Health Research Institute, McMaster University, Hamilton, Canada

Word count (Text): 3307

Competing Interests: Philipp Krisai (PK) reports speaker fees from BMS/Pfizer and Biosense Webster, and research grants from the Swiss National Science Foundation, Swiss Heart Foundation, Foundation for Cardiovascular Research Basel, Machaon Foundation. Michael Kühne (MK) reports grants from Bayer, grants from BMS, grants from Boston Scientific, grants from Daiichi Sankyo, grants from Pfizer, personal fees from Abbott, personal fees from Boston Scientific, personal fees from Daiichi Sankyo, and royalties from Springer (ECG book). Stefan Osswald (SO) reports grants from Swiss National Science Foundation, Swiss Heart Foundation, Foundation for Cardiovascular Research Basel. Felix Mahfoud (FM) has been supported by Deutsche Gesellschaft für Kardiologie (DGK), Deutsche Forschungsgemeinschaft (SFB TRR219, Project-ID 322900939), and Deutsche Herzstiftung. In the past 24 months, Saarland University has received scientific support from Ablative Solutions, Medtronic and ReCor Medical. Until May 2024, FM has received speaker honoraria/consulting fees from Ablative Solutions, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Inari, Medtronic, Merck, ReCor Medical, Servier, and Terumo. Matthias Schwenkglenks (MS) reports grants from Swiss National Science Foundation, for the conduct of the study; grants from Amgen, grants from MSD, grants from Novartis, grants from Pfizer, grants from Roche, grants and personal fees from BMS and personal fees from Sandoz, all outside the submitted work. David Conen (DC) reports speaker fees from Servier, consulting fees from Trimedics. Giorgio Moschovitis (GM) has received advisory board or speaker's fees from Astra Zeneca, Bayer, Boehringer Ingelheim, Daiichi Sankyo, Gebro Pharma, Novartis and Vifor, all outside of the submitted work. All other authors declare no competing interest.

Address for correspondence:

Philipp Krisai, MD
Department of Cardiology
University Hospital Basel
Petersgraben 4, 4031 Basel, CH
E-Mail: philipp.krisai@usb.ch
Phone: +41 61 265 25 25

Abstract

Background

The interrelationships between atrial fibrillation (AF), brain lesions and cognitive function are poorly understood. We aimed to investigate the relationship of AF with brain lesions and cognition.

Methods

We enrolled 1,480 patients with and 959 without AF in a multicenter prospective study (Swiss-AF; NCT02105844). We assessed brain structure, and cognition using the Montreal Cognitive Assessment (MoCA). Brain magnetic resonance imaging (MRI) was performed to assess large non-cortical and cortical infarcts (LNCCI), small non-cortical infarcts (SNCI), white matter hyperintensities (WMH), and microbleeds. Using causal mediation analyses, we investigated the direct (lesion-independent) and indirect (lesion-mediated) effects of AF on cognition.

Results

Mean age in AF patients is 75.0 vs. 74.2 years in no-AF patients, 28.6% vs. 36.9% are female, and comorbidities are comparable. The prevalence of MRI-detected brain infarcts (LNCCI and/or SNCI) is 40.1% in AF patients vs. 24.0% in no-AF patients, adjusted OR (95% CI): 1.78 (1.30; 2.44), $p = 0.0003$. WMH (Fazekas ≥ 2) are more prevalent in AF patients (59.2% vs 44.4%), adjusted OR (95% CI): 2.03 (1.50; 2.77), $p = 4.6e-06$. The mean MoCA score is 25.3 in AF patients and 26.4 in no-AF patients. In mediation analysis, the total effect of AF on cognition is -1.05 MoCA points, decomposed into a direct effect of -0.99 and an indirect, lesion-mediated, effect of -0.06 points.

Conclusions

The prevalence of ischemic brain infarcts and WMH is higher in patients with AF than without AF despite comparable comorbidities. AF is associated with lower cognitive function, primarily through a direct effect rather than mediated by brain lesions.

Key words: Atrial fibrillation; brain infarcts; cognitive function.

Plain Language Summary

Atrial fibrillation is a common heart rhythm disorder in which there is an irregular heartbeat. It has been associated with damage to the brain and reduced cognitive function, which is the mental processes involved in thinking, learning, and processing information. However, the relationship is poorly understood. We assessed brain structure and cognitive function in people with similar characteristics that either had or did not have atrial fibrillation. We found that people with atrial fibrillation had more brain damage visible by brain imaging and lower cognitive function, compared to people without atrial fibrillation. The brain damage seen did not seem to be the main cause of the lower cognitive function. The main driver of lower cognitive function was most probably the arrhythmia itself.

Abbreviations and Acronyms

AF	atrial fibrillation
MRI	magnetic resonance imaging
LNCCI	large non-cortical infarcts and cortical infarcts
MoCA	Montreal Cognitive Assessment
SNCI	small non-cortical infarcts
TIA	transient ischemic attack
WMH	white matter hyperintensities

Introduction

Atrial fibrillation (AF) and cognitive function are both highly prevalent, with their incidence continuing to rise in aging populations.^{1–3} Patients with AF have an increased risk of reduced cognitive function, but the mechanisms driving this association remain incompletely understood and cannot be fully explained by clinically overt brain infarcts alone.⁴ It has been shown that patients with AF have, in addition to overt brain infarcts, a high burden of covert brain infarcts on brain magnetic resonance imaging (MRI), even when treated with oral anticoagulation. Moreover, both overt and covert brain infarcts have been similarly associated with reduced cognitive function.^{5,6} In addition to AF, patients with reduced cognitive function or dementia often share similar cardiovascular risk factors, such as hypertension, diabetes, and vascular disease.^{7–12} This overlap of risk factors makes it challenging to isolate the independent effect of AF on brain lesions and cognitive function from that of these comorbidities.

The hypothesis underlying this population-based study was that vascular brain lesions are more frequent and the main drivers of reduced cognitive function in patients with AF. To examine this hypothesis, we compared the prevalence of brain lesions and cognitive function in patients with and without AF but similar baseline characteristics and comorbidities. Additionally, we employed causal mediation analysis to decompose the total effect into a natural direct (brain lesion-independent) and a natural indirect (brain lesion-mediated) effect of AF on cognitive function. We show that AF was associated with an increased burden of brain infarcts, moderate to severe white matter hyperintensities, and lower cognitive function. The effect of AF on cognitive function was mostly not mediated by brain lesions and independent of comorbidities, suggesting that AF may impair cognition through a direct, arrhythmia-related mechanism.

Methods

Patient population

The present study is based on the Swiss Atrial Fibrillation (Swiss-AF) cohort (NCT02105844).

The study complies with the Declaration of Helsinki, the study protocol was approved by the local ethics committees (lead ethics committee: Nordwest- und Zentralschweiz (EKNZ); participating ethics committees: Kantonale Ethikkommission Bern, Commission Cantonale d'éthique de la recherche Genève (CCER), Ethikkommission Ostschweiz (EKOS), Comitato etico cantonale Ticino, Commission cantonale d'Éthique de la Recherche sur l'être humain Vaud (CER-VD), Kantonale Ethikkommission Zürich; ID: 2014-067; PB_2016-00793; 2021-00701) and informed written consent was obtained from each patient.

The Swiss-AF study is an ongoing, prospective cohort study at 14 centres in Switzerland investigating the association of AF with brain lesions and cognitive function.^{5,6,13} The main inclusion criteria were previously documented AF and age ≥ 65 years. A small number of patients aged 45-64 years were enrolled to assess effects of AF on individuals in the active workforce. Exclusion criteria were the inability to give informed consent or secondary AF due to reversible causes. After enrolment of 2,415 patients with AF from 2014 to 2017, we extended the study and enrolled 1,003 patients without AF from 2018 to 2023 (no-AF group). Inclusion criteria for the no-AF group were age ≥ 65 years, sinus rhythm on the ECG at enrolment and to have no history of AF. About 10% of patients in the no-AF group underwent a Holter-ECG in addition to the mandatory 12-lead ECG at enrolment. Exclusion criteria were the inability to give informed consent, history of AF, atrial flutter or other relevant supraventricular arrhythmias, contraindications for MRI, and diagnosed or suspected dementia. The enrolment of patients with an acute illness was delayed for 4 weeks.

