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Operational data of lithium-ion batteries from
battery electric vehicles can be logged and used to
model lithium-ion battery aging, i.e., the state of
health. Here, we discuss future State of Health
definitions, the use of data from battery production
beyond production, the logging & aggregation of
operational data and challenges of the State of
Health in automotive applications. Our suggestions
could improve data transfer efficiency and data
storage costs.

Lithium-ion batteries (LIBs) are attracting increasing attention by media,
customers, researchers, and industrials due to rising worldwide sales of new
battery electric vehicles (BEVs) 7. Manufacturers of BEVs, known as original
equipment manufacturers (OEMs), as well as LIB cell manufacturers & sup-
pliers need to ensure that the battery of the BEV fulfills the warranty spe-
cifications (e.g: USABC (US): 15 years and 1000 cycles; EUCAR (Europe)*:
BEV life equals 150,000 km and 22-24 MWh; NEDO (Japan)™: 10-15 years
and 1000-1500 cycles®). This is often accomplished by limiting the usable
battery capacity through the battery management system (BMS) to accom-
modate for capacity loss over the lifetime of the battery. In this case, the total
(gross) capacity of the battery is greater than the usable (net) battery capacity’.

When LIBs age their performance characteristics like the capacity and
internal resistance change. For example, the aging-induced reduction of the
capacity results in a decrease of the range of BEVs which is a key factor for
customers. Commonly, the aging state of LIBs is called State of Health
(SOH): the SOH compares the current state of the battery to the state of a
new battery at its beginning of life (BOL). It depends on the usage and
environmental conditions of the battery*"’. The SOH is also relevant for
other battery applications like grid energy storage and electric trains'"'*. The
rising connectivity of machines in the context of the Internet of Things and
Industry 4.0 also includes vehicle fleets so that real-world battery data from
automotive applications become available on a large scale'.

Based on this situation, this paper contributes a re-evaluation on bat-
tery data and SOH with suggestions for the future development in the field,
with a focus on automotive applications. Each of the suggestions is covered
in a separate section of this paper covering different aspects of data, SOH,
and battery.

The remainder of this paper is structured as follows and illustrated
by Fig. 1:

* The most frequently used SOH definition is the relative capacity, but
also the relative storable energy content and the relative internal

resistance are used"’. For a more descriptive quantification and char-
acterization of the SOH, we discuss the suitability of these definitions
and propose another variant. This could lead to an improvement of
SOH estimation and SOH forecasting methods.

* Given the task split of battery cell manufacturers and BEV manu-
facturers, data sharing beyond general cell specification sheets is cur-
rently uncommon due to silo-thinking. We argue that it would be
beneficial to expand battery-cell classification after cell production and
to use data from battery manufacturing beyond cell production.

* Research on SOH estimation, SOH forecasting, and remaining useful
life (RUL) prediction has mostly been focused on data from LIB cells
operated in the laboratory setting. However, in automotive applica-
tions, LIB systems combining hundreds (sometimes thousands) of cells
operated under real-world conditions are subject to customers habits.
We describe these differences in the operational domain (laboratory vs.
real world) and the battery configuration (cell vs. system). Also, we
provide examples of current challenges.

* When intending to conduct research on operational battery data, i.e.,
time-series data of current, temperature, voltage, and state of charge
(SOC) from BEVs, suitable data logging, storage, and potentially
aggregation need to be considered with the constraints of cost and
mobile connectivity.

Operational data of LIBs from BEVs can be logged and used to model
LIB aging, i.e., the SOH. Here, we discuss alternative SOH definitions which
could reduce ambiguity in battery research. We also discuss the use of data
from battery production beyond production itself, the logging and aggre-
gation of operational data and challenges of the SOH in automotive
applications. Our suggestions could improve data transfer efficiency and
data storage costs.

