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PM2.5 pollution poses significant health risks inChina,with over onemillionprematuredeaths annually.
Althoughmajor air quality regulations were enacted in 2013 and substantial progress has beenmade,
the equitable distribution of health benefits remains uncertain. This study uses epidemiological
modeling and inequality decomposition to assess PM2.5-related health burden disparities in China
from 2000 to 2019. Results show that premature deaths decreased by 85,500 (95% CI:
81,300–89,700) after 2013, with population growth, mortality rates, and aging contributing increases
of 5.0%, 7.2%, and 8.3%, respectively, while PM2.5 reduction led to a 25.1% decrease. However, the
Gini coefficient for health burden disparities rose by 19.7%, indicating an increasing concentration of
health risks in certain regions andpopulations. Provincial and urban disparities contributed 78.9%and
88.3% of this inequality. Targeted policy interventions are urgently needed to ensure that future air
quality improvements yield more equitable health outcomes across China.

In recent years, China has increasingly prioritized air quality, with PM2.5

(fine particulate matter) recognized as a major air pollutant posing serious
risks to both human health and the ecological environment1–3. According to
WHO estimates, PM2.5-related premature deaths exceed millions globally
each year4, with China accounting for over one million annually. In China,
PM2.5 pollution ranks as the fourth leading risk factor for mortality, fol-
lowing hypertension, smoking, and high-salt diets. Robust pathophysiolo-
gical evidence links PM2.5 exposure to a wide range of diseases, particularly
cardiopulmonary disorders, respiratory illnesses, and bronchogenic
carcinomas5,6.

China’s vast territory, uneven population distribution, and significant
disparities in economic development and industrialization have led to
marked regional differences in PM2.5 emissions and exposure. Factors such
as regional economic growth, industrial structure, transportation networks,
and energy consumption patterns contribute to these variations7, resulting
in pronounced disparities in PM2.5 exposure across regions

8,9. For example,
industrialized eastern coastal areas and less developedwestern regions show
stark contrasts in PM2.5 concentrations and exposure

10. Themain sources of
PM2.5 pollution in China include coal combustion, vehicular emissions,
industrial processes, and biomass burning, with these sources being parti-
cularly concentrated inurban and rapidlydeveloping regions. In response to
severe air pollution, the Chinese government launched several landmark
policies in 2013, most notably the Air Pollution Prevention and Control
Action Plan (“Ten Measures for Air”) and subsequent regional initiatives,
which have led to substantial improvements in air quality, especially in key

regions such as Beijing–Tianjin–Hebei and the Yangtze River Delta.
Building upon this context, our study goes beyond simple correlation
analysis by integrating high-resolution epidemiological modeling, spatial
inequality decomposition, and multi-scale assessment of PM2.5-related
health burdens, thus providing a comprehensive evaluation of the spatial
patterns, drivers, and equity of air pollution exposure and associated health
impacts across China.

To address these challenges, China has implemented a series of
ambitious air quality policies in the past decade11, including the Air Pollu-
tionPrevention andControlActionPlan (2013) and theBlue SkyProtection
Campaign (2018). These measures have led to significant reductions in
PM2.5 concentrations, especially in key regions such as
Beijing–Tianjin–Hebei and the Yangtze River Delta, and have garnered
widespread international attention12–14. However, despite overall improve-
ments, it remains unclear whether the health benefits of PM2.5 reduction
have been equitably distributed among different regions and population
groups.

A unique aspect of this study is its integration of inequality analysis in
PM2.5 exposure and health burden at both regional and city scales across
China. By combining high-resolution epidemiological modeling and
advanced inequality decomposition methods, this research provides a
comprehensive assessment of current patterns in air pollution-related
health disparities. This approach yields valuable insights into how demo-
graphic shifts, urbanization, and policy interventions influence the spatial
and social distribution of environmental health risks15,16.
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Understanding the equity of PM2.5 distribution and its relationship
with mortality is crucial for informing effective policy decisions12,13. Dif-
ferences in PM2.5 exposure can exacerbate socio-economic inequalities and
widen social divides17,18. Therefore, evaluating the fairness of PM2.5 dis-
tribution offers important guidance for policymakers seeking to establish
equitable and sustainable air quality management frameworks19,20. While
previous studies have examined regional variations in PM2.5 concentrations
and their health impacts, fewhave addressed the equity ofPM2.5 distribution
and its associatedmortality21–23. This study aims to fill this gap by analyzing
the fairness of PM2.5 distribution across different regions of China, identi-
fying key influencing factors, and assessing the relationship between PM2.5

exposure and population mortality.

