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Iron-catalysed radical Markovnikov 
hydroamidation of complex alkenes
 

Mengjun Huang, Constantin Gabriel Daniliuc     & Armido Studer     

Nitrogen atoms are integral components of various chemical functional 
groups, including amines, amides and N-heterocycles, among others. 
Consequently, they play an important role in pharmaceuticals, 
agrochemicals, natural products, materials and commodity chemicals. 
The formation of C–N bonds is reliably achieved through methods, such 
as reductive amination, N-alkylation and cross-coupling. Hydroamination, 
starting with alkenes, presents a valuable alternative for accessing organic 
compounds containing nitrogen, as alkenes are highly abundant. Here 
we present a method for the iron-catalysed radical hydroamidation of 
alkenes. To this end, we developed a radical amidation reagent that can be 
readily prepared on a large scale, facilitating the efficient transfer of the 
synthetically valuable cyanamide functionality across both activated and 
unactivated double bonds. The scope of the reaction is remarkably broad, 
demonstrating its applicability to the diastereoselective hydroamidation of 
complex terpene natural products. Importantly, the synthesis of 15N-labelled 
amines is possible using this strategy. Subsequent chemistry, converting 
the distinctive cyanamide functionality into other useful groups, further 
validates the value of the developed methodology.

Nitrogen atoms play a ubiquitous role across pharmaceuticals, agro-
chemicals, natural products, materials and various commodity chemi-
cals. Moreover, at the core of life itself lies the simplest amine, ammonia, 
whose function as a fertilizer sustains the world’s food production. 
Accordingly, biological systems utilize ammonia as a fundamental 
building block for synthesizing complex molecules. In organic com-
pounds, nitrogen atoms appear in various important functional groups, 
including amines, amides and N-heterocycles, among others. Conse-
quently, the development of synthetic methodologies for forming 
carbon–nitrogen (C–N) bonds is paramount1. Practical approaches to 
forge these sigma bonds involve amine alkylation, reductive amination 
of carbonyl groups with amines, and transition-metal-catalysed C–N 
cross coupling of N-nucleophiles with alkyl or aryl halides2–7. Alterna-
tively, alkenes have proven effective substrates in hydroamination 
reactions using transition-metal catalysis8–11. For terminal alkenes, 
this can yield two regioisomeric products: the anti-Markovnikov 
or the branched Markovnikov product, depending on the method  
chosen (Fig. 1a).

In addition to transition-metal-catalysed hydroaminations, 
effective radical processes have emerged over the past two decades. 
Considering N-centred radicals, the anti-Markovnikov products are 
obtained with high regioselectivity as a result of N-radical addition at 
the terminal position of the alkene functionality12–16. Conversely, regioi-
someric hydroamination products are formed through metal-hydride 
hydrogen atom transfer reactions (MHAT)17, followed by radical C–N 
bond formation. Silanes are commonly used as stoichiometric hydride 
sources in these reactions. Cobalt catalysis, in combination with 
azodicarboxylates18 or α-azoesters19 as C-radical trapping reagents, 
has proven to be efficient. Notable, nitric oxide20, alkyl nitrite21 and 
phenylsulfonyl azide22,23 have been also successfully used as radical 
amination reagents in Co-catalysed processes. Probably even more 
valuable are the corresponding hydroamination processes catalysed 
or mediated by iron salts, as iron is highly abundant and cost effi-
cient. Arylazo sulfones24, nitroarenes25, diazo compounds26 and other 
amine sources27,28 have been used as the radical amination reagents in 
these processes. Despite these advancements, a universally applicable 
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(10 mol%) in an ethanol–dichloromethane (DCM) mixture (1:1) at room 
temperature provided the desired product 4a, albeit in 11% yield only 
(Fig. 2). The nitrile congener 2b gave the same yield, while the cor-
responding CF3 derivative (2c) and the nitro derivative (2d) afforded 
worse results. Contrary to our expectation, an electron-withdrawing 
para-substituent seems to be detrimental to the reaction outcome. We 
therefore installed electron-donating substituents at the aryl moiety 
(see 2e–2h) and identified the para-dimethylamino-azoxybenzene 2h 
as an improved reagent in this series. The amine 4a was formed in 18% 
yield with exclusive Markovnikov selectivity.

