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Outlining cardiac ion channel protein 
interactors and their signature in the human 
electrocardiogram
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David Y. Chiang    2,7, Giorgia Bertoli    3,7, Pia R. Lundegaard    1, 
Marta Perez-Hernandez Duran    3, Mingliang Zhang3, Eli Rothenberg4, 
Alfred L. George Jr. 5, Calum A. MacRae2, Mario Delmar3 & Alicia Lundby    1,6 

Protein–protein interactions are essential for normal cellular processes and 
signaling events. Defining these interaction networks is therefore crucial 
for understanding complex cellular functions and interpretation of disease-
associated gene variants. We need to build a comprehensive picture of the 
interactions, their affinities and interdependencies in the specific organ to 
decipher hitherto poorly understood signaling mechanisms through ion 
channels. Here we report the experimental identification of the ensemble of 
protein interactors for 13 types of ion channels in murine cardiac tissue. Of 
these, we validated the functional importance of ten interactors on cardiac 
electrophysiology through genetic knockouts in zebrafish, gene silencing 
in mice, super-resolution microscopy and patch clamp experiments. 
Furthermore, we establish a computational framework to reconstruct 
human cardiomyocyte ion channel networks from deep proteome mapping 
of human heart tissue and human heart single-cell gene expression data. 
Finally, we integrate the ion channel interactome with human population 
genetics data to identify proteins that influence the electrocardiogram 
(ECG). We demonstrate that the combined channel network is enriched for 
proteins influencing the ECG, with 44% of the network proteins significantly 
associated with an ECG phenotype. Altogether, we define interactomes of 13 
major cardiac ion channels, contextualize their relevance to human elect
rophysiology and validate functional roles of ten interactors, including two 
regulators of the sodium current (epsin-2 and gelsolin). Overall, our data 
provide a roadmap for our understanding of the molecular machinery that 
regulates cardiac electrophysiology.

Proteins rarely operate as single entities, but rather as components 
of co-evolved functionally interdependent complexes. Ion channels 
are critical to the organized electrical and mechanical functions of 
the heart. The amplitude and time course of the electrical current 

passing through an ion channel can be modulated either directly by 
modifications of the pore-forming protein itself, or indirectly through 
regulation of its partners1,2 or microenvironment. Although modula-
tion of channel gating by auxiliary subunits is broadly appreciated,  
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were selected if they gave the channel bait among the most abundant 
proteins in affinity purification (AP)–MS/MS experiments. We immuno-
precipitated the cognate 13 channels from membrane-enriched cardiac 
lysates of male mice in quadruplicate and analyzed the precipitated 
protein components using online reverse-phase liquid chromatography 
coupled to a Q-Exactive HF-X mass spectrometer (Fig. 1a). For concise 
and consistent representation of protein names for all protein inter-
actors, we used the corresponding gene names without italics as the 
protein symbol. We performed additional pulldown experiments and 
characterized deep proteomes from the membrane-enriched mouse 
heart samples. Western blot and MS/MS confirmation for a subset 
of the bait and interacting proteins is shown in Extended Data Fig. 1.

The experimental reproducibility and specificity were assessed by 
unsupervised hierarchical clustering of all measured protein intensities 
(Fig. 1b). In Fig. 1b, the clustering dendrogram reflects the biological 
replicate experiments. The four replicates of each IP had a high degree 
of similarity, which is also reflected in mean Pearson correlation coef-
ficients of 0.92 (Fig. 1c and Extended Data Fig. 2a). The total number 
of proteins identified per IP ranged from 531 to 1,488 (Supplementary 
Table 2). In all cases, the channel baits were among the most abundant 
proteins in their respective pulldowns (Source Data Fig. 2).

To distinguish significant protein interactors from nonspecific 
ones, we analyzed bait and control pulldowns and visualized the analy-
sis by volcano plots. For this analysis we utilized information from 
the high number of IPs analyzed in parallel to correct for nonspecific 
binders (Extended Data Fig. 2b). For imputation of missing values, we 
utilized information from proteome measurements that we performed 
on the lysate samples, an approach adapted from a previous study by 
us21. As shown in Fig. 2, we identified 155 protein interactors for Cacna1c, 
89 for Gja1, 28 for Hcn4, 9 for Kcna5, 116 for Kcnd2, 228 for Kcnh2, 61 
for Kcnj2, 174 for Kcnj3, 45 for Kcnj5, 146 for Kcnma1, 40 for Kcnn3, 364 

the electrophysiologically relevant channel interactome extends fur-
ther and can include proteins involved in proper channel expression and 
localization. For example, variants of the scaffolding adaptor protein, 
ankyrin-B, have been associated with various forms of arrhythmia3. 
Channels also perform nonconductive functions, such as regulating 
intracellular signaling pathways4–6, and for these functions yet other 
interaction partners are involved. Previous studies have found that 
the number of partners in an ion channel complex can reach into the 
hundreds1,7,8 and their interactions can be quite dynamic as well as 
relatively steady state7,9,10. It is reasonable to speculate that, while some 
molecules will interact directly with the pore-forming channel protein, 
others will do so indirectly, through a third party (or more). Channels 
also interact with one another forming macromolecular complexes to 
orchestrate the cardiac electrical impulse11–13. For most ion channels, 
however, the identity of the components of their respective molecular 
networks is largely unknown. Delineating the protein network architec-
ture of cardiac ion channels emerges as a strategy to understand the 
molecular bases of heart rhythm. In addition, more nuanced disease-
associated proteins can be found in the interaction network of proteins 
with a more immediate association with disease9,14. This suggests that 
additional proteins that contribute to cardiac electrophysiological 
properties are yet to be found in the protein interaction network of 
cardiac ion channels.

Integration of genomic and protein network datasets has success-
fully pinpointed biological functions involved in genetically driven 
disease phenotypes7,14,15. Genomics datasets, such as those obtained 
from genome-wide association studies (GWAS) or exome sequenc-
ing, are becoming increasingly available through resources such as 
the UK Biobank16. Data from cardiac genetics and cardiac interaction 
proteomics contain fairly orthogonal sets of information and leverag-
ing the combination of the two can provide molecular insights. High-
resolution proteomics technologies foster unbiased investigations of 
tissue-specific protein–protein interactions, for instance by immuno-
precipitation (IP) followed by tandem mass spectrometry (MS)7,17–19. We 
and others have previously shown how integrating protein interaction 
with genetics data can contribute molecular insights to mechanisms 
of cardiac disease7,14,20.

In this article, we expand our previous efforts and present a com-
prehensive map of cardiac ion channel proteins and their network of 
interaction partners obtained experimentally from murine cardiac 
tissue. The strategy outlines protein interaction networks encom-
passing direct as well as indirect interactors. We unveil 13 different 
cardiac ion channel networks utilizing affinity purification and mass 
spectrometry (MS)-based proteomics. All 13 channels are essential for 
proper cardiac function. The identified channel networks provide a 
roadmap for an agnostic approach to studying regulators of cardiac ion 
channel function. To emphasize channel interactors likely to influence 
cardiac electrophysiology, we intersected the channel networks with 
protein expression and single-cell RNA sequencing (scRNA-seq) data 
from human hearts and integrated it with human genetics data from 
population-based analysis of the electrocardiogram (ECG). Finally, we 
performed functional studies using optical mapping, super-resolution 
imaging and electrophysiology to obtain a first look at the physiologi-
cal relevance of several interactors identified using this network. The 
functional experiments illustrate the new information on channel 
interactors contained in the large channel network presented, and it 
presents epsin-2 and gelsolin as regulators of the sodium current in 
cardiomyocytes.

Results
Interaction networks of 13 cardiac ion channels
We carried out an initial screen of 40 antibodies targeting cardiac ion 
channels using MS-based proteomics. From this, we identified 13 anti-
bodies to discrete channels with sufficient binding specificity for fur-
ther studies (Table 1 and Supplementary Table 1). Evaluated antibodies 

Table 1 | Summary of the baits included in the study and 
the cardiac currents the channels conduct. The antibodies 
were selected on the basis of MS experiments wherein they 
captured the channel of interest among the top five most 
abundant proteins

Gene Protein Protein 
symbol

Class Current

Cacna1c Cav1.2 Cacna1c Ca2+ channel ICa,L

Gja1 Cx43 Gja1 Gap junction 
channel

Gj

Hcn4 HCN4 Hcn4 Funny channel If

Kcnma1 BK Kcnma1 Calcium-activated 
K+ channel

IKCa,2

Kcnn3 KCa2.3/SK3 Kcnn3 Calcium-activated 
K+ channel

IKCa,1

Kcnj2 Kir2.1 Kcnj2 Inward rectifier K+ 
channel

IKir

Kcnj3 Kir3.1 Kcnj3 Inward rectifier K+ 
channel

IK,ACh

Kcnj5 Kir3.4 Kcnj5 Inward rectifier K+ 
channel

IK,ACh

Kcnh2 Kv11.1/ERG Kcnh2 Delayed rectifier K+ 
channel

IK,r

Kcna5 Kv1.5 Kcna5 Shaker-related K+ 
channel

IKur

Kcnd2 Kv4.2 Kcnd2 Subfamily D K+ 
channel

Ito1

Kcnq1 Kv7.1/Kcnq1 Kcnq1 Delayed rectifier K+ 
channel

IK,s

Scn5a Nav1.5 Scn5a Na+ channel INa
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for Kcnq1 and 59 for Scn5a (the identity of all interactors is provided in 
table format in Source Data Fig. 2). The number of protein interactors 
for Kcnq1, Kcnh2 and Cacna1c matches that previously reported for 
tissue-specific ion channel networks7.

As an internal validation, our experiment found 59 previously 
reported protein interactors of the 13 ion channels (Fig. 2 and Extended 
Data Fig. 3)8,15,22,23. For example, we identified the auxiliary subunits 
Cacnb1 and Cacnb2 of Cacna1c, Fgf13 of Scn5a, Tjp1 of Gja1, Akap9 of 
Kcnq1, and Flot2 and Mpp7 of Kcnj2. Previous reports22,24,25 showed 

that experiments performed in non-native environments, such as cell 
lines, are not able to capture cardiomyocyte-specific interactors, which 
underscores the importance of performing interaction proteomics 
in the relevant tissue or cellular setting. We attempted reverse IPs for 
a set of the protein interactors identified, but due to poor antibody 
specificity (as documented in Supplementary Fig. 1), this strategy was 
not pursued further.

The dataset presented here greatly expands the current state of 
knowledge of ion channel interactomes; we performed 64 AP–MS/MS 
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Fig. 1 | MS evaluation of cardiac ion channel IPs. a, Workflow of the study. 
We performed MS measurements of immunoprecipitated channels and their 
interactors and of control IPs from quadruplicate murine cardiac tissue lysates. 
Deep proteome measurements of the membrane-enriched mouse heart samples 
utilized in the IP experiments were also performed. Bioinformatics network 
analyses prioritized interactors for functional evaluation. A subset of interactors 
were evaluated for their functional impact on cardiac electrophysiology by 
STORM imaging, optical mapping in zebrafish KOs, and patch clamping of 
cardiomyocytes from mice with interactor genes silenced. From multi-omics 
data integration, the impact of each interactor in human electrophysiology 

is evaluated. b, Dendrogram from unsupervised hierarchical cluster analysis 
of protein intensities of proteins identified in IP experiments show that the 
four replicate experiments all cluster together. The clustering follows the bait 
replicates. c, Pearson correlation coefficients for protein intensities of the four 
Cacna1c replicate pulldown experiments. Pearson correlation coefficients are 
indicated in each scatter plot. Parts of the figure were drawn by using pictures 
from Servier Medical Art. Servier Medical Art by Servier is licensed under a 
Creative Commons Attribution 3.0 Unported License (https://creativecommons.
org/licenses/by/3.0/).
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experiments in parallel directly from cardiac tissues and identified 881 
protein interactors combined for 13 cardiac ion channels (median of 90 
interactors per channel), which represents the most comprehensive 
mapping of cardiac ion channel interactomes so far.

Cardiac electrophysiology evaluated in zebrafish KOs
As a first pass to determine the functional effects that different ion 
channel protein interactors may have on cardiac electrophysiology, 
we turned to the zebrafish model. This system was favored given that, 
as opposed to the murine heart (where Kcnq1 does not form a func-
tional channel), the function of the various ion channel proteins can be 
studied on the same experimental platform. In addition, the zebrafish 
system has a faster throughput (allowing us to test a higher number 
of interactors within a reasonable time), and the electrophysiology of 
the zebrafish heart holds a substantial similarity with that of higher 
mammals. We systematically knocked out specific genes using a multi-
guide RNA clustered regularly interspaced short palindromic repeats 
(CRISPR)/Cas9 approach in zebrafish embryos26 and performed optical 
voltage mapping on whole hearts isolated from 3–5 days post-fertiliza-
tion larvae. Sequences of the guide RNAs (gRNAs) used for knockout 
(KO) in zebrafish are included in Supplementary Tables 3 and 4. After 
acute KO of the target gene, isolated hearts were incubated with a volt-
age-sensitive fluorescent dye for optical mapping. Fluorescent signals 
were first recorded without pacing to capture native conduction for 
estimation of conduction velocity (CV) and measurement of maximal 
action potential upstroke velocity (Vmax) as well as spatial dispersion of 
repolarization (standard deviation of repolarization times measured 
across the chamber from all pixels imaging the chamber). Field pacing 
was then initiated for the characterization of repolarization including 
action potential duration (APD) and the spatial dispersion of repolariza-
tion at a given pacing rate. The resultant voltage maps were analyzed 
for atrial and ventricular-specific parameters (Supplementary Tables 
5 and 6). Because electrophysiological parameters, especially CV, are 
highly dependent on the developmental stage of the fish27, KOs were 
compared to unmodified controls from the same clutch. For some 
genes, KO fish and their wild-type (WT) siblings were also raised until 
adults and then assessed for differences in their ECG (age at assessment 
of 8–12 months).