Results
Estimating PM2.5 exposure in China, 2000–2019
In 2019, China’s population-weighted average ambient PM2.5 exposure was
38.38 μg/m³, exceeding both the national air quality standard and theWorld
Health Organization Interim Target 1 (WHO IT-1, 35 μg/m³). Approxi-
mately 780million individualswere exposed toPM2.5 levels above 35 μg/m³.
Despite an 18.14% decrease in the number of the population exposed to
PM2.5 concentrations exceeding 35 μg/m³ since 2000, nearly the entire
population remained exposed to concentrations far higher than the WHO
Air Quality Guideline (WHO AQG), which recommends an annual mean
of 5 μg/m³ (with an interim goal of 10 μg/m³). Population-weighted average

PM2.5 exposure values refer to yearly mean concentrations. Specifically, for
each year, the population-weighted average was calculated by aggregating
PM2.5 exposure across all grid cells, weighted by the population of each cell.
This approach ensures that the reported values accurately reflect the annual
average exposure experienced by the population, rather than short-term or
episodic concentrations.

Between2000 and2019,China’s population-weightedaverage ambient
PM2.5 exposure exhibited a trend characterized by an initial increase fol-
lowed by a significant decline. The average exposure rose from 46.89 μg/m³
in 2000 to a peak of 65.67 μg/m³ in 2013, representing a 40% increase.
During this period (2000–2013), the population-weighted average was
57.45 μg/m³, with a statistically significant positive trend of 1.44 μg/m³ per
year (p < 0.001). Following the implementation of major air quality policies
in 2013, a marked decrease was observed, with the average exposure
dropping to 47.77 μg/m³ and a significant negative trendof−4.55 μg/m³per
year (p < 0.001). By 2019, the population-weighted average exposure had
declined to 38.38 μg/m³, reflecting a 42% reduction from the 2013 peak
(Fig. 1g).

In China, the percentage of the population exposed to PM2.5 con-
centrations of 35 μg/m³ or below has risen significantly, reaching 46% (Fig.
2c). This represents a significant rise from 24% in 2000 and a notable
rebound from the nadir of 5% in 2013 (Fig. 2a, b). This rising trend high-
lights the efficacy of environmental regulations and initiatives in mitigating
air pollution, indicating advancements in public health. Although this

Fig. 1 | Ambient PM2.5 exposure and changes in China. a–c PM2.5 exposure raster
in 2000 (a), 2013 (b), and 2019 (c). d–f Raster plot of changes in exposure con-
centrations, 2000–2013 (d), 2013–2019 (e), 2000–2019 (f). g Population exposure

concentration percentage curves. h China’s population-weighted average ambient
PM2.5 exposure, 2000–2019.
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progress is notable, it underscores the necessity of ongoing commitment to
further reduce air pollution, ensuring broader public access to cleaner air
and associated health improvements.

While China has achieved substantial progress in reducing average
PM2.5 exposure and increasing the proportion of the population living
below critical concentration thresholds, a considerable portion of the
population is still exposed to levels exceeding both national and interna-
tional guidelines. Continued and enhanced policy efforts are required to
further improve air quality and protect public health across all regions.

Impact of key factors on the burden of premature mortality
Our analysis estimated that between 2000 and 2019, approximately 28.99
million (95% CI: 26.67–31.85 million) premature deaths in China were
attributable to PM2.5 exposure. Figure 3 presents the annual number of
premature deaths, with further breakdown by disease category. At both the
national and provincial levels, ischemic heart disease, and stroke were
identified as the leading causes of PM2.5-related premature mortality.
Among all PM2.5-related deaths, stroke (STR) was the predominant con-
tributor, accounting for 51.58% (95%CI: 49.11–54.05), while ischemic heart
disease (IHD) ranked second, contributing 29.34% (95%CI: 22.89–35.79) of
cases. For clarity and consistency, all results are presented as the number of
premature deaths attributable to PM2.5 exposure (Fig. 3).