Minimal viable characterization of battery aging

The SOH compares the current state of the battery to the state of a
new battery at its BOL*"". The SOH can be defined differently depending
on the view point, e.g., of a manufacturer or battery user'’. Proposed
state variables for the definition of the SOH that change with aging are:
the number of charging/discharging cycles', the voltage change caused
by the load of a power or current profile’, AC impedance, self-discharge
rate, and power density®'*”. When using the term SOH of a battery,
very often it is synonymously used for the SOH, which is the relative
capacity':

SOH(t) = Cc(t)

O

nom

with the remaining capacity C(t) relative to the nominal capacity C,,,
which is specified by the battery manufacturer or OEM.

Communications Engineering| (2024)3:173


http://crossmark.crossref.org/dialog/?doi=10.1038/s44172-024-00299-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44172-024-00299-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44172-024-00299-w&domain=pdf
www.nature.com/commseng

communications engineering

Comment

a) Characterization of Battery Aging

b) Data from Battery Production
after Beginning of Life

Current Proposed

Variant 1

Variant 2

T AL Y s

SOH: SOH¢
A3
SOHR _| soHr
SOHyec(t) =
E —
thrpt Lstorage PR FAR AR - Requirement
=
SOHc SOHg  tsorage ...
c) Challenges for State of Health d) Operational Battery Data from Vehicles —
in Automotive Applications Logging and Aggregation
Configuration: Operation: 1. Residence time histograms
Statistical properties of histograms
Cell ‘ System Lab ‘ real-world (min, max, variance, ...)
oS 3. Statistical properties of battery operational time series

(I, T,V, SOC)
4. Clustering of operational patterns

Fig. 1 | Illustration of the paper’s structure. a Characterization of Battey Aging. b Data from Battery Production after Beginning of Life. ¢ Challenges for State of Health in
Automotive Applications. d Operational Battery Data from Vehicles - Logging and Aggregation.

The relative storable energy (SOH}) is correlated to the SOH - by the
voltage'”:

SOH,(t) = ZL“(” @)

nom

with the total energy E, . () and the nominal total energy E, .. The
United Nations (UN) Global Technical Regulation (GTR) No. 22%
accelerates the importance of the energy and not the capacity as a
measure of the SOH for developers, users, vendors, and buyers of BEVs
by defining the usable battery energy (UBE), i.e., the net energy of the
battery. The net energy is more relevant in practice to users of BEVs than
the gross energy as it reflects the accessible and usable energy of the
battery. The corresponding definition of a UBE-based SOH j;(t) similar
to Eq. (2) but with explicit net energy:

SOH (t) — UBEmax(t) — Emax,nel(t) (3)
UBE UBEnom Enom,net

has been used very rarely, e.g., by Weng et al.”". Compared to the SOH
fewer research works use the SOH and SOH 55, health metrics. This may
become problematic in case of a potential disconnect of academia from the
upcoming standards and SOH definitions used in industrial and automotive
applications.

Less frequently used is the relative resistance (SOHR)***:

SOH(t) = ;:(—t) 4)

nom

with the current internal ohmic resistance R(t) and the nominal internal
ohmic resistance R, . An overview of further SOHy definitions is pre-
sented in Supplementary Note 1. For further differences and advantages of
SOH, SOHy, and SOHy, see Chapter 2.1.3 in ref. 13.

Unfortunately, these definitions may falter under certain scenarios
which may lead to an ambiguous description of the SOH. This is illustrated
by two examples: example 1 considers two batteries that have experienced
different operations in the past as shown in Fig. 1. One battery has
experienced only calendar aging (blue), and the other only cyclic aging
(black). At a certain point in time, using the SOH definition they are
equivalent, but the batteries will likely continue on a different trajectory even
when operated identically (green dotted). As a similar example, Hartmann
etal.” stored two cells for 150 days at marginally different conditions (100%
SOC, 45 °C vs. 80% SOC, 60 °C). Afterwards, the capacity of both cells was
similar, but during following fast-charging one cell experienced sudden
death (rapid capacity degradation). These examples underline that the
description of the SOH ;. fails to account for different aging mechanisms
triggered throughout the operations in the past.

Example 2 considers a single battery that is subjected to high-current
cycling and capacity loss, but then recovers capacity after a long rest
period”?*. As depicted in Fig. 3, this means the battery has the same SOH
more than once (red opaque area) during its lifetime. This means the
description of the SOH fails in this ambiguous time where SOH - values are
not decreasing monotonically.

