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Contrails, formed by aircraft engines, are a major component of aviation’s impact on anthropogenic
climate change. Contrail avoidance is a potential option to mitigate this warming effect, however,
uncertainties surrounding operational constraints and accurate formation prediction make it unclear
whether it is feasible. Here we address this gap with a feasibility test through a randomized controlled
trial of contrail avoidance in commercial aviation at the per-flight level. Predictions for regions prone to
contrail formation came from a physics-based simulation model and a machine learning model.
Participating pilots made altitude adjustments based on contrail formation predictions for flights
assigned to the treatment group. Using satellite-based imagery we observed 64% fewer contrails in
these flights relative to the control group flights, a statistically significant reduction (p = 0.0331). Our
targetedper-flight intervention allowed theairline to track their expectedvsactual fuel usage,we found
that there is a 2% increase in fuel per adjustedflight. This studydemonstrates that per-flight detectable
contrail avoidance is feasible in commercial aviation.

Condensation trails (contrails) are cirrus clouds that formwhenwater vapor
in cold humid air at high altitudes, condenses onto soot particles emitted
from aircraft engines. Like other cirrus clouds, contrails have a con-
sequential impact on the planet’s temperature by absorbing outgoing
longwave radiation and reflecting incoming solar radiation. The Inter-
governmental Panel on Climate Change estimates that contrails make a
substantial contribution to aviation’s impact on global warming1.

The estimated warming effect comes primarily from persistent con-
trails, which are created by a small fraction of flights and last from ten
minutes to over twenty hours2. Persistent contrails are formed when planes
fly through ice-supersaturated regions (ISSRs), where the relative humidity
with respect to ice is greater than 100%, and temperature conditions satisfy
the Schmidt-Appleman Criterion3. Aircraft do not often fly through these
conditions, and analysis of flight paths has shown that only a small per-
centage of flights (2–13%) would need to make small adjustments to avoid
the majority of estimated contrail warming4–8. Indeed, simulations of
navigational contrail avoidance (the practice of flying to avoid contrail
forming regions) have shown that it couldbe anextremely cost-effectiveway
to reduce anthropogenic climate forcing fromaviation8,9. ISSRhave a typical

size of ≈ 150 km horizontally10 and several hundredmeters vertically11,12, so
navigational contrail avoidance primarily involves flying above or below the
contrail forming regions.

The practical implementation of contrail avoidance faces several
challenges. An important hurdle is accurately predicting contrail likely
zones (CLZs), regions where contrails are likely to form and persist long
enough to have substantial climate impact. Numerical weather prediction
models, while valuable, are subject to inaccuracies when predicting ice-
supersaturation at the fine-grained spatial scales relevant for contrail
formation13–16. Operational constraints within airline systems, including air
traffic management, can also limit the seamless implementation of flight
adjustments that are possible in simulations. Proving that these prediction
andoperational difficulties canbe overcome is necessary in order to evaluate
whether navigational contrail avoidance is a viable climate change mitiga-
tion strategy17. Furthermore, rigorously confirming that CLZ avoidance
translates to reduced contrail formation requires robust methodologies,
such as well-designed randomized controlled trials.

To test the feasibility of contrail avoidance by a single commercial
airline, we conducted the study with American Airlines. Ten senior pilots
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participated in the trial, completing 44 flights between January and June
2023. Half of the flights (22) were rerouted to avoid CLZs, while the other
half kept to their planned routes through CLZs, providing an effective
control. We focused exclusively on demonstrating the feasibility of contrail
avoidance on a per-flight basis and did not consider the radiative forcing of
avoided contrails.

To forecast CLZs, we used bothCoCiP18–20 (a physics-based simulation
model) and a machine learning (ML) model trained on a database of
automatically detected contrails21, which attempts to correct for short-
comings in the weather forecast data (see Methods section). By using
(treatment- and control-group) blinded human evaluators and satellite
imagery, we assessed contrail formation on a per-flight basis. We assessed
the effectiveness of our forecasts with a crossover randomized controlled
trial, where outbound and return flights in a pair were randomized to pass
through or avoid the same forecasted CLZs. This design helped us control
for confounding factors such as weather conditions, and aircraft engines.
Flights in the treatment group adjusted their routes to avoid CLZs, and we
observed the resulting flights in satellite imagery.