Of the 3,418 enrolled patients, we excluded those <65 years of age (AF group n=315, no-AF group n=5), those who had no available MRI data (AF group n=604, no-AF group n=24), or cognitive assessment at baseline (AF group n=11, no-AF group=12) and those with incomplete MRI measurements (AF group n=5, no-AF group n=3), leaving 2,439 (71.4%) patients for the current analysis (**Supplementary Figure 1**). Main reasons for missing MRI data were cardiac devices and claustrophobia.

Baseline characteristics of excluded patients compared to included patients are shown in **Supplementary Table 9**.

Clinical variables

At a baseline, in-person study visit, trained study personnel acquired information about patient demographics, prior medical history, interventional and medical treatment and risk factors, using standardized case report forms. After 5 minutes of rest in a sitting, upright position with legs uncrossed and back supported, blood pressure was measured automated with an appropriately sized cuff and validated device. The mean of three consecutive blood pressure measurements was used in all analyses. AF was categorized into paroxysmal or non-paroxysmal AF according to guideline recommendations at the time of study inception.¹⁴ Prior stroke was defined as a focal neurological dysfunction with clinical, imaging or pathological evidence of focal infarction due to ischemic, hemorrhagic or undetermined origin. Transient ischemic attack (TIA) was defined as a transient focal neurological dysfunction without evidence of focal infarction.

Brain magnetic resonance imaging

Brain MRI images were acquired by 1.5 or 3 Tesla scanners with a standardized protocol installed on all MR-scanners at local study centres as described previously.⁵

After local evaluation, all brain MRI data were centrally analyzed by a neuroimaging core lab (Medical Image Analyses Centre, Basel, Switzerland). Blinded expert readers marked and segmented lesions in standardized analyses. Board-certified neuroradiologists confirmed the assessments. Small non-cortical infarcts (SNCI) were defined as lesions ≤ 20 mm in diameter on FLAIR on axial sections. These lesions could not involve the cortex and had to be consistent with ischemic infarction in the territory of a perforating arteriole located in the white matter, internal or external capsule, deep brain nuclei, thalamus, or brainstem.¹⁵ There was no differentiation between SNCIs and lacunes. Large non-cortical infarcts were defined with a diameter of >20 mm. Cortical infarcts were defined as lesions of any size on FLAIR involving the cortex. Large non-cortical infarcts and any cortical infarct (LNCCIs) were combined into one category. White matter hyperintensities (WMH) of presumed vascular origin were identified according to STRIVE-2 criteria.¹⁶ WMH were rated visually using the Fazekas scale, and Fazekas ≥ 2 was considered to indicate moderate WMH. Cerebral microbleeds (Mb) were defined according to STRIVE-2 criteria and counted on T2*-weighted or susceptibility-weighted imaging. Detailed information on MRI is provided in the supplement.

Cognitive testing

Centrally trained study personnel assessed cognition using the Montreal Cognitive Assessment (MoCA).¹⁷ The MoCA evaluates visuospatial abilities, short-term memory, abstraction, language and executive functions divided into 13 individual test sections. Obtainable scores range from 0-30 points with higher scores indicating better cognitive function across all domains. One point is added to the total test score if the patient had 12 years or less of formal education.

Statistics and Reproducibility

The full analysis set included all patients with MRI and MoCA scores, as described above. Analyses were based on full outcome measurements of the respective outcome with no outcome imputation performed. Missing covariate measurements were very rare, with up to four missing BMI observations and three patients with unknown smoking status. These were imputed using mean values of continuous variables and the most frequent value for categorical variables. We report continuous baseline characteristics as mean (standard deviation) or median (interquartile range) if strongly skewed, and categorical variables as frequencies (percentages).

In line with our underlying hypothesis, we performed the following analyses: We first investigated the association of AF, AF type and oral anticoagulation with the presence of brain lesions using logistic regression models. At a second step, we used linear regression models to investigate the association of AF with the MoCA score. As MoCA predictors, we included AF and each of the brain lesion types (separate models), or AF and the presence of any of the lesion types. We report effect estimates and 95% confidence intervals, as well p-values for the interaction terms between AF and lesion presence.

Next, we considered that according to our underlying hypothesis brain lesions lie on the causal pathway between AF and cognition, potentially having a mediating effect (**Supplementary Figure 2**). Accordingly, as a third step we performed a causal mediation analysis to decompose the potential causal effect of AF to natural direct (brain lesion-independent) and natural indirect (brain lesion-mediated) effects on cognitive function. Again we investigated each brain lesion type separately, as well as the presence of any brain lesion, implementing a weighting-based approach.¹⁸ Confidence intervals (CI) for the estimated natural effects were calculated via bootstrapping. We used simulations to perform a sensitivity analysis assessing the robustness of our findings to the effect of a potential unmeasured confounder.

Finally, we repeated the analyses of the association between AF and cognitive function in patients without any brain lesions to assess these independently of brain lesions.

All regression analyses were performed unadjusted and adjusted for the following predefined variables: age, sex, BMI, smoking status (active vs. non-smoker), history of hypertension, history of diabetes, education level (basic: ≤ 6 years, middle: 6 to ≤ 12 years, advanced: > 12 years) and use of oral anticoagulation.

In this exploratory, hypothesis-generating analysis we provided p-values without correction for multiple testing. These should be seen as complementary to the effect sizes, indicating the probability of these effects, or more extreme, under the relevant null-hypothesis, and not as confirmatory with respect to a specific threshold. All statistical analyses were performed using R 4.3.3.

Results

Baseline characteristics for 1,480 patients with AF and 959 patients without AF are shown in **Table 1**.

1. Mean age was 75.0 vs. 74.2 years in patients with and without AF, 28.6% vs. 36.9% were female, and mean CHA₂DS₂-VASc score was 3.7 vs. 3.5 points, respectively. Patients with AF more frequently had a history of stroke or TIA (22.1% vs. 13.1%) and a lower rate of coronary heart disease (29.2% vs. 35.0%). Patients with AF had a higher rate of oral anticoagulation (91.6% vs. 8.9 %), but a lower rate of anti-platelet therapy (18.9% vs. 59.1%), than patients without AF. Forty five percent of patients with AF had paroxysmal AF.

AF and brain lesions

The prevalence of brain lesions in both groups is shown in **Figure 1**. LNCCI and/or SNCI were found in 594 (40.1%) patients with AF and in 229 (24.0%) patients without AF. In both groups ≥99% had any WMH, but moderate WMH (Fazekas ≥2) were more prevalent in patients with AF (59.2% vs 44.4%). Mb were found in 351 (24.5%) patients with AF and in 256 (27.0%) patients without AF. Frequency of brain lesions stratified by oral anticoagulation status, is provided in **Supplementary Table 1**.

The odds of infarcts and Fazekas ≥2 were higher in patients with AF, with adjusted odds ratios (aOR) (95% CI) estimated at 1.79 (1.30; 2.45; p = 0.0003) for LNCCI and/or SNCI and 2.03 (1.50; 2.77; p = 4.6e-06) for WMH (Fazekas ≥2). For Mb the aOR was 0.72 (0.51; 1.01; p=0.06) (**Figure 2**). ORs were consistent for paroxysmal and non-paroxysmal AF (**Supplementary Table 2**). There were no significant interactions of AF and oral anticoagulation for any brain lesion (**Supplementary Table 3**).