These examples show the limitations of relying on a single scalar, like
the relative capacity (SOH), to describe the SOH of a battery as noted by
Baure et al.”’, Rogge et al.”, and Hartmann et al.”’. Also, Weng et al.*' note
that similarly even accurate single point measurements of the SOH are not
sufficient to predict the RUL.

When analyzing the meaning of “state of health”, and specifically “state”,
definitions and perceptions of this term come from control engineering””,
thermodynamics”, Markov decision processes (MDPs)*, and reinforcement
learning™. These state variables are “a set of variables that completely describe
a system™”. In other words “the state must include information about all
aspects of the past [...] that make a difference for the future™*. This is also
called Markov property™. States “always take on the same value when the
state of the system is the same again™”. In other words, state variables only
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Fig. 2 | Example 1 of two batteries with different
operations, but same SOH¢. a Different future
SOHC trajectories (currently): SOH trajectories of
two batteries that either first face only calendar
(blue) or cyclic aging (black), respectively, but have
the same SOH . at a certain point (gray dashed).
From there on, they are cycled with the same
operational load. b Same or similar future SOH
trajectories (desired): the same operational load
leads to different future SOH, trajectories (green
dotted) despite the same operational load. However,
the same future operational load should lead to the
same or very similar future SOH trajectories (green
dotted). Thus, a more suitable SOH definition
should be selected (illustrative examples).
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a) Different future SOH_ trajectories (currently)
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1
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Cycles in 1

b) Same or similar future SOH trajectories (desired)

depend on the system’s state and should be path independent, i.e., they do not
depend on the way how a state was reached”. A common example in
thermodynamics is the two independent state variables temperature and
pressure of pure liquid water (one component, one phase). They can be varied
independently as degrees of freedom of pure liquid water to describe the state
of the system as visible in the corresponding phase diagram™*.

When transferring this aspiration to completely describe a battery
system regarding the progress of its aging mechanisms and overall state of
aging (SOA), this may be very ambitious given the complexity of battery
aging. Still, capturing the SOA more precisely than only by a single variable
like the relative capacity or the relative resistance seems advisable. It seems
that a good balance of high level, e.g., on operation level, and low-level states,
e.g., on the level of aging mechanisms, is advantageous.

In essence, a “state of health” should capture the different battery aging
paths and the relevant complexity of the battery’s state while avoiding too
much simplicity. This aims at improving the distinguishability of the SOH of
batteries with the same relative capacity, like those in the examples in
Figs. 2 and 3.

How could the aging state be described more precisely? The idea of
“fusing”"” different SOH variants/definitions like SOH ¢, SOH, and SOHy
has already been brought up by Saxena et al.”, but has not been applied
widely. Fusion, in our interpretation, refers to a single scalar built from
several scalars, e.g., by applying an arithmetic, harmonic, or geometric mean
as defined in Supplementary Note 2'*. However, when calculating the mean,
some scaling, e.g., min-max normalization to the range [0, 1] or usage of
only relative values, might be sensible to balance the importance of all
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scalars. Furthermore, a single scalar compresses information which eases
interpretability and comparability but hardens the distinguishability of the
health of different battery cells. The latter is a limitation we would like to
minimize.

We promote a more precise description of SOH in the form of a vector.
The objective is to concatenate several scalars to one vector so that no
information is aggregated or compressed:

SOH,.
SOH,
SOH,
E

SOH,..(t) = (5)

trhpt

The vector may consist of the currently dominant SOH, SOH, and
SOHy, but also application-dependent parameters that contain information
about the operational context. For a BEV this could include the mileage in
kilometers and the number of equivalent full cycles. More application-
independent parameters like the total energy throughput Ey,, as well as
distributional information on the SOC, voltage, and temperature during rest

—— Exemplary SOHc-trajectory
Range of ambiguous SO Hc-values

SOHc in %

Cycles in 1

Fig. 3 | Example 2 of a battery with capacity recovery effect and ambiguous SOH.
SOHC trajectory with capacity recovery effect having ambiguous SOH . in the read
opaque area (illustrative example).

phases may indicate to which extend calendar aging mechanisms have been
triggered. The same applies for cyclic aging mechanisms characterized by
distributional information on the SOC, voltage, temperature, and current’.
Including the share of rest time in the last X weeks and months may make
sense to account for capacity recovery effects. Furthermore, harmful events
like exceeding certain temperatures could be counted. Other examples can
be found in the EU battery passport data attributes on battery “performance
and durability™”.

