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Achieving multi-modal brain disease
diagnosis performance using only single-
modal images through generative AI
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Kaicong Sun 1 , Yuanwang Zhang1, Jiameng Liu1, Ling Yu2, Yan Zhou3, Fang Xie4,5,6, Qihao Guo7,
Han Zhang1, Qian Wang1,8 & Dinggang Shen1,8,9

Brain disease diagnosis using multiple imaging modalities has shown superior performance
compared to using singlemodality, yetmulti-modal data is not easily available in clinical routine due to
cost or radiation risk. Here we propose a synthesis-empowered uncertainty-aware classification
framework for brain disease diagnosis. To synthesize disease-relevant features effectively, a two-
stage framework is proposed including multi-modal feature representation learning and
representation transfer based on hierarchical similarity matching. Besides, the synthesized and
acquired modality features are integrated based on evidential learning, which provides diagnosis
decision and also diagnosis uncertainty. Our framework is extensively evaluated on five datasets
containing 3758 subjects for three brain diseases including Alzheimer’s disease (AD), subcortical
vascular mild cognitive impairment (MCI), and O[6]-methylguanine-DNA methyltransferase promoter
methylation status for glioblastoma, achieving 0.950 and 0.806 in area under the ROC curve on ADNI
dataset for discriminating AD patients from normal controls and progressive MCI from static MCI,
respectively. Our framework not only achieves quasi-multimodal performance although using single-
modal input, but also provides reliable diagnosis uncertainty.

Medical image classification is essential for brain disease diagnosis1–4.
Modern medical imaging techniques such as magnetic resonance imaging
(MRI) are popularly employed for brain disease diagnosis in clinics. Due to
different imaging mechanisms, different modalities can contain com-
plementary information and certain modalities may be more appropriate
than other modalities for disease diagnosis or treatment.

However, these modalities might be unavailable in practice due to
factors such as cost or radiation dose. Since different imaging modalities
often have certain intermodality correlation among high-level feature
representations due to shared anatomical structures and/or functional
activities, synthesis of unavailable modalities from the available one
becomes potentially feasible. Integration of these synthesizedmodalities can
involve modality-specific complementary information for enhanced clas-
sification performance.

Image synthesis within or across modalities is a typical image trans-
lation task. Generative models, such as variational autoencoders (VAE)5,
generative adversarial networks (GANs)6, normalizing flow7, and more
recent diffusion models8, are intensively investigated on natural images in
the literature. However, the aim of natural image synthesis is generally to
attain high perceptual quality or high image diversity9. The lack of clinical
reliability may induce concerns for medical applications.

Most medical image classification studies propose to use available
imaging modalities only10–14. It is non-trivial to incorporate a reliable gen-
erative model into the classification task for improved classification per-
formance. There are efforts15,16 trying to integrate unavailable modalities
into disease diagnosis. Pan et al.15 propose a disease-specificmodel to jointly
handle medical image synthesis and disease classification. Although syn-
thesized images can contain disease-relevant features, their contributions to
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the follow-up AD diagnosis are not efficient and direct. The reasons are
mainly twofold. First, voxel-wise synthesis is a severe ill-posed problem.
Using fine-grained voxel-wise synthesis to assist less complicated classifi-
cation task can induce a large complexity burden, and the mismatch of task
granularity can lead to inefficient learning. Second, dense voxel-wise
synthesis generally requires a large amount of training data, which poses an
additional challenge for medical classification task. In study16, the authors
propose a synthesis-empowered classification framework named Deep-
Guide, which bypasses dense voxel-wise synthesis by transferring feature
representations of under-performing modality to the ones of better-
performing modality based on knowledge distillation using multilayer
perceptron (MLP)-based guidance model. However, the performance of
DeepGuide is limited by theMLP-based guidancemodel and, in addition, a
simplemean square error loss is insufficient to guidedisease-relevant feature
transfer across modalities.

Although integrating cross-modality synthesis can bring improve-
ment in classification performance, modality synthesis also induce addi-
tional risk on classification trustworthiness. In fact, classification
trustworthiness can be quantified by classification uncertainty. Existing
uncertainty-aware models can be categorized into the Bayesian17–19 and
non-Bayesian20–23 approaches. The Bayesian approaches replace determi-
nistic weights of the network by a posterior distribution of the weights
given the training data. During inference, the predictive distribution of the
unknown label is calculated by the expectation under the posterior dis-
tribution of all the possible configurations of the weights. To reduce the
computational cost,MonteCarlo dropout (MCdropout)24 is introduced as
Bayesian approximation by applying the dropout layer in the model, and
uncertainty is generated by running the model multiple times during
inference. To avoid estimating the distribution of network weights, non-
Bayesian approaches have been proposed in the literature, including but
not limited to ensemble-based methods20,21, M Heads25, and deterministic
uncertainty methods22,23 (which estimate the uncertainty directly).
Recently, Han et al.23 propose a multiview classification network based on
variational Dirichlet and evidence-level fusion, which achieves accurate
and reliable uncertainty estimation.

In this work, we propose a synthesis-empowered uncertainty-aware
classification framework for brain disease diagnosis.Ourmodel aims to (1)
achieve multi-modal classification performance although using single-
modal input based on modality synthesis and (2) provide classification
uncertainty based on evidential learning. Instead of performing voxel-wise
synthesis, we adopt feature-level imputation, which reduces synthesis
complexity and leads to more efficient classification enhancement. Our
contributions can be summarized in four-fold. First, our framework is built
on a two-stage training scheme for I) disease-relevantmulti-modal feature
representation learning and II) feature representation transfer. In Stage I,
the branches of all the modalities are trained jointly. Our model not only
learns disease-related feature representation of each modality, but also
aligns features of different modalities based on joint classification. In Stage
II, our model synthesizes the features of other modalities from the single
inputmodality using 3DCNN-based encoders, maintaining the rest of the
model untouched from Stage I. Second, we propose a hierarchical feature
similarity matching scheme applied on multi-level features in Stage II to
achieve more efficient and reliable feature transfer. Third, our synthesis-
empowered classification framework supports uncertainty estimation
based on evidential learning. The uncertainties of all the available and
synthesized modalities are integrated based on Dempster-Shafer theory.
The estimated uncertainty reveals classification confidence and classifi-
cation trustworthiness. Lastly, we have comprehensively evaluated our
framework on 3758 subjects for three brain diseases, i.e., Alzheimer’s
disease, subcortical vascular mild cognitive impairment, and MGMT
promoter methylation status in glioblastoma patients from different
aspects. Our framework shows promising classification performance close
to the case of employing completemulti-modal data and provides accurate
classification uncertainty, which can potentially reveal classification
correctness.

Methods
We provide the overview of our study in Fig. 1. Our framework is evaluated
on multi-site multi-modal data for different classification tasks from per-
spectives of classification performance, synthesis reliability, uncertainty
analysis, ablation study, and generalizability evaluation.