Given the large number of interactors found, we prioritized pro-
teins that were strongly enriched in the precipitate of a given bait, and 
where the number of peptides identified was greater in the precipitate 
of the given bait than in that of any of the others. For each channel inter-
actome, the proteins shortlisted by this approach are highlighted in 
yellow in the volcano plots in Fig. 2. We focused the functional analyses 
on prioritized interactors for Kcnq1 (Nebl and Nrap), Cacna1c (Inf2) and 
Scn5a (Glipr2, Epn2 and Gsn) as these channels are the major charge 
carriers in cardiomyocytes. Note that for Kcnq1 additional protein 
interactors are prioritized. These are investigated later as they are 
shared interactors among multiple channels.

The Kcnq1 protein interactors Nebl and Nrap belong to the nebulin 
family and are involved in actin binding and anchoring28,29. The Kcnq1 
channel acts as a heart-rate dependent carrier of repolarizing current. 
Accordingly, acute KO in zebrafish of the gene encoding the Kcnq1 
interactor, nebl, led to a significant prolongation of the ventricular 

action potential starting in early phase-3 repolarization (shortly after 
the action potential plateau phase), and becoming more obvious in 
later stages of repolarization, with a greater prolongation effect size 
at slower heart rates (Fig. 3a and Supplementary Table 6). We also 
observed a decrease in CV and increased spatial dispersion of repolari-
zation during sinus rhythm in these hearts (Fig. 3a and Supplementary 
Tables 5 and 6). Similarly, KO of the gene encoding the Kcnq1 interactor 
nrap also prolonged ventricular phase-3 repolarization, with greatest 
effect size early in repolarization and at faster heart rates (Fig. 3b and 
Supplementary Table 6). Adult zebrafish with KO of the gene encod-
ing nrap displayed repolarization abnormalities in the ECG T-waves 
(Extended Data Fig. 4a and Supplementary Table 7). Phenotypes of KOs 
of the genes encoding both nebl and nrap are consistent with effects on 
the rate-sensitive delayed rectifier current arising from Kcnq1.

Regarding inward currents, KO of the gene encoding inf2 (part of 
the Cacna1c protein network) and of the genes encoding each of the pri-
oritized Scn5a interactors (glipr2/glipr2l, epn2 and gsna/gsnb) caused 
a significant decrease in ventricular CV (Fig. 3c–f and Supplementary 
Table 5), consistent with a role for these interactors in maintaining cell 
excitability. KO of the genes encoding glipr2/glipr2l and epn2 also led 
to a significant increase in ventricular APD. In the adult zebrafish, KO 
of the gene encoding inf2 displayed continued activity throughout the 
PR segment and a general increase in the PR interval consistent with 
slowed conduction through the atrioventricular (AV) canal (Extended 
Data Fig. 4b and Supplementary Table 8).

Taken together, our results show that the interactors identified 
via AP–MS/MS can regulate cardiac electrophysiology. The functional 
effect is probably mediated via their interaction with the respective 
ion channels: Kcnq1 (Nebl and Nrap), Cacna1c (Inf2) and Scn5a (Glipr2, 
Epn2 and Gsn).

Epsin-2 and gelsolin regulate sodium current in myocytes
After functional validation in the homogeneous platform of the 
zebrafish system, we turned our attention back to the murine heart. 
Given that the sodium current is functionally preserved across species, 
we focused our attention on the interactors of Scn5a and their possible 
role in determining the magnitude and voltage-gating characteristics of 
the current. Expression of each one of the three lead Scn5a interactors 
(Glipr2, Epn2 and Gsn) was knocked down, one at a time, using specific 
short hairpin RNA (shRNA) constructs, delivered via adeno-associated 
viral vectors (AAVs) that were injected in the tail vein of adult mice. All 
constructs were bicistronic and included the coding of eGFP; fluores-
cence from the GFP reporter was used to select cells for patch clamp 
study. We included two control groups: cells collected from uninjected 
mice, and cells from mice injected with an AAV vector containing only 
eGFP. Patch clamp experiments were performed 17–21 days after AAV 
injection. Specifics on silencing of the genes encoding Glipr2, Epn2 or 
Gsn are noted in Extended Data Fig. 5.

Silencing Glipr2 did not impact the sodium current recorded from 
adult mice cardiomyocytes (Extended Data Fig. 6a–c), although we 
observed that knockdown of Glipr2 in HL1 cells led to increased sodium 
current density (Extended Data Fig. 6d). AAV-delivered shRNA silencing 
of Epn2 on the other hand led to a significant increase of the sodium 
current in adult murine cardiomyocytes (Fig. 4a,b). The latter was 

Fig. 2 | Volcano plot representation for analysis of significant interactors 
for each channel bait. Volcano plots for each ion channel bait. a, Cacna1c. 
b, Kcnma1. c, Kcnn3. d, Kcnq1. e, Kcnh2. f, Kcnj5. g, Kcnj3. h, Kcnj2. i, Kcnd2. 
j, Kcna5. k, Gja1. l, Hcn4. m, Scn5a. All dots represent a protein, where the 
negative logarithm (base 10) of t-test-derived P value is shown as a function of 
logarithmic (base 2) ratios of protein intensities in bait pulldowns relative to 
controls. The control comparator is based on median protein intensities across 
64 IP experiments, IgG pulldowns and scaled proteome measurements as well 
as imputation, and the black line indicates an FDR-based cutoff that considers 

the fold change difference of protein intensities to demarcate the specific from 
nonspecific interactors. The claim to significance was based on FDR of a two-
sided t-test and s0 value (s0 controls the relative importance of t-test-based  
P value and difference between means). For details, see Extended Data Fig. 2b 
and Supplementary Table 2. Proteins shown as light-blue dots represent specific 
interactors for the bait, red dot is the bait protein itself, dark-blue dot represents 
interactors with previously reported functional influence on the bait, and yellow 
dots are protein interactors that we have prioritized for functional investigations 
based on evaluation of the acquired MS data.
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consistent with the fact that reduced expression of epn2 in zebrafish 
alters sodium current density, though in the murine heart, the direc-
tion of change was reversed. The relation between Epn2 expression and 

INa function was also demonstrable in HL1 cells, though in that system 
current density was also reduced after Epn2 knockdown (Extended 
Data Fig. 6f). The increase in sodium current amplitude in the adult 
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Fig. 3 | Functional evaluation of channel interactors by gene knock out in 
zebrafish. The functional consequences after acute KO of six interactors of 
three major ion channels—Kcnq1 (Nebl and Nrap), Cacna1c (Inf2) and Scn5a 
(Glipr2, Epn2 and Gsn)—were evaluated in zebrafish. a, Compared with control 
siblings (WT, n = 16 fish), KO of the gene encoding Kcnq1-interacting nebl (nebl 
KO, n = 23) led to prolongation of the ventricular action potential starting shortly 
after the plateau, with the greatest effect size at slower heart rate and later in 
repolarization (APD80, action potential duration measured at 80% recovery; 
bpm, beats per minute; **P = 8.4 × 10−3; *P = 0.037 by two-sided Mann–Whitney 
U test; exemplar amplitude-normalized optical action potentials shown below), 
reduced ventricular CV (sinus rhythm; **P = 4.2 × 10−3 by idem; exemplar relative 
activation time maps are zero-referenced to activation of the AV-Ring; white stars 
indicate area of global earliest activation, isochrones denote 5 ms intervals), and 
increased spatial dispersion of repolarization (σ-Repol80, standard deviation 
of repolarization time at 80% recovery across the chamber; sinus rhythm; 
**P = 8.74 × 10−3, idem; in exemplar relative repolarization80 time maps, each 

chamber is zero-referenced to median repolarization time). b, KO of Kcnq1-
interacting nrap (n = 29) led to prolongation of ventricular action potential 
with greatest effect size in early repolarization (APD20) and at faster heart rates 
(*P = 0.016; **P = 5.22 × 10−3, idem, nWT = 27). c, Knockdown of Cacna1c-interacting 
inf2 (n = 10) caused a significant decrease in ventricular CV (***P = 7.2 × 10−4, idem, 
nWT = 7). d, KO of Scn5a-interacting glipr2/glipr2l (n = 14) decreased ventricular 
CV (*P = 0.013) and rate of the action potential upstroke (Vmax; ***P = 2.61 × 10−4, 
exemplar amplitude normalized action potential upstrokes shown) as well as 
increasing ventricular APD (**P = 2.7 × 10−3, all by idem, nWT = 9). e, KO of Scn5a-
interacting epn2 (n = 16) resulted in decreased ventricular CV (*P = 0.020) and 
increased ventricular APD80 (*P = 0.035, idem, nWT = 18). f, Decrease in ventricular 
CV was also observed after KO of Scn5a-interacting gsna/b (n = 11, *P = 0.027, 
idem, nWT = 10). Each point in the box plots corresponds to an individual zebrafish 
embryo. Box plots indicate 25th/50th/75th percentiles, while whiskers extend to 
the most extreme data within 1.5× of interquartile range beyond box limits.
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cardiomyocytes in absence of Epn2 hence appears to be particular 
for fully differentiated cardiomyocytes. Of note, no Epn2 knockdown-
dependent changes in the steady-state voltage dependence of INa were 
observed (Fig. 4c and Extended Data Fig. 6e). Similar to Epn2 silencing, 
silencing of Gsn trended to increased maximum sodium current in adult 
cardiac myocytes (Fig. 4d,e). Silencing of Gsn had no significant impact 
on sodium channel inactivation (Extended Data Fig. 6g) but did lead to a 

left-shift of the steady-state voltage dependence of activation (Fig. 4f), 
contributing to increased sodium current in cardiomyocytes absent of 
Gsn. Epn2 and Glipr2 were only identified by IP of Scn5a, whereas Gsn 
was identified in two other channel pulldowns, though its abundance in 
those precipitates was a hundred times less than in the Scn5a pulldown 
(Extended Data Fig. 6h). To further evaluate the interaction network 
containing Scn5a and Gsn, we performed two-color super-resolution 
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Fig. 4 | shRNA silencing of sodium channel interactors, Epn2 and Gsn, 
increase sodium current density in mouse ventricular cardiomyocytes.  
a, Voltage clamp protocol (top) and representative sodium current (INa) traces 
measured from adult cardiomyocytes expressing only GFP (GFP; bottom left) or 
GFP as well as shRNA for Epn2 (Epn2 knockdown (KD); bottom right). b, Current 
(I) to voltage (Vm) relationship of INa obtained from cardiomyocytes that were 
not injected (‘control’; solid circles), expressing only GFP (GFP; open squares) or 
from expressing GFP and shRNA for Epn2 (Epn2 KD; open diamonds). The data 
show increased peak sodium current density in Epn2 KD (*P = 0.014, linear mixed-
effects analysis followed by Bonferroni post hoc analysis for multiple comparison 
testing). c, Sodium current activation measured for Epn2 KD, GFP or uninjected 
controls. d, Representative INa traces in GFP-expressing cardiomyocytes (bottom 
left) and in Gsn2 KD cardiomyocytes (bottom right). e, I to Vm relationship 
of INa for Gsn KD cardiomyocytes compared to that of controls (maximum 
sodium current trending to be increased for Gsn KD, P = 0.181, linear mixed-

effects analysis followed by post hoc Bonferroni correction). f, INa activation 
curves. The activation curve is negatively shifted in Gsn KD cardiomyocytes 
compared to that of myocytes expressing only GFP (V1/2,Gsn KD = −57.4 ± 0.63 mV; 
V1/2,GFP = −53.4 ± 0.95 mV, *P = 0.037 linear mixed-effects analysis, followed by 
Bonferroni post hoc analysis for multiple comparison tests, control: n = 10 
cells obtained from 3 mice; GFP: n = 9 cells obtained from 3 mice; Epn2 KD: 
n = 9 cells obtained from 4 mice; Gsn KD: n = 8 cells obtained from 4 mice; data 
are presented as mean ± standard error of the mean). g, Two-color STORM 
images for Scn5a (green) and Gsn (red) show 30% of Gsn clusters localizing 
within 20 nm of Scn5a clusters, 15 cells obtained from 3 mice in independent 
experiments. ‘Control’ are cardiomyocytes isolated from WT animals. ‘GFP’ are 
cardiomyocytes isolated from animals injected with an empty AAV vector. ‘Epn2 
KD’ are cardiomyocytes isolated from mice with Epn2 silencing and ‘Gsn KD’ from 
mice with Gsn silencing. Multiple animals per group were necessary due to the 
limited number of datapoints that can be obtained from a single animal.
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microscopy (stochastic optical reconstruction microscopy, STORM) in 
cardiomyocytes isolated from WT adult mice. Using an antibody spe-
cific for Gsn, we found that 30% of Gsn clusters localized within 20 nm 
of Scn5a clusters in adult cardiomyocytes (Fig. 4g and Supplementary 
Fig. 2). The electrophysiology results obtained from adult murine car-
diomyocytes support a functional role for two of the three interaction 
partners evaluated; in particular the results show that absence of one of 
the two interaction partners, Epn2 and Gsn, leads to increased sodium 
current density in adult cardiomyocytes.