Simulations of navigational contrail avoidance6,7 show that small
adjustments can prevent persistent contrails. Our methods using satellite
imagery do not allow us to test this hypothesis directly, instead we are
studying the impact of flight adjustments on the formation of satellite-
detectable contrails.

A recent study tested contrail avoidance in theMaastricht Upper Area
Control region by adjusting flight altitudes every other day when potential
persistent contrails were forecasted22. They used satellite imagery and a
contrail detection algorithm to assesswhether the deviationswere successful
on average in an ice-supersaturated region (ISSR). While their approach
provided insights into the effectiveness of avoidance maneuvers, it required
intervention at the airspace level, limiting its applicability for individual
airlines to implement specific mitigation strategies.

Our study builds upon and expands these findings by focusing on a
targeted, per-flight approach. This allowed us to pinpoint whether detect-
able contrails formed by specific flights of interest, eliminating the need for
full airspace control and enabling airline-level avoidance implementation.
Furthermore, our crossover trial design provided robust statistical sig-
nificance while impacting a substantially smaller number of flights com-
pared to the alternate-day approach used in the Maastricht study22. Lastly,
our per-flight intervention enabled the airline to track the fuel usage impact
of avoidance maneuvers, a crucial factor for operationalizing contrail
avoidance strategies.

Methods
Flight sample inclusion & exclusion criteria
To select flights for inclusion in the trial, we applied several screening
criteria. First, we identified flights whose paths intersected forecasted CLZs.
Next, we selected flights that departed a hub (outbound) airport, typically
Dallas or Phoenix, to a satellite airport and then returned to the hub
(inbound)on the sameday.Tofly through the sameatmospheric conditions
onbothoutbound and inboundflight legs,we restricted the sample toflights
where the satellite airport was near a CLZ, and the flight time between hub

and satellite airports was less than 4 hours each way. To enable the PACE
software to receive CLZ prediction updates, we also required that partici-
pating aircraft have internet connections, these are providedbyvendorWiFi
networks through a combination of ground-to-air and satellite systems.
Note that the PACE software is not directly integrated with the aircraft’s
systems. The candidates from this screening were selected manually
approximately two days in advance. The trial included a total of n = 44
flights. Details on these flights are listed in Table 1 of the supplementary
material.

This study focused on tactical near-airport detectable contrail avoid-
ance: delaying the plane’s climb after takeoff or descending early before
landing to avoid flying through the CLZ. Contrail forecasts were not inte-
grated into flight planning systems at the time of the study, so participating
pilots were required to avoid contrails en route. Focusing on delaying the
climb or descending early was the simplest way for pilots to optimize the
route, work with air traffic control and manage other operational con-
straints. An example of an application of this strategy is in Fig. 1.

We used two methods to forecast CLZs: a physics-based simulation
based on the Contrail Cirrus Predictionmodel (CoCiP)18,19 implemented in
the open-source pycontrails library23 and a machine learning (ML) system
trained on contrail detections and collocated numerical weather data. Both
methods use numerical weather forecast data along an advection path as
their primary input. CoCiP uses physical processing based on cloud
microphysics, while theMLmodel is a neural network trained using satellite
contrail detection labels.

To identify candidate flights for the trial and plan contrail avoidance
routes, we generated altitude-specific CLZ predictions for altitudes between
8 and 13 km, at hourly resolution using both theCoCiP andMLmodels two
days before the planned flights. We used European Centre for Medium-
Range Weather Forecasts (ECMWF) high-resolution forecast model for
weather inputs. Flights were selected based on CLZs for which the two
forecasts were in agreement that a CLZ would be near the turnaround
airport for both flights. The day of the flight, pilots coordinated with dis-
patchers and air traffic control to make the recommended vertical flight
adjustments based on updated predictions of the ML-based model.