Network architecture
The proposed model architecture consists of two parts, including classifi-
cation backbone and classification head as demonstrated in Stage I (S1) of
Fig. 1. The classification backbone extracts modality-specific disease-rele-
vant features. In this work, we perform an evaluation using two different
backbones: (1) A 5-layer 3D CNN encoder with channels of 16-32-64-128-
256. In each layer, the kernel size is set as 3 × 3 × 3 followed by an Instance
Normalization and a Leaky ReLU. The first layer has a stride size of 1, and
the rests have a stride size of 2. A 1 × 1 × 1 layer is applied at the end of the
classification backbone to squeeze the channels to 16. Different from S1, in
S2 we apply two cascaded Convs in each layer of the unfrozen branches to
facilitate synthesis ability; (2) 3D ResNet26. We employ ResNet18 for AD
diagnosis while ResNet10 for vascular cognitive impairment and MGMT
promoter methylation status due to less amount of training data for the
latter twodiseases. Limitedby theGPUmemory,weuse channelnumbersof
32-64-128-256 instead of the original setup of 64-128-256-512.With regard
to the classification head, we utilize two fully connected (FC) layers for each
modality, and the outputs of the first FC layers of all the modalities are
concatenated to construct the feature integration (FI) branch as marked in
dark gray in Fig. 1. The output of the second FC layer is passed to the
Softplus, instead of the commonly used Softmax, to provide the evidence of
individual modality and enable uncertainty estimation. Based on the evi-
dence, belief mass and uncertainty mass of each modality can be directly
obtained by means of Dirichlet distribution. The beliefs and uncertainty
masses of all the modalities are integrated to obtain an aggregated classifi-
cation decision and classification uncertainty. More details are given in the
section “Uncertainty estimation”.

Two-stage training scheme and hierarchical feature similarity
matching
To obtain reliable disease-relevant feature synthesis, we propose a two-stage
training scheme as demonstrated in Fig. 1. In Stage I (S1), all the multi-
modal data in the training dataset are utilized to pretrain a model, which
learns modality-specific features for disease classification. Note that if a
certain modality is missing during training, the corresponding branch will
not be updated. In Stage II (S2), ourmodel takes single-modal input, and all
the model weights, except the classification backbones of the synthesized
modalities (i.e., encoders and the follow-up1 × 1 × 1Convs asmarked in the
white block inFig. 1), are loaded fromthepretrainedmodel in S1 and frozen.
To transfer the modality-specific prior from S1 to S2 more effectively, we
impose similarity match betweeen S1 and S2 not only on the synthesized
features out of the classification backbone, but also on the high-level features
in the classification head. In addition, in the first half training epochs of S2,
the classification loss is calculated only based on the synthesizedmodalities,
namely the firstN− 1 branches, to facilitate disease-related feature transfer;
in the second half epochs, the available modality, namely the Nth branch
(marked in yellow), and the feature-integration branch (marked in dark
gray) are involved for label prediction to further fine-tune the synthesized
features.

Uncertainty estimation
Inspired by the work of ref. 27,28, we employ evidential deep learning to
quantify classification uncertainty. Evidence in this context is interpreted as
the estimate of support from training data in favor of a sample to be clas-
sified as a certain label. The principle of evidential-based classification is
based on Dempster-Shafer Evidence Theory (DST)29,30, which is a gen-
eralization of the Bayesian theory to subjective probabilities. InDST, a belief
mass is assigned to each possible label, and it allows beliefs from different
modalities to be combined to obtain anewbelief that considersmulti-modal
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evidence. Later, Subjective Logic (SL)31 associates belief distribution with
Dirichlet distributionwhichallowsone touse evidence toquantify belief and
uncertainty by means of Dirichlet parameter. Specifically, when assigning
belief mass bk (bk > 0) to K class labels in conjunction with the uncertainty
mass u (u > 0), we obtain the K simplex formulated as

uþ
XK
k¼1

bk ¼ 1; ð1Þ

where belief mass bk = (αk− 1)/S with αk being the corresponding
Dirichlet parameter for the kth label which is induced by the evidence
ek = αk− 1 and S ¼PK

k¼1αk being the Dirichlet strength. The above
definitions are for single modality. In our concept, we intend to build
multi-modal synthesis based on the acquired single-modal data, and
integrate the synthesized modalities with the acquired modality for
improved classification. Therefore, the proposed classification head will

learn the evidence parameters eXn ¼ feXn
1 ; � � � ; eXn

K g for all themodalities
{X1,⋯ , XN} (including synthesized and acquired ones). The beliefs
fbX1 ; � � � ; bXN g and uncertainties fuX1 ; � � � ; uXN g of all the modalities
are integrated based on Dempster’s combination rule23 to provide
the ultimate aggregated belief and uncertainty. Formally, the belief bXn

and the corresponding uncertainty uXn of the Xnth modality construct

the probability mass MXn ¼ fbXn ; uXn g with bXn ¼ fbXn
1 ; � � � ; bXn

K g.
The combined mass M ¼ ffbkgKk¼1; ug of two independent sets of
probability mass {M1,M2} based on the Dempster’s combination rule
is formulated as:

bk ¼
1

1� C
b1kb

2
k þ b1ku

2 þ b2ku
1

� �
; u ¼ 1

1� C
u1u2: ð2Þ

According to Eq. (2), the beliefs and uncertainties of different mod-
alities can be integrated. The label with largest belief is considered as diag-
nosis decision, and the combined uncertainty is taken as final uncertainty.

Training loss
The loss function for S1 consists of components for all the modalities and
also the integrated ones as formulated below:

LS1 ¼
XXN

Xn¼X1

LðαXn
Þ þ LðαFIÞ þ LðαDIÞ ¼

XNþ2

i¼1

LðαiÞ; ð3Þ

with αXn
being the Dirichlet parameter for modality Xn. αFI and αDI

represent theDirichlet parameters for the feature integrationbranchand the
final decision integration block, respectively. Each loss component contains

Fig. 1 | Overview of the study.Multiple cohorts are employed to evaluate our
classification framework for multiple brain diseases including Alzheimer’s disease
(AD), subcortical vascular mild cognitive impairment, and prediction of O[6]-
methylguanine-DNA methyltransferase (MGMT) promoter methylation status.
Our framework is evaluated for normal cognition (NC) vs. AD, static mild cognitive
impairment (sMCI) vs. progressiveMCI (pMCI), subcortical vascularmild cognitive
impairment (svMCI) vs. subcortical vascular disease with no cognitive impairment
(NCI), MGMT promoter methylation status (methylated or unmethylated) in
aspects of classification performance in terms of area under the ROC curve (AUC),
accuracy (ACC), sensitivity (SEN), specificity (SPE), and F1-score (F1) under 5-fold
cross-validation, reliability evaluation, uncertainty analysis, ablation study, and
generalizability evaluation. The framework is built on a two-stage training scheme:

