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Nitrogen atoms are integral components of various chemical functional
groups, including amines, amides and N-heterocycles, among others.
Consequently, they play animportant role in pharmaceuticals,

agrochemicals, natural products, materials and commodity chemicals.
The formation of C-Nbonds s reliably achieved through methods, such

asreductive amination, N-alkylation and cross-coupling. Hydroamination,
starting with alkenes, presents a valuable alternative for accessing organic
compounds containing nitrogen, as alkenes are highly abundant. Here

we present a method for the iron-catalysed radical hydroamidation of
alkenes. To this end, we developed aradical amidation reagent that canbe
readily prepared on alarge scale, facilitating the efficient transfer of the
synthetically valuable cyanamide functionality across both activated and
unactivated double bonds. The scope of the reaction is remarkably broad,
demonstratingits applicability to the diastereoselective hydroamidation of

complex terpene natural products. Importantly, the synthesis of “N-labelled
amines is possible using this strategy. Subsequent chemistry, converting
the distinctive cyanamide functionality into other useful groups, further
validates the value of the developed methodology.

Nitrogen atoms play a ubiquitous role across pharmaceuticals, agro-
chemicals, natural products, materials and various commodity chemi-
cals.Moreover, at the core of life itself lies the simplest amine, ammonia,
whose function as a fertilizer sustains the world’s food production.
Accordingly, biological systems utilize ammonia as a fundamental
building block for synthesizing complex molecules. In organic com-
pounds, nitrogen atoms appear in variousimportant functional groups,
including amines, amides and N-heterocycles, among others. Conse-
quently, the development of synthetic methodologies for forming
carbon-nitrogen (C-N) bonds is paramount'. Practical approaches to
forge these sigmabonds involve amine alkylation, reductive amination
of carbonyl groups with amines, and transition-metal-catalysed C-N
cross coupling of N-nucleophiles with alkyl or aryl halides*”. Alterna-
tively, alkenes have proven effective substrates in hydroamination
reactions using transition-metal catalysis® . For terminal alkenes,
this can yield two regioisomeric products: the anti-Markovnikov
or the branched Markovnikov product, depending on the method
chosen (Fig. 1a).

In addition to transition-metal-catalysed hydroaminations,
effective radical processes have emerged over the past two decades.
Considering N-centred radicals, the anti-Markovnikov products are
obtained with high regioselectivity as a result of N-radical addition at
the terminal position of the alkene functionality''®. Conversely, regioi-
someric hydroamination products are formed through metal-hydride
hydrogen atom transfer reactions (MHAT)", followed by radical C-N
bondformation. Silanes are commonly used as stoichiometric hydride
sources in these reactions. Cobalt catalysis, in combination with
azodicarboxylates'™ or a-azoesters” as C-radical trapping reagents,
has proven to be efficient. Notable, nitric oxide?, alkyl nitrite” and
phenylsulfonyl azide?*** have been also successfully used as radical
amination reagents in Co-catalysed processes. Probably even more
valuable are the corresponding hydroamination processes catalysed
or mediated by iron salts, as iron is highly abundant and cost effi-
cient. Arylazo sulfones®, nitroarenes®, diazo compounds? and other
aminesources®*® have been used as the radical amination reagentsin
these processes. Despite these advancements, a universally applicable
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Fig.1|Hydroamination and hydration of alkenes. a, Hydroamination of
terminal alkenes using transition-metal catalysis or radical methods provides
either the Markovnikov or the anti-Markovnikov product. b, Mukaiyama-type
hydration with O, as the radical trapping reagent and improved variant that uses a
nitroarene as the C-radical oxygenation reagent, exemplified by the hydration of
acomplex natural product, aromadendrene. ¢, The design of a radical amination
reagent based on the structure of the successful nitroarene oxygen atom donor.
r.t.,room temperature; Fe(acac),, iron acetylacetonate.

method for the Fe-catalysed hydroamination of complex alkenes
remainsto be reported.

The most prominent reaction across all MHAT transformationsis
the hydration, often called Mukaiyama hydration®, where the C-radical
generated after initial hydrogen atom transfer to an alkene is oxidized
by air (Fig. 1b). This reaction has demonstrated itsimportance through
numerous applications in the synthesis of complex natural prod-
ucts, effectively showcasing its utility””. However, achieving control
over diastereoselectivity in these transformations has often posed
challenges, primarily due to the near diffusion-controlled nature of
C-radical trapping with O,. To address this critical issue, we recently
introduced electron-poor nitroarenes as the oxygenation reagents
iniron-catalysed alkene hydrations. The scope of this reaction was
remarkably broad, leading to its successful application in complex
natural product synthesis® . Moreover, the diastereoselectivity
observed was consistently superior to that of classical Mukaiyama-type
hydrations.