Contrail likely zone avoidance planning and execution
Prior to the departure of each participating flight, the outbound flight was
randomly assigned to either the control group which flew through the CLZ
as originally planned, or the treatment group which adjusted its flight to
avoid the CLZ. The return flight was assigned to the opposite group to serve
as amatched pair. Since flights were chosenwith a CLZ near a turn-around,
the same plane both flew through and avoided each CLZ 1 to 2 hours apart.

Contrail avoidance flight legs were planned using flight management
system software developed by PACE, integrated with the ML contrail
forecasts. This system enabled flight planners and pilots to make tactical
decisions to avoid contrails, such as manually changing the altitude before
takeoff or adjusting the altitude in flight. The platform’s interface was
modeled on clear air turbulence, a concept already familiar to the pilots.

Figure 1 shows an example of the contrail screen used for an experi-
ment flight inwhich the pilot delayed ascent after takeoff to avoid detectable

Fig. 1 | Successful contrail avoidance as seen on the
PACE panel. The PACE panel shows the vertical
profile (purple) of a late ascent contrail avoidance
maneuver. A contrail likely zone (CLZ) is shown in
gray, just above the left side of the flight path. The
pilot originally planned to fly at FL360 (36,000 feet),
the level of the gray line. By staying at FL320 (32,000
feet) for part of the flight, the CLZ was avoided and
no detectable contrails were created.
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contrails. This flight adjustment decreased the probability of contrail for-
mation because the flight was at a lower altitude during the avoidance
treatment than theCLZ lower bound.Note that the aircraft initially climbed
to FL320 (pressure = 275hPa, temperature = 235K), which was below the
relevant CLZ but still an altitude where contrails can form under certain
conditions, and climbed to FL380 (pressure = 205hPa, temperature = 218K)
once the CLZ had been passed.

Satellite image-based verification
To determine whether contrails were created or avoided for each flight,
we used a sequence of false-color GOES-16 infrared satellite images,
which included wind-advected Automatic Dependent Surveillance
Broadcast flight trajectories of both the target flight and other nearby
flights at 10-minute intervals. The false-color helped to highlight the
presence of clouds, in particular thin cirrus clouds should show up as
dark features in the image21,24. Access to all image sequences used can be
found through links in Note 1 of the supplementary material. Three
evaluators (authors of this work) independently assessed whether a
contrail was present in each image sequence and whether it was formed
by the target flight. The evaluators were blinded with respect to which
flights were in the control versus the treatment group, as well as to flight
altitude information which correlated with treatment. Evaluators asses-
sed contrail formation at any point along the flight path, not just near the
turn-around airports where flight adjustments took place. This was to
avoid subjective judgment calls about which portions of the control
flights were close enough to the target airports to be labeled.

Figure 2 shows an example satellite image, where the orange line
depicts the expected locationof thewind-advectedflight trajectoryover time
and the blue lines indicate contrails detected by an automated computer
vision system21. The linear contrail intersects the wind-advected flight tra-
jectory 30 minutes after the flight passed through the advected airspace.
Each labeling task consisted of analyzing sequences of these images, which

were generated for the entireflight path, following eachwind-advectedflight
trajectory for 2 hours post-flight. Evaluators were tasked with judging
whether a contrail (which would show up as a dark, linear feature in the
image) lines up with the expected location of the flight trajectory. Auto-
mated contrail detections were provided to the evaluators, though evalua-
tors had the option to labelflights as having formed a contrail if that contrail
was visible to them, even if it was not detected by the automated system.

Randomized crossover trial
We conducted a randomized crossover intervention trial to establish
causality between contrail avoidance and contrail presence. In particular, we
were interested in testing the one-sided alternative hypothesis that the
treatment group (contrail avoidance) would have fewer contrails than the
control group (no contrail avoidance). The outbound and return flights of
the same turn around airport and CLZ were naturally treated as matched
pairs, controlling for confounders such as weather conditions and aircraft
engines.