(1) Stage I (S1) aims to learn modality-specific disease-relevant feature repre-
sentations using real multi-modal data, based on which the classification backbone
and classification head of each modality are well established; (2) Stage II (S2) takes
single-modal input and performs representation transfer to align the synthesized
features with the reference ones from S1. To focus on feature transfer, the branch of
available modality (marked in yellow) and the classification heads of all the mod-
alities are borrowed from S1 and frozen in S2 (marked by gray background). To
achieve efficient feature alignment, hierarchical similarity matching between the
reference features (in S1) and synthesized features (in S2) in the classification
backbone and classification head is imposed.More details are given in section “Two-
stage training scheme and hierarchical feature similarity matching''.
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two terms:

LðαiÞ ¼ LwaCEðαiÞ þ KL½Dðpij~αiÞ k Dðpij1Þ�: ð4Þ

The first term is the weighted adjusted cross-entropy (waCE), and the
second term is the KL divergence between probability distributionDðpij~αiÞ
andD(pi∣1). pi denotes the class assignment probability of the ith modality.
~αi is the adjusted Dirichlet parameter (definition see below). Our proposed
waCE is defined as follows:

LwaCEðαiÞ ¼
Z XK

k¼1

wi
ky

i
k log pik

� �" #
1

BðαiÞ
YK
k¼1

pik
� �αik�1

dpi

¼
XK
k¼1

wi
ky

i
k ψðSiÞ � ψ αik

� �� �
;

ð5Þ

where ψ( ⋅ ) represents the digamma function and B( ⋅ ) is the multivariate
beta function. yik denotes the label of the kth class for the ith modality, and
wi
k is the corresponding weight which is calculated as the ratio between the

number of negative andpositive labels. TheKLdivergence loss is formulated
as

KL½Dðpij~αiÞ k Dðpij1Þ� ¼ log
Γ
PK

k¼1~αik
� �

ΓðKÞQK
k¼1Γð~αikÞ

 !

þ
XK
k¼1

ðαik � 1Þ ψð~αikÞ � ψ
XK
k¼1

~αik

 !" #
;

ð6Þ

where Γ( ⋅ ) denotes the gamma function, and the adjusted Dirichlet para-
meter ~αi is defined as ~αi ¼ yi þ αið1� yiÞ.

Different from loss LS1, in S2 we apply multi-level similarity
matching on the synthesized features in addition. Specifically, LS2 con-
sists of hierarchical constraints including dissimilarity penalty in the
classification backbone LB and classification head LH. Therefore, LS2 is
expressed as

LS2 ¼ LS1 þ λBLB þ λHLH ; ð7Þ

where λB and λH are tunable hyperparameters. For each level of similarity
constrains, we perform point-wise similarity match by mean square error
and vector-wise similarity match by cosine similarity. For instance, LB is
formulated as

LB ¼ LMSE þ λCSLCS; ð8Þ

with λCS being a scalar weighting parameter.

Implementation details
We train the individualmodels using the datasets reported in Table 1. All
the models are built on the same framework with the best hyperpara-
meters chosen according to AUC, SEN, and SPE on the validation data.
Specifically, for the ADNI dataset, we employ Adam as the optimizer,
and set the training epochs as 30 for each training stage. In S1, the
learning rate is set as 1 × 10−4 for the first half epochs, and then decayed
to 1 × 10−5. In S2, we set the learning rate as 1 × 10−3 for the first half
epochs, and then decrease it to 1 × 10−4. The mini-batchsize is set as 10.
The weighting parameters λB and λH are selected as 1, 1 × 10−2, and
2 × 10−4, respectively.We set λCS as 5 in both the LB and LH. For OASIS-3
and HS Hospital datasets, we initialize the model weights using the
pretrainedmodel based onADNI. The learning rate is set as 5 × 10−5, and
mini-batch size is set as 4. With respect to applications of svMCI and
MGMT promoter methylation status, both mini-batchsizes are set as 4,
and learning rate is set as 1 × 10−4, and decayed by 0.1 after half of the

epochs. All the weighting parameters in loss functions remain the same
as for ANDI.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Study design and participants
Our framework is evaluated on three brain disease classification tasks, i.e.,
Alzheimer’s disease (AD), subcortical vascular mild cognitive impairment
(svMCI), and prediction of MGMT promoter methylation status in glio-
blastoma patients. We summarize the study population and characteristics
in Table 1. AD and vascular dementia are the most and second most
common forms of dementia32, respectively. For AD diagnosis, normal
cognition (NC) vs. ADaswell as staticmild cognitive impairment (sMCI)vs.
progressive MCI (pMCI) classifications are carried out. We collect multi-
modal data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset (n = 2129)33–35, the Open Access Series of Imaging Studies dataset
(OASIS-3, n=557)36, and a private cohort (n= 231) from the localHuashan
(HS) Hospital in Shanghai. To alleviate label imbalance in OASIS-3, we
adopt all the AD scans (n = 257), and randomly select partial NC scans (n =
300). Subcortical vascular cognitive impairment is the most common form
of vascular cognitive impairment37. In this work, we attempt to distinguish
svMCI from subcortical vascular disease with no cognitive impairment
(NCI). We utilize an in-house data (n = 256), which contains paired T1w
and FLAIR images from local Renji (RJ) Hospital in Shanghai. Gliomas are
the most common primary central nervous system malignancies, and
glioblastoma is the most aggressive subtype of gliomas38. MGMT (O[6]-
methylguanine-DNA methyltransferase) promoter methylation status is
one of the genetic characteristics of glioblastoma, and the determination of
MGMT promoter methylation status can influence treatment decision-
making39. To identify MGMT promoter methylation status (methylated or
unmethylated), we use the public BraTS 2021 dataset (n = 585)39–41 con-
taining multi-parametric MR images (T1w, T1Gd, T2w, T2-FLAIR),
acquired with different clinical protocols and different scanners from
multiple institutions.

Data preprocessing and data splitting
We employ publicly available ADNI, OASIS-3, and in-house data from
Huashan (HS) Hospital to evaluate our framework for AD diagnosis. T1w
images are preprocessed following the standard pipeline, which consists of
bias field correction using N4ITK42, skull-stripping, and affine registration
to the MNI space with 1.5mm isotropic spacing by SPM43. The spatially
normalized T1w images are then cropped to 112 × 128 × 112 to remove the
background. PET images are first aligned with the corresponding T1w
images by rigid registration. The warped PET images are further trans-
formed to theMNI space by the affine transformationmatrix obtained from
the correspondingT1w images, so thatweobtain the spatially alignedpaired
T1w and PET images.

We collect 256 subjects fromRenji (RJ)Hospital. Each subject contains
paired T1w and FLAIR images. We adopt the same preprocessing pipeline
to obtain spatially aligned image pairs. To be specific, rigid transform is used
to align the T1w image with the corresponding FLAIR image. The T1w
images are skull-stripped and registered to the MNI space by affine trans-
formation with a spacing of 1 × 1 × 1mm3. The affine transformation
matrix and the transformed mask are then applied to the corresponding
FLAIR image. In this way, the skull-stripped T1w and FLAIR images have
the spatial correspondence in theMNI space.We crop the image to the size
of 176 × 208 × 176. It should be noted that this study is approved by the
Research Ethics Committee of HS Hospital and RJ Hospital. Due to the
retrospective nature of this study, the informed consent is waived.