Encouraged by these findings, we decided to develop a broadly
applicable radical amination reagent for the stereoselective
Fe-catalysed hydroamination of complex alkenes on the basis of the
molecular structure of the highly efficient nitroarene oxygen atom
donor. As an initial step in our reagent design process, we opted to
replace the nitro functionality with an azoxy functionality, while keep-
ing the central arene moiety that can be readily substituted at the
para-position to additionally tune the electronic properties of the
targeted amination reagent (Fig. 1c). This structure-based design led
us to first propose azoxyarenes that are known and easily accessible
compounds®.

Studies were commenced by preparing as series of azoxyarenes
2a-2d with the goal to add an aniline moiety across a double bond
(please refer to Supplementary Fig. 3 for the synthesis of these rea-
gents). The unactivated alkene 1a was selected as the model substrate.
Initial screening of the conditions with the ester-substituted reagent
2arevealed that the desired hydroamination can be achieved with
Fe(dibm); as the catalyst (Supplementary Table 1). Thus, reaction of
1a with the reagent 2a (1.2 equiv.), PhSiH, (3.0 equiv.) and Fe(dibm),

(10 mol%) inan ethanol-dichloromethane (DCM) mixture (1:1) at room
temperature provided the desired product 4a, albeit in 11% yield only
(Fig. 2). The nitrile congener 2b gave the same yield, while the cor-
responding CF; derivative (2¢) and the nitro derivative (2d) afforded
worse results. Contrary to our expectation, an electron-withdrawing
para-substituent seems to be detrimental to the reaction outcome. We
therefore installed electron-donating substituents at the aryl moiety
(see2e-2h) andidentified the para-dimethylamino-azoxybenzene 2h
asanimproved reagentin this series. The amine 4awas formed in18%
yield with exclusive Markovnikov selectivity.

Investigations were continued by varying the R*substituent in the
reagent. As electron-donating groups at the arene moiety improved
the C-radical trapping efficiency, we decided to install t-acceptors as
N substituents to increase the polarity of the N=N double bond. The
N-benzoyl system 2i did not afford any of the targeted hydroamidation
product, probably for stericreasons. Animproved yield was noted with
the N-ethoxycarbonyl reagent 2jto afford the hydrazide 5ain 57% yield.
Thus, the addition reaction worked more efficiently; however, final
N-N-bond cleavage did not occur for this transformation. Realizing the
importance of steric effects, we then tested the reagent 2k carrying the
small cyano group and obtained the hydrocyanamidation product 3ain
30%yield. Surprisingly, the major product in this reaction was the sec-
ondary alcohol 6athrough aMukaiyama-type hydration. Thus, reagent
2k can obviously act as an O donor as well as an NCN donor. Reaction
efficiency furtherimproved with the CF;-substituted congener 2l with
the desired hydroamidation product 3aand 6abeing formed in roughly
equal amounts (81% overall yield). The best result in this cyanamide
series was obtained with the para-dimethylamino-substituted radical
trapping reagent 2m that provided the targeted 3ain 58% yield along
with alcohol 6a (36%). We intensively tried to improve the ratio of
hydroamidation versus hydration product by further optimizing reac-
tion conditions. However, all our attempts failed. Of note, by carefully
excluding O,, we could show that the alcohol 6ais fully derived from
reagent2mand not through air-mediated radical oxygenation. Alogical
progression in the optimization campaign, therefore, was to remove
the oxygen atom from the reagent, hoping that the resulting cyanoazo
compound would retain sufficient reactivity as a C-radical acceptor.
The cyanated azo compounds 2nand 20 can be readily prepared ona
larger scale” (see ‘General procedure 3’ in the Supplementary Infor-
mation, page 6). Under standard conditions, reagent 2ndelivered the
desired cyanamide 3ain 55% yield. As aside product, n-butylbenzene
resulting from hydrogenation of lawas formed in40% yield. We were
pleased to find that the dimethylamino-reagent 20 performed very
well affording the targeted cyanamide 3ain 83%yield and formation of
the hydrogenation product was fully suppressed. Itis noteworthy that
the cyanamide functionality easily introduced via our methodology
possesses distinct properties both as a highly valuable building block
in organic synthesis and as a ligand for various metals®. In addition,
cyanamides have recently gained attention as privileged reactive func-
tionalities in bioactive compounds, for example, serving as covalent
inhibitors of deubiquitinating enzymes™.