Also, new battery materials may require a new or a more precise
description of the SOA because of new different aging mechanisms. In this
case again, capacity and resistance may not be sufficient to describe the SOH.

It might be sensible to store multiple capacity values obtained at dif-
ferent temperatures and different charging profiles as these variables
influence the measured capacity. This would lead to a vector or matrix of
capacities in which each scalar gets updated once a new capacity mea-
surement at that temperature and charging profile gets measured during
regular customer operation. This could tackle the problem that capacity
measurements via reference cycles are more difficult to obtain in real-world
BEV fleet operation than in the laboratory. Current challenges are time-
consuming measurements and expensive test equipment with limited
availablility’* . A further improvement would be a method to make
capacities comparable that have been determined under different
conditions.

Figure 4 visualizes different target audience groups and characteristics
of a suitable SOH definition. On OEM side the BMS designers might be
more interested in the influence of voltage margins in the BMS on the SOH,
while the cell designers look into path dependency and aging mechanisms.
The cell manufacturer is often concerned about cell quality and sudden
deaths. In contrast, a leasing company, financier of BEVs, and insurance
may be interested in the future value of a battery.

An SOH defined in vector form is certainly less easy to interpret for
BEV customers or fleet managers. Most likely it will be difficult for them to
retrieve operationally relevant characteristics like a standardized maximum
range at fixed unpredictable variables, like road conditions, wind, and small
energy consumers, from an SOH vector. Thus, the target group for the
vector-based SOH would not be the BEV customer or a fleet manager.
However, for methods of SOH estimation, SOH forecasting, and RUL
prediction, a more elaborate and precise characterization of the SOH may be
helpful to better distinguish different battery states from each other. This
could also benefit BEV customers or a fleet managers if the methods

Fig. 4| Target groups of different SOH definitions. " o ©)
Not every SOH definition may be suitable for all 2 - =
target groups interested in the battery state. Four % % @ @ |]/_V|
possible dimensions with their characteristics are ‘:“S Gb %
displayed. BEV battery electric vehicle, OEM origi- 2 Insurance Cell manufacturer
nal equipment manufacturer, BMS battery man- o BEV customer ~ Fleet manager ~ Workshop Leasing Company OEM
agement system, SOH state of health. =S Financier Cell developer/ BMS
designer
Complexity & information content of SOH
simple & _ complex &
compressed " detailed
Level of export knowledge for interpretability
low P high
Battery aging state
ambiguous < P distinguishable

single or few
<

Quantity of vehicles under observation hundreds, thousands of

vehicles

v

vehicles or several fleets
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Fig. 5 | Increasing variability of SOH trajectories with the same initial grading.
SOHC trajectories of battery cells are graded into group C (data from ref. 55, plotted
only SOH . = 50%, data preprocessing applied is same as in previous works'****).

perform better on a vector-based SOH, even though they keep only visible
access to the SOH; or SOH.

Using data from battery production after the beginning of life
Currently, at the end of battery cell production cells do not have equal
properties due to the variety of production process steps and impurities in
cells’ raw materials"' ™. These initial cell-to-cell variations are coupled when
the cells are assembled in a battery system. Then cell-to-cell variations of the
capacity and impedance result in heterogeneous cell currents causing dif-
ferent heat generation of the cells. Then temperature gradients between cells
can cause heat transfer to adjacent cells**. Overall, this cell-to-cell variance of
aging stress factors leads to different SOH trajectories during battery life"” ™.
Despite, battery cells are often classified by the cell manufacturer into an
ordinal scale of only three groups (grade A, B, and C)***". Heimes et al.** also
indicate three classes on page 21 in the center figure. However, there is no
overall standard for this ABC classification. Every battery cell manufacturer
may have its own regulations. Some cell manufacturers distinguish still fully
functional grade-B and grade-C cells from grade-A cells by a higher storage
time in a warehouse of several months™. However, the storage duration,
storage temperature, and storage SOC are not further distinguished, even
though it is known that they influence calendar aging™.