AF and cognitive function

The mean MoCA was 1.1 point lower in patients with AF compared to patients without AF (25.3 vs. 26.4 points) (**Figure 3A**). In adjusted linear regression analyses, AF was associated with lower

MoCA scores (β [95% CI] -0.93 [-1.33; -0.54; $p = 3.44\text{e-}06$]) (**Supplementary Table 4**). This difference in cognitive function was consistent across different age groups, and is comparable to the observed difference in MoCA of patients without AF and with a 9.2-year age difference (**Supplementary Figure 3**). Importantly, this effect did not vary with age (AF-age interaction $p=0.32$). When including only patients with no brain lesions of any type, differences in MoCA between patients with and without AF were consistent, though effect estimates were smaller (**Figure 3B** and **Supplementary Table 5**).

In linear regression models, there was a consistent, negative, association of both AF and lesion presence with MoCA score, except for Mb (**Table 2**). The interactions of AF and lesion were not significant, except for LNCCI (**Supplementary Table 6**).

Mediation analysis of AF and cognition

The results of the causal mediation analysis for the natural direct and natural indirect effect of AF on cognitive function are shown in **Figure 4**. The total effects of AF on cognition ranged from -1.02 to -1.05 points of the MoCA score across different lesion types. The natural direct effects of AF were estimated between -0.98 to -1.01 points, while the natural indirect effects, via brain lesions, ranged from 0 to -0.06 points of the MoCA score. For example, when considering the presence of SNCI and/or LNCCI, the total causal effect of AF on MoCA was estimated at -1.02 (-1.39; -0.68), with the natural direct effect of AF estimated at -0.98 (-1.36; -0.63) and the natural indirect effect, via SNCI and/or LNCCI, estimated at -0.04 (-0.09; -0.01). Sensitivity analyses, evaluating the potential impact of unmeasured confounders, showed consistent results. These analyses suggest that even in the presence of a hypothetical strong unmeasured confounder, the natural causal direct effect of AF would still remain substantially larger than the natural indirect effects (**Supplementary Table 7**).

Discussion

In this elderly population with a high prevalence of vascular brain lesions on MRI, ischemic brain infarcts were approximately 1.7 times, and moderate to severe white matter hyperintensities about 1.3 times more prevalent in patients with AF compared to patients without AF. These higher rates of brain lesions were found despite comparable comorbidities and the widespread use of oral anticoagulation in AF patients. Patients with AF exhibited lower cognitive function, and AF was independently associated with ischemic brain infarcts, moderate to severe white matter hyperintensities, and lower cognitive function. Mediation analysis suggested that the impact of AF on cognitive function was predominantly independent of brain lesions. These findings suggest that AF may contribute to reduced cognitive function through mechanisms beyond brain lesions.

Ischemic brain infarcts were more frequent in patients with AF compared to patients without AF, despite comparable baseline characteristics and comorbidities. In the ASSERT trial, the lack of a temporal relationship of device-recorded AF episodes and strokes questioned the role of AF as an independent risk factor for stroke, and instead suggested that AF might serve as an indicator of stroke risk through associated comorbidities.¹⁹ This interpretation could be supported by the high prevalence of brain lesions even in our non-AF cohort and a higher stroke risk in individuals with a high CHA₂DS₂-VASc score, even in the absence of AF.²⁰⁻²² Alternatively, a driver of brain lesions in our non-AF cohort might have been non-detected subclinical AF, that was previously shown to be present in about 30% of patients without a prior AF diagnosis,^{23,24} though this would be expected to attenuate the currently found association of AF and brain lesions. Recent evidence from a large study involving nearly half a million patients with continuous device monitoring found an increased stroke risk within 5 days of AF episodes lasting >5.5 hours, reinforcing the direct role of AF as a risk factor for stroke.²⁵ In our analysis, AF was strongly associated with ischemic brain infarcts and microvascular disease, independent of comorbidities, consistent across

different AF types, and unconditional of anticoagulation. Therefore, our results favor the hypothesis that AF itself may be a major risk factor for ischemic brain infarcts and microvascular disease.

In our study, AF was an independent predictor of lower cognitive function, with patients with AF scoring about 1-point lower on MoCA than patients without AF. Although this difference may appear modest, it is comparable to the difference in cognitive function observed in patients with an age difference of about 10 years. This is concerning given the rising prevalence of AF in the aging population. Based on our previous work showing that in patients with AF covert brain lesions lead to a similar decline in cognitive function as overt infarcts,^{5,6} we hypothesized that the effect of AF on cognitive function was driven mainly by MRI-detected brain lesions. While we found that micro- and macrovascular brain lesions do associate with cognition similar to prior studies,²⁶ our current findings challenge the hypothesis: Using causal mediation analysis methods, we found that almost all of the association of AF with reduced cognitive function could be explained via the direct path rather than being mediated via any of the investigated brain lesions. The direct path may comprise multiple undifferentiated paths, including unknown mechanisms with potential other, unknown or unmeasured mediators. An effect of AF on cognition, independent of brain lesions, is also supported by our sensitivity analyses, in which we analysed only patients without any brain lesion, and in which results were consistent. The underlying AF related mechanisms remain speculative but may involve blood pressure fluctuations due to irregular AF and varying ventricular cycle lengths, potentially impairing cerebral perfusion.²⁷ Among other non-ischemic mechanisms of inflammation and neurodegeneration,²⁸ impaired brain glymphatic function has recently been implicated in cognitive decline in patients with AF.²⁹ Moreover, AF may be associated with mental health conditions, including depression and/or

anxiety, that may accentuate the relation of AF and cognitive function.^{30,31} These potential confounders may be a limitation to the mediation analysis reported here. However, the sensitivity analysis to the presence of unmeasured confounders suggests that this confounding would have to be unreasonably large to change our conclusions.

The higher prevalence of ischemic brain infarcts and lower cognitive function compared to patients without AF, were found in a well anticoagulated AF population. While the cross-sectional design does not allow to draw conclusions on the effect or directionality of anticoagulation on incident brain lesions or cognitive decline over time, we have previously shown that a relevant number of micro- and macrovascular brain lesions and cognitive decline occurred in patients with AF despite a high rate of anticoagulation.⁶ These findings suggest that oral anticoagulation alone does not prevent brain infarcts and loss in cognition in all AF patients. Whether early rhythm control in addition to anticoagulation, as investigated in the EAST-AFNET 4 trial,³² attenuates the risk of MRI-detected brain lesions and cognitive decline requires further investigation.

The strengths of our study include the unselected, multicenter cohort with standardized MRI and cognitive assessment, allowing for robust comparisons between patients with and without AF. Limitations of the study population include potential confounding factors, cohort differences and unmeasured variables. The causal mediation analysis itself is prone to limitations in an observational, cross-sectional design, in which the sequential order of AF-diagnosis, development of brain lesions and cognition is not unequivocal – the order we examine is an assumption. This limitation is somewhat contracted in a supplemented analysis performed in the subgroup of patients that exhibited no lesions in MRI, which presented similar results with respect to cognitive differences (**Supplementary Table 8**). But, residual confounding remains in that analysis, despite our adjustment for known confounders. As randomization to AF or no-AF is not feasible, our

approach of comparing patients with and without AF and similar demographics and comorbidities represents a suitable method for addressing these questions. While we screened patients to exclude AF before enrolment, including Holter-ECG in about 10% of the patients in addition to a 12-lead ECG, some patients in the no-AF group might still have had subclinical, non-detected AF. This could have led to an underestimation of the true impact of AF on brain lesions and cognition. We did not have data on the location of brain lesions, brain atrophy and cerebral metabolism, which might have impacted cognitive function. In addition, a possible selection bias lies in the fact that a larger fraction of AF patients did not undergo MRI compared to the non-AF patients; however, the majority of these patients did not undergo MRI due to the presence of a device, and not due to other conditions, suggesting that the bias is likely unsubstantial.