By comparing raster data on premature deaths in different years, we
found that China’s eastern coast faces greater health risks due to high PM2.5

exposure levels combined with dense population concentrations. Between
2000 and 2013, most areas experienced an increased health burden, largely
attributed to rising pollution levels. The enforcement of air quality regula-
tions has led tomarked declines in PM2.5 concentrations, yielding enhanced
public health outcomes and fewer health-related emergencies nationwide.
Nonetheless, specific northwestern regions continue to face persistent
challenges (Fig. 4d–f).

Our study applied a decomposition method to assess how four major
factors influenced PM2.5-related mortality changes in China during
2000–2013 and 2013–2019. Figure 5 presents the annual number of pre-
mature deaths attributable to PM2.5 exposure, depicted by gray bars,
alongside the contributionof each factor to changes inmortality.Our results
reveal that fluctuations in PM2.5 concentrations were the main driver of
mortality changes, causing an 8.1% rise in 2013 and a 25.1% drop in 2019.
Demographic factors and baseline mortality rates also significantly con-
tributed to the increase in deaths, with population aging exerting the most
pronounced negative impact.

From 2000 to 2019, China experienced a substantial population
increase from 1.27 billion to 1.46 billion, reaching 1.39 billion inhabitants in
2013 (Fig. 5). This growth led to a 9.3% rise in attributable deaths from 2000
to 2013 and a 5.0% increase from 2013 to 2019. Changes in baseline mor-
tality rates accounted for an additional 12.5% and 7.2% increase during the
same periods. In contrast to declining PM2.5 concentrations, age structure
changes have consistently driven an increase in deaths.

Anticipatedpopulationaging is projected to further intensify thehealth
burden associated with PM2.5 exposure. Mitigating these challenges will
require more stringent air quality regulations to achieve significant reduc-
tions in pollutant concentrations, thereby offsetting the impacts of an aging
population. In summary, while population aging and reductions in PM2.5

concentrations are the two most prominent drivers of changes in attribu-
table deaths, improving air quality remains the most effective strategy for
reducing the health burden in the context of inevitable demographic
transitions.

Our findings highlight the complex interplay between environmental
and demographic factors in shaping PM2.5-related health outcomes in
China. While national air quality improvements have led to substantial
reductions in premature mortality, ongoing demographic shifts (particu-
larly population aging) continue to pose significant public health challenges.

Intensifying disparities of PM2.5 exposure
China’s PM2.5 exposure levels and premature deaths have significantly
improvedover thepast twodecades.However,whether these improvements
have been equitably distributed across regions and populations remains
unclear.Our analysis of PM2.5 exposure inequality reveals complexvariation
patterns across multiple geographic scales in China from 2000 to 2019.
Through the application of the Dagum decomposition algorithm, we
identified distinct trends in inequality between provinces and cities, high-
lighting the uneven progress in addressing PM2.5 exposure across the
country.

Our analyses reveal a significant increase in PM2.5 exposure disparities
across China from 2000 to 2019. The spatial distribution of PM2.5 con-
centrations highlights persistent hotspots, with levels exceeding 70 μg/m³ in
Henan, Hebei, Tianjin, and Beijing, particularly in Hebei (>75 μg/m³). In
contrast, regions such as Yunnan and Tibet consistently maintained low
concentrations (<30 μg/m³) throughout the study period. This pronounced
spatial heterogeneity is strongly linked to population-based exposure

Fig. 2 | Percentage of the population at different concentrations in China. a–c Population concentration shares in 2000 (a), 2013 (b), 2019 (c).

Fig. 3 | Contributions of different diseases to premature PM2.5 deaths in China
from 2000 to 2019 .
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inequalities, underscoring the uneven distribution of PM2.5-related
health risks.

Our findings suggest that inequalities in PM2.5 exposure in China have
increased significantly since 2000. TheGini coefficient for population-based
PM2.5 exposure increased from 0.168 in 2000 to 0.189 in 2019 (10⁻³ Gini/
year, P < 10⁻³), reflecting a growing disparity in exposure across the country.
Notably, inequalities between provinces accounted for a substantial portion
of this disparity, with a Gini coefficient of 0.15 (95% CI: 0.137–0.162,
P < 0.001) and 85.7% (95% CI: 83.5%–87.9%) of national inequality attri-
butable to differences between provinces (Fig. 6c). Population-based
exposure inequality varied widely across provinces, ranging from 0.007 to
0.244, with worsening inequality observed in 22 provinces (Fig. 6b).