With the optimized conditions in hand, various activated and
unactivated alkenes bearing different functionalities could be effi-
ciently hydroamidated (Fig. 3). Considering monosubstituted alk-
enes, both simple aliphatic and aromatic systems worked well, with
isolated yields ranging from 67% to 82% (3a-3d and 3f). Notably, anaryl
iodide moiety that can be used in subsequent cross-coupling reactions
was tolerated. Styrenes (3¢ and 3d) and an internal aryl-substituted
activated alkene (3e) underwent highly regioselective Markovnikov
hydroamidation in good yields (67-87%). The reaction also worked
wellon1,1-disubstituted alkenes (3k, 3nand 30). Furthermore, internal
cyclic alkenes engaged in the hydrofunctionalization to give the cor-
responding cyanamidation products (31and 3m). For unsymmetrical
1,2-disubstituted internal alkenes, low regioselectivity was observed
for 4-methyl-2-pentene (3p) and the even more sterically biased
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Fig. 2| Evolution of the radical amination/amidation reagent using alkene 1a as the model substrate. Conditions: 1a (0.2 mmol) in ethanol (EtOH)-DCM (1:1, 2 ml).
Fe(dibm),, iron tris(diisobutyrylmethane). The grey box highlights the best hydroamidation reagent.

4,4-dimethyl-2-pentene (3q) also reacted with moderate selectivity.
O-benzoylated crotyl alcohol also provided a low regioselectivity
(3r), while complete regiocontrol was achieved in the hydroamida-
tion of a vinyl amide to give the N,N-acetal 3s. The regioselectivity of
the latter aligns with MHAT-type reactions on vinyl amides”. However,
hydroamidation did not work for the electron-poor double bond in
methyl crotonate and crotononitrile. The radical hydroamidation was
compatible with commonly used functional groups, including halogen
(3d,3gand3h), silane (3h), boronic acid pinacol ester (3i), phthalimide
(3j), ester (3n, 3k, 3ag, 3aj, 3ak and 3al), nitrile (30), acetal (3ak), ketone
(3u, 3ab and 3ah) and free alcohols (3aa and 3af).

To illustrate the potential of the developed radical hydroamida-
tion strategy, we applied the reaction to late-stage modification of
natural products and drug derivatives. For example, the chemical
modification of bicyclic monoterpenes is readily achieved, as exem-
plified by the hydroamidation of (+)-a-pinene and (-)-B-pinene to
afford the tertiary cyanamides 3w and ent-3w in very good yields
(79% and 82%, respectively) and excellent diastereoselectivity (>20:1
for both pinene isomers). Products derived from ring opening of the
strained four-membered rings in these systems were not identified,
indicating a highly efficient trapping of the tertiary C-radical by rea-
gent 20. (+)-3-Carene could be hydroamidated to provide 3v (62%)
with moderate selectivity (diastereomeric ratio (d.r.) 2:1). Epoxides
are tolerated, as documented by the successful hydroamidation of
natural (-)-caryophyllene oxide to afford 3y in 88% yield and excel-
lent diastereoselectivity (>20:1). The relative configuration of 3y was
unambiguously assigned by X-ray structure analysis. More complex
(+)-aromadendrene gave the tertiary cyanamide 3z with a good stere-
oselectivity (d.r. 7:1) in high yield (81%). (-)-a-Cedrene was an eligible
substrate to afford the tertiary cyanamide 3x as asingle diastereoiso-
mer in 73% yield. The hydroamidation of the terminal double bond in
L-(-)-carvone could be achieved; however, the enone moiety was also
hydrogenated under the applied conditions to give 3u. As mentioned
above, the free alcohol moiety in 3-citronellol was well tolerated (3aa,
86%). Notably, this successful transformation further showed that
1,1,2-trisubstituted alkenes are eligible substrates for our Fe-catalysed
radical hydroamidation. For jasmone and (2)-9-tricosene, the products
3ab and 3ac could be isolated in 69% and 83% yields as regioisomeric