Investigations were continued by varying the R2 substituent in the 
reagent. As electron-donating groups at the arene moiety improved 
the C-radical trapping efficiency, we decided to install π-acceptors as 
N substituents to increase the polarity of the N=N double bond. The 
N-benzoyl system 2i did not afford any of the targeted hydroamidation 
product, probably for steric reasons. An improved yield was noted with 
the N-ethoxycarbonyl reagent 2j to afford the hydrazide 5a in 57% yield. 
Thus, the addition reaction worked more efficiently; however, final 
N–N-bond cleavage did not occur for this transformation. Realizing the 
importance of steric effects, we then tested the reagent 2k carrying the 
small cyano group and obtained the hydrocyanamidation product 3a in 
30% yield. Surprisingly, the major product in this reaction was the sec-
ondary alcohol 6a through a Mukaiyama-type hydration. Thus, reagent 
2k can obviously act as an O donor as well as an NCN donor. Reaction 
efficiency further improved with the CF3-substituted congener 2l with 
the desired hydroamidation product 3a and 6a being formed in roughly 
equal amounts (81% overall yield). The best result in this cyanamide 
series was obtained with the para-dimethylamino-substituted radical 
trapping reagent 2m that provided the targeted 3a in 58% yield along 
with alcohol 6a (36%). We intensively tried to improve the ratio of 
hydroamidation versus hydration product by further optimizing reac-
tion conditions. However, all our attempts failed. Of note, by carefully 
excluding O2, we could show that the alcohol 6a is fully derived from 
reagent 2m and not through air-mediated radical oxygenation. A logical 
progression in the optimization campaign, therefore, was to remove 
the oxygen atom from the reagent, hoping that the resulting cyanoazo 
compound would retain sufficient reactivity as a C-radical acceptor. 
The cyanated azo compounds 2n and 2o can be readily prepared on a 
larger scale37 (see ‘General procedure 3’ in the Supplementary Infor-
mation, page 6). Under standard conditions, reagent 2n delivered the 
desired cyanamide 3a in 55% yield. As a side product, n-butylbenzene 
resulting from hydrogenation17 of 1a was formed in 40% yield. We were 
pleased to find that the dimethylamino-reagent 2o performed very 
well affording the targeted cyanamide 3a in 83% yield and formation of 
the hydrogenation product was fully suppressed. It is noteworthy that 
the cyanamide functionality easily introduced via our methodology 
possesses distinct properties both as a highly valuable building block 
in organic synthesis and as a ligand for various metals38. In addition, 
cyanamides have recently gained attention as privileged reactive func-
tionalities in bioactive compounds, for example, serving as covalent 
inhibitors of deubiquitinating enzymes39.

With the optimized conditions in hand, various activated and 
unactivated alkenes bearing different functionalities could be effi-
ciently hydroamidated (Fig. 3). Considering monosubstituted alk-
enes, both simple aliphatic and aromatic systems worked well, with 
isolated yields ranging from 67% to 82% (3a–3d and 3f). Notably, an aryl 
iodide moiety that can be used in subsequent cross-coupling reactions 
was tolerated. Styrenes (3c and 3d) and an internal aryl-substituted 
activated alkene (3e) underwent highly regioselective Markovnikov 
hydroamidation in good yields (67–87%). The reaction also worked 
well on 1,1-disubstituted alkenes (3k, 3n and 3o). Furthermore, internal 
cyclic alkenes engaged in the hydrofunctionalization to give the cor-
responding cyanamidation products (3l and 3m). For unsymmetrical 
1,2-disubstituted internal alkenes, low regioselectivity was observed 
for 4-methyl-2-pentene (3p) and the even more sterically biased 

method for the Fe-catalysed hydroamination of complex alkenes 
remains to be reported.

The most prominent reaction across all MHAT transformations is 
the hydration, often called Mukaiyama hydration29, where the C-radical 
generated after initial hydrogen atom transfer to an alkene is oxidized 
by air (Fig. 1b). This reaction has demonstrated its importance through 
numerous applications in the synthesis of complex natural prod-
ucts, effectively showcasing its utility17. However, achieving control 
over diastereoselectivity in these transformations has often posed 
challenges, primarily due to the near diffusion-controlled nature of 
C-radical trapping with O2. To address this critical issue, we recently 
introduced electron-poor nitroarenes as the oxygenation reagents 
in iron-catalysed alkene hydrations30. The scope of this reaction was 
remarkably broad, leading to its successful application in complex 
natural product synthesis31–35. Moreover, the diastereoselectivity 
observed was consistently superior to that of classical Mukaiyama-type 
hydrations.