At the city level, the intra-city Gini coefficient for PM2.5 exposure
ranged from 0.007 to 0.158, suggesting a relatively equitable distribution
within cities. While the range of intra-city Gini coefficients is from 0.007 to
0.158, it is important to note that themajority of cities have Gini values well
below 0.1 Supplementary Fig. 12), with only a small fraction exceeding 0.1.

This distribution indicates that, withinmost cities, PM2.5 exposure or health
burden is relatively evenly distributed among residents, and only a few cities
experience notable internal inequality. In contrast, the inter-city Gini
coefficient of 0.163 (95%CI: 0.157–0.169, P < 0.001) reflects the disparity in
PM2.5-related health burdens between different cities across the country.
Since most cities have low internal inequality, the higher inter-city Gini
value demonstrates that the overall inequality is primarily driven by dif-
ferences among cities rather than within them. Inter-city differences
remained significant, with an inter-city Gini coefficient of 0.163 (95% CI:
0.157–0.169, P < 0.001) contributing 96.3% of the national inequality (Fig.
6f). In the past two decades, 220 Chinese cities have experienced a rise in
PM2.5 exposure inequality, underscoring the enduring and expanding
nature of these disparities across geographic and administrative divisions
(Fig. 6e).

Intensifying disparities of PM2.5-health-burden
Analysis of the grid-based premature mortality rate shows high-risk areas
aremostly in eastern China andXinjiang, while low-risk areas aremainly in
southwestern and northern China. A comparison of data from 2000 and
2019 shows an overall increase in premature mortality rates across most
regions, while the southwestern and northern regions have experienced a
decline. This trend has contributed to a growing polarization in health risks
across the country.

An analysis of population exposure patterns highlights concerning
trends in PM2.5 exposure in China. Between 2000 and 2019, the percentage
ofChina’s population living in areaswithPM2.5 concentrationsbelow25 μg/
m³ rose from 2.07% to 13.9%, marking a substantial 5.7-fold increase.
Meanwhile, the population exposed to high PM2.5 concentrations (>60 μg/
m³) has diminished from 17.9% to 5.1%, but this decline is much smaller
compared to the progress in reducing low-exposure levels. This widening
disparity has exacerbated inequalities in PM2.5-relatedmortality among the
Chinese population. The proportion of the high-risk population (180+
deaths per 10⁵ people) surged from 0.4% (95% CI: 0.02–0.06) in 2000 to
18.7% (95% CI: 15.4–22.0) in 2019. Conversely, the share of the low-risk
population (≤100 deaths per 10⁵ people) showed little change. The Gini
coefficient for premature mortality exhibited a statistically significant
increase from 0.076 (95% CI: 0.072–0.08) in 2000 to 0.091 (95% CI:
0.086–0.096) in2019 (P < 0.001) (Fig. 7). It is noteworthy that 2013 recorded
a relatively low value of 0.065. With the implementation of policies and
improvements in air quality, the Gini coefficient for health risks has

Fig. 4 | Trends in air pollution-induced deaths in premature PM2.5 deaths in China from 2000 to 2019. a–c PM2.5 premature death raster in 2000 (a), 2013 (b), 2019 (c).
d–f PM2.5 premature deaths change.

Fig. 5 |The contribution of different factors to changes in premature PM2.5 deaths in
China from 2000 to 2019.
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significantly increased. This trend reflects a growing disparity in the dis-
tribution of health risks attributable to PM2.5 exposure, suggesting an
increasing polarization in the burden of such risks over time.

The uneven distribution of PM2.5-attributable mortality across pro-
vinces and cities, as depicted in Fig. 8, highlights significant regional var-
iations.TheGini coefficient for inter-provincialmortality disparities is 0.056
(95% CI: 0.05–0.062), accounting for 78.9% (95% CI: 75.6–82.2) of the
national inequality, with a stable trend over the study period (P > 0.05). In
contrast, inter-city disparities are more pronounced, with a Gini coefficient
of 0.068 (95% CI: 0.059–0.077), contributing 88.3% (95% CI: 86.4–90.2) of
the national disparity and showing a significant increasing trend over
time (P < 0.001).

These results highlight the enduring and increasing influence of
regional disparities on the overall inequality resulting from PM2.5 exposure.
Over the study period, 25 provinces (73.5% of the country) and 245 cities
(65.8% of the country) experienced increasing inequality in premature
deaths.