mixtures. Considering jasmone, hydroamidation of the enone moiety
doesnotoccur for electronicreasons, while its hydrogenationis prob-
ably suppressed for stericreasons. Therelative electron-rich coumarin
ring in osthole (3ad) was retained, and its terminal double bond was
chemoselectively cyanamidated. Other heterocycles are also toler-
ated, and, for example, hydroamidation of pentoxifylline occurredin
good yield (3ae, 86%). Pentacyclic triterpenoid derivatives could be
transformed, as documented by the hydroamidation of acyl-protected
betulinol, which gave the desired tertiary cyanamide 3ag in excellent
97% yield. The steroidal compound lanosterol reacted with complete
chemoselectivity, and the tetrasubstituted alkene moiety in the ring
remained unreacted (3af). Likewise, electron-rich arenes and naph-
thalene rings were also compatible (3ai and 3aj). The structures of
3ag, 3ah and 3ai were further confirmed through X-ray analysis. It is
important to note that many of the presented products are difficult
to construct through de novo synthesis. Furthermore, various sty-
rene derivatives derived from estrone (3ah), diacetone-D-glucose
(3ak) and fenofibrate (3al) could be hydroamidated in moderate-to-
excellentyields.

The highly valuable cyanamide functionality in these products can
undergo various transformations to afford diverse compound classes
(Fig. 4a). The hydrolysis of cyanamide 3a with potassium hydroxide
in ethanol/H,0 in the presence of a crown ether gave the free amine
7 in good yield (81%). Aminolysis of the cyanamide moiety in 3a with
acetaldoxime and InCl, afforded the urea 8 with excellent yield (95%)*°.
Thelatter can be further hydrolysed to the free amine 7 using diethyl-
enetriamine (DETA, 93%)*. N-benzoylation of 3awith benzoyl chloride
using sodium hydride as the base afforded the N-benzoyl-protected
amide 9 (98%). The product cyanamides also serve as hub structures
for the preparation of tetrazoles, as shown by the successful trans-
formation of 3a through nitrile/azide cycloaddition to give 10. A
ZnCl,-catalysed formal (3 + 2) cycloaddition between compound 3a
and an amidoxime reagent provided the 1,2,4-oxadiazole 12 (92%),
whichrepresents akey structural motifinanumber of bioactive com-
pounds. Moreover, under acidic conditions, cyanamide 3areacted with
ortho-aminothiophenol to the aminated benzothiazole 11. Recently,
amethodology using adaptive dynamic homogeneous catalysis with
nickel under visible-light-driven redox reaction conditions to realize
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Reactions were carried out on 0.1 mmol scale, and all yields provided refer to
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C(sp?)-(hetero)atom coupling was reported*’. Applying this method,
the C-N coupling of cyanamide 3a with an aryl iodide was achieved
(see 13, Fig. 4b). Benzyl bromide can be used as N-alkylation reagent
for cyanamides applying copper catalysis to afford the corresponding
N-benzylated amides, as documented by the successful preparation of
14 (89%; Fig. 4c). Importantly, N-cyanated piperidines can be readily
accessed throughintramolecular N-alkylation under basic conditions,

asshown by the transformation of 3g to 15 (73%; Fig. 4d). Cyanamides
after N-benzylation are eligible substrates for Ir-catalysed [2 + 2 + 2]
cycloaddition with a,w-diynes (Fig. 4¢e). This atom-economic route was
successfully used for the construction of a2-aminopyridine (17, 95%)*.
Finally, starting from cyanamide 3d, the synthesis of atetracyclic pyr-
roloquinazoline was achieved in two steps using a photoredox radical
cascade strategy (19, 89%; Fig. 4f)**.
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To demonstrate the practicality and robustness of the method
in both medicinal and process chemistry, we ran the radical alkene
hydrofunctionalization at alarger scale using (-)-caryophyllene oxide
aswellasanaproxen, an estrone and afenofibrate derivative as starting
materials (Fig. 5a). Hydroamidation of (-)-caryophyllene oxide on a
2 mmol scale gave 93% isolated yield of 3y without compromising the
high diastereoselectivity (>20:1). Likewise, the other three test com-
pounds could be hydroamidated at a larger scale in very good yields
(3aj,3ah and 3al, 81-90%).

More excitingly, we were able to prepare the selectively
isotopically labelled hydroamidation reagent *'N-20 in a two-step pro-
cedure using commercial Na®NO, (52%), which was then successfully
used for the ®N-labelling of complex natural compounds through
Fe-catalysed hydroamidation (Fig. 5b). Thus, (-)-caryophyllene
oxide was readily transformed to the isotopically labelled amide N-
3y, which was isolated 86% yield with excellent diastereoselectivity
and an excellent ®N-incorporation ratio (>95%). In analogy, rotenone
was successfully converted to its “N-labelled cyanamide ®N-3ai (95%).
This strategy highlights the synthetic versatility and potential for precise

isotopic labelling within complex molecular frameworks, offering valu-
abletools for advanced applicationsin natural product synthesis.