Interactors shared between multiple ion channels
In the section above, we investigated the functional impact of proteins 
we identified by AP–MS/MS to be part of the protein interaction net-
work of the cardiac sodium channel. However, other interactors were 
found associated with more than one ion channel protein. In fact, for 
each channel there were two populations of interactors: one consist-
ing of proteins pulled down only by that single bait, and another one 
consisting of proteins that were pulled down by more than one bait. In 
several cases, ion channel proteins appeared, themselves, as precipi-
tates not only of the antibody for which they were a target, but also as 
interactors of a different channel, indicating that ion channel proteins 
share a notable fraction of their molecular partners. Figure 5 illustrates 
the proteins found in four such shared networks (the information is 
available in table format in Source Data Fig. 5). The first network is 
formed by two potassium-selective ion channels known to physically 
interact in cardiomyocytes30 (Kcnq1/Kcnh2; Fig. 5a), a second one is 
formed by inward rectifiers (Kcnj2/Kcnj3/Kcnj5; Fig. 5b), a third one 
is formed by channels whose activity depend on intracellular calcium 
concentrations (Kcnma1/Kcnn3/Cacna1c; Fig. 5c) and a fourth network 
results from the convergence of Gja1/Cacna1c/Kcnq1 interactors (Fig. 
5d). Cacna1c and Gja1 are known to co-localize in cardiomyocytes31. 
Here we present evidence that Cacna1c and Gja1 co-precipitate in IPs 
and have a shared protein interaction network (Extended Data Fig. 
7). Their potential co-localization with Kcnq1 is interesting as Kcnq1 
appears sensitive to intracellular calcium homeostasis32. We tested 
the possibility of co-localization of Gja1 and Kcnq1 in adult myocytes 
by super-resolution microscopy. α-Actinin was used as a marker of the 
z-discs, and Gja1 marked the cell end (Supplementary Fig. 3). Panel 5E 
shows the position of Kcnq1 and α-actinin as well as that of Kcnq1 and 
Gja1. There is notable co-localization, at the cell end, of Kcnq1 and Gja1 
(Fig. 5f). These data suggest that Kcnq1, and its interactome, may be 
in physical proximity to Gja1 at the intercalated disc. The shared chan-
nel interactors presented in Fig. 5 argue that several of the cardiac ion 
channel networks intersect with one another, and that they are prob-
ably clustered physically at shared locations in the cardiomyocyte.

Shared interaction partners also affect electrophysiology
The protein networks depicted in Fig. 5 illustrate that several molecu-
lar components of ion channel networks interact with more than one 
ion channel. However, as protein complexes are dynamic and can be 
quite extensive, it is unclear if these multiple ion channel interactors 
contribute meaningfully to proper ion channel homeostasis or are 
simply distal members of the greater complex with minimal impact 
on electrophysiology. To evaluate if these proteins that interact with 
multiple ion channels can be functionally relevant to electrophysi-
ological properties, we pursued functional investigation of a subset of 
them. Specifically, we focused on four interactors that associate with 
three different channel proteins (yellow dots in Fig. 2, Fig. 6a): Myzap 

is in the protein network of channels Kcnj5/Kcnd2/Kcnh2; Nlrx1 is in 
the protein network of channels Kcnq1/Kcnh2/Hcn4; Pde4dip is in the 
network of channels Kcnj2/Kcnq1/Hcn4; and Synpo2l is in the network 
of channels Kcnj3/Kcnq1/Kcnh2. As in the case of the single interactors, 
the zebrafish model was used as experimental platform, given, among 
other reasons, the lack of electrically relevant Kcnq1 expression in the 
murine heart.

Using multi-gRNA CRISPR/Cas9 we acutely knocked out the 
orthologous gene(s) encoding each of the four proteins, Myzap, Nlrx1, 
Pde4dip and Synpo2l, in zebrafish embryos and evaluated these genetic 
manipulations by cardiac optical voltage mapping. The results are 
shown in Fig. 6b–e and Supplementary Table 6. Figure 6b shows that 
acute KO of the gene encoding myzap led to prolonged ventricular APD 
that was well established by early phase-3 repolarization, consistent 
with an effect on an early repolarization current (such as Ito) which arises 
in part from Kcnd2. KO of the gene encoding nlrx1 prolonged atrial 
APD, with greater effect size in late repolarization and a strong rate 
dependency (Fig. 6c). Acute KO of the gene encoding synpo2l caused 
ventricular APD prolongation with greatest effect late in repolarization, 
consistent with reduced outward current during mid-to-late phase-3 
repolarization consistent with the currents arising from Kcnq1 and 
Kcnh2 (Fig. 6d). Like loss of nebl, loss of synpo2l resulted in reduced 
ventricular CV and increased spatial dispersion of ventricular repolari-
zation (Fig. 6d and Supplementary Table 6). In embryonic zebrafish, 
acute KO of the gene encoding pde4dip resulted in an increased pro-
pensity to abnormal AV conduction pattern including AV dissociation 
and ventricular ectopic pacing foci with retrograde AV conduction. 
Hearts absent of pde4dip also had slower ventricular CV and increased 
spatial dispersion of ventricular repolarization, but KO caused these 
parameters to change in the opposite direction in the atria (Fig. 6e). 
Adult zebrafish absent in pde4dip had normal antegrade, 1:1 associ-
ated AV conduction, but the PR interval was prolonged indicating 
impaired AV conduction. These fish exhibited additional signs of elec-
trical remodeling such as slower heart rates and altered QRS waves, the 
latter suggesting changes in ventricular conduction (Fig. 6f and Sup-
plementary Table 8). Additionally, these fish had greater beat-to-beat 
variability in their ECG waveform and parameters (Extended Data Figs. 
4c and 8). Although the specific functional impact of these interactors 
with each channel separately requires in-depth investigation, these 
results demonstrate that the associations detected biochemically are 
in fact necessary for the electrical homeostasis of the heart.

Interaction partners and ECG phenotypes
All ion channels investigated herein contribute to the cardiac electrical 
cycle. We have confirmed in zebrafish KOs that a subset of the interac-
tors we have identified have a measurable impact on the proper homeo-
stasis of these sarcolemmal ion channels, including some interactors 
where the functional contribution is not defined, for example, Nlrx1, 
which canonically is involved in mitochondrial antiviral response. We 
have also shown that two of the interactors influence sodium current 
in adult cardiomyocytes. We next set out to evaluate which of the newly 
identified ion channel interactors are most likely to impact human 
cardiac electrophysiology. To do so, we applied a multi-omics data 
integration strategy. First, we utilized a human population genetics 
resource developed by Verweij et al.33, where the influence of genet-
ics on the high-dimensional representation of the ECG was mapped. 
Instead of focusing on the individual segments of the ECG, Verweij and 
colleagues performed a comprehensive phenotyping of more than 

Fig. 5 | Inter-channel networks. Networks of shared proteins between 
channels found to interact. a–d, Kcnq1 and Kcnh2 (a), between Kcnj2, Kcnj3 and 
Kcnj5 (b), between Cacna1c, Kcnn3 and Kcnma1 (c), and between Kcnq1, Gja1 and 
Cacna1c (d). The inset panels show all shared interactors for these channels. The 
bait proteins are shown in red squares and the interactors in light-blue circles. 
Measured interactions are indicated by lines. Note the interactions between 

channel proteins. e, STORM images of murine cardiomyocytes for Kcnq1 (red) 
and Gja1 (green). α-Actinin shown in blue as a control. f, Quantification of images 
as those shown in e shows that 40% of Kcnq1 clusters localize within 20 nm 
from Gja1 clusters. Twenty cells were examined over three mice in independent 
experiments.
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77,000 ECGs in the UK Biobank across the complete cycle of cardiac 
conduction, resulting in 500 spatial–temporal datapoints across 10 
million genetic variants, describing the genetic signatures of the ECG. 

As an example of the information contained in the ECG GWAS dataset, 
we present the genetic ECG signatures of the ten proteins we have func-
tionally investigated in Extended Data Fig. 9. Nine of the ten proteins are 
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encoded in genetic loci significantly associated with an ECG phenotype 
in humans. We utilized the genetic resource to address, in a global 
manner, which of the identified interactors are likely to contribute to 
the human heart ECG (Fig. 7).

We first evaluated which of the network proteins (nodes) are pre-
sent in the human heart and which are expressed in the relevant cell 
type, the cardiomyocyte. For this, we integrated the interactome data 
from all 13 channels into a global protein interaction network (Fig. 7a).  
Next, we utilized information from more than a thousand deep prot-
eomics measurements of human heart samples, many of which were 
collected by us, to evaluate whether the interactors identified in 
murine hearts are also expressed at the protein level in human hearts  
(Fig. 7b). This analysis showed that more than 92% of the proteins in the 
ion channel network were identified in our human cardiac proteome 
atlas (Supplementary Fig. 4a and Supplementary Table 9), thus pro-
viding protein-level evidence of their presence in human heart tissue. 
Furthermore, the protein abundance of these proteins is very similar 
between left ventricles of human and murine hearts (Pearson’s r = 0.85, 
Supplementary Table 10). To focus our analysis on proteins expressed 
in cardiomyocytes, we cross-checked our data against an scRNA-seq 
resource of the human heart published by Tucker et al.34. This analysis 
showed that 98% of the proteins in our network were expressed in at 
least one of the human cardiomyocyte subpopulations (Fig. 7c, Supple-
mentary Fig. 4b and Supplementary Tables 9 and 11), with the main con-
tribution coming from ventricular cardiomyocytes followed by atrial 
cardiomyocytes (Supplementary Table 12). Finally, we evaluated how 
cell type specific the interactomes are. We found a very high correlation 
of RNA expression of the interactors between different cardiomyocyte 
subpopulations (Pearson’s r > 0.9) and a drastically lower correlation 
when evaluating non-myocyte cell types (Supplementary Table 13).

Having confirmed human heart protein expression followed by 
expression specifically in cardiomyocytes, we next applied the genetic 
ECG resource across the entire network (Fig. 7d). For each protein inter-
actor in the network, we queried the GWAS data across all timepoints 
in the ECG cycle to determine the most significant variant within the 
linkage-disequilibrium block of the corresponding gene. Combined, 
the results show that 340 of the proteins in the network were encoded in 
genetic loci that significantly associate with an ECG phenotype (Fig. 7e).  
This translates to 44% of the proteins in the ion channel interactome 
influencing human heart ECG.

Discussion
Our modern understanding of cell electrophysiology is founded on 
the studies of Hodgin, Huxley and Katz, who first recorded electrical 
membrane currents from the squid giant axon35. The authors speculated 
those currents resulted from the flux of ions through ion-selective chan-
nel proteins whose identity, at that time, was unknown. Decades later, 
identification of genes encoding pore-forming proteins gave molecular 

identity to these currents. Yet, it was soon realized that though the cur-
rents flow through specific pore-forming proteins, the amplitude, time 
and voltage dependence of these currents are dictated by a complex 
network of molecular interactors1,6,11,36. Multiple studies have taken a 
one-molecule-at-a-time approach to build a catalog of these interac-
tors, while more recent ones have applied high-throughput methods 
of data acquisition and analysis to characterize the interactors of a 
specific channel37,38. Here we combined proteomics and bioinformat-
ics approaches to define in parallel the interactome of 13 cardiac ion 
channels, identify points of convergence between individual networks 
and examine the possible impact of the interactors on the electrophysi-
ology of the heart.

Our approach was based on IP of individual ion channel proteins 
from cardiac membrane fractions. As an initial step, we tested a large 
panel of antibodies before selecting those that specifically recognized 
the protein of interest as bait. We then applied stringent criteria to 
determine whether a protein molecule detected in the precipitate 
should be considered as part of the interactome of that bait (described 
in Methods). Because of this stringency, weak yet functionally relevant 
dynamic interactors (for example, kinases) may have fallen below the 
threshold of inclusion. Furthermore, proteins that were detected in 
most precipitates were considered artifactual, although some may be 
true interactors. Despite such challenges, and to our knowledge, our 
study represents the most comprehensive compilation of the cardiac 
ion channel interactomes so far.

To validate some of the identified interactors functionally, we 
prioritized a set of candidates, ten in total, based on the extent to which 
they were enriched in the interactome of a given bait and, separately, 
on the fact that they were found to interact with multiple ion channels. 
For the functional evaluation on cardiac electrical properties, we per-
formed high-resolution optical voltage mapping in zebrafish hearts 
where the respective interactors were acutely knocked out. Our results 
showed that loss of expression of the interactors we shortlisted for 
functional studies affected the overall electrophysiology of the heart, 
and in ways that were consistent with the roles of their ion channel 
partners. We characterized the longer-term effects of loss-of-function 
for three of the prioritized interactors by assessing changes to the ECG 
in adult KO fish compared to their WT siblings. After 8–12 months of 
possible compensatory remodeling, these fish still had evident distur-
bances in their electrophysiology. Intriguingly, of the ten interaction 
partners prioritized for functional studies, three were candidate genes 
near loci with genome wide significance in GWAS of atrial fibrillation 
(MYZAP (P = 2 × 10−10) (ref. 39), SYNPO2L (P = 9 × 10−35) (ref. 39) and NEBL 
(P = 2 × 10−14) (ref. 40)).