Discussion
Our study provides a comprehensive evaluation of PM2.5 exposure and
associated health impacts across China from 2000 to 2019, revealing com-
plex and evolving inequalities in PM2.5-related health burdens at multiple

spatial scales. The three provinces/municipalities directly under the Central
Government bearing the heaviest PM2.5-related health burdens (Henan
Province, Hebei Province, and Tianjin Municipality) and Anyang City,
HandanCity, andHebiCity emerging as the three citieswith themost severe
impacts. Although national air quality policies have led to significant
reductions in PM2.5 concentrations in many regions24,25, our findings reveal
that improvements in exposure are not equitably distributed. Instead, there
is an increasing polarization in health burdens, particularly among low- and
high-risk populations, echoing trends observed in other rapidly developing
countries1,26. This suggests thatwhile current control practiceshave achieved
substantial reductions in PM2.5 concentrations, they may inadvertently
exacerbate health inequalities if not accompanied by targeted interventions.

Specifically, our results indicate that PM2.5 reduction contributed to a
25.1% decrease in premature deaths between 2013 and 2019. However,
certain demographic factors, such as population aging and changes in
baselinemortality rates, have offset someof these gains. TheGini coefficient,
indicating disparities in PM2.5-related health burdens, rose by 19.7%,
revealing that health risks have become increasingly concentrated in certain
regions and populations. This increase in inequality means that while some
areas benefit substantially from improved air quality, others, often with
older populations or limited resources, are experiencing worsening health
burdens. The provincial and urban disparities account for 78.9% and 88.3%

Fig. 6 | Rising inequalities in PM2.5 and disaggregation of inequalities. aAverage
20-year Gini coefficient for PM2.5 exposure at the provincial scale and city-level
scales (d). b Rates of change in the Gini coefficient for PM2.5 exposure at the

provincial scale and city-level scales (e). c Decomposition of inequality in PM2.5

exposure at province-level scales and city-level scales (f).

Fig. 7 | Rising inequalities in health burdens from PM2.5 and disaggregation of inequalities. a, b Decomposition of inequality in premature mortality at province-level
scales (a) and city-level scales (b).
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of the overall inequality, respectively. These findings highlight that regional
disparities remain the primary driver of PM2.5-related health inequalities, a
pattern consistent across spatial scales and over time and in line with pre-
vious studies emphasizing persistent geographic health disparities in
China27.

Moreover, demographic changes (especially the rapid aging of the
population) have emerged as a critical factor increasing vulnerability, with
older adults identified as the most at-risk group. Given the anticipated
acceleration of population aging in the coming decade, the effectiveness of
short-termdemographic interventionsmaybe limited.This underscores the
importance of directly controlling PM2.5 exposures as a key strategy to
mitigate associated public health risks28.

To address these challenges and make our findings actionable, we
propose several specific policy recommendations. First, targeted healthcare
support should be prioritized for regions with the highest PM2.5-related
health burdens, including increased allocation of medical resources and the
development of region-specific public health programs. Second, inter-
provincial agreements to coordinate and limit emissions could help har-
monize air quality improvements and reduce regional disparities. Third,
special interventionprograms in citieswithpersistently high pollution levels
—such as stricter local emission standards, incentives for industrial
upgrading, and enhanced public awareness campaigns—should be imple-
mented. These approaches align with international best practices and the
Sustainable Development Goals (SDG 3 and SDG 10), which emphasize
reducing health inequalities and advancing environmental justice.

At the inter-regional level, a robust PM2.5 control framework is
essential. This refers to an integrated systemcomprising national legislation,
regional action plans, and standardized monitoring networks. Such a fra-
mework should enable real-time tracking of PM2.5 exposure disparities at
both national and sub-national levels, facilitate coordinated policy
responses, and support adaptivemanagementbasedonongoingmonitoring
and evaluation. This integrated approach has been shown to be effective in
other contexts29, and its adoption in China could help ensure that air quality
improvements translate into equitable health benefits.We recommend that
organizations such as China’s Ministry of Ecology and Environment and
local health authorities take the lead in implementing targeted regional
interventions, prioritizing vulnerable populations, and enhancing inter-
regional collaboration. Integrating broader social and economic policies
with air pollution control measures is essential for achieving sustainable
development goals.