In this population-based study of elderly patients with a high prevalence of vascular brain lesions, AF was associated with an increased burden of brain infarcts, moderate to severe white matter hyperintensities, and lower cognitive function, despite high rates of oral anticoagulation. Importantly, the effect of AF on cognitive function was mostly not mediated by brain lesions and independent of comorbidities, suggesting that AF may impair cognition through a direct, arrhythmia-related mechanism.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. To protect participant privacy, this information is not publicly available. Supplementary Data 1 contains the source data for Figure 3.

Acknowledgements: The Swiss-AF study is supported by grants of the Swiss National Science Foundation (grant numbers 33CS30_148474, 33CS30_177520, 32473B_176178, 32003B_197524, and 324730_192394), the Swiss Heart Foundation (FF22036), the Foundation for Cardiovascular Research Basel (FCVR), and the University of Basel.

Author Contributions:

Author (Initials)	Roles
PK	Conceptualization, Methodology, Formal analysis, Data curation, Writing – original draft
SA	Methodology, Formal analysis, Writing – original draft
MC	Conceptualization, Methodology, Formal analysis, Data curation, Writing – original draft
NR	Methodology, Formal analysis, Data acquisition, Writing – original draft
TR	Investigation, Data acquisition, Writing – review & editing
ASM	Investigation, Data acquisition, Writing – review & editing
JHB	Investigation, Data acquisition, Writing – review & editing
PA	Investigation, Data acquisition, Writing – review & editing
AA	Investigation, Data acquisition, Writing – review & editing
GM	Investigation, Data acquisition, Writing – review & editing
RK	Investigation, Data acquisition, Writing – review & editing
DS	Investigation, Data acquisition, Writing – review & editing
MDV	Investigation, Data acquisition, Writing – review & editing
GC	Investigation, Data acquisition, Writing – review & editing
GE	Investigation, Data acquisition, Writing – review & editing
EH	Investigation, Data acquisition, Writing – review & editing
AM	Investigation, Data acquisition, Writing – review & editing
REP	Methodology, Data curation, Formal analysis, Writing – original draft
NR	Investigation, Data acquisition, Writing – review & editing

LR	Investigation, Data acquisition, Writing – review & editing
MS	Methodology, Data curation, Formal analysis, Writing – review & editing
CS	Investigation, Writing – review & editing
PB	Investigation, Writing – review & editing
CSZ	Investigation, Data curation, Writing – review & editing
TS	Investigation, Data curation, Writing – review & editing
MD	Investigation, Writing – review & editing
FM	Investigation, Writing – review & editing
LHB	Investigation, Data curation, Writing – review & editing
DC	Investigation, Funding acquisition, Formal analysis, Writing – review & editing
SO	Conceptualization, Methodology, Supervision, Project administration, Funding acquisition, Writing – original draft
MK	Conceptualization, Methodology, Supervision, Project administration, Funding acquisition, Writing – original draft

References

1. Lloyd-Jones, D. M. *et al.* Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. *Circulation* **110**, 1042–1046 (2004).
2. Krijthe, B. P. *et al.* Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. *Eur. Heart J.* **34**, 2746–2751 (2013).
3. Prince, M. *et al.* The global prevalence of dementia: A systematic review and metaanalysis. *Alzheimers Dement* **9**, 63–75 (2013).
4. Kalantarian, S., Stern, T. A., Mansour, M. & Ruskin, J. N. Cognitive impairment associated with atrial fibrillation: a meta-analysis. *Ann. Intern. Med.* **158**, 338–346 (2013).
5. Conen, D. *et al.* Relationships of Overt and Silent Brain Lesions With Cognitive Function in Patients With Atrial Fibrillation. *J. Am. Coll. Cardiol.* **73**, 989–999 (2019).
6. Kühne, M. *et al.* Silent brain infarcts impact on cognitive function in atrial fibrillation. *Eur. Heart J.* **43**, 2127–2135 (2022).
7. Benjamin, E. J. *et al.* Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. *JAMA* **271**, 840–844 (1994).
8. Conen, D. *et al.* Influence of systolic and diastolic blood pressure on the risk of incident atrial fibrillation in women. *Circulation* **119**, 2146–2152 (2009).
9. Alonso, A. *et al.* Blood lipids and the incidence of atrial fibrillation: the Multi-Ethnic Study of Atherosclerosis and the Framingham Heart Study. *J. Am. Heart Assoc.* **3**, e001211 (2014).
10. Adelborg, K. *et al.* Heart failure and risk of dementia: a Danish nationwide population-based cohort study. *Eur. J. Heart Fail.* **19**, 253–260 (2017).
11. Lourida, I. *et al.* Association of Lifestyle and Genetic Risk With Incidence of Dementia. *JAMA* **322**, 430–437 (2019).
12. SPRINT MIND Investigators for the SPRINT Research Group *et al.* Association of Intensive vs Standard Blood Pressure Control With Cerebral White Matter Lesions. *JAMA* **322**, 524–534 (2019).
13. Conen, D. *et al.* Design of the Swiss Atrial Fibrillation Cohort Study (Swiss-AF): structural brain damage and cognitive decline among patients with atrial fibrillation. *Swiss Med. Wkly.* **147**, w14467 (2017).
14. Kirchhof, P. *et al.* 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. *Eur. Heart J.* **37**, 2893–2962 (2016).
15. Wardlaw, J. M. *et al.* Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. *Lancet Neurol.* **12**, 822–838 (2013).
16. Duering, M. *et al.* Neuroimaging standards for research into small vessel disease—advances since 2013. *Lancet Neurol.* **22**, 602–618 (2023).
17. Nasreddine, Z. S. *et al.* The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. *J. Am. Geriatr. Soc.* **53**, 695–699 (2005).
18. Lange, T., Vansteelandt, S. & Bekaert, M. A simple unified approach for estimating natural direct and indirect effects. *Am. J. Epidemiol.* **176**, 190–195 (2012).
19. Brambatti, M. *et al.* Temporal relationship between subclinical atrial fibrillation and embolic events. *Circulation* **129**, 2094–2099 (2014).
20. Mitchell, L. B. *et al.* Prediction of stroke or TIA in patients without atrial fibrillation using CHADS2 and CHA2DS2-VASc scores. *Heart Br. Card. Soc.* **100**, 1524–1530 (2014).
21. Melgaard, L. *et al.* Assessment of the CHA2DS2-VASc Score in Predicting Ischemic Stroke, Thromboembolism, and Death in Patients With Heart Failure With and Without Atrial

Fibrillation. *JAMA* **314**, 1030–1038 (2015).