Encouraged by these findings, we decided to develop a broadly 
applicable radical amination reagent for the stereoselective 
Fe-catalysed hydroamination of complex alkenes on the basis of the 
molecular structure of the highly efficient nitroarene oxygen atom 
donor. As an initial step in our reagent design process, we opted to 
replace the nitro functionality with an azoxy functionality, while keep-
ing the central arene moiety that can be readily substituted at the 
para-position to additionally tune the electronic properties of the 
targeted amination reagent (Fig. 1c). This structure-based design led 
us to first propose azoxyarenes that are known and easily accessible 
compounds36.

Studies were commenced by preparing as series of azoxyarenes 
2a–2d with the goal to add an aniline moiety across a double bond 
(please refer to Supplementary Fig. 3 for the synthesis of these rea-
gents). The unactivated alkene 1a was selected as the model substrate. 
Initial screening of the conditions with the ester-substituted reagent 
2a revealed that the desired hydroamination can be achieved with 
Fe(dibm)3 as the catalyst (Supplementary Table 1). Thus, reaction of 
1a with the reagent 2a (1.2 equiv.), PhSiH3 (3.0 equiv.) and Fe(dibm)3 
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Fig. 1 | Hydroamination and hydration of alkenes. a, Hydroamination of 
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4,4-dimethyl-2-pentene (3q) also reacted with moderate selectivity. 
O-benzoylated crotyl alcohol also provided a low regioselectivity 
(3r), while complete regiocontrol was achieved in the hydroamida-
tion of a vinyl amide to give the N,N-acetal 3s. The regioselectivity of 
the latter aligns with MHAT-type reactions on vinyl amides17. However, 
hydroamidation did not work for the electron-poor double bond in 
methyl crotonate and crotononitrile. The radical hydroamidation was 
compatible with commonly used functional groups, including halogen 
(3d, 3g and 3h), silane (3h), boronic acid pinacol ester (3i), phthalimide 
(3j), ester (3n, 3k, 3ag, 3aj, 3ak and 3al), nitrile (3o), acetal (3ak), ketone 
(3u, 3ab and 3ah) and free alcohols (3aa and 3af).

To illustrate the potential of the developed radical hydroamida-
tion strategy, we applied the reaction to late-stage modification of 
natural products and drug derivatives. For example, the chemical 
modification of bicyclic monoterpenes is readily achieved, as exem-
plified by the hydroamidation of (+)-α-pinene and (−)-β-pinene to 
afford the tertiary cyanamides 3w and ent-3w in very good yields 
(79% and 82%, respectively) and excellent diastereoselectivity (>20:1 
for both pinene isomers). Products derived from ring opening of the 
strained four-membered rings in these systems were not identified, 
indicating a highly efficient trapping of the tertiary C-radical by rea-
gent 2o. (+)-3-Carene could be hydroamidated to provide 3v (62%) 
with moderate selectivity (diastereomeric ratio (d.r.) 2:1). Epoxides 
are tolerated, as documented by the successful hydroamidation of 
natural (−)-caryophyllene oxide to afford 3y in 88% yield and excel-
lent diastereoselectivity (>20:1). The relative configuration of 3y was 
unambiguously assigned by X-ray structure analysis. More complex 
(+)-aromadendrene gave the tertiary cyanamide 3z with a good stere-
oselectivity (d.r. 7:1) in high yield (81%). (−)-α-Cedrene was an eligible 
substrate to afford the tertiary cyanamide 3x as a single diastereoiso-
mer in 73% yield. The hydroamidation of the terminal double bond in 
l-(−)-carvone could be achieved; however, the enone moiety was also 
hydrogenated under the applied conditions to give 3u. As mentioned 
above, the free alcohol moiety in β-citronellol was well tolerated (3aa, 
86%). Notably, this successful transformation further showed that 
1,1,2-trisubstituted alkenes are eligible substrates for our Fe-catalysed 
radical hydroamidation. For jasmone and (Z)-9-tricosene, the products 
3ab and 3ac could be isolated in 69% and 83% yields as regioisomeric 

mixtures. Considering jasmone, hydroamidation of the enone moiety 
does not occur for electronic reasons, while its hydrogenation is prob-
ably suppressed for steric reasons. The relative electron-rich coumarin 
ring in osthole (3ad) was retained, and its terminal double bond was 
chemoselectively cyanamidated. Other heterocycles are also toler-
ated, and, for example, hydroamidation of pentoxifylline occurred in 
good yield (3ae, 86%). Pentacyclic triterpenoid derivatives could be 
transformed, as documented by the hydroamidation of acyl-protected 
betulinol, which gave the desired tertiary cyanamide 3ag in excellent 
97% yield. The steroidal compound lanosterol reacted with complete 
chemoselectivity, and the tetrasubstituted alkene moiety in the ring 
remained unreacted (3af). Likewise, electron-rich arenes and naph-
thalene rings were also compatible (3ai and 3aj). The structures of 
3ag, 3ah and 3ai were further confirmed through X-ray analysis. It is 
important to note that many of the presented products are difficult 
to construct through de novo synthesis. Furthermore, various sty-
rene derivatives derived from estrone (3ah), diacetone-d-glucose 
(3ak) and fenofibrate (3al) could be hydroamidated in moderate-to- 
excellent yields.