To account for the relatively small sample size, we used nonparametric
permutation testing. This approach does not make any assumptions about
the distribution of the data. For each matched set of flights, we randomly
permuted the treatment and control labels and computed a paired-sample
exact sign-test statistic on the binary results25,26. We repeated this process
200,000 times to generate the null distribution, and calculated the one-sided
p-value as the proportion of permuted datasets inwhich the test statisticwas
smaller or equal to the test statistic for the observed dataset. A link to the
necessary code and data to reproduce the analysis can be found inNote 2 of
the supplementary material.

Contrail likely zone forecast models
We used two different models to forecast CLZs. The Contrail Cirrus Pre-
diction (CoCiP) model is a physics-based model that simulates contrail
formation, evolution and impact using atmospheric conditions, aircraft
type,flight path, and other features18,19. Based onweather variables provided
by a forecast or reanalysis product, CoCiP evaluates whether a contrail will
form and persist at a given spacetime location and models its lifetime
through the initial downdraft and three-dimensional advection with a
second-order Runge-Kutta method. Throughout this process, the model
continuously compareswith local weather conditions to determinewhether
the contrail continues to persist or sublimates. The model was configured
with Exponential Boost LatitudeCorrection for humidity scaling, a segment
length of one kilometer, an integration time step of 5 minutes, a maximum
contrail age of 12 hours, a weather update interval of 1 hour, and a wind
shear (dsn_dz) factor of 0.665. After modeling the full evolution of the
contrail, climate impact quantities such as radiative forcing are calculated.

We ran a gridded version of the model, which evaluates CoCiP on a
regular spatiotemporal grid rather than requiring flight waypoints. In order
to translate gridded outputs into CLZs, authors of this work examined
visualizations of the energy forcing of each grid point predicted by the
model20 and assessed its agreement with theMLmodel prediction.We used
ECMWF’s high-resolution forecasts as input to CoCiP27. The CoCiPmodel
also uses cloud microphysics to determine which contrails persist,
accounting for initial downdraft, fall, and sublimation.

A drawback of using weather forecast data to predict contrail forma-
tion is that existing weather products are often incorrect about the locations
of high-altitude ISSRs14,15, with previous works finding that more than 80%
of high-altitude ISSRs predicted in ECMWF ERA5 are found by in-situ
measurements to be incorrect13. It has been suggested that ISSR prediction
skill could be improved by using other atmospheric variables as dynamical
proxies, which have been shown to be correlated with ice supersaturation28.
In this work we use these dynamical proxies to improve a predictionmodel
by training a neural network to predict contrail formation. For a given flight
waypoint, the neural network takes as inputs not only theweather quantities
directly related to contrail formation (humidity, and temperature) but other
weather variables: wind velocity, relative vorticity, fraction of cloud cover,
cloud ice water content, specific snow water content, and divergence. We

Fig. 2 | GOES-16 satellite perspective of original and wind-advected flight paths,
with contrail detections. Example of one frame of the GOES-16 satellite imagery
sequence over the Gulf Coast area. This was used for labeling whether American
Airlines flight 189 created a detectable contrail. Thick lines show the original flight
path and wind-advected flight trajectory, along with contrails detected by the
computer vision system21. Other advected flight paths have a variety of lighter colors
on thinner lines. In this case the alignment between the advected flight path and the
observed contrail led the evaluators to conclude that this flight made a detectable
contrail.
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also used local solar time, day of year, latitude, longitude, and altitude of
flight waypoints as input features.

To train, validate and test themodel,weuse adataset produced to study
contrail formation on a per flight basis15. This dataset comprised all flights
available in ground-based Automatic Dependent Surveillance Broadcast
data from FlightAware29 over a region roughly spanning the contiguous
United States from 28 different randomly selected days in the time period
Apr 4 2019 - Apr 2 2020. To avoid train-test contamination, the flights in
each set were separated by at least one day as in the original study15.