- 22. Koene, R. J. *et al.* Relation of the CHA2DS2-VASc Score to Risk of Thrombotic and Embolic Stroke in Community-Dwelling Individuals Without Atrial Fibrillation (From The Atherosclerosis Risk in Communities [ARIC] Study). *Am. J. Cardiol.* **123**, 402–408 (2019).
- 23. Mahajan, R. *et al.* Subclinical device-detected atrial fibrillation and stroke risk: a systematic review and meta-analysis. *Eur Heart J* **39**, 1407–1415 (2018).
- 24. Svendsen, J. H. *et al.* Implantable loop recorder detection of atrial fibrillation to prevent stroke (The LOOP Study): a randomised controlled trial. *The Lancet* **398**, 1507–1516 (2021).
- 25. Singer, D. E., Ziegler, P. D., Koehler, J. L., Sarkar, S. & Passman, R. S. Temporal Association Between Episodes of Atrial Fibrillation and Risk of Ischemic Stroke. *JAMA Cardiol.* **6**, 1364–1369 (2021).
- 26. Banerjee, G. *et al.* Cognitive Impairment Before Atrial Fibrillation–Related Ischemic Events: Neuroimaging and Prognostic Associations. *J. Am. Heart Assoc.* **9**, e014537 (2020).
- 27. Gardarsdottir, M. *et al.* Atrial fibrillation is associated with decreased total cerebral blood flow and brain perfusion. *Europace* **20**, 1252–1258 (2018).
- 28. Krisai, P. *et al.* Biomarker and cognitive decline in atrial fibrillation: a prospective cohort study. *Sci. Rep.* **15**, 12921 (2025).
- 29. Guo, J. *et al.* Atrial fibrillation catheter ablation, brain glymphatic function, and cognitive performance. *Eur. Heart J.* ehaf036 (2025) doi:10.1093/eurheartj/ehaf036.
- 30. von Eisenhart Rothe, A. F. *et al.* Depression in paroxysmal and persistent atrial fibrillation patients: a cross-sectional comparison of patients enroled in two large clinical trials. *Eur. Eur. Pacing Arrhythm. Card. Electrophysiol. J. Work. Groups Card. Pacing Arrhythm. Card. Cell. Electrophysiol. Eur. Soc. Cardiol.* **16**, 812–819 (2014).
- 31. Al-Kaisey, A. M. *et al.* Atrial Fibrillation Catheter Ablation vs Medical Therapy and Psychological Distress: A Randomized Clinical Trial. *JAMA* **330**, 925–933 (2023).
- 32. Kirchhof, P. *et al.* Early Rhythm-Control Therapy in Patients with Atrial Fibrillation. *N. Engl. J. Med.* (2020) doi:10.1056/NEJMoa2019422.

Figure legends

Figure 1 Prevalence of brain lesions on MRI in patients with and without atrial fibrillation. The large bars represent the proportion of any brain lesions in the two groups. In addition, the relevant number of patients (N) and the prevalence of each specific lesion type is shown with individual bars within the groups. AF = atrial fibrillation; LNCCI = large non-cortical and cortical infarcts; Mb = microbleeds; SNCI = small non-cortical infarcts; WMH = white matter hyperintensities.

Figure 2 Summaries of logistic regression models for atrial fibrillation (predictor) and brain lesions (outcomes). The centre of the error bars indicates the odds ratio. Two-sided p-values of Wald-tests of the odds ratio are given without correction for multiple testing. N = number of patients included in the model. LNCCI = large non-cortical and cortical infarcts; Mb = microbleeds; SNCI = small non-cortical infarcts; WMH = white matter hyperintensities. Adjusting variables included age, sex, BMI, smoking status (active vs. non-smoker), history of hypertension, history of diabetes, education level (basic: ≤ 6 years, middle: 6 to ≤ 12 years, advanced: > 12 years) and use of oral anticoagulation.

Figure 3 Cognitive function in patients with AF and patients without AF. (A) Summary MoCA scores in patients with AF and patients without AF and (B) summary conditional on the presence of any lesion identified in MRI. Boxes contain the 25 through 75% quantiles, the thick horizontal lines are the median. Whiskers indicate the most extreme values lying within the box-edge and $1.5 *$ the interquartile range. Mean values are represented with the crosses and listed below

the graph with standard deviation. The number of patients (N) of each group is shown within the plots. Source data is provided in Supplementary Data 2.

Figure 4 Summary of causal mediation analyses for effect decomposition of atrial fibrillation and different types of brain lesions as mediators for MoCA. The centre of the error bars indicates the estimate. LNCCI = large non-cortical and cortical infarcts; Mb = microbleeds; SNCI = small non-cortical infarcts; WMH = white matter hyperintensities.

Swiss-AF investigators

University Hospital Basel and Basel University: Stefanie Aeschbacher^{1,2}, Steffen Blum^{1,2}, Leo H. Bonati^{17,19}, Désirée Carmine^{1,2}, David Conen²⁰, Ludvig Dahlheim^{1,2}, Corinne Girroy^{1,2}, Andreas Gasser^{1,2}, Elisa Hennings^{1,2}, Ruben Kerler^{1,2}, Philipp Krisai^{1,2}, Michael Kühne^{1,2}, Vincent Meier^{1,2}, Christine Meyer-Zürn^{1,2}, Pascal B. Meyre^{1,2}, Andreas U. Monsch¹², Christian Müller^{1,2}, Stefan Osswald^{1,2}, Rebecca E. Paladini^{1,2}, Raffaele Peter^{1,2}, Adrian Schweigler^{1,2}, Christian Sticherling^{1,2}, Gian Völlmin^{1,2}, Priska Zuber¹⁹.

Principal Investigator: Stefan Osswald^{1,2}; Local Principal Investigator: Michael Kühne^{1,2}

University Hospital Bern: Faculty: Drahomir Aujesky¹⁴, Urs Fischer¹⁴, Juerg Fuhrer⁴, Laurent Roten⁴, Simon Jung¹⁴, Heinrich Mattle¹⁴; Research fellows: Seraina Netzer¹⁴, Luise Adam¹⁴, Carole Elodie Aubert¹⁴, Martin Feller¹⁴, Axel Loewe¹⁴, Elisavet Moutzouri¹⁴, Claudio Schneider¹⁴; Study nurses: Tanja Flückiger¹⁴, Cindy Groen¹⁴, Lukas Ehrsam¹⁴, Sven Hellrigl¹⁴, Alexandra Nuoffer¹⁴, Damiana Rakovic¹⁴, Nathalie Schwab¹⁴, Rylana Wenger¹⁴, Tu Hanh Zarrabi Saffari¹⁴. Local Principal Investigators: Nicolas Rodondi¹⁴, Tobias Reichlin⁴

Stadtspital Triemli Zurich: Alain Bernheim⁵, Roger Dillier⁵, Michèle Deubelbeiss⁵, Franz Eberli⁵, Christine Franzini⁵, Daniel Hofer⁵, Raban Jeger⁵, Isabel Juchli⁵, Claudia Liedtke⁵, Samira Murugiah⁵, Jacqueline Nadler⁵, Thayze Obst⁵, Jasmin Roth⁵, Fiona Schlomowitsch⁵, Xiaoye Schneider⁵, Peter Sporns⁵, Katrin Studerus⁵, Noreen Tynan⁵, Dominik Weishaupt⁵, Caroline Wiederkehr⁵. Local Principal Investigator: Andreas Müller⁵

Kantonspital Baden: Corinne Friedli⁶, Silke Kuest⁶, Karin Scheuch⁶, Denise Hischier⁶, Nicole Bonetti⁶, Alexandra Grau⁶, Jonas Villinger⁶, Eva Laube⁶, Marcel Frick⁶, Stefanie Leuenberger⁶, Franziska Rutz⁶. Local Principal Investigator: Jürg-Hans Beer⁶

Cardiocentro Lugano: Angelo Auricchio⁸, Adriana Anesini⁸, Cristina Camporini⁸, Maria Luce Caputo⁸, Rebecca Peronaci⁸, Francois Regoli⁸, Martina Ronchi⁸. Local Principal Investigator: Giulio Conte⁸

Kantonsspital St. Gallen: Roman Brenner⁷, David Altmann⁷, Karin Fink⁷, Michaela Gemperle⁷, Jessica Meier⁷. Local Principal Investigator: Peter Ammann⁷

Hôpital Cantonal Fribourg: Mathieu Firmann²¹, Sandrine Foucras²¹, Daniel Hayoz²¹, Martine Rime²¹. Local Principal Investigator: Michael Kühne^{1,2}

Luzerner Kantonsspital: Benjamin Berte⁹, Kathrin Bühler⁹, Amir Jadidi⁹, Virgina Justi⁹, Frauke Kellner-Weldon⁹, Richard Kobza⁹, Melanie Koch⁹, Brigitta Mehmann⁹, Sonja Meier⁹, Myriam Roth⁹, Andrea Ruckli-Kaepeli⁹, Ian Russi⁹, Kai Schmidt⁹, Mabelle Young⁹. Local Principal Investigator: Michael Kühne^{1,2}

Ente Ospedaliero Cantonale Lugano: Elia Rigamonti⁸, Carlo Cereda⁸, Alessandro Cianfoni⁸, Maria Luisa De Perna⁸, Jane Frangi-Kultalahti⁸, Patrizia Assunta Mayer Melchiorre⁸, Anica Pin⁸, Serena Staglianò⁸, Tatiana Terrot⁸, Luisa Vicari⁸. Local Principal Investigator: Giorgio Moschovitis⁸.