We utilize the public BraTS 2021 dataset, which have been
preprocessed39–41. The data released in Task 1 of BraTS 2021 and the labels
released in Task 2 construct our training image-label pair. All of the scans
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have an isotropic voxelsize of 1 × 1 × 1mm3 and are cropped from the ori-
ginal 240 × 240 × 155 to 192 × 192 × 144 to discard the background region.

In the training phase,we randomly split each dataset intofive folds.We
train the model using three of the five folds and the rest two folds are
employed for validation and test, respectively. Based on 5-fold cross-vali-
dation, each foldhas been exploitedonce as test data. The samedata splitting
is used for both the training stages of S1 and S2 to avoid data leakage.

Classification performance
To evaluate the classification performance of our framework, we compare
with the state-of-the-art classification models, which exploit both the
available and synthesized modalities, including PatchGAN44, DSNet15, and
DeepGuide16 on ADNI dataset. Particularly, PatchGAN and DSNet per-
form image synthesis for auxiliary modalities, and then extract disease-
relevant features from the synthesized images for follow-up classification.

DeepGuide synthesizes features of auxiliarymodalities instead of images by
feature translation between teacher and student networks. Besides we also
compare with the single-modal 3D CNN without auxiliary modalities,
denoted as 3D CNN (SI), and the multi-modal variant using complete
multi-modal data, denoted as 3D CNN (MI). It is worth noting that our
model is built on the backbone of 3D CNN, denoted as Ours3DCNN. More
detailed descriptions ofmodel architecture are given in theMethod section.
All themodels are evaluated by area under the ROC curve (AUC), accuracy
(ACC), sensitivity (SEN), specificity (SPE), and F1-score (F1) under 5-fold
cross-validation.

We summarize the results for NC vs. AD and sMCI vs. pMCI classi-
fications onADNI inTable 2.We can see that compared to the single-modal
3DCNN (SI), Ours3DCNN achieves significant improvement, i.e., up to 3.5%
inAUCand6.7% inF1-score forNC vs. ADclassification, and 6.9% inAUC
and7.4% inF1-score for sMCIvs. pMCIclassification.Moreover, ourmodel

Table 1 | Study population and characteristics

Dataset Age (mean ± std) Gender (Male / Female) Education (mean ± std) MMSE (mean ± std)

Alzheimer’s disease

ADNI

NC [n = 868] 72.4 ± 6.6 381/487 16.5 ± 2.5 29.1 ± 1.1

AD [n = 407] 74.9 ± 7.8 229/178 15.3 ± 2.9 23.2 ± 2.2

sMCI [n = 575] 72.3 ± 7.6 348/227 16.2 ± 2.7 28.1 ± 1.6

pMCI [n = 279] 73.9 ± 7.0 161/118 15.9 ± 2.8 26.8 ± 1.8

MRIT1w [n = 2129] 73.0 ± 7.2 1119/1010 16.1 ± 2.7 27.4 ± 2.7

PETFDG [n = 1380] 73.3 ± 7.2 772/608 16.1 ± 2.7 27.2 ± 2.8

PETAV45 [n = 1027] 72.3 ± 7.2 525/502 16.4 ± 2.6 27.64 ± 2.7

OASIS-3

NC [n = 300] 68.3 ± 8.7 97*/190* 15.8 ± 2.5 29.1 ± 1.3

AD [n = 257] 76.0 ± 7.8 142*/106* 14.73 ± 3.1 24.2 ± 4.1

MRIT1w [n = 557] 71.8 ± 9.1 239*/296* 15.3 ± 2.86 26.9 ± 3.8

PETAV45 [n = 105] 73.3 ± 8.3 37*/56* 15.8 ± 2.5 27.3 ± 3.5

HS Hospital

NC [n = 140] 64.2 ± 8.5* 56/84 12.2 ± 3.1 28.2 ± 1.7

AD [n = 91] 64.0 ± 8.0* 36/55 9.0 ± 4.1 18.0 ± 5.0

MRIT1w [n = 231] 64.1 ± 8.2* 92/139 10.5 ± 4.0 22.7 ± 6.4

PETFDG [n = 231] 64.1 ± 8.2* 92/139 10.5 ± 4.0 22.7 ± 6.4

PETAV45 [n = 231] 64.1 ± 8.2* 92/139 10.5 ± 4.0 22.7 ± 6.4

Subcortical vascular mild cognitive impairment

RJ Hospital

NCI [n = 109] 65.8 ± 7.6 95/14 11.3 ± 3.3 28.7 ± 1.3*

svMCI [n = 147] 65.0 ± 7.0 109/38 10.0 ± 2.8 27.3 ± 2.0*

MRIT1w [n = 256] 65.3 ± 7.3 204/52 10.6 ± 3.1 27.9 ± 1.9*

MRIFLAIR [n = 256] 65.3 ± 7.3 204/52 10.6 ± 3.1 27.9 ± 1.9*

MGMT promoter methylation status

BraTS 2021

MGMT- [n = 278] – – / – – –

MGMT+ [n = 307] – – / – – –

MRIT1w [n = 585] – – / – – –

MRIT1Gd [n = 585] – – / – – –

MRIFLAIR [n = 585] – – / – – –

MRIT2w [n = 585] – – / – – –

Our study includes threemedical classification tasks: Alzheimer’s disease, subcortical vascular mild cognitive impairment (svMCI), andMGMTpromotermethylation status.We evaluate our framework for
AD diagnosis using the public ADNI and OASIS-3, as well as our in-house data from HSHospital. For svMCI diagnosis and the prediction of MGMT promoter methylation status, we employ in-house data
from RJ Hospital and the public BraTS 2021, respectively.
*Incompletely recorded.
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outperforms the state-of-the-art methods by a large margin as well.
Although our framework uses single-modal input, it provides promising
classificationperformance close tomulti-modal 3DCNN(MI). The receiver
operating characteristic (ROC) curves for NC vs. AD and sMCI vs. pMCI
classifications are given in Supplementary Fig. 1.

Synthesis reliability
Different from PatchGAN44 and DSNet15 which synthesize images of the
unavailable modalities, our framework imputes disease-relevant features of
the unavailable modalities. The imputed modality-specific features can be
directly forwarded to the classification head without additional feature
extraction as required inPatchGANandDSNet. To validate the reliability of
the synthesized features, wehave conducted in-depth analysis quantitatively
and qualitatively.

In Fig. 2, we illustrate quantitative and qualitative similarity measure
between features of real (obtained in S1) and synthesized (obtained in S2)
modalities. In the boxplots of Fig. 2a, we demonstrate cosine similarity (CS)
andKullback-LeiblerDivergence (KLD)measures on the 16 channels of the
classification backbone. The CS and KLD between real and synthesized
features xreal and xsyn are calculated as CS(xsyn, xreal) = xsynxreal/
(∥xsyn∥2∥xreal∥2) and KLD(xsyn, xreal) = xreal(logxreal− logxsyn), respectively.
In the barplots of Fig. 2a, we exhibit the average CS across test subjects for
each of the 16 channels (in blue) in the backbone, as well as the two follow-
up fully connected layers in the classificationhead in additional bars (indark
green). It is shown that the average CS reaches up to 0.9 for all the channels
in the backbone.