Another example is the battery data set presented by Sauer et al.”* which
uses 48 nominally identical battery cells. The cells were graded into group C
from the cell manufacturer and are drawn from the same production lot.
However, despite this and cycling with the same operational protocol for
charging, discharging, and rest, the initially quite small variability of the
capacity increases from the mid-life at around 800-1000 cycles onwards as
shown in Fig. 5. This means that there was more variance regarding the
health state of the battery cells initially than captured by the grouping into
group C and the SOH ..

Given the problem of precise battery cell grading after production, we
want to initiate a discussion of an adapted grading system to end silo-
thinking of battery cell manufacturing and operation: we propose either
maintaining ordinal grading, but introducing more groups, or with a non-
ordinal, but continuous grading using ratio scales. Both can be seen as an
extension of the ordinal binning of the current grading system into A, B, and
C. This shall enable a more precise characterization of battery cells,
regardless of making or buying batteries. In the past, OEMs have mostly
bought batteries for their HEVs or BEVs from 3rd party battery cell or
module manufacturers. However, many OEMs strategically shift towards

Fig. 6 | Possible evolution of battery cell grading system. Currently, battery cells
are graded into three groups A, B, and C (right). We propose two variants: (1) a
formation of subgroups like A1, A2, ... corresponding to group A and (2) a mul-
tivariate grading which could be visualized by a (flattened) radar chart.

investing into in-house battery production®, which often is run as a sub-
sidiary company. Regardless in both situations, make-or-buy, data exchange
needs to be standardized given large organizations and complex processes.

Variant 1 in Fig. 6 is an ordinal grading system, but more precise due to
the subgroups. For example, B1 could contain cells with a storage time # 5
smaller than 1 month (t,,,,c < 1 month), an average storage temperature of
15-20 °C (& Torage € (15 °C, 20°C]), and an average storage SOC of
45%-55% (& SOCoraqe € (45%, 55%)]). Accordingly, another group is
named B2 with 1 month <, < 6 month and the other two conditions in
the same range.

Variant 2 in Fig. 6 is a continuous grading system based on several
battery health measures. As discussed in the previous section, potentially
more characteristics of a battery cell than capacity and internal resistance are
necessary to describe the SOH of a battery. This also applies to new battery
cells after production. Figure 6 uses the display style “parallel coordinates”,
but also a radar chart is possible to compare battery cells and batches of
battery cells with each other relatively or with an absolute required
specification.

This leads to the question how data from the battery production
process can be used to characterize a battery cell. Currently, we observe silo-
thinking/analysis: data from battery cell production processes are used to
optimize and analyze the battery cell production process steps. Data from
battery operation in the laboratory and real-world applications are used in
the context of battery operation. We imagine that data from battery cell
production can be used to characterize a battery cell (for more information
on the battery production steps consult™). Data from battery cell produc-
tion could originate from end-of-line tests (end-of-line is sometimes
abbreviated as EoL or EOL. However, it is not abbreviated in this work due
to the ambiguity with the acronym EOL for end-of-life). Contemplable end-
of-line tests are pulse tests (e.g., direct current internal resistance test), open-
circuit voltage tests, and self-discharge tests. But also data about the raw
material batch and deviations from the desired process parameter (time,
temperature, pressure, material, etc.) could indicate inadequate production
batches regarding aging. Nevertheless, such data can also be advantageously
used in the operation of the same battery cells as prior knowledge on the
cells. For example, Baumhofer et al.”* found the initial pulse resistance to
correlate with the cell life. Schindler et al.** point out the applicability of
differential voltage analysis and differential capacity analysis (DCA) to
determine differences in the active material composition correlating with
the trajectory of the cells” capacities. Of course, this requires the sharing of
such more detailed data on the cells and their state at the end-of-line by the
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cell manufacturer to the battery buyer, like academic institutions or BEV
manufacturers. Regarding the use of battery cells in 2nd life applications,
Rufino Jinior” mentions an obstacle to intermediary companies who are
trading 2nd life batteries with variations of battery cells. The mentioned data
could reduce this obstacle.