Toshed light on the mechanism of the hydroamidation, additional
experiments were conducted. The radical nature of the hydroamida-
tion was additionally supported by a hydrofunctionalization com-
prising a radical 5-exo-cyclization (Fig. 5c). «,a-Diallyl-malonic acid
diethyl ester was reacted under the standard conditions with rea-
gent 20, and the cyclization product 21 wasisolated in good yield and
cis-diastereoselectivity (71%, d.r. 10:1). We further investigated the
fate of the remainder of reagent 20 after successful hydroamidation.
Radical hydrofunctionalization of 1ae under the optimized conditions
gave the desired product 3ae in 86% along with 90% the aminoaniline
22 (Fig. 5d). It is important to note that aniline 22 serves as the start-
ing material for the preparation of the reagent 20, demonstrating
that the portion of the hydroamidation reagent not transferred to the
alkene moiety isreusable, further enhancing the atom economy of our
iron-catalysed hydroamidation process.

Based on these findings and previous reports on Fe-catalysed
hydrofunctionalization reactions®***¢, we propose the following
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mechanism (Fig. Se). In-situ-generated iron(lll) hydride first reacts
regioselectively with the alkene via MHAT to give the corresponding
adductradical A. This C-radical Athenadds regioselectively to reagent
20 to give the hydrazinoyl radical B. The regioselectivity of this reac-
tionis governed by stericand electroniceffects. The N-radical Bis then
probably reduced by the intermediately generated iron(ll) species in
the presence of ethanol to give the intermediate C. The concomitantly
formed iron(II)OEt species can subsequently be reduced with the silane
toreformtheiron(lll) hydride, completing the catalytic cycle. As astoi-
chiometric byproduct PhSiH,OEt is formed. Further reduction of the
N-Nbondinthe N-cyanated hydrazine C with phenylsilane throughiron
catalysis eventually provides the cyanamide product 3. Asabyproduct
ofthefinal reductive N-N-bond cleavage step, the aniline 22is formed.

Taken together, we have developed a general method for radi-
cal Markovnikov-type hydroamidation of various complex alkenes
using a catalyst derived from earth-abundant iron. This was achieved
through careful design of an alkyl radical amidation reagent. Tuning
of steric and electronic effects of the radical acceptor showed that
the readily prepared azo compound 20 is an ideal radical amidation
reagent. The alkene hydrofunctionalization reactions can be con-
ducted under mild conditions, which is well reflected by the broad
functional group tolerance and the broad scope. These practical trans-
formations generally occur with high yields and high selectivity, and
alsolate-stage hydroamidation of complex alkene-containing natural
productsis feasible. Importantly, we could show that the correspond-
ing°N-labelled hydroamidation reagent is easy to prepare from com-
mercial Na®NO, allowing the late-stage “N-labelling of complex alkenes
through iron-catalysed radical hydroamidation. The product amides
obtained through the hydroamidation process contain the highly
valuable cyanamide functionality that can be chemically further trans-
formedintodiverse otherimportant structural entities, as convincingly
documented by aseries of interesting follow-up reactions. We are con-
fident that the strategy presented here will have broad applicability in
pharmaceutical and synthetic research fields.

Methods

The general procedure for hydroamidation of alkenes was as follows.
Under an argon flow, Fe(dibm); (5.2 mg, 0.01 mmol, 10 mol%) was
placed in an oven-dried Schlenk tube equipped with a magnetic stir-
ring barand dissolved in dry ethanol (0.5 ml) and dry dichloromethane
(DCM, 0.5 ml). The alkene (0.10 mmol, 1.0 equiv.) and the radical amina-
tion/amidation reagent (0.12 mmol, 1.2 equiv.) were added, followed
by dropwise addition of phenylsilane (0.300 mmol, 37.5 pl, 3.0 equiv.).
The reaction was stirred for 12 h at room temperature. Afterwards,
the solvent was evaporated and the residue was purified using flash
chromatography to obtain the pure product.

Data availability

Details on the procedures and the corresponding datasets generated
during and analysed during the current study are available within the
article and its Supplementary Information. Crystallographic data
for the structures reported in this article have been deposited at the
Cambridge Crystallographic Data Centre, under deposition numbers
CCDC 2394614 (3y), 2394615 (3ag), 2394616 (3ah) and 2394617 (3ai).
Copiesofthe data canbe obtained free of charge at https://www.ccdc.
cam.ac.uk/structures/.
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