We acknowledge several limitations of our study. The use of modeled
PM2.5 and population data introduces uncertainties related to data resolu-
tion, model assumptions, and environmental changes. Moreover, our
analysis focused primarily on geographic disparities and did not explicitly
account for other dimensions of inequality, such as socioeconomic status or
ethnicity. Future research should aim to incorporate multi-dimensional
equity assessments and more granular data to provide a comprehensive
understanding of PM2.5-related health inequalities.

Furthermore, although this study focuses on China, similar patterns of
inequality are observed in other rapidly developing countries facing urba-
nization and demographic transitions. To further support this point, we
conducted equity analyses for several developing countries and consistently
found comparable results regarding environmental health disparities. The
data and results of these cross-country calculations are presented in Sup-
plementary Table 2 and Table 3. Our findings may therefore provide
valuable insights for policymakers and researchers working in comparable
contexts, highlighting the global relevance of addressing environmental
health disparities through integrated and equitable policy approaches.

Methods
Data
We analyzed PM2.5 air quality data, mortality rates, and population data for
372key cities across 34provinces inChina, covering theperiod from2000 to
2019. All datasets, including population, PM2.5 concentrations, and GDP
per capita, were processed in raster format with a spatial resolution of 1 km.
The China annual PM2.5 concentration dataset was obtained from the
National Tibetan Plateau Science Data Center (TPDC)30, which was
developed using artificial intelligence techniques to account for the spatio-
temporal heterogeneity of air pollution. This dataset, with a spatial resolu-
tion of 0.01° (WGS84), has been validated against ground-based
measurements to ensure reliability. Population data were sourced from the
WorldPop Research Programmer31, which integrates census information
and ancillary data such as nightlights, and has been rigorously validated for
accuracy across latitudes. The WorldPop Global population dataset was
used to quantify the number of residents in each 1 km× 1 km grid cell.
Mortality data for Hong Kong, Macao, and Taiwan were obtained from the
respective local Center for Health Protection or Census Bureau. The
Detailed datasets are presented in Supplementary Table 1.

In this study, we utilized existing PM2.5 and population datasets to
estimate PM2.5-attributable mortality using established epidemiological

Fig. 8 | Multiscale PM2.5 health burden inequality and change. a Average 20-year
Gini coefficient for premature mortality at the provincial scale. b Average Gini
coefficient for 20-year premature mortality at city-level scales. c Average premature

mortality raster from 2000 to 2019. d Rates of change in the Gini coefficient for
premature mortality at the provincial scale and city-level scale (e). fRaster of change
in premature mortality rates from 2000 to 2019.
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models. Subsequently, we applied decomposition analysis to assess the
contribution of multiple factors to mortality disparities. The geographic
distribution of PM2.5 and PM2.5-related mortality was then evaluated using
the Gini index to quantify spatial inequality across regions and cities. This
integrated approach provides a comprehensive framework for investigating
the spatial patterns and drivers of air pollution-related health impacts
in China.

Population-weighted PM2.5 concentrations
Following the World Health Organization (WHO) guidelines, this study
utilized population-weighted PM2.5 concentrations to conduct a compre-
hensive analysis across multiple administrative levels, including national,
provincial, municipal, and county32,33. By assigning greater weights to
regions with higher population densities, this approach more accurately
reflects the exposure levels of PM2.5 experienced by the populace. This
measure combines population distribution in space with PM2.5 con-
centration differences across geographical regions, providing a more accu-
rate depiction of real-world exposure. The calculation of the population-
adjusted PM2.5 concentration is formulated as follows:

PM2:5 ¼
Pn

i¼1 Pi ×Ci

� �

Pn
i¼1Pi

ð1Þ

WherePi andCi are the population andPM2.5 concentration in grid pixels i.
n is the total number of grid pixels in the analytical area.