Challenges for state of health estimation and forecasting,
remaining useful lifetime prediction in automotive
applications

The tasks of SOH estimation and forecasting as well as RUL prediction, just
as other algorithms and battery simulation models in the context of BMS
and battery cloud solutions, face two major challenging domain shifts (DS):
from laboratory or test bench operation to real-world BEV operation (DS1)
and from LIB cell-level to LIB system-level (DS2) including the combination
of both limitations (Cell & Lab — System & BEV).

First, battery aging in laboratory conditions differs significantly from
battery aging in real-world BEV operation (DS1) as argued by*****'. In our
previous work'®', we argue that there is a continuous path towards laboratory
data closer to real-world battery operation. Real-world battery operation
includes idling, external charging, and driving as described in the taxonomy
of battery operation in automotive applications in Supplementary Note 3. The
main problem is that laboratory operation conditions are never equivalent to
real-world BEV operation because they are meant to accelerate aging. Thus, it
is necessary to get a deeper understanding of how real-world usage conditions
affect battery aging and outline opportunities to approximate them better in
the laboratory”. There is an ongoing effort on specifying more realistic
laboratory tests, for example with variable discharge currents™* and com-
bining cycling and calendar aging, ie., both I # 0A and I = 0A, in the same
battery cell under test”. Calendar aging should also be examined in the
laboratory with non-constant environment temperature like in real-world
operation. This further extends to the importance of path dependency™.

Second, most of the batteries operated in laboratory are cells, but not
modules or packs which are installed in BEVs (DS2). Aging of battery
modules and systems is more complex than of a single cell because of the
interactions of all cells. These interactions cause the degradation process of
the battery pack and of the cells in that pack to depend on each other®. It is
influenced by inconsistencies of cell characteristics, also known as intrinsic
cell-to-cell variability”, electrical imbalance, and temperature gradients
between cells that cause heat transfer to adjacent cells***. For data-driven
methods, e.g., using machine learning, it is important to figure out how to
apply them not only on cell level, but also on module-, pack- and system-
level. This challenge becomes evident in two examples:

First, so far, electrochemical impedance spectroscopy (EIS) studies
mostly examined individual cells or low voltage modules, with only a few
studies dealing with HV battery modules and packs as required for BEVs”*".
Overall, EIS seems applicable to modules and packs with careful calibration
of the model because the signals are harder to interpret for modules and
packs”. Second, a virtual incremental capacity analysis (ICA) using a digital
battery twin failed to yield conclusions regarding the SOH on system level,
but was successful on cell level™.

Operational battery data from vehicles: logging and
aggregation

Logging operational data in mobile applications faces the challenge of
limited and costly bandwidth and connectivity, when sending the logged
data to a central backend like a cloud. Thus, the question of what data to log,
as well as what and when to send to the cloud needs to be answered for BEVs
as well. This concerns the measured controller area network (CAN) signals
and their sampling time.

Table 1 | Recommendation for data logging of battery
operation in automotive applications

Signal Sampling time (see ref. 13)
Veell, Vpack 100 ms

lelt, Ipack 100 ms

Toels Tpack On value change (1 s)

SOC On value change (1 s)

Battery & vehicle mode (see Taxonomy in
Supplementary Note 3)

Capacity, SOHc, Emax

The sampling time is the inverse of the sampling frequency. “Logging” refers to the collection of data
over time.

Ve @and Vo cell and pack voltage, /oo and /.. cell and pack current, Ty and T, cell and pack
temperature, SOC state of charge, SOH charged-based state of health, E ., maximum storable
energy content.