In particular, this dataset is created by advecting the flight trajectories
using ECMWFhigh-resolution numerical weather forecast wind data and a
third-order Runge-Kutta method30, and then comparing these advected
trajectories to automatically detected contrails21 from the GOES-16
Advanced Baseline Imager infrared images. The result is a set of ≈ 6 mil-
lion flight segments, each of which is labeled asmatching or notmatching a
contrail. The neural network model used the individual flight segment data
and their associated weather fields noted above as training examples. It was
trainedbyminimizing the cross entropy loss of its predictedCLZprobability
against the binary label of whether it matched a contrail or not, using
stochastic gradient descent. When evaluated on the contrail formation on a
per flight basis dataset15 the model’s precision (for a given recall) was about
twice that of the weather forecastmodels evaluated, i.e. when theMLmodel
predicts a flight will match a contrail, that prediction is about twice as likely
to agree with the dataset as the physics-basedmodels evaluated in this same
contrail formation on a per flight basis study15.

The ML model was a four hidden-layer fully connected classification
neural network with leaky rectified linear unit activation functions and a
sigmoid function in the final layer. Dropout was used for regularization.
After training, the model’s predictions were used as a proxy of GOES-16-
detected contrail formation likelihood. These scores were available at every
point of a latitude-longitude-altitude voxel grid given numerical weather
prediction features along the gridpoints’ advection paths.

In order to better understand theMLmodel, we performed an ablation
study by removing weather features from the model and measuring it’s
performance, computing the area under the Receiver Operating Char-
acteristic curve). These scores vary between 0.5 (random predictions) and 1
(perfect predictions).We expect that removingmore important featureswill
lower the scoremore than removing less important ones. The results can be
seen in Table 1. The analysis agrees with earlier studies: we find that
humidity data is the most important feature. Second most important is
cloud data, which is closely related to humidity, but also the presence of
clouds may affect whether we can detect a contrail. Vertical transport is
third-most important, such quantities have earlier been suggested as
dynamical proxies for contrail formation28. Note that correlations between
weather quantities may allow the model to estimate quantities even if they
have been nominally removed. This may explain why, for example,
removing humidity data still allows the model some success in predicting
contrails even though humidity is a crucially important quantity. Note that
removing both humidity and cloud formation information, which is highly
correlated with it, leads to a much larger performance drop.

Figure 3 shows an example of forecasts from the ML model (left) and
CoCiPmodel (right) used to select candidate flights.When choosing flights
to participate in the experiment, both theML and CoCiPmodels needed to
show a CLZ on the flight path. In this example Chicago ORD was a good
candidate for a turnaround airport as shownby theCLZs in both forecasting
systems. Once a flight has been selected, when adjusting the flight to avoid
CLZs (as in Fig. 1).

Post-Flight Verification
Todeterminewhether contrailswere createdor avoided for eachflight in the
trial, three evaluators (authors of this work) independently completed post-
flight analyses to assign individual binary labels. Figure 2 shows an example
of the satellite imageryused.Theyellow line shows theflight path,whichwas
obtained from Automatic Dependent Surveillance Broadcast data licensed
from FlightAware29.

The evaluators assessed whether a flight made a contrail based on the
following criteria:
• Proximity and direction:Howclose is the contrail to the advectedflight

trajectory, is it aligned in the same direction?

Table 1 | Ablation study of the contrail prediction ML model

Features removed Area Under the
Receiver Operating
Characteristic Curve

Δ

None 0.855

Humidity (q,r) 0.841 0.014

Cloud data (ciwc, cswc, cc) 0.846 0.009

Vertical transport (d,v,w) 0.847 0.008

Temperature (t) 0.853 0.002

Horizontal transport(u,v) 0.854 0.001

Humidity and clouds (q, r,
ciwc, cswc, cc)

0.792 0.063

The symbols inside the brackets are the names of the quantites in the EuropeanCentre forMedium-
RangeWeather Forecasts Integrated Forecasting Systemdata. The first row shows results using all
the features we use, other rows show the effects of removing some features.

Fig. 3 |Machine learning andCoCiP based contrail likely zone forecasts.Example
contrail likely zone forecasts (CLZ) used to select flights for Thursday, March 23,
21:00 UTC from the ML model (left) and the CoCiP model (right). The left image
shows all-altitude (FL 260-FL420), color-coded CLZ probability thresholds, with
red, yellow, and green corresponding to high, medium, and low probabilities of

contrail formation, respectively. The right image shows the forecast for flight level
360, with blue coloring indicating net-cooling contrails and red coloring indicating
net-warming contrails. The contrail’s net impact was not considered for the pur-
poses of this trial.
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• Presence: Is there a high level of confidence that the object in the frame
is a contrail?