The highly valuable cyanamide functionality in these products can 
undergo various transformations to afford diverse compound classes 
(Fig. 4a). The hydrolysis of cyanamide 3a with potassium hydroxide 
in ethanol/H2O in the presence of a crown ether gave the free amine 
7 in good yield (81%). Aminolysis of the cyanamide moiety in 3a with 
acetaldoxime and InCl3 afforded the urea 8 with excellent yield (95%)40. 
The latter can be further hydrolysed to the free amine 7 using diethyl-
enetriamine (DETA, 93%)41. N-benzoylation of 3a with benzoyl chloride 
using sodium hydride as the base afforded the N-benzoyl-protected 
amide 9 (98%). The product cyanamides also serve as hub structures 
for the preparation of tetrazoles, as shown by the successful trans-
formation of 3a through nitrile/azide cycloaddition to give 10. A 
ZnCl2-catalysed formal (3 + 2) cycloaddition between compound 3a 
and an amidoxime reagent provided the 1,2,4-oxadiazole 12 (92%), 
which represents a key structural motif in a number of bioactive com-
pounds. Moreover, under acidic conditions, cyanamide 3a reacted with 
ortho-aminothiophenol to the aminated benzothiazole 11. Recently, 
a methodology using adaptive dynamic homogeneous catalysis with 
nickel under visible-light-driven redox reaction conditions to realize 
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C(sp2)-(hetero)atom coupling was reported42. Applying this method, 
the C–N coupling of cyanamide 3a with an aryl iodide was achieved 
(see 13, Fig. 4b). Benzyl bromide can be used as N-alkylation reagent 
for cyanamides applying copper catalysis to afford the corresponding 
N-benzylated amides, as documented by the successful preparation of 
14 (89%; Fig. 4c). Importantly, N-cyanated piperidines can be readily 
accessed through intramolecular N-alkylation under basic conditions, 

as shown by the transformation of 3g to 15 (73%; Fig. 4d). Cyanamides 
after N-benzylation are eligible substrates for Ir-catalysed [2 + 2 + 2] 
cycloaddition with α,ω-diynes (Fig. 4e). This atom-economic route was 
successfully used for the construction of a 2-aminopyridine (17, 95%)43. 
Finally, starting from cyanamide 3d, the synthesis of a tetracyclic pyr-
roloquinazoline was achieved in two steps using a photoredox radical 
cascade strategy (19, 89%; Fig. 4f)44.
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Fig. 4 | Chemical transformation of the cyanamide functionality. a, Different 
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 urea 8 with DETA at 140 °C for 12 h (93% yield). b, N-arylation through  
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To demonstrate the practicality and robustness of the method 
in both medicinal and process chemistry, we ran the radical alkene 
hydrofunctionalization at a larger scale using (−)-caryophyllene oxide 
as well as a naproxen, an estrone and a fenofibrate derivative as starting 
materials (Fig. 5a). Hydroamidation of (−)-caryophyllene oxide on a 
2 mmol scale gave 93% isolated yield of 3y without compromising the 
high diastereoselectivity (>20:1). Likewise, the other three test com-
pounds could be hydroamidated at a larger scale in very good yields 
(3aj, 3ah and 3al, 81–90%).

More excitingly, we were able to prepare the selectively 15N- 
isotopically labelled hydroamidation reagent 15N-2o in a two-step pro-
cedure using commercial Na15NO2 (52%), which was then successfully 
used for the 15N-labelling of complex natural compounds through 
Fe-catalysed hydroamidation (Fig. 5b). Thus, (−)-caryophyllene 
oxide was readily transformed to the isotopically labelled amide 15N-
3y, which was isolated 86% yield with excellent diastereoselectivity 
and an excellent 15N-incorporation ratio (>95%). In analogy, rotenone  
was successfully converted to its 15N-labelled cyanamide 15N-3ai (95%). 
This strategy highlights the synthetic versatility and potential for precise 

isotopic labelling within complex molecular frameworks, offering valu-
able tools for advanced applications in natural product synthesis.