University Hospital Geneva: Georg Ehret¹⁰, Hervé Gallet¹⁰, Elise Guillermet¹⁰, Francois Lazeyras¹⁰, Karl-Olof Lovblad¹⁰, Patrick Perret¹⁰, Philippe Tavel¹⁰. Local Principal Investigator: Dipen Shah¹⁰

University Hospital Lausanne: Nathalie Lauriers²², Marie Méan²², Alessandra Pia Porretta²², Sandrine Salzmann²², Jürg Schläpfer²². Local Principal Investigator: Michael Kühne^{1,2}

Bürgerspital Solothurn: Andrea Grêt²³, Jan Novak²³, Sandra Vitelli²³. Local Principal Investigator: Frank-Peter Stephan²³, Michael Kühne^{1,2}

Ente Ospedaliero Cantonale Bellinzona: Jane Frangi-Kultalahti⁸, Augusto Gallino⁸, Luisa Vicari⁸. Local Principal Investigator: Marcello Di Valentino⁸

University of Zurich/University Hospital Zurich: Helena Aebersold¹⁵, Fabienne Foster¹⁵, Matthias Schwenkglenks^{15,16}.

Medical Image Analysis Center AG Basel: Marco Düring¹⁸, Tim Sinnecker¹⁸, Anna Altermatt¹⁸, Michael Amann¹⁸, Petra Huber¹⁸, Manuel Hürbin¹⁸, Esther Ruberte¹⁸, Alain Thöni¹⁸, Jens Würfel¹⁸, Vanessa Zuber¹⁸.

Department Clinical Research, University of Basel/University Hospital Basel: Michael Coslovsky³, Pia Neuschwander³, Patrick Simon³.

Schiller AG Baar: Ramun Schmid²⁴, Christian Baumann²⁴, Nico Ruckstuhl²⁴

²¹ Department of Cardiology, Hôpital Cantonal Fribourg, Fribourg, Switzerland. ²² Department of Cardiology, University Hospital Lausanne, Lausanne, Switzerland. ²³ Department of Cardiology, Bürgerspital Solothurn, Solothurn, Switzerland. ²⁴ Schiller AG Baar, Baar, Switzerland

Table 2 Summaries of linear regression models for the association of atrial fibrillation and presence of lesion (predictors; separate models for each lesion type) with MoCA (outcomes).

	Unadjusted				Adjusted				
	Est	95%	p-	p for	Est	95%	p-value	p for	
LNCCI/SNCI	-	(-0.98; 8.22e-	8.22e-	0.07	-	(-0.69; 1.750e-	1.750e-	0.13	
AF	-	(-1.21; 7.54e-	7.54e-		-	(-1.28; 9.89e-	9.89e-		
LNCCI	-	(-1.03; 3.93e-	3.93e-	0.04	-	(-0.76; 4.22e-	4.22e-	0.03	
AF	-	(-1.26; 1.09e-	1.09e-		-	(-1.32; 4.12e-	4.12e-		
SNCI	-	(-1.00; 5.88e-	5.88e-	0.23	-	(-0.70; 0.004	0.004	0.44	
AF	-	(-1.24; 1.02e-	1.02e-		-	(-1.29; 7.71e-	7.71e-		
Mb	-	(-0.44; 0.22	0.22	0.58	0.06	(-0.20; 0.65	0.65	0.53	
AF	-	(-1.32; 3.26e-	3.26e-		-	(-1.30; 8.51e-	8.51e-		
WMH (Faz)	-	(-1.02; 5.87e-	5.87e-	0.74	-	(-0.57; 0.004	0.004	0.62	
AF	-	(-1.21; 4.94e-	4.94e-		-	(-1.27; 1.33e-	1.33e-		
Any lesion	-	(-1.03; 2.88e-	2.88e-	0.18	-	(-0.57; 0.009	0.009	0.21	
AF	-	(-1.22; 1.67e-	1.67e-		-	(-1.30; 6.54e-	6.54e-		

Adjusting variables included age, sex, BMI, smoking status (active vs. non-smoker), history of hypertension, history of diabetes, education level (basic: ≤ 6 years, middle: 6 to ≤ 12 years, advanced: >12 years) and use of oral anticoagulation. n=2434 for LNCCI and/or SNCI; n=2378 for Mb; n=2433 for WMH (Fazekas ≥ 2); n=2439 for any lesion. AF = atrial fibrillation; LNCCI = large non-cortical and cortical infarcts; Mb = microbleeds; SNCI = small non-cortical infarcts; WMH = white matter hyperintensities.

Table 1 Baseline characteristics stratified by presence or absence of atrial fibrillation.

	Atrial Fibrillation	No atrial fibrillation	P-value
	n=1,480	n=959	
Age, years	75.0 (6.1)	74.2 (6.0)	0.002
Female sex	424 (28.6)	354 (36.9)	2.30E-05
BMI, kg/m ²	27.5 (4.7)	26.2 (4.3)	7.82E-12
Highest education			8.10E-06
Basic	176 (11.9)	64 (6.7)	
Middle	722 (48.8)	450 (46.9)	
Advanced	582 (39.3)	445 (46.4)	
Active smoker	91 (6.1)	63 (6.6)	0.74
AF type			n.a.
Paroxysmal	666 (45.0)	n.a.	
Non-paroxysmal	814 (55.0)	n.a.	
Time since AF diagnosis, years	3.16 [0.79, 7.96]	n.a.	n.a.
Systolic blood pressure, mmHg	136.2 (18.8)	136.5 (16.9)	0.67
Diastolic blood pressure, mmHg	78.2 (12.1)	75.9 (9.6)	9.10E-08
Pulse pressure, mmHg	58.0 (15.4)	60.6 (14.5)	1.31E-05
CHA ₂ DS ₂ -VASc, points	3.7 (1.6)	3.5 (1.4)	0.0031
Diabetes mellitus	248 (16.8)	178 (18.6)	0.28

Sleep apnoea	186 (12.6)	98 (10.2)	0.09
Arterial hypertension	1064 (71.9)	643 (67.0)	0.01
Prior stroke or TIA	327 (22.1)	126 (13.1)	3.59E-08
Prior heart failure	338 (22.9)	147 (15.3)	6.71E-06
Coronary heart disease	432 (29.2)	337 (35.2)	0.002
Peripheral vascular disease	118 (8.0)	88 (9.2)	0.33
Prior renal failure	297 (20.1)	142 (14.8)	0.001
Anticoagulation			0
None	125 (8.4)	874 (91.1)	
VKA	585 (39.5)	13 (1.4)	
NOAC	770 (52.0)	72 (7.5)	
Antiplatelet therapy	280 (18.9)	568 (59.2)	3.51E-92
Beta-blockers	1052 (71.1)	297 (31.0)	5.17E-84
ACE-inhibitors	449 (30.3)	257 (26.8)	0.07
Angiotensin II receptor blockers	495 (33.4)	290 (30.2)	0.1
Aldosterone antagonists	152 (10.3)	38 (4.0)	2.14E-08
Calcium-channel blockers	350 (23.6)	238 (24.8)	0.54

Continuous variables are shown as means (standard deviation). Categorical variables are shown as counts (percentages). ACE = angiotensin-converting enzyme; AF = atrial fibrillation; BMI = body mass index; NOAC = non-Vitamin K antagonists; TIA = transient ischemic attack; VKA = Vitamin K antagonists.