Disease burden assessment
In this study, an upgraded Global ExposureMortality Model (GEMM) was
employed to assess the health impact linked to long-term PM2.5 exposure.
This refined GEMM incorporated mortality data for five diseases. The
model’s computation is based on the following formula17,30,34:

Mi;j;k ¼ Popi × PSj ×Bj;k ×
ðRRi;j;k � 1Þ

RRi;j;k
ð2Þ

RRi;j;k ¼
exp

θj;k log
Ci�C0
αj;k

þ1

� �

1þexp �Ci�C0�μj;k
vj;k

� �

8
<

:

9
=

;
; if C0 <Ci

1; if C0 ≥Ci

8
>><

>>:
ð3Þ

RRi;j;k denotes the relative risk; Ci is the value of PM2.5 concentration
(μgm−3) in the grid cell; C0 denotes the theoretical minimum risk con-
centration (2.4 μgm−3); θ, α, μ, and v are the fitting parameters of the PM2.5

exposure–response function35–37. Considering the uncertainty of the relative
risk RRi;j;k in themodel, 95% confidence intervals for RRi;j;k were calculated
using standard errors in the GEMM (global exposure mortality model),
where SE (θj;k) in Eq. denotes the standard deviation of θj;k.

In the equation, as the PM2.5 exposure level increases, the RR value
shows an upward trend. The quantitative correlation between these factors
is discernible through the exposure-response function. In this study, the
exposure-response function was adapted from GBD’s published Bayesian,
regularization, and trim (MR-BRT) model. This method provides a com-
prehensive evaluation of PM2.5-related health risks, consistent with the
advanced statistical approaches used by GBD. The deaths attributable to
PM2.5 pollution (DAPP)was calculatedprimarily using theMR-BRTmodel
median as the main result.

Building on the established link between PM2.5 exposure and risk, we
can derive additional metrics to assess its health impact. Particularly, we are
able to compute additionalmetrics such as themortality rate (deaths per 105

population) and the mortality fraction resulting from PM2.5 exposure:

XN

i;j¼1

MRi;j ¼
PN

i;j¼1Mi;j
PN

i¼1Pi

× 105 ð4Þ

XN

k;j¼1

MFk;j ¼
PN

k;j¼1Mk;j
PN

k¼1AMk

× 102 ð5Þ

where,MRi;j represents themortality rate of disease j in grid i, andMi;j is the
mortality attributable toPM2.5 exposure for disease j in grid i; andPi denotes
the exposed population in grid i. MFk;j represents the mortality fraction of
disease j in province k; AMk represents the all-causemortality in provincek.

Decomposition of health burden drivers
To systematically quantify the contribution of key drivers to changes in
PM2.5-related death, we adopted a decomposition approach inspired by the
Global Burden of Disease (GBD) study38. This methodology allows for the
attribution of changes in PM2.5-attributable deaths to four major factors:
population size, age structure, baseline mortality, and PM2.5 concentration.
By sequentially adjusting each factor while holding others constant, we can
isolate the specific impact of each driver on mortality trends.

Given that the order inwhich input variables are adjusted can influence
the estimated contributions, we performed sensitivity analyses by calculat-
ing all possible permutations of the four factors. The final contribution
values for each driver were derived by averaging across all 24 possible input
sequences, therebyminimizing sequence-dependent bias and enhancing the
robustness of our estimates.

The contribution of each driver to the change in PM2.5-related death
was calculated using the following key equations:

CPop ¼ MPop �Mt0

� �
�Mt0 × 100% ð6Þ

CPS ¼ MPS �MPop

� �
�Mt0 × 100% ð7Þ

CB ¼ MB �MPS

� ��Mt0 × 100% ð8Þ

CAP ¼ MAP �MB

� ��Mt0 × 100% ð9Þ

Where CPop, CPS, CB, and CAP represent the percentage contribution of
changes in population size, age structure, baseline mortality, and PM2.5

concentration, respectively, to the total change in PM2.5-related death.Mt0
and MAP denote the estimated number of PM2.5-related deaths at the
baseline and after all factors have been updated.

This decomposition framework provides a transparent and quantita-
tive basis for understanding the relative importance of demographic, epi-
demiological, and environmental factors in shaping PM2.5-related health
outcomes.