Our data showed that several cardiac ion channels have shared 
networks of interaction partners. Recently, De Smet et al. used two-
color super-resolution imaging of adult cardiomyocytes to show 
that Gja1 (Cx43) and Cacna1c (CaV1.2) co-localize at the cell end, and 

Fig. 6 | Functional evaluation of interactors shared across multiple channel 
networks. Four proteins that each interact with three different ion channels 
were functionally investigated. a, Interactions identified for Myzap, Nlrx1, 
Pde4dip and Synpo2l. Bait proteins are shown in red, interactors in light blue 
and interactions in green. b, Acute KO in zebrafish of the gene encoding myzap 
(n = 25 fish) resulted in prolonged ventricular APD (APD20; **P = 2.85 × 10−3; 
*P = 0.018 by two-sided Mann–Whitney U test; exemplar amplitude-normalized 
optical action potentials shown) compared to control siblings (WT, n = 25). c, 
KO of nlrx1 (n = 21) mainly affected atrial APD, with a greater effect size in late 
repolarization (APD80) and at slower heart rates (nWT = 21, ***P = 7.64 × 10−4 by 
idem; exemplar amplitude normalized optical action potentials shown).  
d, KO of synpo2la/b (n = 23) led to prolonged ventricular APD at multiple 
paced heart rates with greatest effect size late in repolarization (nWT = 17, 
*P = 0.014; **P = 5.04 × 10−3, idem) and reduced ventricular CV (sinus rhythm; 
**P = 0.015, idem). e, KO of pde4dip (n = 30) resulted in hearts more prone to 
abnormal AV conduction (nWT = 30, odds ratio and 95% CI shown; P = 0.029 by 

Fisher’s exact test; exemplars show normal atrioventricular conduction versus 
retrograde conduction or AV dissociation), decreased ventricular CV and 
increased spatial dispersion of ventricular repolarization (standard deviation 
of repolarization time across the chamber), but with inverted effects in the 
atrial chamber (intrinsic rhythm; CV: *P = 6.24 × 10−3; **P = 5.86 × 10−3; σ-Repol80: 
*P = 0.013; **P = 1.66 × 10−4, idem). This reduces the differential between the 
chambers, which was observed in pde4dip-deficient fish with both abnormal 
AV conduction (filled markers) and normal (open markers). This suggests 
episodic abnormal AV conduction resulting in electrical remodeling with 
persisting effects during periods of normal AV conduction. f, In adult zebrafish, 
pde4dip deficiency (n = 9) resulted in slower heart rate (*P = 0.049), longer PR 
and shorter QRS intervals (*P = 0.029 and P = 0.036, respectively), and greater 
R wave magnitude (**P = 0.0095, all by idem, nWT = 6). Each point in the box 
plots corresponds to an individual zebrafish. Box plots indicate 25th/50th/75th 
percentiles, while whiskers extend to the most extreme data within 1.5× of 
interquartile range beyond box limits.
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that intracellular calcium is a key regulator of the open state of Cx43 
hemichannels31. Consistent with this, we found Cacna1c in the Gja1 
interactome, and vice versa, and we also found Pln, an essential regu-
lator of intracellular calcium homeostasis41, in the same network. 
Our data add a fundamental new observation, namely that chan-
nel proteins involved in repolarization are also a part of this hub. In 
particular, we observed the co-precipitation, and co-localization, 
of Gja1 (Cx43) with Kcnq1. It is worth noting that one of the shared 
proteins in the Kcnq1/Gja1 interactome is Nos1ap, a protein whose 
gene locus is highly associated with QT interval and sudden cardiac 

death in GWA studies42–44, though for molecular reasons yet to be 
understood. Kapoor et al. showed that Nos1ap is localized to the inter-
calated disc45, an observation consistent with the proteomics data 
presented here. Yet, the mechanism underlying the importance of 
Nos1ap in ECG parameters and in arrhythmogenesis remains to be fully 
determined44,46. Furthermore, both Kcnq1 and Gja1 co-precipitated 
ZO-1, a protein preferentially localized to the intercalated disc. The 
identification of Kcnq1 in the intercalated disc (among other loca-
tions) adds to studies showing Scn5a (NaV1.5) (ref. 47) and also calcium 
dyads in this domain31 and supports the idea that the intercalated disc 
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functions as an organelle where major electrophysiological functions 
are represented.

For the outlining of the protein networks, we applied strict filtering 
criteria in the data analysis, and accordingly we may have lost transient 
interactors such as kinases and phosphatases. Likewise, interactions 
susceptible to the lysis conditions may have been lost, whereas certain 
abundant proteins may solely be present due to their higher abun-
dance. Also, the protein interactions described here may occur at any 
point during the life cycle of the bait. In our reported networks, we do 
observe interactors that are involved in protein synthesis as well as 
protein degradation. In this regard, it is worth noting that the protein 
Naca is detected in the shared interactome of Kcnq1 and Kcnh2. Naca 
acts as a triage factor of nascent proteins to prevent their mislocaliza-
tion following synthesis and facilitates their proper translocation to 
the correct subcellular domain48. The fact that Kcnq1 and Kcnh2 share 
this interactor and also co-localize at the membrane30 is consistent with 
recent findings of co-translation (and likely co-transport) of ion channel 
proteins encoded by different, but functionally related, genes49. This 
highlights the fact that protein–protein interactors operate not only 
at the site where the bait function as channels, but at multiple steps 
during synthesis, trafficking and degradation.

It should be noted that Kcnq1 is not a major component of action 
potential repolarization in the mouse heart50, though both transcript 
and protein can be detected and recessive phenotypes for KCNQ1 
in human are recapitulated. One possible explanation is that, in the 
murine heart, an interactor of Kcnq1 necessary for its function as a 
charge carrier is not expressed51. Additional experiments will be neces-
sary to document the cardiac interactome of Kcnq1 in species where 
this outward current is manifest and to compare it to the interactome 
presented in the present study. Indeed, some channel interactors 
impact function in different ways depending on the model system, 
be it across species, across hearts and for some even across regions 
of the same cell. The calcium/calmodulin-dependent serine protein 
kinase, Cask, is reported as a direct partner of NaV1.5, but the functional 
effect of the interaction is restricted to channels localized to the lateral 
membrane52. Similarly, nanodomain-specific pharmacological modula-
tion of NaV1.5 in cardiac myocytes has been demonstrated53, comple-
menting findings that the steady-state inactivation of NaV1.5 is different 
in the cell end than in the mid-section of the cell54. This is likely to be con-
sequent to the subcellular distribution of interactors and their effect 
on the gating properties of the channel. Other examples of differences 
in functional effects across model systems count overexpression of the 
NaV1.5 interactor LITAF (lipopolysaccharide-induced tumor necrosis 
factor-α factor) that substantially increase sodium current density in 
cardiomyocytes, while KO of the corresponding gene in zebrafish does 
not show a notable effect55, as well as general ionic current differences 
in cardiomyocytes across stages of maturity (for example, refs. 56 and 
57). These and other examples indicate that there can be differences 
in the effect of interactors as a function of species, but also as a func-
tion of the regions of the heart or regions of the cell. In our study, we 

found divergent functional outcomes for the NaV1.5 interactor Glipr2 
depending on the model system we evaluated it in. The concept that 
interactors can impact function in different ways, depending on the 
cell, the organism or the nanodomain in which they are tested under-
scores the need for additional functional studies to outline the ionic 
current mechanisms. In our study, the results consistently showed that 
loss of an interactor can affect the electrical phenotype, but there are 
some inconsistencies between the observations in mature (adult mam-
malian) myocytes and immature (fetal, or embryonic) cell systems. The 
reason remains unknown, though we speculate that it may have to do 
with the state of maturity of the myocyte.

To evaluate the relevance of our findings in the context of human 
heart electrophysiology we undertook a multi-omics data integra-
tion approach. We confirmed that more than 92% of the ion channel 
interactors are also expressed at the protein level in human hearts, and 
we report that the protein abundances of the channel interactors are 
similar in human and murine left ventricles. Due to the experimental 
design, our data does not reveal the cellular identity where the interac-
tions outlined take place. However, we do show that the interactors are 
primarily expressed in cardiomyocytes, which are also the primary cell 
type expressing the ion channel proteins used as baits. The fact that the 
orthologous transcripts are primarily expressed in human cardiomyo-
cytes, and that the protein orthologs are also present in human hearts, 
supports that the reported interactomes could be relevant to human 
cardiac electrophysiology. Using information from the UK Biobank, we 
implemented a strategy to characterize the potential role of a specific 
interactor on cardiac electrophysiology. Utilizing an ECG-GWAS tool 
developed by Verweij et al.33, we show that 44% of the interactors are 
encoded by genes in the vicinity of single-nucleotide polymorphisms 
significantly associated with variations in the ECG. This approach does 
not establish a physical association between a channel and a protein 
(our IP-based proteomics does that) but it does suggest that the inter-
actor (or its region within the genome) may play a role in determining 
the overall electrical homeostasis of the heart.

Understanding the mechanisms of how each of the physical inter-
actions documented herein may translate into functions affecting 
electrical homeostasis remains a matter for future studies. Herein, 
we have documented how two of the interaction partners contribute 
to electrical homeostasis by affecting the sodium current in adult 
cardiomyocytes. We report that silencing of the Gsn gene encoding 
for gelsolin led to increased sodium current density and affected the 
sodium channel kinetics by left-shifting the voltage dependency of 
channel activation in adult cardiomyocytes, and we confirmed close 
proximity of gelsolin and Scn5a in adult cardiomyocytes. Gelsolin is 
a Ca2+-dependent actin-binding protein that regulates actin filament 
assembly and disassembly. We speculate that the effect observed on 
sodium channel function in absence of gelsolin is coupled to actin 
microfilament rearrangements. Similar effects of gelsolin have previ-
ously been reported for non-voltage-gated sodium channels in leu-
kemia cells58. Similar to the effect of gelsolin, we report that silencing 

Fig. 7 | Network nodes associated with genetic influence on human heart 
ECG. a, We constructed a combined protein–protein interaction network of 
all 13 channel interactomes, which in total comprise 881 protein interactors. 
Channel bait proteins are shown in red squares, interactors in gray-blue circles. 
Edges are colored to indicate clusters of ion channels that contribute to similar 
electrophysiological components. b, The network from a was filtered for 
proteins that were measured in human heart samples by analyzing more than a 
thousand MS-based proteomics measurement files from human heart samples. 
Ninety-two percent of the proteins in the network were identified in the human 
heart samples (details in Supplementary Fig. 4a and Supplementary Table 9). c, 
We utilized human heart single-nucleus RNA sequencing data to determine which 
of the interactors were expressed in human cardiomyocytes. We found evidence 
of expression for 98% of the interactors (details in Supplementary Fig. 4b and 
Supplementary Table 9). d, The remaining 796 human heart, cardiomyocyte-

expressed, interactors were evaluated using ECG plotter tool. For each protein, 
this generates a time series of associations across the ECG cycle. For each protein, 
we report the most significant association. e, Refined network of the 13 channel 
bait proteins and their human heart-cardiomyocyte-expressed interactors. Bait 
proteins are depicted in squares, interactors in circles. The color of the nodes 
indicates the significance of the influence on the ECG as determined by ECG 
plotter. A darker red color indicates a more significant association. The 340 
proteins with a significant influence (P < 8.23 × 10−7 resulting network supports 
the notion that the combined ion channel network is enriched for proteins that 
influence the cardiac ECG. GWAS P values were extracted from Verweij et al.33 and 
adjusted for multiple comparisons (details in Methods and Source Data Fig. 7). 
Parts of the figure were drawn by using pictures from Servier Medical Art. Servier 
Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 
Unported License (https://creativecommons.org/licenses/by/3.0/).
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of the gene Epn2 leads to increased sodium current density in adult 
cardiomyocytes. Epn2 encodes the protein epsin-2, which is involved in 
protein trafficking and specifically engage in trafficking of proteins via 

clathrin-coated vesicles36. In our study, absence of epsin-2 exclusively 
affected the sodium current density, but none of the kinetic param-
eters evaluated. Accordingly, we speculate that epsin-2 is involved in 
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the trafficking of sodium channels in adult cardiomyocytes. Further 
specialized studies are required to fully understand the mechanisms 
of epsin-2 and gelsolin regulation of the cardiac sodium current.

In summary, we have utilized an array of experimental and bio-
informatics methods to compile and analyze a comprehensive inter-
actome of 13 cardiac ion channels isolated from murine heart tissue. 
The overall dataset includes known interactors and a multitude of 
new ones. Almost all identified channel interactors are also present 
in human cardiac tissue and predominantly so in cardiomyocytes. 
Bioinformatics evidence suggests that close to half of the interactors 
influence the human heart ECG. We functionally characterized the 
cardiac electrophysiological impact of ten of the identified interac-
tors. The outcome of these experiments underscores the rich source 
of information contained in the dataset as a whole and presents a 
validation of the functional relevance of the reported interactions for 
the electrical homeostasis of the heart.