Besides, we also visualize feature representations of real and synthe-
sized modalities using t-SNE on different datasets. Specifically, Fig. 2b
illustrates feature representations of the real modalities (by blue dots) and
the corresponding synthesized ones (by pink dots).We can see that the real
and synthesized features overlap with each other. The quantitative and
qualitative evaluations show that the synthesized features are effectively
aligned with the real ones, such that the imputed features are plausible and
reliable. Furthermore, in Fig. 2c, we exhibit feature representations of dif-
ferent imagingmodalities.We can observe that, although imputed from the
acquired T1w images, the synthesized features contain modality-specific
patterns which are complementary to T1w, so that the integration of syn-
thesized and real features can literally improve classification accuracy and
robustness. More similarity evaluation is demonstrated in Supplementary
Fig. 2 and Supplementary Fig. 3.

In addition to similarity analysis on featuremaps, we also demonstrate
similarity measure on the saliency maps (SMs) of the real and synthesized
16-channel features of the classification backbone in Fig. 3. The SMs are
calculated using gradient-based method45 over all the test subjects. In the
upper part, we demonstrate the average correlation matrix between SMs of
real and synthesized features over test subjects. The diagonal elements
denote the correlation coefficients between SMs of real and synthesized
channel pairs, which is close to 1 and obviously larger than the correlation
between unpaired channels (non-diagonal elements). In the right panel, we
demonstrate statistical analysis of the diagonal elements of the correlation
matrices in boxplots. It is shown thatmost diagonal elements are above 0.95.
In addition to quantitativemeasure, in the bottompart we visualize the SMs
of one subject. Specifically, the left panel illustrates the SMs of real multi-
modal features, while the right panel shows the corresponding SMs of the
imputed features. It is worthy to note that we demonstrate the average SM
across channels for each modality from different views. The unavailable
PETFDG and PETAV45 images are masked out in black. We can see that the
average SMs of synthesized features are very similar to those of the real
modalities. Subtle differences in SMs mainly locate in the regions with less
attention, such as at the borders of SMs. Quantitative and qualitative
similaritymeasure on SMs further validates the reliability of our framework.
More results can be found in Supplementary Fig. 4 and Supplemen-
tary Fig. 5.

Moreover, to evaluate the effectiveness of multi-modal fusion, we
demonstrate the classification performance of each branch in our model
corresponding to the individual real or synthesized modality in Fig. 4.
We show ACC, SEN, SPE, and F1-score under 5-fold cross-validation in
boxplots for different modalities on multiple datasets. We can see that
generally our framework achieves superior performance than the single-
modal branch, especially in terms of ACC, by resorting to the multi-
modal fusion paradigm, indicating that the synthesized complementary
features can be effectively integrated and contribute towards multi-
modal performance. Interestingly, some synthesized modality, such as
FDG-PET or T1Gd can outperform the available T1w images, and may
even achieve slightly better performance than our fused model in terms
of sensitivity or specificity. The reasonmight be due to label imbalance in
the training data althoughwe have usedweighted adjusted cross-entropy
to alleviate this effect. Other techniques, such as oversampling for
the minority class could be adopted in the future to further mitigate
this effect.

Table 2 | Classification performance for NC vs. AD and sMCI vs. pMCI based on 5-fold cross-validation on ADNI dataset

Methods AUC ACC Sensitivity Specificity F1-score

NC vs. AD

3D CNN (SI) 0.915 ± 0.011 0.853 ± 0.023 0.784 ± 0.059 0.885 ± 0.050 0.774 ± 0.018

3D CNN (MI) 0.967 ± 0.006 0.907 ± 0.011 0.879 ± 0.045 0.922 ± 0.036 0.858 ± 0.013

PatchGAN (SI+MmIE) 0.921 ± 0.033 0.863 ± 0.038 0.781 ± 0.050 0.895 ± 0.044 0.778 ± 0.051

DSNet (SI+MmIE) 0.926 ± 0.026 0.871 ± 0.028 0.789 ± 0.030 0.909 ± 0.028 0.796 ± 0.041

DeepGuide (SI+MmFE) 0.924 ± 0.016 0.867 ± 0.023 0.743 ± 0.066 0.925 ± 0.043 0.779 ± 0.036

Ours3DCNN (SI+MmFE) 0.950 ± 0.010 0.896 ± 0.011 0.864 ± 0.032 0.912 ± 0.021 0.841 ± 0.023

sMCI vs. pMCI

3D CNN (SI) 0.737 ± 0.039 0.697 ± 0.026 0.611 ± 0.085 0.740 ± 0.066 0.566 ± 0.031

3D CNN (MI) 0.803 ± 0.050 0.770 ± 0.039 0.736 ± 0.080 0.787 ± 0.076 0.675 ± 0.052

PatchGAN (SI+MmIE) 0.774 ± 0.014 0.699 ± 0.040 0.665 ± 0.093 0.713 ± 0.091 0.588 ± 0.027

DSNet (SI+MmIE) 0.791 ± 0.018 0.723 ± 0.010 0.705 ± 0.090 0.732 ± 0.037 0.619 ± 0.049

DeepGuide (SI+MmFE) 0.772 ± 0.038 0.697 ± 0.021 0.677 ± 0.074 0.715 ± 0.053 0.591 ± 0.016

Ours3DCNN (SI+MmFE) 0.806 ± 0.041 0.732 ± 0.045 0.734 ± 0.077 0.729 ± 0.065 0.640 ± 0.063

We show themean value and standard deviation of the 5-fold results.SI Single-modal input (T1w);MIMulti-modal input (T1w &PETFDG &PETAV45);MmIEMulti-modal image-enhanced (T1w enhanced by
synthesized images of PETFDG and PETAV45);MmFEMulti-modal feature-enhanced (T1w enhanced by synthesized features of PETFDG and PETAV45).
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Uncertainty analysis
Onemerit of our framework is the classificationuncertainty estimation based
on integrated modalities. In Fig. 5, we illustrate the uncertainty analysis on
ADNI and HS Hospital datasets for AD diagnosis. We demonstrate the
uncertainty evaluation for our framework and the single-modal variant in
Fig. 5a–d, respectively. In Fig. 5a,wepresent theuncertainty and covereddata
ratio with respect to the confusion matrix over test data. Specifically, we
calculate the mean and standard deviation of the subject uncertainties for
each element of the confusion matrix. We can see that the true positive and
true negative predictions have significant lower uncertainty than the corre-
sponding false ones. It suggests that accurate uncertainty estimation can be
employed to reveal classification correctness. In Fig. 5b, we demonstrate the
average ACC and covered data ratio over normalized uncertainty. The cov-
ered data ratio under a given uncertainty threshold is calculated by dividing
the number of subjects with uncertainty less than the given threshold by the
overall number of subjects. The averageACC is calculatedwithin the subjects
whose uncertainties are lower than the threshold.We can observe that, as the
uncertainty increases, the average ACC declines, showing that uncertainty

can be adopted as a threshold to filter out false predictions and hence obtain
improved overall classification performance. Besides, when comparing
Fig. 5a with Fig. 5c, our synthesis-empowered classification framework
obtains more significant uncertainty difference between the true and false
predictions as evaluated by the two-sided p-value. This indicates that our
frameworkprovidesmore reliable and robust uncertainty estimation than the
single-modal variant.Moreover, ourmodel achievesmuch lower uncertainty
than the single-modal variant, showing that our frameworkprovides not only
more accurate diagnosis decision, but also higher diagnosis confidence.More
evaluations are available in Supplementary Fig. 6.