Measuring and decomposing inequalities of PM2.5 and PM2.5-
health-burdens
The Gini coefficient39,40 is a well-established metric for quantifying
inequality and is widely used in fields such as economic growth41, envir-
onmental justice42, income distribution43, and resource allocation44. In this
study, we employ the Gini coefficient to assess disparities in both PM2.5

exposure and PM2.5-attributable mortality.
To clarify, we calculate the Gini coefficient in two distinct ways to

capture different aspects of inequality. The first approach is person-based:
all individuals are rankedby theirPM2.5 exposure (ormortality risk), and the
Gini coefficient quantifies how unequally PM2.5 exposure (or mortality) is
distributed across the population. The formula is as follows:

Gini ¼
Pn

i¼1

Pn
j¼1jEi � Ejj
2n2�E

ð10Þ

where Ei and Ej represent the PM2.5 exposure (or attributablemortality) for
individuals i and j, n is the total population size, and �E is the mean PM2.5

exposure (or mortality) across all individuals.
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The secondapproach is grid cell-based: all 1-kmgrid cells are rankedby
their average PM2.5 concentration (or mortality rate), and the Gini coeffi-
cient reflects the spatial inequality in PM2.5 or mortality across geographic
units. The formula is:

Gini ¼
Pn

i¼1

Pn
j¼1jCi � Cjj
2n2�C

ð11Þ

WhereCi andCj are thePM2.5 concentration(mortality) of grid cell i and j.n
is the total number of grid cells in the analytical unit, and �C is the mean
PM2.5 concentration of all grid cells.

The person-based Gini index incorporates population weighting
within each grid cell, thus reflecting disparities in exposure or health burden
at the individual level. In contrast, the grid cell-based Gini index measures
only the spatial heterogeneity of PM2.5 ormortality across geographic units,
without considering population distribution within each cell. Using both
metrics allows us to disentangle the effects of population distribution from
pure spatial inequality.

To further dissect the sources of inequality, we apply the Dagum
decomposition method45. This technique breaks down the overall Gini
coefficient into three components: within-group inequality (Gwithin),
between-group inequality (Gbetween), and an overlapping component
(Goverlap) that accounts for distributional overlap between groups. The
decomposition is expressed as:

Gini ¼
X

k

v2kλkG
k þ 1

2

X

k

X

h

vkvh λk � λh
�
�

�
�þ R ¼ Gwithin þ Gbetween þ Goverlap

ð12Þ

Where vk is the proportion of group k's population relative to the total
population, λk is the ratio of group, andG

k is theGini coefficient of group k.
Gwithin is measured as the weighted average of Gini coefficients within each
subgroup.Gbetween reflects the impact of betweendifferent subgroups on the
overall Gini coefficient. Goverlap accounts for the residual effects due to the
overlap or interaction of income distributions between subgroups. This
decomposition provides a deeper understanding of disparities that exist
both between different population groups and within individual groups46.

Specifically, this approach allows for the decomposition of overall
inequality into within-group, between-group, and overlapping components
at multiple spatial scales. In our study, the decomposition can be applied at
various administrative levels, such as provinces, cities, or counties,
depending on the research focus. This flexibility enables us to systematically
analyze and compare spatial inequality in PM2.5-related health burdens
across different geographic units.

Mann–Kendall trend test
TheMann–Kendall (MK) trend test is awidely usednonparametricmethod
for detecting monotonic trends in time series data. Unlike parametric
approaches, theMK test does not require assumptions about the underlying
data distribution, making it robust to small sample sizes and the presence of
outliers. The test statistic S is calculated by evaluating all pairwise com-
parisons among data points in the series, where each comparison con-
tributes positively, negatively, or neutrally depending on the direction of
change.

To assess the significance of the observed trend, the standardized test
statisticZ is computed,whichunder thenull hypothesis of no trend follows a
standard normal distribution. The p-value derived from Z is used to
determine statistical significance, with P < 0.05 indicating a significant
trend. In this study, a variance correction factor was applied to account for
potential autocorrelation in the time series, thereby improving the reliability
and robustness of the MK test results.

To evaluate the robustness of our mortality estimates, we conducted
several sensitivity analyses (Supplementary Fig. 1). Specifically, we utilized
alternative PM2.5 concentration datasets to recalculate PM2.5-attributable
mortalities and compared the results across different data sources. For each

dataset, we performed a spatial comparison of PM2.5 concentrations at
identical locations to assess consistency and potential biases. Furthermore,
principal component analysis (PCA) was applied to the PM2.5 data to
investigate the similarity and usability of our primary dataset in relation to
existing PM2.5 datasets. The results of these analyses demonstrate high con-
cordance between different sources and confirm the reliability of our data.

Data availability
Data are providedwithin the Supplementary Information files. The Python
code (standard regression analysis) used in this study is available from the
corresponding author upon request.
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