On value change

Daily/weekly

Recommendations on the measured signals and their sampling time to
capture battery operation in BEVs are given in Table 1 depending on the
dynamic of the respective signals. Voltage and current require the highest
sampling rate because they are the most dynamic signals in automotive
applications. Especially in driving mode in the wide sense, according to the
taxonomy introduced in Supplementary Note 3, the current and voltage are
not constant, but highly variable and non-linear due to the possibility of huge,
but brief power demands™””. For the temperature measurement during
parking mode, it may be important to take regular measurements, e.g,, every
hour. This ensures capturing the dynamic of the environment temperature in
the course of day and night. The capacity and storable energy content only
change slowly with aging over time. Thus, a daily or weekly sampling should
be sufficient. For all of the signals in Table 1, not only the sampling time, but
also the measurement resolution and accuracy are relevant. They also may
limit the benefit of a high sampling time. These benefits may be countered by
the increasing cost for data transmission and data storage®".

However, data aggregation before sending operational data to the
cloud may be advisable to reduce the data transfer cost. But also battery
simulation models benefit from compact and representative load profiles as
efficient inputs”. This especially makes sense, when battery data of long
time periods, like weeks or months of operation, regarding battery aging is
stored. Overall, there is a trade-off of data aggregation between information
compression, data representativeness, human-interpretability, saving data-
related costs for storage, processing, and transmission. The data aggregation
method must align with the specific task and objective for which the data
will be used. Currently, there are a few methods on encoding operational
data densely in an aggregated form:

First, one-dimensional (1D) and multi-dimensional (2D, 3D) resi-
dence time histograms of the operational parameters current, SOC, and
temperature have been used'*”*”*. Color-coded, i.e., heatmap style, 1D and
2D histograms are still interpretable by engineers with some practice. Also,
the order of the operational states is not encoded in the histograms but
would matter due to path dependency of battery aging. However, the bin
width and range of the histograms’ bins have to be chosen adequately and in
advance, if the aggregation is executed in the vehicle.

Second, statistical properties of histograms like range, maximum,
minimum, mean, variance, skewness, and kurtosis have also been used to
aggregate the histograms further””. Zhang et al.”” argue that these statistical
properties of histograms may encode the correlation of battery operation
and aging better than the histograms. However, the interpretability for
humans may be more complex and require a understanding of these
descriptive statistical properties (e.g., see Fig. 2 in ref. 75). For example, an
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increase of the kurtosis of the SOC-histogram corresponds to an increase of
residence time in the SOC states in the distribution tails (less peakedness, i.e.,
light-tailed), i.e., more time is spend SOCs distant to the mean SOC which
usually means in low and high SOCs. Especially, the statistical properties of
multi-dimensional histograms will likely become complex to interpret
because of the multidimensionality of the statistical properties. Further-
more, they are not uniquely defined”.

Third, these properties could also be directly derived from the battery
operational time-series data as in Table 5 in ref. 77. Here, likewise under-
standing of the descriptive statistical properties is necessary to interpret
them correctly.

Fourth, operational patterns of the battery could be clustered unsu-
pervised to aggregate data. Therefore two variants regarding the temporal
size of clusters exist: one cluster's weekly operational patterns’ and another
cluster's driving trips’”. For both, if the aggregation is executed in the vehicle,
the clusters need to be determined beforehand. In general, the task of
determining suitable clusters has probably many feasible results. Benefi-
cially, the clusters have characteristics that are easy to interpret, also for BEV
users, like “charging on Thursday night””® or “charge-every-night””®. Also,
the representativeness of the identified patterns needs to be ensured.

The temporal splitting into weeks or trips of the last category can be
combined with the histograms from the first category: temporal sub-
sequences can be generated before the aggregation by histograms. This has
the advantage to maintain some information about the sequence of
operation compared to pure histograms: first, the most simple approach is to
aggregate the battery operation monthly, weekly, daily, or per trip as sug-
gested in our previous work" (see Chapter 10.1 there). For example, the
battery operation of each week could be described by separate histograms.
Second, the rainflow algorithm can alternatively be used to separate
operational sequences, combined with aggregation by histograms***".
Rainflow counting enables the consideration of micro-cycles.