Ablation study
To analyze the effectiveness of the proposed two-stage training scheme and
multi-level feature similarity matching, we conduct ablation study on the
ADNI data based on 5-fold cross-validation using the same data splitting as
mentioned in section “Data preprocessing and data splitting” and sum-
marize the results in Table 3. In fact, Stage I (S1) performs multi-modal
classification, aiming for learningmodality-specific disease-relevant feature

Fig. 2 | Similarity measure between feature maps of real modalities (obtained in
training Stage I), i.e., PETFDG and PETAV45, and the corresponding synthesized
ones (obtained in training Stage II) on test data. a Boxplots of cosine similarity
(CS) and KL divergence (KLD) of the 16-channel backbone features between real
and synthesized modalities for normal cognition (NC) vs. Alzheimer’s disease (AD)
classification across the ADNI test data, with the median values showing in orange
bar. The barplots show the average CS of the 16 channels of the classification
backbone (average value of each channel as shown in boxplot (a) in blue) and
additional two bars (in dark green) for the average CS of the features of the two fully
connected layers in the classification head. b T-SNE visualization of feature

representations of real and synthesized modalities for NC vs. AD, static mild cog-
nitive impairment (sMCI) vs. progressive MCI (pMCI), subcortical vascular disease
with no cognitive impairment (NCI) vs. subcortical vascular mild cognitive
impairment (svMCI), and MGMT promoter methylation status (methylated or
unmethylated) classifications by t-SNE plots. Features are collected from the output
of the classification backbone. cT-SNE visualization of feature representations of the
acquired T1w and synthesized other modalities. It turns out that although synthe-
sized features are generated by T1w, they are complementary to T1w (containing
modality-specific patterns).
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Fig. 3 | Similarity measure between saliency maps (SMs) of the real and synthe-
sized features on ADNI dataset. Top row left panel: Average correlation matrix of
SMs between real and synthesized modalities for static mild cognitive impairment
(sMCI) vs. progressiveMCI (pMCI) classification.Weflatten the SMof each channel
(in total 16 channels for backbone feature) and calculate the Pearson correlation
coefficients between the real and synthesized modalities for the 16 SMs of each
subject. We average the Pearson correlation matrices over the test subjects for
PETFDG and PETAV45. The diagonal elements represent the correlation between the
real and synthesized SMs of paired channel and all the diagonal elements are close to
1, while non-diagonal elements denote correlation between SMs of unpaired

channels and are close to 0. Besides showing the mean value, in the right panel of the
top row, we also illustrate statistical analysis of the diagonal elements of the corre-
lationmatrices across test data in boxplot, with themedian values showing in orange
bar. Bottom row: Visualization of SMs of real and synthesized features for a typical
case from ADNI. The left panel illustrates SMs obtained using real multi-modal
features (three views in training Stage I), while the right panel shows those obtained
via synthesized ones (in training Stage II). The unavailable modalities are masked in
black, and paired views are marked in the same color.

Fig. 4 | Evaluation of evidence-based multi-modal fusion. We demonstrate the
classification performance of each real and synthesizedmodality (each branch in our
model) quantitatively for normal cognition (NC) vs. Alzheimer’s disease (AD),
subcortical vascular disease with no cognitive impairment (NCI) vs. subcortical
vascular mild cognitive impairment (svMCI), and MGMT promoter methylation

status (methylated or unmethylated) in terms of accuracy (ACC), sensitivity (SEN),
specificity (SPE), and F1-score under 5-fold cross-validation on different datasets.
Different modalities are marked in different colors. The orange bars in the boxplots
represent the median values for the individual modality.
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representation, and S2 focuses on feature representation transfer by aligning
the synthesized features with the reference ones obtained in S1. It turns out
that performing classification and synthesis simultaneously instead of
separate stages (denoted as w/o S1) leads to a significant performance drop
of 6.7% in average AUC and 12.9% in F1-score. Furthermore, we evaluate
the proposed hierarchical constraints on multi-level features in the classi-
fication backbone LB and classification head LH. We can observe that the
employment of hierarchical constraints improves the average AUCby 2.5%
and the average F1-score by 4.1%.

Generalizability evaluation
In the above experiments, we have shown in-depth analysis of the proposed
framework in terms of reliability evaluation, uncertainty analysis, and
ablation study.Herein,we evaluate the generalizability of our framework for
different brain diseases on multiple datasets using different backbones.
Particularly, we conduct classification for NC vs. AD using public OASIS-3
and private data from HS Hospital, for NCI vs. svMCI using private data
fromRJHospital, and forMGMT+ vs. MGMT- on public BraTS 2021.We
summarize the results inTable 4. For all the tasks, we employT1w images as
the available modality to impute the features of other modalities. To be
specific, for NC vs. AD, we employ pretrained model based on ADNI as
model initialization andfine-tune it onOASIS-3 andHSHospital data. For a
fair comparison,weperform the samemodelwarm-up for single-modal (SI)
and multi-modal (MI) variants. It shows that our framework consistently
achieves close performance as the multi-modal one although using single-
modal input. For NCI vs. svMCI andMGMT+ vs. MGMT- classifications,
our framework obtains similar superiority. The ROC curves are demon-
strated in Supplementary Fig. 7.

We further evaluate the generalizability of our framework by using
another classification backbone of 3D ResNet26 to show that our synthesis-
empowered classification framework is not limited to a certain network
structure, but is suitable for general network structures. We summarize the
results based on 3D ResNet in Table 5. We can see that, our framework
consistently outperforms the single-modal variant and approaches the
performance using complete modalities for all the classification tasks. This
indicates that our framework possesses great generalizability to different
diagnosis tasks and different classification backbones.