• Timing: Did the suspected contrail first appear 20-40minutes after the
flight passed?

• Persistence: Is the contrail visible in multiple frames?
• Speed: Does the suspected contrail move at the same speed as the

advected plume of the flight?
• Exclusivity: Are there no other flights in the FlightAware database that

are a substantially better match for the contrail in question?

We note that the criteria were used as guidance, as there were cases for
which it was not possible to assess all criteria and others where evaluators
determined matches even when one or more criteria were not met. The
timing criterion was present since it often takes some time for contrails to
become large enough to be detected in at least two consecutive GOES-16
frames. Like all the criteria this is guidance only, as contrails can appear
much earlier than 20 minutes under certain weather conditions and tem-
poral alignments with satellite scans31.

To account for uncertainty in contrail avoidance compliance, the
evaluators assigned a binary label based on whether a contrail was created
anywhere along theflight path above 415 hPa (6915meters), typical contrail
formation altitudes32. Disagreements among evaluators were resolved by
majority vote. See Fig. 4 for a geographic coverage of the flight sample.

Results
Ascent/descent adjustments lead to a decrease in detectable
contrail formation
As shown in Table 2, the treatment group, which aimed to avoid contrails,
made 4 detectable contrails, 63.6% fewer than the 11 observed in the control
group. We rejected the null hypothesis of no change in detectable contrail
formation between the treatment and control groups (p = 0.0331, permu-
tation rank sign test). These results suggest that the early descent or delayed
ascent informed by the CLZ forecasting system caused a statistically sig-
nificant reduction in detectable contrail formation. They also demonstrate
the operational feasibility of detectable contrail avoidance on a per-
flight basis.

Detectable contrails accounted for 1.97% and 0.89% of total flight
kilometers in the control and treatment groups respectively. This represents
a 54.4% reduction in detectable contrails per flight kilometer in the contrail
avoidance flights. We tracked fuel usage throughout the experiment using
aircraft movements and inflight position reports sent through Aircraft

Communication Addressing and Report System via Very High Frequency
and Satellite Communications. The treatment group used an average of 2%
more fuel per adjusted flight, corresponding to an additional 0.26 kg of CO2

emissions per kilometer of treatment group flight.

Discussion
Our work has shown a reduction in observed contrail formation with a
treatment group size of 22 flights. We opted for a tactical near-airport
contrail avoidance intervention for several key reasons: 1) This approach
allowed for an effective crossover trial design, as we had flexibility in
selectingdestination airports nearCLZs.Thisminimized the timedifference
between outbound and inbound flights encountering the same CLZ, thus
controlling for potential confounders like aircraft type and atmospheric
conditions. 2) Near-airport maneuvers simplified operations and ensured
higher pilot compliance. 3) Compared to modifying cruise levels, which
could require prolonged low-altitude flight or multiple altitude changes,
delayed ascent/early descent minimized additional fuel usage by avoiding
extra climbing. Additionally, lower altitudes are associated with a reduced
probability of contrail formation even in the presence of some ice super-
saturation. It is worth noting that, although statistical significance is influ-
enced by sample size, it is also heavily dependent on the signal-to-noise ratio
of the data33. Our crossover design trial together with the tactical near-
airport avoidance intervention mitigated the change in atmospheric con-
ditions present in treatment and control groups, thereby controlling for
potential weather-related and other confounders which helped reduced
noise34. Given the small sample size, we avoided asymptotic assumptions
about normality and adopted a non-parametric approach, enhancing the
statistical power of our hypothesis test in this context25,26.