Editorial summary:

Krisai et al. compare brain structure and cognitive function in elderly patients with and without atrial fibrillation using brain MRI and cognitive testing. They find that atrial fibrillation is associated with more brain lesions and lower cognitive function, but the cognitive impairment occurs primarily through direct effects of the arrhythmia rather than through brain damage.

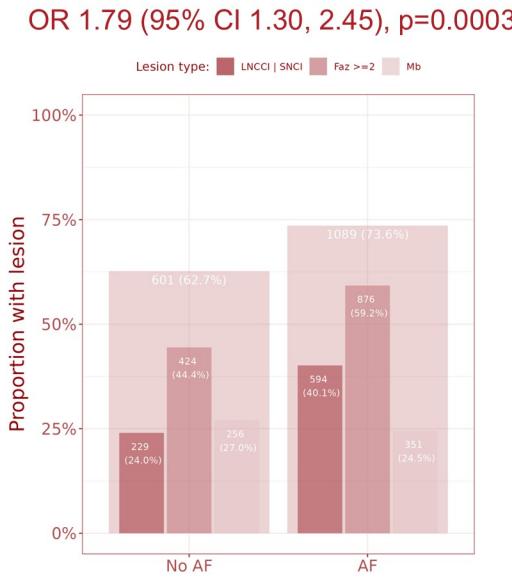
Peer review information: *Communications Medicine* thanks Rajiv Mahajan, Rakesh Agarwal and Zuolin Lu for their contribution to the peer review of this work. A peer review file is available.

ARTICLE IN PRESS

Ischemic brain infarcts, white matter hyperintensities, and cognitive impairment are increased in patients with atrial fibrillation

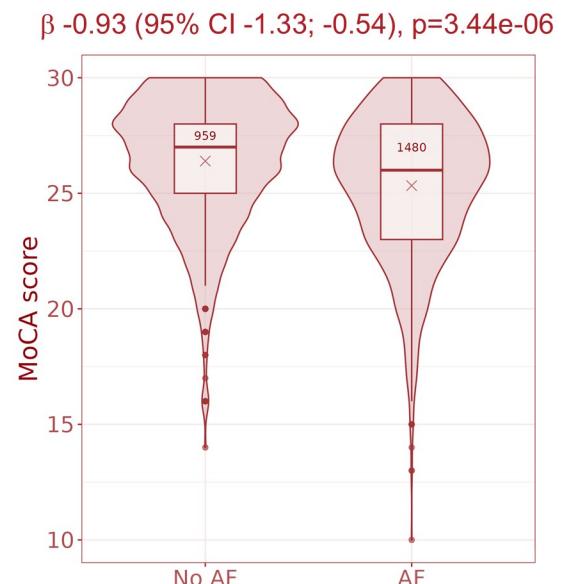
Multicenter population based cross-sectional analysis in 2'439 patients

Comparison of MRI findings and cognitive function in patients with / without AF



Mean age 75 years
Female sex 32%

Comparison of 1'480 (61%) AF patients vs. 959 (39%) non-AF patients


Brain lesions

Brain lesions are more frequent in AF patients

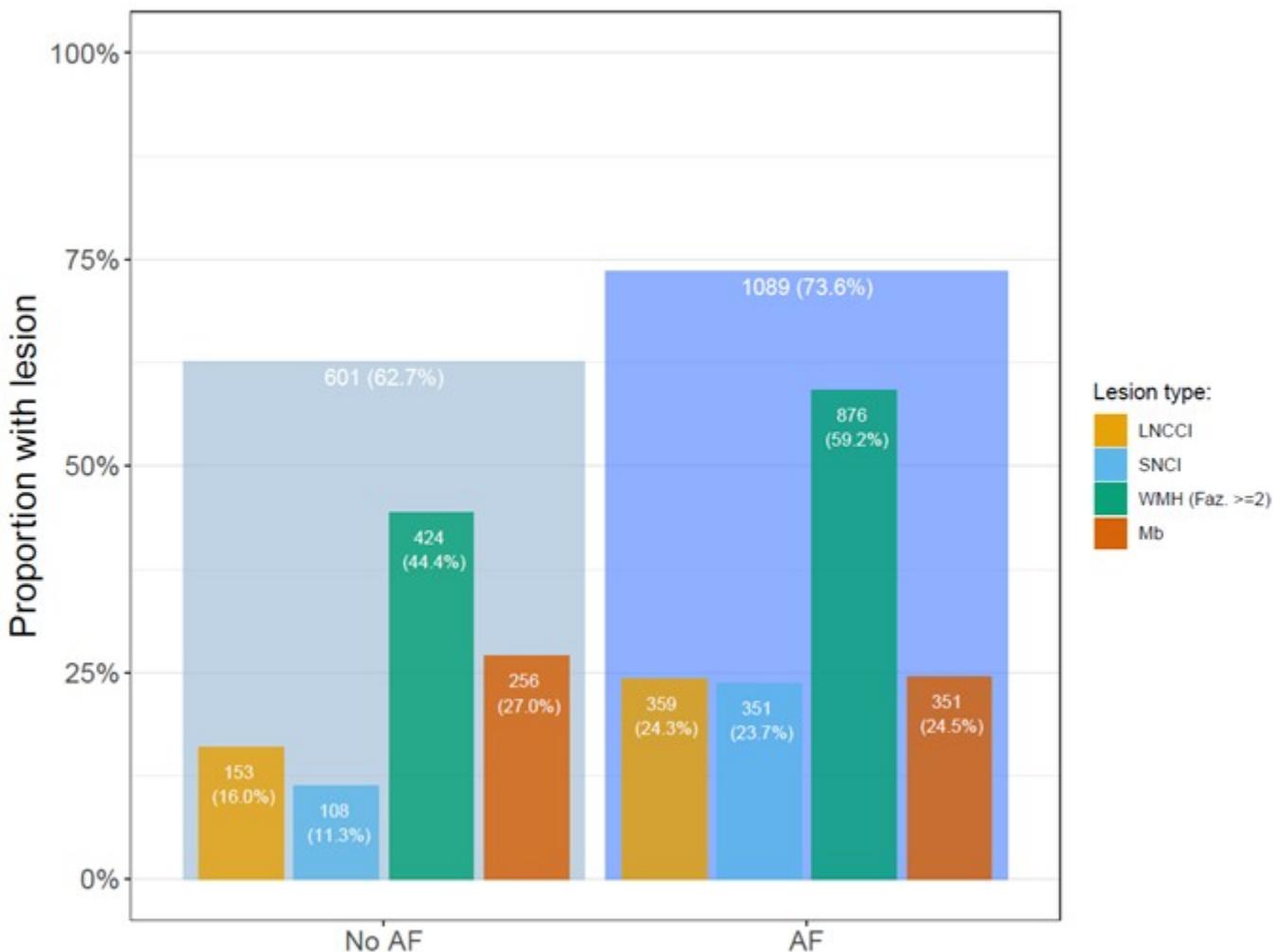
Cognition

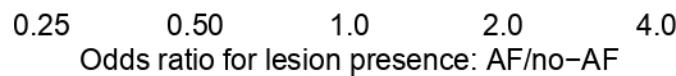
Cognitive function is lower in AF patients