Discussion
In this work, we propose an uncertainty-aware classification framework,
which achieves quasi-multimodal performance using only single-modal
images.Compared tomostof the classificationmodelswhichemployonly the
available modalities, our framework takes advantage of the generative ability
of deep learning and reveals the benefits of synthesis-empowered classifica-
tion for medical disease diagnosis. To achieve the reliable and effective
synthesis of complementary/more advanced modalities, our framework
synthesizes disease-relevant features of the auxiliarymodalities instead of the
images based on a proposed two-stage training scheme. Stage I aims to learn
disease-relevant feature representations of auxiliary modalities using real
multi-modal data. Stage II performs representation transfer between the real
and synthesized features under multi-level feature similarity constraints. In
such a way, our framework reduces synthesis complexity dramatically and
achieves promising classification performance close to the case of employing
complete multi-modal data. Moreover, along with predicted label, a reliable
classification uncertainty based on multimodal evidential learning is pro-
vided, which can potentially reveal classification correctness.

Fig. 5 | Classification uncertainty analysis. a, b Uncertainty analysis for our
synthesis-empowered classification framework for normal cognition (NC) vs. Alz-
heimer’s disease (AD) and static mild cognitive impairment (sMCI) vs. progressive
MCI (pMCI); (c)-(d): Uncertainty analysis for the commonly used single-modal
variant. a and c Plots of confusion matrix with the corresponding average uncer-
tainty on test data. The estimated uncertainty of all the test subjects are categorized
according to the confusion matrix, i.e., true positive (TP), true negative (TN), false

positive (FP), and false negative (FN). The average uncertainty of each category is
shown along with the ratio of covered data. b and d Plots of average accuracy (ACC)
curve and covered data ratio over normalized uncertainty. We compute the average
ACC of the subjects, which have the uncertainty above the given threshold. We also
show the covered data ratio above this given uncertainty threshold. We denote the
two-sided p-value p < 0.05 as *p < 0.01 as **p < 0.001 as and ***p < 0.0001 as ****.

Table 3 | Ablation study of our framework for the proposed two-stage training scheme and multi-level feature similarity
matching based on the ADNI dataset

Methods AUC ACC Sensitivity Specificity F1-score

Ours w/o S1 0.883 ± 0.015 0.803 ± 0.027 0.765 ± 0.055 0.820 ± 0.051 0.712 ± 0.037

Ours w/o LB & LH 0.925 ± 0.014 0.870 ± 0.021 0.812 ± 0.041 0.897 ± 0.034 0.800 ± 0.038

Ours w/o LH 0.941 ± 0.016 0.885 ± 0.020 0.853 ± 0.044 0.901 ± 0.037 0.825 ± 0.035

Ours 0.950 ± 0.010 0.896 ± 0.011 0.864 ± 0.032 0.912 ± 0.021 0.841 ± 0.023

We show the mean value and standard deviation of the 5-fold results.
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Our framework is evaluated on three brain diseases, including two
most common forms of brain cognitive impairment, i.e., Alzheimer’s dis-
ease and vascular cognitive impairment, as well as the prediction ofMGMT
promoter methylation status for glioblastoma. Experimental results show
that our framework outperforms the commonly used single-modal variant
by 3.5% in AUC for NC vs. AD classification, and 6.9% for sMCI vs. pMCI
classification on ADNI data. Similar phenomenon is observed on OASIS-3
and private HS Hospital data by increasing AUC from 0.852 to 0.890 and
from0.751 to 0.849, respectively, andalsoon in-houseRJHospital data from
0.677 to 0.705 for NCI vs. svMCI classification, and on BraTS 2021 from
0.564 to 0.600 for MGMT+ vs. MGMT- classification.

It is interesting to note that DeepGuide performs slightly better than our
method in terms of average specificity for NC vs. AD on ADNI data, but its
standard deviation in specificity is doubled, and also its sensitivity is much
worse than our method. This indicates that DeepGuide seems to be more
sensitive to data imbalance. The main reason might lie in the difference of
training schemeused inDeepGuide compared toourmethod.DeepGuidehas
three training stages and in the last training stage, it trains the classification
head while freezes the feature extraction and feature transition parts, which
enforces solely theclassificationhead tofit the imbalanced label andmight lead
to more sensitive classifier. Besides, it also makes the classification highly
dependent on the performanceof the feature transition,which is performed in

Table 4 | Performance of our framework for NC vs. AD, subcortical vascular disease with no cognitive impairment (NCI) vs.
subcortical vascular mild cognitive impairment (svMCI), and methylated MGMT (MGMT+) vs. unmethylated MGMT (MGMT-)
classifications

Methods AUC ACC Sensitivity Specificity F1-score

NC vs. AD on OASIS-3 (pretrained on ADNI)

3D CNN (SI) 0.852 ± 0.020 0.772 ± 0.014 0.710 ± 0.091 0.826 ± 0.103 0.743 ± 0.014

3D CNN (MI) 0.885 ± 0.003 0.821 ± 0.007 0.719 ± 0.023 0.912 ± 0.013 0.790 ± 0.011

Ours3DCNN (SI+MmFE) 0.890 ± 0.005 0.831 ± 0.004 0.752 ± 0.024 0.900 ± 0.018 0.806 ± 0.008

NC vs. AD on HS Hospital (pretrained on ADNI)

3D CNN (SI) 0.751 ± 0.081 0.718 ± 0.038 0.639 ± 0.067 0.774 ± 0.043 0.639 ± 0.055

3D CNN (MI) 0.863 ± 0.076 0.839 ± 0.043 0.754 ± 0.086 0.912 ± 0.043 0.778 ± 0.046

Ours3DCNN (SI+MmFE) 0.849 ± 0.098 0.783 ± 0.078 0.734 ± 0.085 0.810 ± 0.106 0.730 ± 0.080

NCI vs. svMCI on RJ Hospital

3D CNN (SI) 0.677 ± 0.036 0.649 ± 0.034 0.634 ± 0.079 0.676 ± 0.099 0.670 ± 0.057

3D CNN (MI) 0.713 ± 0.041 0.676 ± 0.064 0.697 ± 0.066 0.680 ± 0.149 0.708 ± 0.066

Ours3DCNN (SI+MmFE) 0.705 ± 0.040 0.660 ± 0.051 0.684 ± 0.105 0.662 ± 0.095 0.693 ± 0.057

MGMT+ vs. MGMT- on BraTS 2021

3D CNN (SI) 0.574 ± 0.036 0.564 ± 0.022 0.539 ± 0.035 0.591 ± 0.033 0.562 ± 0.025

3D CNN (MI) 0.594 ± 0.030 0.581 ± 0.034 0.602 ± 0.057 0.556 ± 0.029 0.598 ± 0.052

Ours3DCNN (SI+MmFE) 0.600 ± 0.023 0.593 ± 0.025 0.634 ± 0.060 0.544 ± 0.074 0.616 ± 0.048

We show the mean value and standard deviation of the 5-fold results. SI Single-modal input,MI Multi-modal input, MmFEMulti-modal feature enhanced.