To shed light on the mechanism of the hydroamidation, additional 
experiments were conducted. The radical nature of the hydroamida-
tion was additionally supported by a hydrofunctionalization com-
prising a radical 5-exo-cyclization (Fig. 5c). α,α-Diallyl-malonic acid 
diethyl ester was reacted under the standard conditions with rea-
gent 2o, and the cyclization product 21 was isolated in good yield and 
cis-diastereoselectivity (71%, d.r. 10:1). We further investigated the 
fate of the remainder of reagent 2o after successful hydroamidation. 
Radical hydrofunctionalization of 1ae under the optimized conditions 
gave the desired product 3ae in 86% along with 90% the aminoaniline 
22 (Fig. 5d). It is important to note that aniline 22 serves as the start-
ing material for the preparation of the reagent 2o, demonstrating 
that the portion of the hydroamidation reagent not transferred to the 
alkene moiety is reusable, further enhancing the atom economy of our 
iron-catalysed hydroamidation process.

Based on these findings and previous reports on Fe-catalysed 
hydrofunctionalization reactions30,45,46, we propose the following 
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mechanism (Fig. 5e). In-situ-generated iron(III) hydride first reacts 
regioselectively with the alkene via MHAT to give the corresponding 
adduct radical A. This C-radical A then adds regioselectively to reagent 
2o to give the hydrazinoyl radical B. The regioselectivity of this reac-
tion is governed by steric and electronic effects. The N-radical B is then 
probably reduced by the intermediately generated iron(II) species in 
the presence of ethanol to give the intermediate C. The concomitantly 
formed iron(III)OEt species can subsequently be reduced with the silane 
to reform the iron(III) hydride, completing the catalytic cycle. As a stoi-
chiometric byproduct PhSiH2OEt is formed. Further reduction of the 
N–N bond in the N-cyanated hydrazine C with phenylsilane through iron 
catalysis eventually provides the cyanamide product 3. As a byproduct 
of the final reductive N–N-bond cleavage step, the aniline 22 is formed.

Taken together, we have developed a general method for radi-
cal Markovnikov-type hydroamidation of various complex alkenes 
using a catalyst derived from earth-abundant iron. This was achieved 
through careful design of an alkyl radical amidation reagent. Tuning 
of steric and electronic effects of the radical acceptor showed that 
the readily prepared azo compound 2o is an ideal radical amidation 
reagent. The alkene hydrofunctionalization reactions can be con-
ducted under mild conditions, which is well reflected by the broad 
functional group tolerance and the broad scope. These practical trans-
formations generally occur with high yields and high selectivity, and 
also late-stage hydroamidation of complex alkene-containing natural 
products is feasible. Importantly, we could show that the correspond-
ing 15N-labelled hydroamidation reagent is easy to prepare from com-
mercial Na15NO2 allowing the late-stage 15N-labelling of complex alkenes 
through iron-catalysed radical hydroamidation. The product amides 
obtained through the hydroamidation process contain the highly 
valuable cyanamide functionality that can be chemically further trans-
formed into diverse other important structural entities, as convincingly 
documented by a series of interesting follow-up reactions. We are con-
fident that the strategy presented here will have broad applicability in 
pharmaceutical and synthetic research fields.

Methods
The general procedure for hydroamidation of alkenes was as follows. 
Under an argon flow, Fe(dibm)3 (5.2 mg, 0.01 mmol, 10 mol%) was 
placed in an oven-dried Schlenk tube equipped with a magnetic stir-
ring bar and dissolved in dry ethanol (0.5 ml) and dry dichloromethane 
(DCM, 0.5 ml). The alkene (0.10 mmol, 1.0 equiv.) and the radical amina-
tion/amidation reagent (0.12 mmol, 1.2 equiv.) were added, followed 
by dropwise addition of phenylsilane (0.300 mmol, 37.5 µl, 3.0 equiv.). 
The reaction was stirred for 12 h at room temperature. Afterwards, 
the solvent was evaporated and the residue was purified using flash 
chromatography to obtain the pure product.

Data availability
Details on the procedures and the corresponding datasets generated 
during and analysed during the current study are available within the 
article and its Supplementary Information. Crystallographic data 
for the structures reported in this article have been deposited at the 
Cambridge Crystallographic Data Centre, under deposition numbers 
CCDC 2394614 (3y), 2394615 (3ag), 2394616 (3ah) and 2394617 (3ai). 
Copies of the data can be obtained free of charge at https://www.ccdc.
cam.ac.uk/structures/.
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