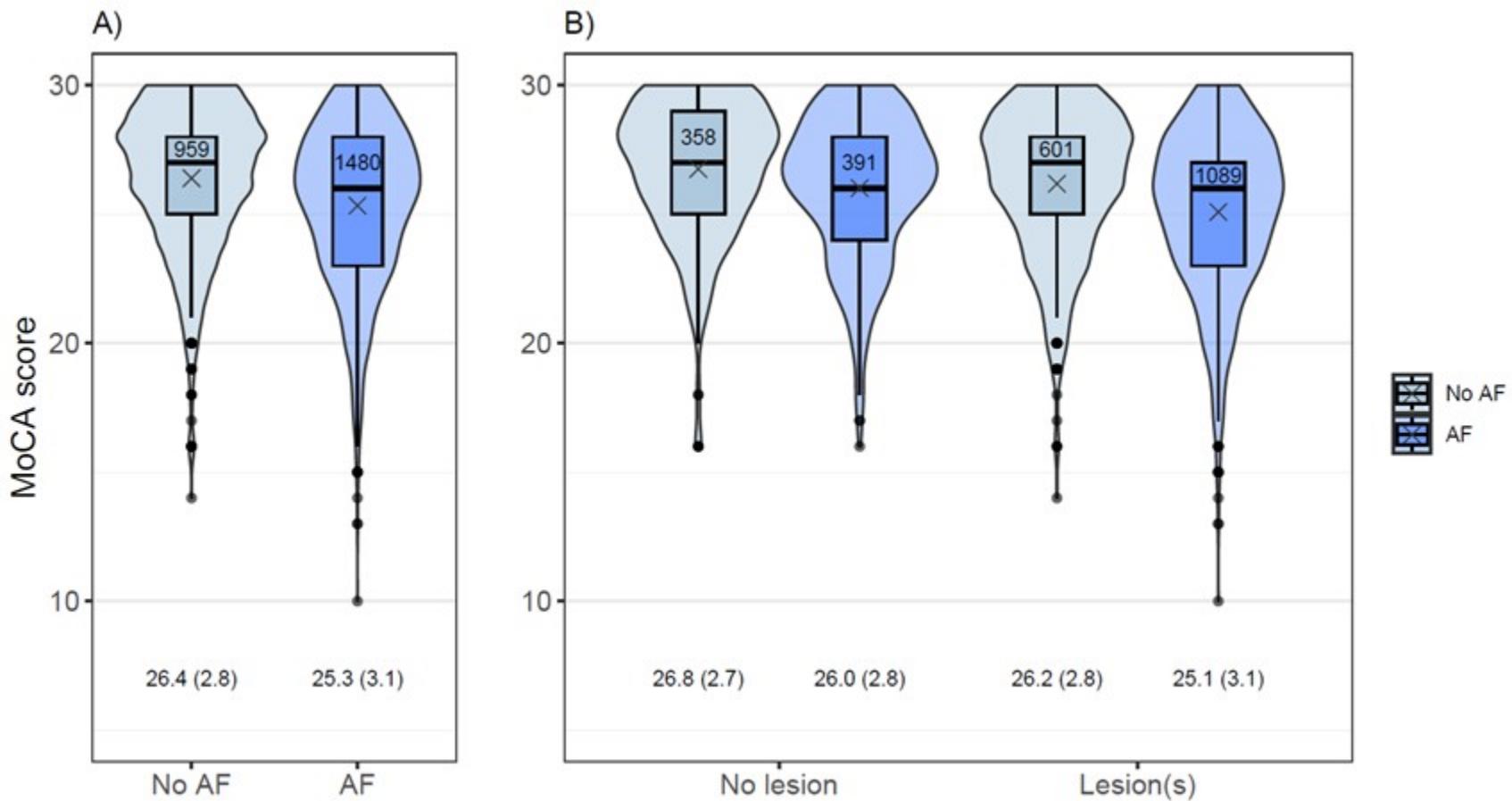
Effect of AF

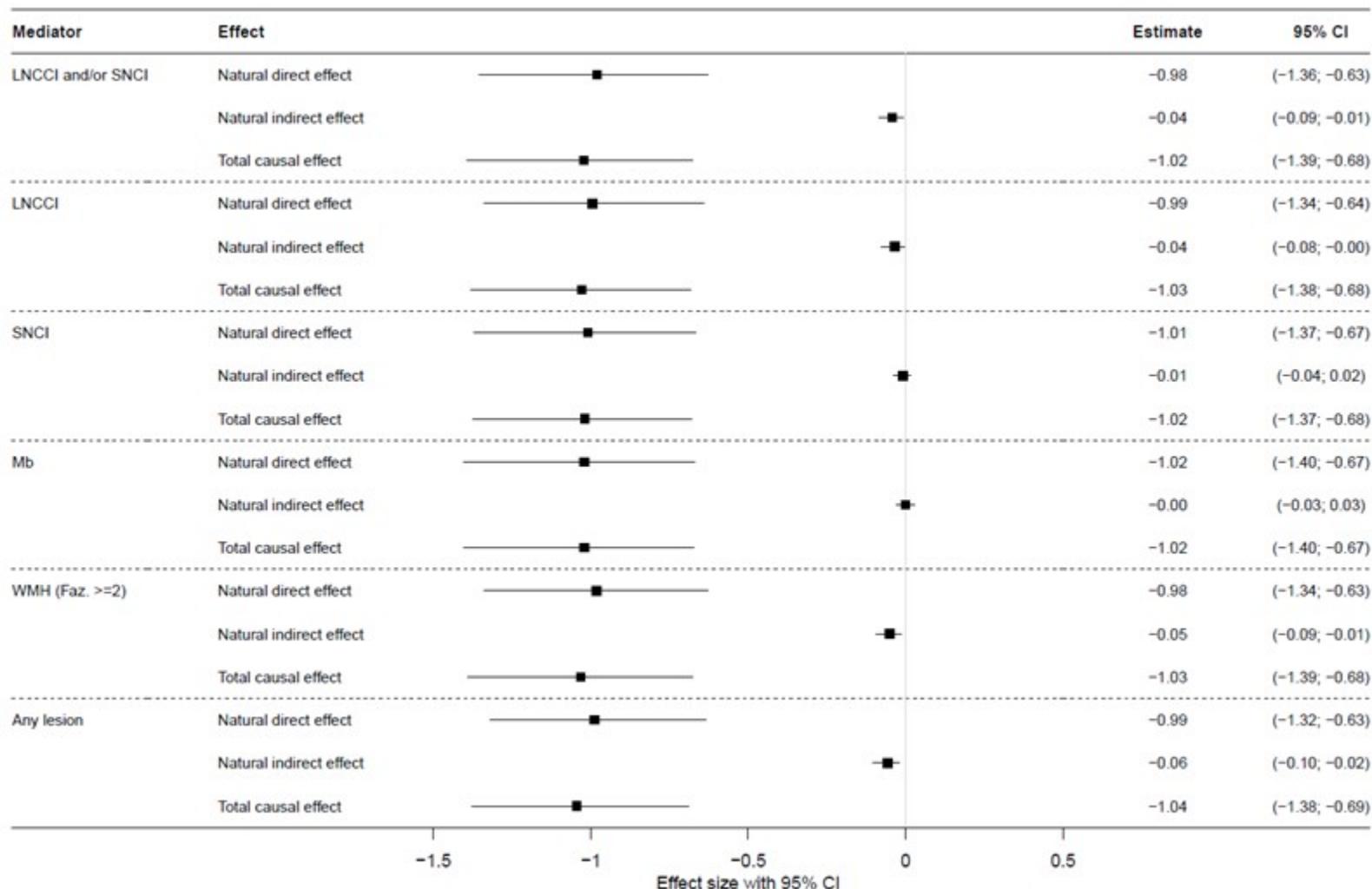
Direct effect
-0.99 (95% CI -1.32; -0.63)

AF


Cognitive function


Brain lesions


Indirect effect
-0.06 (95% CI -0.10; -0.02)


Effect of AF on cognition is direct and not mediated by brain lesions

Outcome	Model	N	OR	95% CI	p
LNCCI and/or SNCI	Unadjusted	2434			
	Adjusted	2434			
LNCCI	Unadjusted	2434			
	Adjusted	2434			
SNCI	Unadjusted	2434			
	Adjusted	2434			
Mb	Unadjusted	2378			
	Adjusted	2378			
WMH (Faz. ≥ 2)	Unadjusted	2433			
	Adjusted	2433			
Any lesion	Unadjusted	2439			
	Adjusted	2439			