Methods
Tissue preparation and IP
All procedures were performed according to the European Union 
legislation for the protection of animals used for scientific experi-
ments. Mice were housed in individually ventilated cage-systems with 
8–10 air changes per hour, temperature: 22 °C (±2 °C), humidity 55% 
(±10%) and standard 12:12 h light:dark cycle. Food and water were 
provided ad libitum. Cardiac tissue homogenates were prepared 
from the hearts of 20 8-week-old male mice (C57BL/6JRj). The lysis 
and IP conditions such as detergent, input material and amount, 
and detergent type were optimized using Kcnq1 antibody (Alomone 
APC-022, Supplementary Table 1). The final experiments were car-
ried out using 3 mg membrane enriched input material with the use 
of 1% NP-40, 1% sodium deoxycholate as detergents. This condi-
tion preserved the protein–protein interactions and gave minimal 
interference from blood proteins and better sequence coverage 
for the bait (Supplementary Table 1). In brief, hearts were dissected 
out and immediately snap frozen. The hearts of each mouse were 
homogenized separately using Precellys 24 (Bertin Instruments) in 
an ice-cold lysis buffer (50 mM Tris pH 8.5, 5 mM ethylenediamine-
tetraacetic acid, 150 mM NaCl and 10 mM KCl) supplemented with 
protease and phosphatase inhibitors (complete protease inhibi-
tor cocktail (Roche), 1 μg ml−1 leupeptin, aprotinin and pepstatin, 
1 mM phenylmethylsulfonyl fluoride, 5 mM sodium fluoride, 5 mM 
β-glycerophosphate and 1 mM sodium orthovanadate). The lysate 
was spun at 16,000g at 4 °C for 1 h to separate the membrane and the 
soluble fraction. The pellet containing the membrane fraction was 
re-solubilized in ice-cold lysis buffer supplemented with 1% NP-40, 1% 
sodium deoxycholate for 16 h at 4 °C. Subsequently, membrane frac-
tions were centrifuged to remove debris, and membrane-enriched 
lysates from five mice were pooled together to obtain four replicates. 
The protein concentrations were determined using Quick Start Brad-
ford Dye Reagent (Bio-Rad). IPs were performed by pre-clearing 3 mg 
of membrane fraction lysate per antibody using Dynabeads Protein 
G (Thermo Fisher). The pre-cleared lysate was incubated with 2 µg 
antibody (Supplementary Table 1) overnight at 4 °C. The complex 
was captured using Dynabeads Protein G, washed three times with 
lysis buffer, and eluted in 1× lithium dodecyl sulfate loading dye 
(Invitrogen) supplemented with 100 mM dithiothreitol by heating 
it at 70 °C for 10 min.

The reverse pulldowns of Inf2 were carried out in a similar man-
ner as described above with the exception of using total tissue lysate 
without membrane enrichment. Briefly, the homogenates for tripli-
cate experiments were prepared from heart of one 8-week-old male 
mouse (C57BL/6JRj) by solubilizing it in lysis buffer supplemented 
with detergents as mentioned above. IP was carried out using Anti-Inf2 
antibody (Bethyl Labs, A303-428A), and the whole eluate was loaded 
on SDS–PAGE gels.

MS sample preparation
The eluate was run on SDS–PAGE, and each of the lanes was excised into 
four parts, combining the IgG bands in one part. Each of the gel slices 
was in-gel digested with trypsin, as previously described59. Briefly, 
excised gel bands from Coomassie-stained SDS–PAGE-separated pro-
teins were minced, destained, reduced and alkylated. The proteins 
were extracted and digested with sequencing-grade trypsin (Promega) 
overnight at 37 °C. The activity of trypsin was subsequently quenched 
by trifluoroacetic acid (TFA) acidification, and the resulting peptides 
were extracted by acetonitrile (ACN)/water and desalted and concen-
trated on C18 STAGE tips. Peptides were eluted with 2× 20 µl 40% ACN, 
0.5% acetic acid, and the organic solvents were removed in a vacuum 
centrifuge.

For whole proteome measurements, the input membrane fraction 
was subjected to acetone precipitation to remove the detergents and 
the precipitated proteins were dissolved in 6 M GdnHCl. The proteins 
were reduced and alkylated followed by in-solution digestion with Lys-C 
(1:300 w/w) for 1 h at 37 °C, diluted 1:12 with 50 mM Tris–HCl (pH 8) to 
lower the GdnHCl concentration to 0.5 M. The peptides were further 
digested with trypsin (1:100 w/w) overnight at 37 °C. Reactions were 
quenched by addition of TFA, and samples were desalted on C18 SepPak 
columns (Waters). Then 100 µg peptide from each sample was used for 
fractionation on a Dionex UltiMate 3000 UPLC system (Thermo Scien-
tific) into 12 concatenated fractions for in-depth proteome measure-
ments. The organic solvent was removed using vacuum centrifugation.

MS measurements and analysis
Peptide samples were analyzed by online reversed-phase liquid chro-
matography coupled to a Q-Exactive HF-X quadrupole Orbitrap tandem 
mass spectrometer (LC–MS/MS, Thermo Electron). Peptide samples 
were resuspended in 5% ACN, 0.1% TFA in 96-well microtiter plates 
and autosampled (2 µl injection volume) into a nanoflow Easy-nLC 
system (Proxeon Biosystems). Peptide samples were separated on a 
15 cm self-pack 75 µm internal diameter PicoFrit columns filled with 
ReproSil-Pur C18-AQ 1.9 μm resin (Dr. Maisch GmbH). A 30 min multi-
step linear gradient (Buffer A: 0.1% formic acid, Buffer B: 0.1% formic 
acid, 80% ACN) was used that went from 10% to 30% Buffer B in 25 min, 
30% to 45% Buffer B in 5 min and 45% to 80% Buffer B in 30 s. Column 
effluent was directly ionized in a nano-electrospray ionization source 
operated in positive ionization mode and electrosprayed into the 
mass spectrometer. Full-MS spectra (350–1,400 m/z) were acquired 
after accumulation of 3 × 106 ions in the Orbitrap (maximum fill time 
of 45 ms) at a resolution of 60,000. A data-dependent Top12 method 
then sequentially isolated the most intense precursor ions for higher-
energy collisional dissociation. MS/MS spectra of fragment ions were 
recorded at a resolution of 15,000 after accumulation of 1 × 105 ions in 
the Orbitrap (maximum fill time of 22 ms). Raw MS data were processed 
using the MaxQuant version 1.6.2.3 (ref. 60), and proteins were identi-
fied with the built-in Andromeda search engine by searching MS/MS 
spectra against an in silico tryptic digest of a database containing all 
reviewed SwissProt mouse protein entries. The MS/MS spectra were 
searched with carbamidomethyl-cysteine as fixed modification, as 
well as methionine oxidation, acetylation of protein N-termini and 
Gln→pyro-Glu and phospho(STY) as variable modifications. A maxi-
mum of two missed cleavages and six variable modifications were 
allowed. The minimum peptide length was set to 7 amino acids (default) 
and minimum Andromeda score required for modified peptides was 
25, with minimum delta score of 6 (default). First search tolerance was 
20 ppm (default) and main search tolerance was 4.5 ppm (default), 
requiring strict specificity of tryptic peptides. The match-between-
runs option was enabled with default parameters for all runs of  
one bait protein. False-discovery rate cutoffs were set to 1% on pep-
tide, protein and site decoy level (default), only allowing high-quality  
identifications to pass. All peptides were used for protein 
quantification.
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IP data analysis
The raw intensity measurements for the pulldowns and proteomes 
were quantile normalized separately using Bioconductor R package 
LIMMA61. Protein identification results were further processed using 
the Perseus software suite version 1.6.2.1 (ref. 62). All the proteins that 
were found in more than half of the pulldowns were used for median 
calculation, that is, 16 pulldowns will result in 64 replicates, and if a 
protein was found in more than 32 replicates it will be used further. 
Complementary median values were calculated for these proteins 
using the normalized values from other pulldowns. For pulldowns 
that belonged to the same family of proteins, such as Kcnj2, Kcnj3 and 
Kcnj5, the whole family was excluded from complementary median 
calculation. For the remaining half of the proteins without a median 
value, measured intensities from the control IgG pulldowns were used. 
If there were missing values still remaining, we first imputed values 
from the proteome measurements that were scaled to match those of 
the pulldowns using the method described in ref. 21 and then by random 
sampling from a left-shifted normal distribution according to default 
parameters in Perseus62.

Volcano plot visualizations were made in Perseus. We filtered the 
data to include only proteins found in at least three of the four repli-
cates. The claim to significance was based on false discovery rate (FDR) 
of a two-sided t-test and s0 value (s0 controls the relative importance 
of t-test-based P value and difference between means)62. For most of 
the channels (Cacna1c, Gja1, Kcnd2, Kcnj2, Kcnma1, Kcnn3 and Scn5a) 
significance was claimed at FDR >0.05 and s0 >2. For the other chan-
nels, these cutoffs were tweaked to obtain the significant proteins. 
For Hcn4, Kcna5 and Kcnj5, we had to decrease the strictness which we 
believe was either due to the bait itself being low-abundant in cardiac 
tissue and/or the antibody efficacy and specificity. For Kcnh2, Kcnj3 
and Kcnq1, we had to increase the strictness of claiming significance, 
which we believe is due to bait abundance or presence of bait in differ-
ent micro-environments and organelles.

Despite the strict criteria for claiming significance, we obtained 
~880 interactors for the 13 ion channels. Hence, to narrow down on 
select group of interactors to follow up on, we ranked them by the 
following criteria and chose one or two proteins per bait that were the 
top-most hits:

	1.	 Number of replicate experiments in which the interactor was 
identified by MS/MS.

	2.	 Sequence coverage of the protein.
	3.	 The number of peptides measured in the bait IP compared to the 

number of peptides measured for this protein in any other IP.

This information was combined with the information we obtained 
from shared interactor analysis (given in later section) to highlight key 
proteins within the interactome for follow-up studies. These proteins 
are shown as yellow dots in Fig. 2.

Protein immunoblotting
IP elutions were separated on 4–12% gradient NuPage Bolt Bis-Tris gels 
(Thermofisher) using the XCell SureLock Mini-Cell Electrophoresis 
System (Thermofisher). Proteins were transferred to a nonfluorescent 
Immobilon polyvinylidene fluoride membrane (45 μM; Millipore) in 
Bolt transfer buffer (Thermofisher) using a minitransblot cell (Bio-
Rad). After transfer, the membranes were blocked for 1 h at room 
temperature in a blocking buffer consisting of Odyssey blocking 
buffer (LI-COR Biosciences) diluted 1:1 with phosphate-buffered 
saline (PBS). The membranes were incubated overnight at 4 °C in a 
blocking buffer containing primary antibodies (1:1,000 dilution). 
After being washed with PBST, the membranes were incubated for 
45 min with fluorescently conjugated secondary antibodies diluted 
in a blocking buffer (1:10,000). Bound antibody was detected by the 
Odyssey CLx Imaging System (LI-COR Biosciences) using 800 nm 
and 700 nm channels.

Zebrafish maintenance
Zebrafish (Danio rerio) were maintained in a dedicated fish facility at 
28.5 °C with a stable circulating system which continuously filters, 
treats (with ultraviolet light) and aerates the water. All animal experi-
ments using zebrafish were performed according to the European 
Union legislation for protection of animals used for scientific experi-
ments and was approved by the Danish National Animal Experiments 
Inspectorate (license 2021-15-0201-00811) or were approved by the 
Institutional Animal Care and Use Committee at Brigham and Women’s 
Hospital and Harvard Medical School.

Generation of acute KO in zebrafish
For each gene studied, WT AB/Tuebingen (AB/Tu) zebrafish were 
crossed, and the resultant fertilized eggs from a single clutch were 
divided at random into two groups, each group containing males and 
females, to be injected with either (1) a solution containing multiple 
gRNAs targeting respective gene(s)/isoform(s), as well as Alt-R tracr-
RNA, and Alt-R S.p. HiFi Cas9 Nuclease V3 (KO group), or (2) tracrRNA 
and Cas9 alone (control group). These components (all from Integrated 
DNA Technologies), were prepared according to the manufacturer’s 
instructions and microinjected into single-cell embryos delivering a 
total of 2 fmol of gRNAs and 250 pg of Cas9 in 1 nl per embryo. gRNAs 
were designed using CHOPCHOP (https://chopchop.cbu.uib.no/)63. 
Sequences of the gRNAs and respective target(s) are listed in Supple-
mentary Tables 3 and 4. The remains of all KO-targeted embryos used 
for voltage mapping were sequenced using the listed primer pairs. The 
efficiency of editing varied across gRNAs and respective target sites 
but ranged from 84% to 100% at two sites or more in each targeted 
embryo. Only embryos with evidence of gene edits were included in the 
KO group for the final analysis. A minimum n of 9 zebrafish embryos 
was used for these studies.

Optical mapping of isolated zebrafish hearts
Optical mapping and signal processing were performed as previously 
described27. Briefly, isolated hearts from either 3 or 5 days post-ferti-
lization embryos were incubated with a voltage-sensitive fluorescent 
dye in the FluoVolt Membrane Potential Kit (Invitrogen) for at least 
15 min at room temperature. Afterwards, the hearts were transferred 
into a perfusion chamber (RC-49MFS; Warner Instruments) filled with 
normal Tyrode solution containing 1 mM cytochalasin D (Sigma) to 
decouples electrical impulses from contractions. The chamber was 
then mounted onto the stage of an inverted microscope (TW-2000; 
Nikon) with built-in platinum wires connected for field pacing. The 
fluorescent dye was excited with a 470 nm light-emitting diode, and 
the emission was collected by a high-speed 80-by-80-pixel charge-
coupled device camera (RedShirtImaging) with 14-bit resolution. Using 
a 20× objective and 0.5× C-mount adapter, the final magnification was 
10× with a pixel-to-pixel distance of 2.4 µm. For signal processing and 
quantification, images were analyzed by customized scripts in MATLAB 
version R2019a (MathWorks)27.