Table 5 | Performance of our framework built on the classification backbone of 3D ResNet26 for different classification tasks

Methods AUC ACC Sensitivity Specificity F1-score

NC vs. AD on ADNI

3D ResNet (SI) 0.905 ± 0.021 0.851 ± 0.020 0.733 ± 0.067 0.904 ± 0.043 0.752 ± 0.030

3D ResNet (MI) 0.956 ± 0.023 0.910 ± 0.036 0.877 ± 0.052 0.925 ± 0.045 0.864 ± 0.044

Ours3DResNet (SI+MmFE) 0.949 ± 0.014 0.895 ± 0.022 0.859 ± 0.026 0.913 ± 0.040 0.838 ± 0.026

sMCI vs. pMCI on ADNI

3D ResNet (SI) 0.753 ± 0.035 0.678 ± 0.028 0.628 ± 0.073 0.728 ± 0.069 0.563 ± 0.052

3D ResNet (MI) 0.804 ± 0.051 0.761 ± 0.050 0.747 ± 0.070 0.767 ± 0.080 0.673 ± 0.063

Ours3DResNet (SI+MmFE) 0.802 ± 0.041 0.737 ± 0.043 0.734 ± 0.063 0.742 ± 0.072 0.649 ± 0.056

NCI vs. svMCI on RJ Hospitial

3D ResNet (SI) 0.664 ± 0.049 0.647 ± 0.026 0.683 ± 0.062 0.593 ± 0.086 0.668 ± 0.057

3D ResNet (MI) 0.715 ± 0.030 0.678 ± 0.031 0.741 ± 0.075 0.667 ± 0.083 0.711 ± 0.058

Ours3DResNet (SI+MmFE) 0.710 ± 0.037 0.686 ± 0.032 0.731 ± 0.074 0.640 ± 0.081 0.704 ± 0.058

MGMT+ vs. MGMT- on BraTS 2021

3D ResNet (SI) 0.569 ± 0.016 0.559 ± 0.032 0.556 ± 0.096 0.563 ± 0.080 0.563 ± 0.058

3D ResNet (MI) 0.612 ± 0.021 0.589 ± 0.036 0.611 ± 0.055 0.569 ± 0.051 0.607 ± 0.054

Ours3DResNet (SI+MmFE) 0.607 ± 0.017 0.601 ± 0.035 0.603 ± 0.065 0.598 ± 0.054 0.602 ± 0.045

We show the mean value and standard deviation of the 5-fold results. SI Single-modal input,MI Multi-modal input, MmFEMulti-modal feature enhanced.
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the second training stage and is the most difficult and challenging part for
synthesis-empowered classification, since the feature transition part is frozen
in the final training stage. Another interesting point is the potential impact of
incorrect registration of paired modalities in the data preprocessing stage on
our framework. Large misregistration between paired modalities can cause
difficulty in feature synthesis (Stage II), since feature synthesis is both location-
and orientation-sensitive. Degraded synthesis will lead to a performance drop
in disease diagnosis. However, for slight misregistration, the impact could be
potentially mitigated by the downsampling effect in the encoder. It could be
considered as data augmentation, which could improve the robustness and
lead to negligible impact on classification performance.

The reliability of feature-level synthesis is extensively evaluated
quantitatively and qualitatively by similarity measure on the synthesized
features as well as the corresponding saliencymaps. Our framework obtains
average cosine similarity over 0.9 for the synthesized features, and average
Pearson correlationover 0.95 for the saliencymaps.Visual assessment based
on t-SNEplots and saliencymaps coincideswith thequantitative evaluation,
indicating the effectiveness of our two-stage training scheme and great
generative ability of deep learning.

Besides, our framework possesses a merit of reliable uncertainty esti-
mation. We show that uncertainty can be utilized to reveal classification
correctness. In fact, accurateuncertainty estimation enables trustworthyAI-
guided disease diagnosis, which can assist radiologists to pay attention only
to high-uncertainty cases.

Furthermore, our framework is evaluated on multiple datasets using
two classification backbones, including the widely used plain 3D CNN and
the 3D ResNet. Based on our experiments, both backbones demonstrate
consistent superiority of our synthesis-empowered classification framework
over other single-modal variants, and achieve similar performance for
multiple diseases. Since 3D ResNet has more network parameters and
requires more GPU resources, we would recommend to use the 5-layer 3D
CNN as the classification backbone in the current scale of training data.

Our framework has several limitations. First, the performance
enhancement arising from modality synthesis highly depends on the
synthesis ability of the network. In Fig. 2b, we can see that the synthesized
features may not behave as diverse as the real features, which can cause
performance degradation compared to the multi-modal network. Since
currently we usemulti-layer 3DCNN to perform synthesis acrossmodalities
in Stage II,more advanced synthesismethods such as diffusionmodels could
be adopted to potentially reduce the gap betweenmulti-modal and synthesis-
empowered single-modal classifiers. Second, the current model is disease-
specific.We assume that different related brain diseases, such as Alzheimer’s
disease and vascular cognitive impairment, may contain certain common
features. A unified diagnosis model for all the related diseases could exploit
the common latent space and benefit from large amount of training data of
different diseases. This disease-unified model not only can perform disease
diagnosis given a brain image (such as for fast screening), but also can
potentially improve diagnosis performance for each disease based on com-
mon feature alignment. A unified diagnosis model that is able to handle
multiple related brain diseases could be our future work. Third, the current
estimated uncertainties for the same disease have different dynamic ranges
across cohorts, for example, the classification uncertainties for NC vs. AD
betweenADNI andOASIS-3 datasets as shown in the supplementary Fig. 6a.
If the same patient undergoesADdiagnosis in different hospitals, it would be
difficult to compare these diagnosis confidence due to different dynamic
ranges of estimated uncertainties. Uncertainty-aware classification frame-
workwith adedicateddesign for aunifieduncertainty range across large-scale
ofmulti-center datasetswouldbeof great interest. In the current experiments,
we have not unified the spacing and dimension across all the datasets, which
could be one limitation of our work. In fact, we did consider to use the same
spacing and dimension for all the diseases. However, the released public
BraTS data has already been preprocessed and we prefer to keep it as it is.
Another reason is that we employ differentmodels for different diseases, and
hence the inconsistent spacing and dimension actually have no impact on
their individual performance. We chose to crop the background of each

dataset to the maximum extent to reduce the required GPU resource for our
deep multi-branch 3D network. However, it would be more general to have
the samedimensionand spacing for all thedatasets even fordifferentdiseases.

To summarize, we propose an uncertainty-aware classification fra-
mework enhanced by disease-relevant feature synthesis of auxiliary mod-
alities. The proposed framework is validated on five datasets including
3758 subjects for three common brain diseases. We show our framework
obtains classification performance close to the case of using completemulti-
modal data by making use of the generative ability of deep learning, and
meanwhile provides reliable classificationuncertainty basedonmulti-modal
evidential learning. Our framework contributes to synthesis-empowered
trustworthy classification for AI-guided disease diagnosis and shows great
potential to be deployed in clinics for different application scenarios.

Data availability
This report and its Supplemental Information provide the primary results
that underpin the findings of this study. The trained best checkpoints and
partial data are available at46.

Code availability
The code of this paper is publicly available at ref. 47. It should be used for
academic research only.
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