An important future direction would be to show this method extends
to larger scale, such as by performing a similar experimentwith hundreds or
thousands of flights. In addition to demonstrating operational feasibility,
such a trial could expand the route selection criteria to allow testing
avoidance of mid-flight CLZs, horizontal as well as vertical path adjust-
ments, geographic regions with different weather patterns (e.g. North
Atlantic or subtropical routes) and nighttime flights which can have a
particularly strong warming impact. Moreover, future trials might consider
relaxing the requirement for agreement betweenML and CoCiP models in
CLZ identification to explore contrail avoidance feasibility under a broader
range of prediction scenarios. Eventually, trials should consider the radiative
forcing impact of contrailswhenmakingflight-adjustmentdecisions, so that
the focus can be on evaluating the feasibility of minimizing the warming
impact as opposed to just contrail formation. In this experiment, we vali-
dateddetectable contrail avoidancemanually for eachflight, but a larger trial
would likely need to use an automated system15,31.

There are a few important factors to consider when interpreting the
results. For example, having observed 11 contrails in the control group,
where 22 flights flew through CLZs, suggests CLZ forecasting is challenging
and can lead to false positive CLZs. Weather forecasts of humidity at
contrail-relevant altitudes are subject to inaccuracies13,16,35.We control some
of this uncertainty by using two different approaches for CLZ forecasting
(physics based and empirical-basedML), and with our inclusion/exclusion
criteria for the flight sample. The 50% rate of contrail observation for flights
predicted to form a contrail in the control group is relatively high compared
to previous approaches13–15. It is alsoworth noting, that the probability of the
ISSR not being present on the turnaround leg is balanced between the
treatment and control groupsdue to the randomizationof the crossover trial

Table 2 | Number of flights with GOES-16 detected and undetected contrails, total detected contrail length, and total flight
distance for the control and treatment groups

No detectable contrail created Detectable contrail created Sum of contrail km Sum of total flight km

Control 11 11 726 36802

Treatment 18 4 321 35729

Fig. 4 | Flight sample considered in the randomized crossover trial. Geographic
coverage of flights considered for the trial, colors are used to illustrate different
flights.
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design.Therefore, it shouldnot systematically bias the overall conclusions of
the trial.

Difficulties in CLZ forecasting may also explain the observed contrails
in the treatment group. Alternatively, these false positives could have been
caused by attributing the contrail to the wrong flight, which can happen in
image sequences with a high density of flight paths and contrails such as the
example in Fig. 2. False positives could also be attributed to our labeling
strategy; our evaluation was conservative in that it did not take into account
where in theflight the contrailwasmade: a contrail formed in anypart of the
flight path was counted towards the treatment group, even if formed after a
successful CLZ avoidance intervention to ensure objective evaluation as
mentioned in the Results section. Some contrails may not be visible in the
images, either because of the chosen infrared channel color scheme, because
the 2 km satellite resolution might not show faint or optically thin contrails
or they might have been simply blocked by higher clouds15,21. Finally, some
flights (e.g. military flights) may bemissing from the Automatic Dependent
Surveillance Broadcast flight trajectory data provided by FlightAware29,
which could complicate flight attribution.

Previous simulation studies6,7 have argued that small-scale flight
deviations can avoid creating contrails, but this work’s use of satellite ima-
gery for evaluation tested whether satellite-detectable contrails were avoi-
ded. Research on the radiative properties of contrails could help to quantify
under what conditions contrails form but are not detectable by satellite.

Conclusion
In thisworkweperformed a randomized control trial ofwhether small-scale
flight deviations can reduce detectable contrail formation. Using machine
learning and physics-based CLZ forecastingmodels, we found a statistically
significant reduction in the number of observed contrails in the flights that
attempted to avoid contrail forming regions. This study provides a proof-of-
concept that commercial airlines can verifiably avoid detectable contrail
formation, one of the first steps towards developing a comprehensive
avoidance strategy. We hope that these findings motivate further research
into contrail avoidance via flight route planning at a global scale.

Data availability
The supplementary material contains a table with flight-level information,
andpublicly available links toallflightpath visualizations usedby evaluators.
CoCiP simulations can be reproduced using the pycontrails API at
api.contrails.org.

Code availability
See Note 2 on the supplementary material for the link to the publicly
available Google Colab notebook used for the statistical analysis carried out
withPython3.11.8 using the following libraries:NumPy36, Pandas37, SciPy38,
tqdm39, seaborn40, Matplotlib41.
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