Electrocardiography of adult zebrafish
Recordings were performed as previously described64. Briefly, adult 
(3–4 months) male and female zebrafish were anesthetized with 
0.016% tricaine and maintained in a wet sponge. A sensing electrode 
was placed above the cardiac region, and a reference electrode was 
placed caudally in the sponge. The fish were recorded for at least 
5 min, and roughly 30 consecutive beats used to construct a signal 
averaged ECG for analysis, all performed in LabChart 8 (ADInstru-
ments). ECG characteristic parameters were tested for significant 
difference in magnitude between the acute CRISPR KOs and their 
control clutchmates by the two-sided Mann–Whitney U test. Where 
noted, parameters were also tested for significant difference in group 
variance between groups using the Conover squared-ranks test for 
homogeneity of variance.
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Design and delivery of AAV-shRNA for gene silencing in mice
To silence the gene expression of Epn2, Glipr2 and Gsn in mice, three 
vectors of pAAV9[shRNA]-EGFP-U6>mEpn2, mGlipr2 and mGsn were 
designed. AAV-shRNA vectors were generated and produced by Vec-
torBuilder in the titer 2 × 1013 GC ml−1. The shRNA target sequences 
for each gene were: mEpn2[shRNA] CAGTGGCTCCTTCGAACATTA; 
mGlipr2[shRNA] CAGCCATGGTATGGAAGAATA; mGsn[shRNA] 
GACTTCTGCTAAGCGGTACAT. AAV-EGFP-shRNA for sodium channel 
protein interactors and the empty vector expressing GFP only were 
diluted in PBS administered via the tail vein (injection volume between 
80 and 100 µl) in doses of 4 × 1013 vg kg−1. Mice with no AAV injections 
were also included as controls to ensure that AAV injection alone did 
not affect electrophysiological properties. The C57BL/6 mice were from 
Charles River Laboratories and 23 between injected and not injected 
3–4-month-old female mice were used for AAV-shRNA gene silencing. 
Temperature (21–23 °C) and relative humidity (30–70%) were main-
tained according to standard protocols put in place by the Division of 
Comparative Medicine at New York University (NYU) Grossman School 
of Medicine. Lighting was provided via an automatic timer with a 12 h 
light–dark cycle.

Animals were treated in accordance with the Guide for Care and 
Use of Laboratory Animals published by the US National Institutes of 
Health. Procedures were approved by the NYU Institutional Animal 
Care and Use Committee (IACUC) committee under protocol number 
160726-03.

Cardiomyocyte dissociation
Murine ventricular myocytes were obtained by enzymatic dissociation 
17–21 days after AAV infection, following standard procedures. Briefly, 
mice were injected with 0.2 ml heparin (500 IU ml−1 intraperitoneally) 
20 min before heart excision and anesthetized by inhalation of 100% 
CO2. Deep anesthesia was confirmed by lack of response to otherwise 
painful stimuli and cervical dislocation were performed after anesthe-
sia to ensures the death of the animal. Hearts were quickly removed 
from the chest and placed in a Langendorff column. For cell dissocia-
tion, the isolated hearts were perfused sequentially at a constant flow 
rate of 3 ml min−1 with solution containing (in mmol l−1): 113 NaCl, 4.7 
KCl, 1.2 MgSO4, 0.6 Na2HPO4, 0.6 KH2PO4, 12 NaHCO3, 10 KHCO3, 10 
HEPES, 5.5 glucose and 30 taurine, pH 7.40 with NaOH and then an 
enzyme (collagenase type II 600 U ml−1, Worthington) solution with 
the addition of low CaCl2 concentration (12.5 µM) for 15 min. Perfusate 
temperature was maintained at 37 °C. After digestion, ventricles were 
separated into small pieces and gently minced with a Pasteur pipette. 
The isolated cardiomyocytes were suspended in stop buffer (low-
calcium solution with 5% bovine calf serum), and the Ca2+ concentration 
was increased gradually to normal values. Cardiomyocytes were used 
on the same day of isolation.

Patch-clamp measurements from adult murine 
cardiomyocytes
Only the eGFP.positive cardiomyocytes were used to perform the 
sodium current recordings. All whole-cell INa recordings were con-
ducted at room temperature using an Axon multiclamp 700B Ampli-
fier and a pClamp system (versions 10.2, Axon Instruments). Pipette 
resistance was maintained within the range of 1.8–2.2 MΩ. Recording 
pipettes were filled with a solution containing (in mmol l−1): NaCl 1, 
CsF 135, EGTA 10, Na2ATP 5 and HEPES 5, pH 7.2 with CsOH. Cells were 
maintained in a solution containing (in mM): NaCl 5, CsCl 130, CaCl2 
1, MgCl2 1, CdCl2 0.1, HEPES 20, TEACl 10 and glucose 5, pH 7.35 with 
NaOH. To determine the peak current voltage relation, 300 ms volt-
age pulses were applied to Vm −90 mV to 0 mV in 5 mV voltage steps, 
from a holding potential of Vm = −140 mV. Interval between voltage 
steps was 1.7 s. Current densities were determined by dividing current 
amplitude by the cell capacitance (Cm), as determined by application 
of +20 mV depolarizing test pulses. Steady-state activation curve was 

calculated using the equation: I = gmax × (E − Erev), where ‘I’ is the peak 
current amplitude; ‘gmax’ is the maximal conductance; ‘E’ is the volt-
age applied; ‘Erev’ is the Na+ reversal potential, calculated for each cell. 
Steady-state inactivation curve was determined by stepping Vm from 
−130 mV to −40 mV, followed by a 30 ms test pulse to Vm = −30 mV to 
elicit INa. The steady-state voltage-dependent inactivation and activa-
tion curves were fitted to Boltzmann’s functions.

Real-time PCR evaluation of Epn2, Gsn and Glipr 
cardiomyocyte knockdown
All cardiomyocytes remaining after patch clamp measurements were 
washed in PBS and utilized for RT–PCR measurement. The gene tran-
scripts of msEpn2, Glipr2 and Gsn in AAV9-shRNA injected mouse 
hearts were detected with real-time PCR techniques in the respec-
tive knockdowns. Total RNA was extracted and purified using RNeasy 
Mini Kit (QIAGEN) from the mouse cardiomyocytes. Complementary 
DNA was generated using High Capacity Reverse Transcript Kit (Ther-
moFisher) with equal amount of total RNA from silenced and control 
cardiomyocytes. Real-time PCR was performed with PowerUp SYBR 
Green reagents and applied on StepOnePlus Real Time PCR System. 
Relative quantification was calculated as RQ = 2−ΔΔCT. The RQs of each 
reaction were normalized to control mice injected with empty AAV-
EGFP vector. The data were analyzed using GraphPad Prism 9.3.1 soft-
ware, and the P values were calculated by t-test. The RNA samples were 
obtained from five AAV-shRNA-injected mice, and for each gene GAPDH 
was used as reference gene with forward primer: TGACGTGCCGC-
CTGGAGAAA and reverse: AGTGTAGCCCAAGATGCCCTTCAG; mouse 
Epn2 forward primer: GGGCAAGTGACACTGCTATAA and reverse: 
GAGGCTATCCTAGACCCTTTCT; mouse Glipr2 forward primer: GATAG-
GTGGTACAGCGAAATCA and reverse: CCACGCCTATCTTCTTGGTATT; 
mouse Gsn forward primer: ACTGTGCAACTGGATGACTAC and reverse: 
CCACACCTCCTTTCTTGTACTT.

Cardiomyocyte dissociation for STORM imaging
Adult mouse ventricular myocytes were obtained by enzymatic dis-
sociation. All procedures conformed to the Guide for Care and Use 
of Laboratory Animals of the National Institutes of Health and were 
approved by the NYU IACUC committee. Temperature (21–23 °C) and 
relative humidity (30–70%) were maintained according to standard 
protocols put in place by the Division of Comparative Medicine at 
NYU Grossman School of Medicine. Lighting was provided via an auto-
matic timer with a 12 h light–dark cycle. The C57BL/6N mice were from 
Charles River Laboratories and 3–4-month-old male and female mice 
(ten in total) were injected with 0.1 ml heparin (500 IU ml−1 intraperi-
toneally) before heart excision and anesthetized by inhalation of 100% 
CO2. Deep anesthesia was confirmed by lack of response to otherwise 
painful stimuli. The mouse was then killed by cervical dislocation 
and the heart surgically removed via thoracotomy and placed in a 
Langendorff column. The isolated hearts were perfused sequentially 
at a constant flow rate of 3 ml min−1 with Ca2+-free solution containing 
(in mmol l−1): 113 NaCl, 4.7 KCl, 1.2 MgSO4, 0.6 Na2HPO4, 0.6 KH2PO4, 12 
NaHCO3, 10 KHCO3, 10 HEPES, 5.5 glucose and 30 taurine, pH 7.40 with 
NaOH and then an enzyme (collagenase type II; Worthington) solution 
for 10 min. The temperature of the perfusion buffers was maintained at 
37 °C. After digestion, the tissue was cut into small pieces, and minced 
by gentle mechanical agitation with a Pasteur pipette. The isolated 
cardiomyocytes were suspended in 10 ml of stop buffer (Ca2+-free 
perfusion buffer with 5% bovine calf serum) and the Ca2+ concentration 
was increased gradually to 1.0 mmol l−1. Cardiomyocytes were kept in 
Tyrode’s solution containing (in mmol l−1): 148 NaCl, 5.4 KCl, 1.0 MgCl2, 
1.0 CaCl2, 0.4 NaH2PO4, 15 HEPES and 5.5 glucose, pH 7.40.

Single-molecule localization microscopy by STORM
Freshly isolated ventricular cardiomyocytes from WT mice were plated 
on laminin-coated coverslips and fixated in 4% paraformaldehyde 
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(PFA)–PBS. Cells were then permeabilized with 0.1% Triton X-100 in PBS 
for 10 min. Blocking was done in PBS containing 2% bovine serum albu-
min (Sigma), 2% glycine (Sigma) and 0.2% gelatin (Sigma) for 30 min. 
Primary antibodies diluted in blocking buffer were incubated for 1 h 
at room temperature, followed by three washes in PBS, and secondary 
antibodies incubation for 15 min. Primary antibodies used were: rabbit 
polyclonal Kcnq1 (1:50, Alomone catalog number #APC-022), rabbit 
polyclonal Kcnq1 (1:50, Alomone catalog number #APC-168), mouse 
Anti-Connexin 43 clone 4E6.2 (1.50, Sigma-Aldrich catalog number 
#MAB3067, Lot: 3138211), rabbit polyclonal Scn5a (1:50, Sigma catalog 
number #S0819, Lot: SLBW8952), rabbit monoclonal anti-Gelsolin 
clone EPR1941Y conjugated to Alexa Fluor 647 (1:100, Abcam catalog 
number #ab75832), mouse anti-α-actinin clone EA-53 conjugated to 
Alexa Fluor 488 (1.300, Sigma-Aldrich catalog number #A7811, Lot: 
0000141496)), Alexa Fluor goat anti-rabbit 568 (1:10,000, Invitrogen, 
catalog number #A11011, Lot: 1778925), Alexa Fluor goat anti-rabbit 
647 (1:10,000, Invitrogen, catalog number #A21244, Lot: 1834794) and 
Alexa Fluor goat anti-mouse 488 (1:10,000, Invitrogen, catalog number 
#A11001, Lot: 2220848).

Samples were imaged using a custom-built platform based on 
an inverse microscopy setup Leica DMI3000 as described before65. 
Imaging conditions were achieved by addition of 200 mmol l−1 mercap-
toethylamine and an oxygen scavenging system (0.4 mg ml−1 glucose 
oxidase, 0.8 µg ml−1 catalase and 10% (wt/wt) glucose) to the fluoro-
phore-containing sample.

Movies containing 2,000 frames were submitted to a home-built 
software in MATLAB for precise single-molecule localization. Recon-
structed super-resolved images were processed with a smoothing 
filter (‘Gaussian blur’ function in ImageJ), adjusted for brightness and 
contrast, and filtered to a threshold to obtain a binary image. Cluster 
detection and parameters were obtained using the function ‘Analyze 
particles’ in ImageJ version 1.53a.

As described previously65, to standardize measurements, dis-
tances between Scn5a and Gsn, or between Kcnq1 and Cx43, were meas-
ured with an automated script written in Python. The script utilized the 
image processing packages scikit-image, and ‘Mahotas’, version 1.2 an 
open-source software for scriptable computer vision66. Two clusters 
were considered separate if one was at least 20 nm/1 pixel apart from 
another in any direction.

Protein–protein interaction networks
Protein–protein interaction networks were created in Cytoscape ver-
sion 3.8.0.

Comparison of interactor protein profiles in human and 
mouse hearts
To evaluate the correspondence between murine cardiac protein abun-
dances and those of human heart, we turned to analyses of cardiac 
biopsy samples. Specifically, we have evaluated the protein abundance 
profile for the cardiac proteins we have identified. For each of these 
proteins we extracted the protein abundance in murine and human 
hearts across the three chambers available across these species from 
a study our group published last year67. This dataset is unique for such 
comparisons, because all samples have been processed and analyzed 
together and hence the dataset enables comparison across species. 
Additionally, we calculated Pearson correlation coefficients to deter-
mine the strength of correlation between protein expression levels of 
the interactors in the different chambers of within one species as well 
as between the same chambers between mouse and human hearts.

Intersection with human proteomics data
To assess which of all interactors are also expressed in the human heart, 
we checked for each interactor if it was identified in our deep proteom-
ics atlas of the human heart, which is based on more than 1,000 MS 
runs (unpublished data).

Intersection with single-cell RNA expression data
Similarly, to evaluate which of all interactors are expressed in human 
cardiomyocytes, we queried a publicly available scRNA-seq dataset 
of 287,269 cells of the human heart via the Single Cell Portal and 
extracted the mean expression values per cell type of all interac-
tors for each bait protein34. For each bait protein, as well as for all 
combined, we then calculated the percentage of interactors that 
are expressed in cardiomyocytes, that is, have a non-zero relative 
expression value. Additionally, we calculated Pearson correlation 
coefficients to determine the strength of correlation between RNA 
expression levels of the interactors in different cardiac cell popu-
lations. Finally, we calculated the summed mean expression of all 
interactors per cell type to determine from which cell type(s) the 
identified interactors are likely to originate.