Even though the SOC will not likely change significantly during
parking, the temperature of the battery certainly will depend on day-night,
seasonal, shade-sunlight, and indoor-outdoor temperature differences
which influence calendar battery aging. The temperature can either be
approximated based on temperature data from public weather services or
logged during regular wake-ups by the vehicle. It is likely that there are times
during parking where it is not economically viable to log all data.

Apart from unsuitable and limited logged data, the progress on research
tasks like SOC estimation, SOH estimation, RUL prediction, and SOH
forecasting is also hindered by lacking comparability of the models’
performance®**”: exemplarily for SOH forecasting different metrics, different
output values, and different forecast horizons are used™". A standardization of
these criteria is probably difficult to achieve given the absence of a worldwide
institution and different requirements of different battery applications, most
likely, if at all, United Nations Economic Commission for Europe (UNECE) or
International Standards Organization. Thus currently, comparability can only
be ensured by using multiple metrics, output values, and forecast horizons so
that a common overlap over several methods in this regard can be achieved.

Currently, no standard data set from real-world operation exists for
battery SOH forecasting models like ImageNet, MNIST, or CIFAR for
image classification models (see overview Table 12 in ref. 19). Such open-
source datasets give different researchers the opportunity to compare the
performance results, e.g., of their data augmentation techniques®. A pub-
licly available data set not from laboratory battery operation, but from real-
world vehicle operation of battery systems would enable benchmarking of
SOH forecasting models applicable in real-world vehicle operation battery
systems. Thus, it would accelerate research progress.

Conclusion

This comment re-evaluates the current state of battery data and the SOH.
The following suggestions for the development of the field, especially for
automotive applications, were formulated:

* An SOH definition merging several scalars to a vector format was
motivated to fulfill the Markov property. It may lead to more accuracy
of SOH estimation and SOH forecasting methods, while the relative
capacity (SOH ) may still be practically relevant customers and fleet
managers.

* Battery-cell classification after cell production might be diversified by
extending the current ordinal grading system of battery cells into
groups A, B, and C, potentially related to the previously proposed
vector-based SOH. Also, the benefits of using data from battery
manufacturing beyond cell production have been discussed.

* To extend research on SOH estimation, SOH forecasting, and RUL
prediction from battery cell & laboratory operation to battery systems
& BEV operation, battery operational data is differentiated and
examples are provided.

* Battery data logging in automotive applications was discussed and
methods for time-series data aggregation from battery operation like
histograms, and statistical features including combinations with the
generation of temporal sub-sequences were presented.

This paper focuses on the perspective on automotive applications, as
mentioned in the title. Other applications like LIBs for grid storage are not so
much in focus. Furthermore, passenger vehicles as automotive application
are more in the foreground in this paper than trucks. Battery electric trucks
(BETSs) may have different characteristics regarding the battery compared to
passenger vehicle: different usage, i.e., different battery load, different battery
system configuration and different charging system, i.e., megawatt charging
system (MCS) in the case of BETs.

A detailed discussion of the problem of transferring and scaling
research results from universities to the scale of the automotive industry is
still open®. Most universities conduct research on cell materials in small lab
scale (often coin format) but automotive cell formats and larger cell sizes
behave differently (often big prismatic or cylindrical cells). Furthermore, the
scale-up of cell chemistry is expensive and difficult due to the altering of the
thermal and mechanical behavior of battery cells when scaling. Additionally,
automotive cell production needs to based on mass-scalable manufacturing
technology, whereas cells from laboratory production can be handcrafted
and individually optimized.

Overall, we observe an increasing research focus from battery cells
operated in the laboratory towards battery systems in real-world applica-
tions that are only scratching the tip of the iceberg of the inherent com-
plexity in battery systems in real-world applications. Especially, once more
operational battery data from BEVs become available in the near future
because of the rising adoption of BEVs in the vehicle markets research
progress should accelerate.
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