Previously known interactors
To determine which of all identified interactors were previously known 
interactors of their bait protein we combined data from three differ-
ent public resources, namely STRING23, Bioplex22 and InWeb15. From 
STRING we restricted the search to interactors based on experiments 
and databases with a minimum interaction score of 0.4 to exclude 
interactors with low confidence.

ECG plotter analysis and resting heart rate GWAS
Mouse gene names were converted to their human orthologs using 
Ensembl biomart ortholog mapping database (downloaded 24 Novem-
ber 2020). In case a gene was not found in the ortholog database the 
mouse gene symbol was converted to all capital letters.

ECG plotter was used to determine if there is a significant influence 
of each interactor on any time windows of the ECG cycle33. For this, we 
adapted the original ECG plotter script and determined the LD block of 
each gene using the LDlink database before testing the influence on the 
ECG of all single-nucleotide polymorphisms in the results LD block68.

To correct for multiple hypothesis testing, we used the number of 
independent tests for the 500 datapoints of the ECG profile as deter-
mined in the ECG plotter publication (that is, 80) and the number of 
proteins in the network that were tested. In case of the 10 proteins 
selected for follow-up experiments this resulted in a significance cutoff 
of 0.05/80/10 = 6.25 × 10−5 and in case of the whole interactome network 
in 0.05/80/881 = 7.09 × 10−7.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The MS proteomics data have been deposited to the ProteomeXchange 
Consortium via the PRIDE partner repository with the dataset identifier 
PXD028021 and project name ‘Identification of cardiac ion channel 
protein networks and their signature in the human electrocardiogram’. 
Mouse protein sequence database was downloaded from https://www.
uniprot.org/, reviewed sequences only. Human–mouse ortholog data 
were downloaded from Esembl BioMart: https://www.ensembl.org/
info/data/biomart. Previously known interactors were extracted from 
BioPlex (https://bioplex.hms.harvard.edu/interactions.php (BioPlex 
3.0 Interactions (293T cells))), STRING (https://string-db.org/) and 
InWeb (https://doi.org/10.1038/nmeth.4083). The Tucker et al.34 single-
nucleus RNA sequencing dataset was downloaded from Single Cell Portal  
(https://singlecell.broadinstitute.org/single_cell, dataset number 
SCP498). Human ECG GWAS data were downloaded from ECGGenetics 
(https://www.ecgenetics.org/). Source data are provided with this paper.

Code availability
The R script for the ECG plotter analysis is provided in our 
GitHub repository https://github.com/CardiacProteomics/
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ion-channel-interactomes. The Python script for STORM imaging can 
be made available upon request.
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Extended Data Fig. 1 | Immunoblot validation of bait immunoprecipitations. 
Immunoprecipitated channels Scn5a a), Kcnq1 b), and Cacna1c c) evaluated 
by western blot. d) Inf2 (Cacna1c interactor) was immunoprecipitated from 
murine cardiac tissue and evaluated by western blotting for the presence of 
Cacna1c (left panel, probed with IRDye 800CW secondary antibody) to confirm 
co-immunoprecipitation with Inf2. The same blot was evaluated for presence 
of Inf2 (right panel, probed with IRDye 680LT secondary antibody) to ensure 
that Inf2 was immunoprecipitated. In all the panels, black arrows denote the 
band of interest. The lowermost arrow in Panel B shows the Kcnq1 monomer 
band and the higher order oligomers are shown by the upper arrows. UF 

denotes unbound fraction of the immunoprecipitation (IP) experiment. The 
immunoblot validation was carried out thrice for panels A-C and twice for panel 
D with reproducible results. e) LC-MS/MS analysis of Inf2 IPs evaluating Cacna1c 
(left) and Inf2 protein abundances (right). Triplicate immunoprecipitations 
were performed from murine cardiac tissue using antibodies against Inf2 or 
IgG. Precipitated proteins were evaluated by mass spectrometry. Inf2 was 
abundantly present in the three Inf2 IPs and was absent in the triplicate IgG 
control Ips (right). The calcium channel protein Cacna1c was identified in all six 
immunoprecipitations but was a hundred-fold more abundant in the Inf2 IPs than 
in the control IPs (left).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Correlation coefficients and imputation strategy 
for mass spectrometry data. a) Heat map visualizing Pearson correlation 
coefficients for all measured protein intensities across all experiments. The 
experiments were carried out in quadruplicates (named as _01, _02, _03, _04) and 
the figure shows the Pearson correlation values between all the baits and their 
replicates calculated from the log2 transformed raw intensities of all identified 
proteins. The darker shade of blue indicates a higher Pearson correlation. The 
numbers in blue on the right side depict the mean Pearson correlation coefficient 

for each set of four replicates per bait IP. b) Distributions showing the source 
of protein intensities used in the comparative analysis of each control. As seen, 
most data come from the median of all measured IP experiments. If no value 
was present in the median value, a value was used from control IgG pulldown 
experiments. If no value was available from both the above sources, a scaled 
proteome measurement was imputed. And in the few cases where no value was 
obtainable from the proteome either, the value was imputed from a left shifted 
normal distribution.
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Extended Data Fig. 3 | Previously reported interaction partners. Interaction 
network of a) Kcnq1. b) Kcnh2. c) Cacna1c. d) Kcnma1. e) Kcnj5. f) Kcnn3. g) Kcnj2. 
h) Hcn4. i) Kcna5. j) Kcnj3. k) Kcnd2. l) Gja1. m) Scn5a (baits shown in red squares) 
with their previously reported interaction partners (shown in red circles). The 

networks wherein there are more than one red square, the centre protein is the 
bait. The gray circles/squares represent the novel interaction partners identified 
in this study.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Exemplar ECGs from adult zebrafish gene knockouts 
(KO) and their wildtype (WT) siblings. Signal-average trace (black) overlaid 
R-aligned traces from individual beats (green). a) Nrap knockout ECGs displayed 
repolarization abnormalities such that T-waves were not discernible from signal 
noise (red underscored period). b) ECGs from inf2 knockout fish had continued 

rising activity throughout the PR segment without achieving an isoelectric level 
as typically seen in wildtype or other knockouts (red underscored period). c) 
ECGs from pde4dip knockout fish displayed greater variance in signal waveform 
between individual beats showing substantial deviations from mean well in 
excess of typical noise (extrema envelope in red).
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Extended Data Fig. 5 | Real Time PCR of Epn2, Glipr2 and Gsn from murine 
cardiomyocytes. Transcript abundance for Epn2 (a), Glipr2 (b) and Gsn (c) 
in hearts of AAV9-shRNA injected mice were compared to that of GAPDH 
(control). Relative Quantification (RQ) was calculated as 2−CT and normalized to 
control mice injected with empty AAV-EGFP vector. Statistical significance was 

calculated by two-sided Student’s t test, no adjustments were made for multiple 
comparisons. The RNA samples were obtained from five AAV-shRNA injected 
mice for each gene. (n = 5 mice for each condition; **** P < 0.0001; *** P = 0.0007; 
Data are presented as mean values +/− SD’).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Effects ion electrophysiological parameters upon 
knock down of novel sodium channel interactors. Cardiomyocytes were 
harvested from mice that were either non-injected (control; closed circles), 
injected with AAV9 containing the GFP coding region (open squares) or with 
AAV9 containing the coding region for GFP, as well as shRNA to knockdown 
(KD) the protein of interest. Multiple animals per group were necessary due to 
the limited number of data points that can be obtained from a single animal. 
(a) Glipr2 was evaluated. Glipr2 KD in cardiomyocytes had no effect on sodium 
current density (control, n = 10 cells obtained from 3 mice; GFP, n = 9 cells 
obtained from 3 mice; Glipr2 KD, n = 7 cells obtained from 4 mice). (b) Steady-
state voltage dependence of inactivation (control, n = 10 cells obtained from 
3 mice; GFP, n = 8 cells obtained from 3 mice; Glipr2 KD, n = 9 cells obtained 
from 4 mice) and activation (c) were also unaffected. (d) Peak sodium current 
density recorded from HL1 cells treated with siRNA targeting Glipr2 was larger 
than that of control. (e) Peak sodium current density recorded from HL1 cells 

treated with siRNA targeting Epn2 was less than that of control cells. Control, 
n = 38 cells; Glipr2 KD, n = 16 cells; Epn2 KD n = 16. (f–g) The steady-state voltage 
dependence of inactivation of INa measured were unaffected by reduced 
expression of Epn2 (F) or Gsn (G), measured in adult murine cardiomyocytes 
harvested from mice injected with AAV9 (control n = 10 cells obtained from 3 
mice; GFP n = 8 cells obtained from 3 mice; Epn2 KD n = 8 cells obtained from 
4 mice; Gsn KD n = 10 cells obtained from 4 mice). Data are presented as mean 
values +/− SEM. (h) Protein abundances of Glipr2 (top), Epn2 (middle) and 
Gsn (bottom) measured across replicate immunoprecipitations as outlined 
from murine cardiac tissue. Glipr2 and Epn2 were exclusively identified in 
the four Scn5a (Nav1.5) replicates. Gsn was consistently measured at high 
abundance in the four Nav1.5 immunoprecipitations but was also present in 
the Kcnq1 (Kv7.1) immunoprecipitations as well as in some of the Kcnd2 (Kv4.2) 
immunoprecipitations. Gsn was more than a hundred-fold more abundant in the 
Nav1.5 IPs.
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Extended Data Fig. 7 | Shared interactome of Cacna1c and Gja1. a) Protein 
abundances of Cacna1c (Cav1.2) and Gja1 (Cx43) measured by mass spectrometry 
evaluation of quadruplicate immunoprecipitations of Cacna1c (left) and of Gja1 
(right) from murine cardiac tissue. Cav1.2 was precipitated by the Cav1.2 IPs as 

well as by the Cx43 IPs. Similarly, Cx43 was immunoprecipitated by the Cx43 IPs 
as well as by the Cav1.2 IPs. b) Protein interaction network outlining the 10 shared 
interactors we identified for the networks of Cacna1c and Gja1.
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Extended Data Fig. 8 | Greater ECG parameter variability in adult pde4dip 
knockout (KO) zebrafish compared to wildtype siblings (WT). Some ECG 
parameters had similar median values between WT (n = 6 fish) and pde4dip 
knockout (n = 9) groups (NS p > 0.05); however, the pde4dip group had 
much greater variance in P wave duration († p = 0.013; panel a) and corrected 

QT interval († p = 0.014, both by 2-sided Conover squared-ranks test for 
homogeneity of variance; panel b). Each point in the boxplots corresponds to an 
individual zebrafish. Boxplots indicate 25th/50th/75th percentiles, while whiskers 
extend to the most extreme data within 1.5x of interquartile range beyond box 
limits.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Genetic ECG signatures of the key interactors of 
cardiac ion channels identified in this study and studies using zebrafish 
acute knockouts. Genetic ECG signatures for a) Nebl, b) Nrap, c) Inf2, d) Glipr2, 
e) Gsn, f) Epn2, g) Myzap, h) Nlrx1, i) Pde4dip and j) Synpo2l with their respective 
maximum p-values shown on the upper right corner. The black line shows the 
average ECG curve of the full cohort used by Verweij et al.33, centered at the R 

wave ± 500 ms. The red line depicts the -log10(p value) of the association (signed 
to show the direction of association) for each of the 500 spatiotemporal data 
points of the ECG curve with the ECG morphology phenotype, that is, showing 
the strength of association of the genetic loci of a gene with each 2 ms window 
of the ECG. GWAS P-values were extracted from Verweij et al.33 and adjusted for 
multiple comparisons (see methods for details).
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n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection MaxQuant 1.6.2.3 
Perseus 1.6.2.1 
MATLAB R2019a 
ImageJ 1.53a 
Mahotas 1.2

Data analysis R 4.0.3 
LIMMA 3.36.0 
Cytoscape 3.8.0 
 
The R script for ECG plotter analysis is provided in our GitHub repository https://github.com/CardiacProteomics/ion-channel-interactomes. 
 
Optical mapping analysis algorithms and Python script for STORM imaging have been previously described and the references are mentioned 
in the manuscript.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier 
PXD028021 and project name ‘Cardiac ion channel interactomes’. 
 
Mouse protein sequence database was downloaded from https://www.uniprot.org/, reviewed sequences only. 
 
Human-mouse ortholog data was downloaded from Esembl BioMart: https://www.ensembl.org/info/data/biomart 
 
Previously known interactors were extracted from:  
- BioPlex: https://bioplex.hms.harvard.edu/interactions.php (BioPlex 3.0 Interactions (293T Cells)) 
- STRING: https://string-db.org/ 
- InWeb: https://doi.org/10.1038/nmeth.4083 
 
snRNAseq data set was downloaded from Single Cell Portal (data set number SCP498): https://singlecell.broadinstitute.org/single_cell 
 
Human ECG GWAS data downloaded from https://www.ecgenetics.org/. 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed. The sample size of four replicate immunoprecipitations per condition for mass spectrometry 
analysis were based on our previously published (PMID: 24952909 and PMID: 31315456) as well as unpublished data that defined the 
adequate number of samples to consistently identify channel interaction networks. 
A minimum n of 9 zebrafish embryos was required for optical mapping studies, based on power calculations for effect size (Cohen’s d) of 1.5 
at p=0.05. 

Data exclusions The antibodies that weren't specific enough (i.e. didn't pull down the bait protein with high specificity) in the immunoprecipitation 
experiments were excluded from the dataset, as shown in Supplementary Figure S4. 
For the zebrafish experiments only those isolated embryonic hearts that displayed evident characteristics of damage during microdissection 
(i.e. missing anatomy, substantial injury current) were excluded from data collection and analysis. 

Replication Gene knockout zebrafish data is pooled data from two independent replicates from different days. For three of the genes studied (nebl, nrap, 
and epn2), characterization of gene knockout zebrafish was replicated between investigational groups using independently designed CRISPR 
guide RNAs for the same gene target, recapitulating the knockout phenotypes.

Randomization A clutch of fertilized zebrafish eggs at the single cell stage was agitated and swirled in a 10cm petri dish for at least 5 seconds by random 
movements to ensure adequate mixing before being divided at random into two groups of approximately equal number; these two groups 
are then immediately assigned at random to treatment or control.

Blinding Mouse experiments: 
Operators could not be blinded for identification of cells that received AAV infection because expression of GFP revealed the identity of the 
cells infected and therefore the cells suitable for patch clamp. A single operator conducted all experiments and therefore identity of the 
construct was revealed to the operator. However, all analysis was automated through operator independent patch clamp analysis software, 
and therefore no subject to a possible bias introduced by the operator. 
 
Zebrafish experiments: 
Zebrafish embryos develop rapidly but isolated hearts degrade with time, as such, hearts from treatment and control groups are isolated on 
demand and interleaved for successive imaging to minimize the potential for developmentally-associated differences between groups; this 
process effectively negates any blinding of individuals to group membership during optical mapping data acquisition. Extraction of 
electrophysiological parameters from these recordings is performed by automated and objective computer algorithms, and as such blinding of 
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genotype.
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Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Antibodies used for immunoprecipitations: 

Sr. No.          Antibody cat #                       Description 
1                   APC022 (Alomone)                Anti KV7.1 
2                   APC062 (Alomone)                Anti KV11.1 
3                   ACC-003 (Alomone)              Anti-CaV1.2 
4                   ASC-005 (Alomone)               Anti-NaV1.5  
5                   APC-004 (Alomone)              Anti-KV1.5  
6                   APC-023 (Alomone)              Anti-KV4.2  
7                  APC-052 (Alomone)               Anti HCN4 
8                  APC-026 (Alomone)               Anti-Kir2.1  
9                  APC-005 (Alomone)               Anti-Kir3.1 (GIRK1)  
10                APC-027 (Alomone)               Anti-Kir3.4 (GIRK4)  
11                APC-021 (Alomone)              Anti-KCa1.1 (1097-1196)  
12                ACC-201 (Alomone)              Anti Cx43 
13                APC-025 (Alomone)              Anti-Kcnn3 
14                ab37415 (Abcam)                 Control IgG Rabbit 
15                A303-428A (Bethyl labs)      Anti-Inf2 
 
The antibodies were used in a 1:1000 ratio for immunoblots and 2 μg antibody was used for immunoprecipitation experiments per 
replicate. 
 
Antibodies used for STORM imaging: 
-mouse Anti-Connexin 43 clone 4E6.2 (1:50, Sigma-Aldrich catalog number # MAB3067, Lot: 3138211)  
-rabbit polyclonal Scn5a (1:50, Sigma catalog number #S0819, Lot: SLBW8952)  
-rabbit polyclonal Kcnq1 (1:50, Alomone catalog number #APC-022)  
-rabbit polyclonal Kcnq1  (1:50, Alomone catalog number #APC-168)  
-rabbit monoclonal anti-Gelsolin clone EPR1941Y conjugated to Alexa Fluor 647 (1:100, Abcam catalog number #ab75832) 
-mouse anti-αActinin clone EA-53 conjugated to Alexa Fluor 488 (1:300, Sigma-Aldrich catalog number # A7811 Lot:0000141496)  
-Alexa Fluor goat anti-rabbit 568 (1:10000, Invitrogen, catalog number #A11011, Lot: 1778925),  
-Alexa Fluor goat anti-rabbit 647 (1:10000, Invitrogen, catalog number #A21244, Lot: 1834794)  
 -Alexa Fluor goat anti-mouse 488 (1:10000, Invitrogen, catalog number #A11001, Lot: 2220848).  
 

Validation Please find the validation text for the antibodies used from the manufacturer's website. The website itself has been mentioned in 
parenthesis, should more information be required. 
 
1. Anti-KCNQ1 Antibody (#APC-022) is a highly specific antibody directed against an epitope of the human protein. The antibody can 
be used in western blot, immunoprecipitaion, immunohistochemistry and immunocytochemistry applications. It has been designed 
to recognize KV7.1 channel from rat, human, and mouse samples.(https://www.alomone.com/p/anti-kv7-1-kcnq1/APC-022) 
 
2. Anti-KCNH2 (HERG) Antibody (#APC-062) can be used in western blot, immunoprecipitation, immunohistochemical and 
immunocytochemical applications. It has been designed to recognize intracellular epitope of KV11.1 from human, rat, and mouse 
samples.(https://www.alomone.com/p/anti-kv11-1-herg/APC-062) 
 
3. Anti-CaV1.2 (CACNA1C) Antibody (#ACC-003) is a highly specific antibody directed against an epitope of the rat protein. The 
antibody can be used in western blot, immunoprecipitation, immunohistochemistry, immunocytochemistry, and indirect flow 
cytometry applications. It has been designed to recognize CaV1.2 from mouse, rat, and human samples.(https://www.alomone.com/
p/anti-cav1-2-antibody/ACC-003) 
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4. Anti-NaV1.5 (SCN5A) (493-511) Antibody (#ASC-005) is a highly specific antibody directed against an epitope of the rat protein. The 
antibody can be used in western blot, immunoprecipitation, immunohistochemistry, and immunocytochemistry applications. It has 
been designed to recognize NaV1.5 sodium channel from rat, human, and mouse samples.(https://www.alomone.com/p/anti-
nav1-5/ASC-005) 
 
5. Anti-KV1.5 (KCNA5) Antibody (#APC-004) is a highly specific antibody directed against an epitope of the mouse protein. The 
antibody can be used in western blot, immunohistochemistry, immunocytochemistry, and immunoprecipitation applications. It has 
been designed to recognize KV1.5 from human, rat, and mouse samples.(https://www.alomone.com/p/anti-kv1-5/APC-004) 
 
6. Anti-KV4.2 Antibody (#APC-023) is a highly specific antibody directed against an epitope of the rat protein. The antibody can be 
used in western blot, immunoprecipitation, immunocytochemistry, and immunohistochemistry applications. It has been designed to 
recognize KV4.2 from human, rat, and mouse samples.(https://www.alomone.com/p/anti-kv4-2/APC-023) 
 
7. Anti-HCN4 Antibody (#APC-052) is a highly specific antibody directed against an epitope of the human protein. The antibody can 
be used in western blot, immunoprecipitation, immunocytochemistry, and immunohistochemistry applications. It has been designed 
to recognize HCN4 from human, rat, and mouse samples.(https://www.alomone.com/p/anti-hcn4-2/APC-052) 
 
8. Anti-Kir2.1/KCNJ2 Antibody (#APC-026) can be used in western blot, immunoprecipitation, immunocytochemistry, 
immunohistochemistry, and flow cytometry applications. It has been designed to recognize Kir2.1 from human, rat, and mouse 
samples.(https://www.alomone.com/p/anti-kir2-1/APC-026) 
 
9. Anti-GIRK1 (Kir3.1) Antibody (#APC-005) is a highly specific antibody directed against an epitope of the mouse protein. The 
antibody can be used in western blot, immunprecipitation, immunocytochemistry, and immunohistochemistry applications. It has 
been designed to recognize Kir3.1 from human, rat, and mouse samples.(https://www.alomone.com/p/anti-kir3-1-girk1/APC-005) 
 
10. Anti-KCNJ5 (Kir3.4) Antibody (#APC-027) can be used in western blot and immunohistochemistry applications. It has been 
designed to recognize Kir3.4 from human, rat and mouse samples.(https://www.alomone.com/p/anti-kir3-4-girk4/APC-027) 
 
11. Anti-KCNMA1 (KCa1.1) (1097-1196) Antibody (#APC-021) is a highly specific antibody directed against an epitope of the mouse 
protein. The antibody can be used in western blot, immunoprecipitation, immunohistochemistry, and immunocytochemistry 
applications. It has been designed to recognize KCNMA1 from human, mouse, and rat samples.(https://www.alomone.com/p/anti-
kca1-1-1097-1196/APC-021) 
 
12. Anti-Connexin-43 Antibody (#ACC-201) can be used in western blot, immunohistochemistry and immunocytochemistry 
applications. It has been designed to recognize Cx43 from human, rat and mouse samples.(https://www.alomone.com/p/anti-
connexin-43/ACC-201) 
 
13. Anti-KCNN3 (KCa2.3, SK3) (N-term) Antibody (#APC-025) is a highly specific antibody directed against an intracellular epitope at 
the N-terminus of the human KCNN3 channel. The antibody can be used in western blot, immunocytochemistry, and 
immunohistochemistry applications. It has been designed to recognize KCNN3 from human, rat, and mouse samples.(https://
www.alomone.com/p/anti-kca2-3-sk3-n-term/APC-025) 
 
14. ab37415 This antibody has been selected to be an isotype control as it has no known specificity. Please note that the rabbit IgG Fc 
region may bind nonspecifically to human tissue. Rabbit IgG is an isotype control used to estimate the non-specific binding of target 
primary antibodies due to Fc binding or other protein-protein interactions.(https://www.abcam.com/rabbit-igg-polyclonal-isotype-
control-ab37415.html) 
 
15. INF2 Antibody, A303-428A 
Rabbit anti-INF2 Antibody, Affinity Purified 
Reactivity Human 
Applications WB, IP 
Host Rabbit 
Antibody Type Polyclonal 
Conjugate Unconjugated 
Format Whole IgG 
Immunogen between 950 and 1000 (https://www.bethyl.com/product/A303-428A/INF2+Antibody) 
 
16. ab75832: Produced recombinantly (animal-free) for high batch-to-batch consistency and long term security of supply 
Rabbit monoclonal [EPR1941Y] to Gelsolin plasma 
Suitable for: WB, IP, IHC-P 
Reacts with: Mouse, Human (https://www.abcam.com/gelsolin-plasma-antibody-epr1941y-ab75832.html) 
 
17. A7811: Quality Level: 200 
biological source:mouse 
antibody form: ascites fluid 
antibody product type: primary antibodies 
clone: EA-53, monoclonal 
mol wt: antigen 100 kDa 
species reactivity: fish, snake, frog, goat, hamster, pig, canine, mouse, feline, chicken, lizard, bovine, human, sheep, rat, rabbit 
application(s): immunohistochemistry (formalin-fixed, paraffin-embedded sections): 1:800 using human skeletal and cardiac muscle 
isotype: IgG1 (https://www.sigmaaldrich.com/US/en/product/sigma/a7811) 
 
18. S0819: biological source: rabbit 
Quality Level: 100 
antibody form: affinity isolated antibody 
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antibody product type: primary antibodies 
clone: polyclonal 
species reactivity: rat 
application(s): western blot: 1:200 using rat heart membranes 
conjugate: unconjugated (https://www.sigmaaldrich.com/US/en/product/sigma/s0819) 
 
19. MAB3067: Anti-Connexin 43 Antibody, clone 4E6.2 detects level of Connexin 43 & has been published & validated for use in 
ELISA, IC, IH & WB.(https://www.emdmillipore.com/US/en/product/Anti-Connexin-43-Antibody-clone-4E6.2,MM_NF-MAB3067?
ReferrerURL=https%3A%2F%2Fwww.google.com%2F)

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals 1. Immunoprecipitation experiments: Male mouse C57BL/6JRj (Janvier Labs), 8 weeks old. Mice were housed in individually 
ventilated cage-systems with 8-10 ACH (air changes per hour), temperature: 22C (+/- 2C), humidity: 55% (+/-10%) and standard 
12:12h light:dark cycle. Food and water were provided ad libitum. 
2. Zebrafish studies: Wild-type (WT) AB/Tuebingen (AB/Tu) zebrafish between the ages of 5-16 months were mated and the resultant 
embryos (3-5 dpf) or adult (3-4 months) fish (age-matched clutch-mates within the context of each individual study), both male and 
female, were used for the studies. 
3. Cardiomyocyte dissociation experiments for STORM imaging: Male and female C57BL/6 N, MHC Haplotype: H2b, Strain Code: 027, 
(Charles River Laboratories), 3-4 months old, Temperature (21-23°C) and relative humidity (30-70%) were maintained according to 
standard protocols put in place by the Division of Comparative Medicine at NYU Grossman School of Medicine. Lighting was provided 
via an automatic timer with 12 hours light-dark cycle. 

Wild animals The study did not involve wild animals

Field-collected samples The study did not involve samples collected from the field

Ethics oversight Immunoprecipitation experiments:All animal experiments using mouse were performed according to the European Union legislation 
for protection of animals used for scientific experiments. All animal experiments using zebrafish were performed according to the 
European Union legislation for protection of animals used for scientific experiments and was approved by the Danish National Animal 
Experiments Inspectorate (license 2021-15-0201-00811) or are approved by the Institutional Animal Care and Use Committee at 
Brigham and Women’s Hospital and Harvard Medical School. Cardiomyocyte dissociation experiments for STORM imaging: 
Procedures conformed with the Guide for Care and Use of Laboratory Animals of the National Institutes of Health and were approved 
by the New York University Institutional Animal Care and Use Committee under protocol number 160726-03.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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